NANDHA ENGINEERING COLLEGE

DEPARTMENT OF EEE

Electronic Devices and Circuits Question Bank

Part A

- 1. Define Doping.
- 2. What do you understand by extrinsic semiconductor?
- 3. What are the two types of extrinsic semiconductors?
- 4. What is meant by unbiased PN junction?
- 5. What is meant by depletion layer in unbiased PN junction?
- 6. Define forward static and dynamic resistances of diode.
- 7. Define diffusion capacitance and transition capacitance.
- 8. Draw the V-I characteristics of PN junction Diode.
- 9. Write down the expression for Diode Current.
- 10. Write any two differences between Zener breakdown and Avalanche breakdown.
- 11. What is meant by Zener diode?
- 12. Draw the V-I characteristics of Zener diode.
- 13. List the applications of Zener Diode.
- 14. Define the ripple factor for a half-wave and full-wave rectifier.
- 15. Compare the performance of half-wave rectifier and full-wave rectifier.
- 16. Define Transformer utilization factor.
- 17. What are the advantages of Bridge rectifier?
- 18. How shunt regulator is differentiated from series regulator?
- 19. Draw the block diagram of shunt voltage regulator.
- 20. Draw the block diagram of series voltage regulator.
- 21. Compare the rectifier and regulator.
- 22. What is meant by LED? What materials are used to construct an LED?
- 23. Define the following for LED
- a) Radiant intensity b) Irradiance

- 24. Name the different types of LCDs.
- 25. State any two applications of LCDs.
- 26. Write the diffusion current expression and state how this current is formed?

27. Write the temperature dependence of reverse saturation current of PN junction diode.

- 28. Draw the energy band diagram of a semiconductor.
- 29. Why an LC filter is called load independent?
- 30. Draw the equivalent circuit of zener diode under proper biased condition.
- 31. Why a semiconductor acts as an insulator at ordinary temperature?
- 32. Define valence band and conductance band.
- 33. Name some donor and acceptor which can be added as impurities in Silicon and Germanium.
- 34. Differentiate drift current and diffusion current.

35. Why Silicon is preferred over Germanium in the manufacture of semiconductor devices?

- 36. Define forbidden energy gap.
- 37. Define forward and reverse recovery time of a diode.
- 38. Define knee voltage and breakdown voltage with respect to diode.
- 39. Define mass action law.
- 40. Define avalanche breakdown and zener breakdown.
- 41. Write down the advantages of C filter.
- 42. Design a full wave rectifier with C filter for Vdc = 12 V; IL = 100 mA and ripple factor = 5%.
- 43. What is meant by mean life time of a carrier in semiconductor?
- 44. Define peak inverse voltage of diode.
- 45. Define load regulation and line regulation.
- 46. What are the limitations of using zener diode regulator?
- 47. Define filter.
- 48. What are the types of filter?

49. A 5V battery is connected across the two diodes connected in series opposing. Find the voltage drop across each diode at room temperature.

50. What is transistor? Give its circuit symbol.

51. In a transistor operating in the active region although the collector junction is reverse biased the collector current is quite large. Explain.

- 52. What is reverse saturation current?
- 53. Define α and β .
- 54. What is meant by punch through effect?
- 55. If the base current in a transistor is 30 micro amps when the emitter current is
- 2 m A. What are the values of α and β ?
- 56. Give the relation between α and β .
- 57.Draw the hybrid model for transistor.
- 58. Define the various h-parameters in a transistor.
- 59. List some applications of BJT.
- 60. Define cutoff and active region of a transistor.
- 61. Draw the output characteristics of a transistor in CE configuration.

62. Draw the small signal low frequency hybrid model of common base configuration.

63. What is optocoupler?

- 64. Mention two advantages of optocouplers.
- 65. Why base made thin in BJT?
- 66. Among CE, CB and CC configurations which is most popular? Why?
- 67. Define Base Width modulation.
- 68. What is meant by biasing a transistor?
- 69. In a common base connection, the emitter current is 1 mA, ICBO = 50 μ A, α =

0.92. Find the total collector current.

70. Describe how amplification and switching achieved by a BJT?

71. What are the bias conditions of base-emitter and base-collector junction to operate a transistor in cut off region?

72. Define the current ICEO.

- 73. Why is emitter follower so named?
- 74. What do you understand by h-parameters?
- 75. What is the significance of h-parameters?
- 76. Which factors determine the switching speed of the transistor?
- 77. What are the limitations of switching parameter?
- 78. What is the need for small signal model of BJT?
- 79. Differentiate between rise time and storage time?

80. What are the factors that contribute to the delay time when the transistor is used as a switch?

81. Differentiate small signal model with large signal model.

- 82. Draw the ebers-moll model of CE transistor circuit.
- 83. What is transistor? Give its circuit symbol.

84. In a transistor operating in the active region although the collector junction is reverse biased the collector current is quite large. Explain.

85. What is reverse saturation current?

86. Define α and β .

87. What is meant by punch through effect?

88. If the base current in a transistor is 30 micro amps when the emitter current is

- 2 m A. What are the values of α and β ?
- 89. Give the relation between α and β .
- 90. Draw the hybrid model for transistor.
- 91. Define the various h-parameters in a transistor.
- 92. List some applications of BJT.
- 93. Define cutoff and active region of a transistor.
- 94. Draw the output characteristics of a transistor in CE configuration
- 95. What are the features of JFET?
- 96. What is meant by Pinch-off voltage?
- 97. Define amplification factor.
- 98. Draw the symbol of JFET.
- 99. Define drain resistance and Transconductance.
- 100.Write Shockley's equation.
- 101. What are the applications of JFET?
- 102. What are the precautions to be taken when handling MOSFET?

103. What are the differences between BJT and JFET?

104. What are the differences between JFET and MOSFET?

105.Depletion MOSFET is commonly known as "Normally-on" MOSFET. Why?

106. What are the parameters of JFET?

- 107.Draw the symbol for
- i) P-channel JFET, iii) N-channel JFET
- ii) P-channel depletion MOSFET iv) N-channel depletion MOSFET

108. What is Darlington connection?

109.Draw small signal model of Common source amplifier.

110.Define threshold voltage of a MOSFET.

111. Why noise level in FET is smaller than BJT?

112. Why the input impedance in FET is very high in comparison with BJT?

113. What is an oscillator?

114. What are sustained oscillations?

115. What is Piezo electric effect?

116. Why quartz crystal is commonly used in crystal oscillator?

117. Why is an RC phase shift oscillator called so?

118.Name three high frequency oscillators.

119.Distinguish between LC and RC oscillator.

Part B

1. Explain the operation of forward biased and reverse biased PN junction Diode.

2. (i) Explain the current components in a PN junction diode. (ii) Derive the diode current equation.

3. Briefly explain about avalanche and zener breakdown..

4. Explain the working of Bridge rectifier. Give the expressions for RMS current, PIV, ripple factor and efficiency.

5. Describe the working principle of full wave rectifier and derive the expressions for the ripple factor, efficiency, VDC, IRMS, ILmax and VRMS..

6.Explain V-I characteristics of Zener diode.

7. Draw and explain the input and output characteristics of a transistor in CE configuration.

8.Draw and explain the input and output characteristics of a transistor in CB configuration.

9.Explain the working of NPN and PNP transistor.

10.Distinguish between the different types of transistor configurations with necessary circuit diagrams.

11.Draw and explain the input and output characteristics of a transistor in

CC configuration.

12.Derive the expression for AI, AV, Ri and Ro for CB amplifier using Remodel.

13.Derive the expression for AI, AV, Ri and Ro for CE amplifier using Re-model.

14..Derive the expression for AI, AV, Ri and Ro for CC amplifier using Remodel.

15.Explain with the help of neat diagrams, the structure of an N-channel FET and its Volt-ampere characteristics. In what ways it is different from a bipolar transistor.

16.Describe the construction and explain the operation of depletion mode MOSFET. Also draw the static characteristics.

17.Explain the working of a P channel JFET and draw the V-I characteristics of it. 18. (i)Compare N-with P-channel MOSFETS. (ii)Compare P-channel JFET with N-channel JFET.

19.(i)Compare JFET and MOSFET?

(ii)With neat diagram, explain the working of Darlington connection.

20.(i) Draw and explain the small signal model of common drain amplifier. (ii) Draw and explain the small signal model of common gate amplifier.

21.Describe the kind of operation that takes place in the enhancement mode MOSFET. How does this differ from depletion mode type?

22. (i)Write short notes on LC oscillator. (ii)Write short notes on crystal oscillator..