NANDHA ENGINEERING COLLEGE (Autonomous)

DEPARTMENT OF ELECTRICAL AND ELECTRONICS ENGINEERING

ACADEMIC YEAR 2021-2022 ODD SEMESTER

POWER ELECTRONICS - QUESTION BANK

<u>UNIT – 1 POWER SEMICONDUCTOR DEVICES</u>

PART – A (1 MARKS)

A 1	An SCR behaves as a switch	1
	a) unidirectional	b) bidirectional
	c) mechanical	d) none of these
A 2	The normal way to turn on a SCR is by	
	a) appropriate gate current	b) appropriate anode current
	c) break over voltage	d) threshold voltage
A 3	An SCR is turned off when	
	a) anode current is reduced to zero	b) gate voltage is reduced to zero
	c) gate is reverse biased	d) anode current is made to maximum
A4	When SCR starts conducting, then	loses all control
	a) gate	b) cathode
	c) anode	d) none of these
A5	In a thyristor, dv/dt protection is achieve	ed through the use of
	a) RC across thyristor	b) R across thyristor
	c) C across thyristor	d) RC series connection with thyristor
A6	Comparing a triac & SCR	
	a) an SCR has less time for turn off	b) both are unidirectional
	than Triac	
	c) both are bidirectional	d) All the above
A7	The TRIAC can be represented by	
	a) two SCRs in anti-parallel	b) two SCRs in parallel
	c) two diodes in anti-parallel	d) two diodes in parallel
A8	The TRIAC is most sensitive in the	quadrants
	a) 1st with positive gate current & 3rd	b) 1st with positive gate current & 3rd
	with negative gate current	with positive gate current
	c) 1st & 3rd with positive gate current	d) 1st & 3rd with negative gate current
A9	The GTO can be turned off by a	
	a) negative gate pulse	b) positive gate pulse
	c) negative anode-cathode voltage	d) removing the gate pulse
A10	Latching current for the GTOs is	as compared to CTs (Conventional
	thyristors)	
	a) more	b) less
	c) constant	d) cannot be said
A11	GTOs have as compared to the second se	he CTs.
	a) faster switching speed	b) higher reverse blocking capabilities

	c) less on-state voltage drop	d) less gate drive losses
A12	Choose the correct statement	
	a) MOSFET is a voltage controlled	b) MOSFET is a uncontrolled device
	device	
	c) MOSFET is a temperature controlled	d) MOSFET is a current controlled
	device	device
A13	Which among the following devices	is the most suited for high frequency
	applications?	
	a) MOSFET	b) IGBT
	c) BJT	d) SCR
A14	In an IGBT, during the turn-on time	
	a) Vce decreases	b) Ic decreases
	c) Vge decreases	d) none of the mentioned
A15	The SOAs provided by the manufacture	rs are for
	a) single pulse operation & a particular	b) multi pulse operation & all the
	temperature	temperature
	c) all the conditions	d) a particular duty cycle operation
A16	For an SCR in the forward blocking mod	le (practically), the leakage current
	a) flows from anode to cathode	b) flows from cathode to anode
	c) flows from gate to anode	d) does not flow
A17	The latching current is than t	he holding current
	a) higher	b) same as
	c) lower	d) None of these
A18	Gold doped GTOs has	requirement as compared to the
	conventional GTOs	
	a) low negative gate current	b) lower positive gate current
	c) high turn-off time	d) None of these

S.No	Part – B	Marks	СО	BTL	Topic in Syllabus
1	Define power electronics and give the applications.	2	CO1	U	Introduction
2	List the types of power transistors.	2	CO1	R	Introduction
3	Define holding current of SCR.	2	CO1	U	SCR
4	Define Latching current of SCR.	2	CO1	U	SCR
5	Delineate TRIAC.	2	CO1	R	TRIAC
6	Write down the applications of TRIAC.	2	CO1	R	TRIAC
7	Draw the symbol of GTO and BJT.	2	CO1	R	GTO and BJT

8	State the advantages of GTO over SCR.	2	CO1	U	GTO
9	Power BJT is current controlled device. Justify your answer.	2	CO1	An	BJT
10	Power MOSFET is voltage controlled device. Justify your answer.	2	CO1	An	MOSFET
11	Mention the different types of power MOSFETs.	2	CO1	R	MOSFET
12	IGBT is very popular nowadays, Justify your answer.	2	CO1	R	IGBT
13	IGBT is called as voltage controlled device. Justify your answer.	2	CO1	An	IGBT
14	Distinguish between BJT and MOSFET.	2	CO1	An	BJT, MOSFET
15	Write down the difference between MOSFET and IGBT.	2	CO1	An	MOSFET, IGBT
16	List out the parameters involved in the switching losses of power devices.	2	CO1	R	Switching of power semi conducting devices
17	Define (SOA) safe operating area of power semiconducting devices.	2	CO1	U	Safe operating area
18	Mention the different methods to turn on the thyristors.	2	CO1	R	Triggering of SCR
19	Define commutation of SCR and list its types.	2	CO1	R	Commutation of SCR
20	Portray snubber circuit.	2	CO1	U	Design of driver and snubber circuit
21	Write down the applications of MOSFET.	2	CO1	R	Power semiconducting devices
22	Write down the applications of IGBT.	2	CO1	R	Power semiconducting devices
23	Write down the applications of SCR.	2	CO1	R	Power semiconducting devices

S.No	Part – C & D	Marks	СО	BTL	Topic in Syllabus
1	Elucidate the construction of SCR with neat sketch.	7	CO1	U	SCR structure
2	Illustrate the different modes of operation of thyristor with the help of static VI	7	CO1	An	SCR operation and steady state characteristics

	characteristics.				
3	Draw the dynamic characteristics of SCR and explain it.	7	CO1	An	SCR switching characteristics
4	Summarize the different modes of operation of TRIAC with the help of VI characteristics	8	CO1	An	TRIAC structure, operation and charateristics
5	With a neat waveform, explain the switching characteristics of MOSFET.	7	CO1	An	Dynamic charateristics - MOSFET
6	With a neat waveform, explain the switching characteristics of BJT.	7	CO1	U	Dynamic charateristics - BJT
7	With a neat waveform, explain the switching characteristics of IGBT.	7	CO1	An	Dynamic charateristics - IGBT
8	Summarize the different methods for turning off (commutation) an SCR with necessary circuits.	14	CO1	Ар	Commutation of SCR
9	Illuminate the safe operating area of BJT.	6	CO1	U	Safe operating area
10	Describe about different type of over current and over voltage protection in SCR.	7	CO1	An	Design of driver and snubber circuits
11	Describe the gate driver circuit and base driver circuit.	8	CO1	U	Design of driver circuit
12	Explain the importance of isolation circuits	7	C01	U	Isolation circuits

<u>UNIT – 2 PHASE CONTROLLED CONVERTERS</u>

A 1	1 In the complete firing circuit, the driver circuit consists of						
	a) pulse amplifier & pulse transformer	b) pulse generator & power supply					
	c) gate leads & power supply	d) pulse detector & pulse amplifier					
A 2	The average output voltage is maximum	when SCR is triggered at ωt =					
	a) 0	b) π					
	c) π/2	d) π/4					
A 3	For a single phase half-wave thyristor ci	rcuit with R load, the input power factor is					
	given by						
	a) power delivered to load/input VA	b) cos α					
	c) rms source voltage/total rms line	d) rms input power/power delivered to					
	current	the load					
A4	The SCR is gated at α . At $\omega t = \pi$	-					
	a) only load voltage is zero	b) only load current is zero					
	c) load voltage & load current are	d) both are non-zero & non negative					
	both zero						

A5	By using a freewheeling diode (FD) consumed by the load	in a rectifier with RL load, the power								
	a) increases	b) decreases								
	c) decreases to zero	d) it is not affected								
A6	For a single phase thyristor circuit wit	h R load & firing angle α , the conduction								
	angle can be given by	6 6 <i>7</i>								
	a) π+α	b) 2π+α								
	c) π-α	d) α								
Δ7	A single-phase full controlled conver	ted with RIF load will act like a line-								
	commutated inverter when the firing angle α									
	a) $\alpha > 180^{\circ}$	$h) \alpha > 90^{\circ}$								
	$\alpha < 180^{\circ}$	d) $\alpha = 180^{\circ}$								
A 8	In case of controlled rectifiers, the n	pature of the load current (continues or								
	discontinuous) depends upon the									
	a) type of load and firing angle b) type of load only									
	c) type of firing angle only	d) it is independent of all the parameters								
Δ9	In a single phase semi converter with	α has semi converter with resistive load and a firing angle α each								
/ 10	SCR and freewheeling diode would con	duct for								
		b) π-α, α								
	c) π + α , α	d) π-α, 0°								
A10	A freewheeling diode placed across a R	L load provides								
	a) fast turn-on time	b) slow turn-off time								
	c) poor utilization factor	d) better power factor								
A11	A single-phase symmetrical semi-conve	erter employs								
	a) one SCR and one diode in each leg	b) two SCRs and two diodes in each leg								
	c) two SCRs in each leg	d) two diodes in each leg								
A12	A single-phase asymmetrical semi-conv	verter employs								
	a) one SCR and one diode in each leg	b) two SCRs in one leg and two diodes								
	.,	in the other								
	c) two SCRs in both the leas	d) two diodes in both the legs								
A13	A three-phase, three-pulse, M-3 type	controlled converter uses								
	number of SCRs									
	a) 1	b) 2								
	c) 3	d) 4								
A14	A three-phase three pulse type control	led converter is constructed using 3 SCR								
	devices. The circuit is supplying an F	R load with α < 30°. As such, each SCR								
	device would conduct for	,								
	a) 60° each cycle	b) 120° each cycle								
	c) 180° each cycle	d) 360° each cycle								
A15	A three-phase three-pulse converter wo	uld operate as a line commutated inverter								
	when	•								
	a) 30° < α < 60°	b) 90° < α < 180°								
	c) 90° > α	d) it can never operate as a line								
		commutated inverter								
A16	A three phase full converter will require	number of SCRs								

	a) 3	b) 6
	c) 9	d) 2
A17	A three phase six pulse full converter	works as a ac to dc converter for firing
	angles in the range	-
	a) α > 90	b) 90 < α < 180
	c) 0 < α < 90	d) 0 < α < 360
A18	For a three phase full controlled conv	verter, with 3 thyristors in the upper or
	positive group and 3 thyristors in the low	wer or negative group, at any given time
	a) one thyristor is conducting from	b) one thyristor is conducting from each
	either of the groups	group
	c) all 6 thyristors are conducting at a	d) two thyristors are conducting from
	time	each group
A19	In case of a three phase full controlle	ed converter with 6 SCRs, commutation
	occurs every	
	a) 60°	b) 30°
	c) 120°	d) 180°
A20	Dual converters provide	
	a) one quadrant operation	b) two quadrant operation
	c) three quadrant operation	d) four quadrant operation
A21	A dual converters has	
	a) two full converters in series	b) two half converters in series
	c) two full converters in anti-parallel	d) two half converters in anti-parallel
A22	The major advantage of using dual conv	erters is that
	a) it is cheaply available	b) it has better pf
	c) no mechanical switch is required to	d) its operating frequency is very high
	change the mode of operation	
A23	In circulating current mode dual convert	ers, the circulating current is avoided by
	a) connecting a series reactor	b) maintaining $\alpha 1 + \alpha 2 = 180^{\circ}$
	c) operating only one converter	d) adding an extra SCR

S.No	Part – B	Marks	CO	BTL	Topic in Syllabus
1	List out the various types of power electronics converters.	2	CO2	R	Introduction
2	Mention some of the applications of phase controlled rectifier.	2	CO2	R	Introduction
3	Define phase control.	2	CO2	U	Introduction
4	Classify different types of controlled rectifier.	2	CO2	R	Introduction
5	Clarify two pulse converters and state its examples.	2	CO2	R	2 pulse converter
6	Define delay or firing angle.	2	CO2	U	2 pulse converter
7	State the function of freewheeling diode in	2	CO2	U	2 pulse converter

	controlled rectifiers.				
8	Mention the advantages of freewheeling diode in a controlled rectifier.	2	CO2	R	2 pulse converter
9	Compare half controlled and fully controlled bridge rectifier.	2	CO2	An	2 pulse converter
10	Define commutation or overlap angle.	2	CO2	U	Effect of source inductance
11	Mention the different methods of firing circuits for line commutated converter?	2	CO2	R	Gate circuit schemes for phase control
12	Give an expression for average dc voltage of single phase semi converters with R load.	2	CO2	R	2 pulse converters
13	Give an expression for average dc voltage of single phase semi converters with RL load.	2	CO2	R	2 pulse converters
14	Give an expression for average dc voltage of three phase half wave controlled rectifier R load.	2	CO2	R	3 pulse converters
15	Give an expression for average voltage of three phase half wave controlled rectifier RL load.	2	CO2	R	3 pulse converters
14	State the advantages of six pulse converters than the three pulse converters.	2	CO2	U	6 pulse converters
15	Define input power factor.	2	CO2	R	Performance parameters
16	Categorize the performance factors of line commutated converters?	2	CO2	R	Performance parameters
17	Write down the formula of THD.	2	CO2	R	Performance parameters
18	Delineate dual converter and write its types.	2	CO2	U	Single and three phase dual converters

S.No	Part – C & D	Marks	СО	BTL	Topic in Syllabus
1	Elucidate the working of 1Φ half controlled bridge converters with R load using relevant waveforms. Also derive the average output dc voltage equation.	14	CO2	An	2 pulse converter
2	Explicate the working of 1Φ half controlled bridge converters with RL load using relevant waveforms. Also derive the average output dc voltage equation.	14	CO2	An	2 pulse converter

3	Illuminate the working of 1Φ half controlled bridge converters with RLE load using relevant waveforms. Also derive the average output dc voltage equation.	14	CO2	An	2 pulse converter
4	Explain the working of 1Φ fully controlled bridge converters with R load using relevant waveforms. Also derive the average output dc voltage equation.	14	CO2	An	2 pulse converter
5	Demonstrate the working of 1Φ fully controlled bridge converters with RL load using relevant waveforms. Also derive the average output dc voltage equation.	14	CO2	An	2 pulse converter
6	Illustrate the working of 1Φ fully controlled bridge converters with RLE load using relevant waveforms. Also derive the average output dc voltage equation.	14	CO2	An	2 pulse converter
7	Illuminate the working of 3Φ half wave controlled rectifiers with R load using relevant waveforms. Also derive the average output dc voltage equation.	14	CO2	An	3 pulse converter
8	Elucidate the working of 3Φ half wave controlled rectifiers with RL load using relevant waveforms. Also derive the average output dc voltage equation.	14	CO2	An	3 pulse converter
9	Explain the working of 3Φ half controlled bridge rectifiers with R load using relevant waveforms. Also derive the average output dc voltage equation.	14	CO2	An	3 pulse converter
10	Formulate the working of 3Φ half controlled bridge rectifiers with RL load using relevant waveforms. Also derive the average output dc voltage equation.	14	CO2	An	3 pulse converter
11	Illuminate the working of 3Φ fully controlled bridge rectifiers with RLE load using relevant waveforms. Also derive the average output dc voltage equation.	14	CO2	An	6 pulse converter
12	Expound the working of single phase fully controlled rectifier with source inductance with necessary wave forms. Also derive the average output dc voltage.	14	CO2	An	Effect of source inductance
13	Expound the working of three phase fully controlled bridge rectifier with source inductance with necessary wave forms. Also derive the average output dc voltage.	14	CO2	An	Effect of source inductance

14	Illustrate the operation of single phase dual converters with relevant circuit and waveforms.	7	CO2	U	Single phase Dual converters
15	Illustrate the operation of three phase dual converters with relevant circuit and waveforms.	8	CO2	U	Three phase Dual converters

<u>UNIT – 3 DC TO DC CONVERTERS</u>

A 1	A chopper may be thought as a						
	a) Inverter with DC input	b) DC equivalent of an AC transformer					
	c) DC equivalent of an AC transformer	d) DC equivalent of an induction motor					
A 2	Which device can be used in a chopper	circuit?					
	a) BJT	b) MOSFET					
	c) GTO	d) All of these					
A 3	What is the duty cycle of a chopper?						
	a) Ton/Toff	b) Toff/Ton					
	c) Ton/T	d) T/Ton					
A4	The load voltage of a chopper can be co	ntrolled by varying the					
	a) Duty cycle	b) firing angle					
	c) Reactor position	d) Extinction angle					
A5	Find the output voltage expression for a	a step down chopper with Vs as the input					
	voltage and α as the duty cycle						
	a) Vo = 2Vs/απ	b) Vo = Vs/α					
	c) Vo = Vs2/α	d) Vo = Vs x α					
A6	For a step-up chopper, when the duty c	ycle is increased the average value of the					
	output voltage	1					
	a) increases	b) Decreases					
	c) Remains the same	d) none of the mentioned					
A7	For a step-up/step-down chopper, if α (d	luty cycle) = 0.5 then					
	a) Vo < Vs	b) Vo = Vs					
	c) Vo > Vs	d) none of the mentioned					
A8	In constant frequency TRC or pulse wid	th modulation scheme, is varied					
	a) Vs	b) T					
	c) Ton	d) f					
A9	In case of frequency modulation system	, is kept constant					
	a) T	b) Ton					
	c) Toff	d) either Ton or Toff					
A10	In the current limit control method, the c	chopper is switched off when					
	a) load current reaches the lower limit	b) load current reaches the upper limit					
	c) load current falls to zero	d) none of these					
A11	For the type E chopper to be operated in	the fourth quadrant					
	a) only one switch is operated	b) two switches are operated					
	c) three switches are operated	d) all the switches are operated					
A12	2 Indicate the converter is used for regenerative breaking of DC motors						

	a) Buck convertor	b) Poost convertor				
	c) Buck-Boost converter	d) Cuk converter				
A13	Inductor and Capacitor in Buck converte	ter are used to				
	a) Increase the cost	b) Decrease the cost				
	c) Increase the harmonics	d) Filter out the harmonics				
A14	4 Which of the following statements is true of a Buck-Boost Converter?					
	a) The output power may be less than,	b) The output voltage is always greater				
	or greater than the input power	than the input voltage				
	c) The output current is always greater	d) The output voltage may be less than,				
	than the input current	or greater than the input voltage				
A15	Cuk-converter is better than Buck conve	erter in terms of the output voltage				
	a) true	b) false				
	c) none of these					
A16	The controller section of SMPS consists	of				
	a) Line filter	b) Power good signal				
	c) Pulse width modulator circuit	d) Push pull converter				
A17	Buck-Boost acts as Buck converter for o	duty cycle is equal to				
	a) 0.6	b) 0.9				
	c) 0.4	d) 0.7				
A18	SMPS is used for					
	a) obtaining controlled ac power	b) obtaining controlled dc power supply				
	supply					
	c) storage of dc power	d) switch from one source to another				

S.No	Part – B	Marks	CO	BTL	Topic in Syllabus
1	Define Chopper.	2	CO3	R	Chopper Introduction
2	State the principle of operation of step down chopper.	2	CO3	U	Step down chopper
3	State the principle of operation of step up chopper.	2	CO3	U	Step up chopper
4	List the control strategies of dc chopper.	2	CO3	R	Control strategy
5	Define duty cycle and give its formula.	2	CO3	U	Step down and step up chopper
6	Write down the expression for average output voltage for step down chopper.	2	CO3	R	Step down chopper
7	Write down the expression for average output voltage for step up chopper.	2	CO3	R	Step up chopper
8	Give some applications of dc choppers.	2	CO3	R	Chopper introduction
9	List out the methods for obtaining the	2	CO3	R	Chopper

	variable dc voltage from fixed dc voltage.				introduction
10	Mention the advantages of chopper control provides.	2	CO3	R	Control strategy
11	Identify the term TRC in dc chopper.	2	CO3	U	Control strategy
12	Point out CLC of dc chopper.	2	CO3	U	Control strategy
13	Define (FM) frequency modulation.	2	CO3	U	Control strategy
14	Define (PWM) pulse width modulation.	2	CO3	U	Control strategy
15	Outline switched mode regulators.	2	CO3	U	Switched mode regulators
16	Mention the types of switched mode regulators.	2	CO3	R	Switched mode regulators
17	List the applications of (SMPS) switched mode regulators.	2	CO3	R	Switched mode regulators
18	Write the disadvantages of frequency modulation.	2	CO3	R	Control strategy
19	Mention the applications of Boost converters.	2	CO3	R	Switched mode regulators
20	Portray Buck-Boost converter.	2	CO3	U	Switched mode regulators

S.No	Part – C & D	Marks	СО	BTL	Topic in Syllabus
1	Explicate the operating principle of step down chopper with neat circuit and waveform.	7	CO3	U	Step down chopper
2	Elucidate the operating principle of step up chopper with neat circuit and waveform.	7	CO3	U	Step up chopper
3	Derive an expression for output voltages in terms of duty cycle for a step up and step down chopper.	8	CO3	An	Step down and step up chopper
4	Summarize the methods of controlling the output voltage of a chopper.	8	CO3	An	Control Strategy
5	Illustrate the working principle of type E or four quadrant chopper with neat sketch.	7	CO3	U	Operation of four quadrant chopper
6	Demonstrate the working operation of Buck converter with relevant circuit and waveform. Also derive its average output	14	CO3	An	SMPS-Buck converter

	dc voltage in terms of duty cycle, peak to peak inductor current and capacitor voltage.				
7	Exhibit the working operation of Boost converter with relevant circuit and waveform. Also derive its average output dc voltage in terms of duty cycle, peak to peak inductor current and capacitor voltage.	14	CO3	An	SMPS-Boost converter
8	Elucidate the working operation of Buck- Boost converter with relevant circuit and waveform. Also derive its average output dc voltage in terms of duty cycle, peak to peak inductor current and capacitor voltage.	14	CO3	An	SMPS-Buck Boost converter
9	Explain the working operation of cuk converter with relevant circuit and waveform. Also derive its average output dc voltage in terms of duty cycle, peak to peak inductor current and capacitor voltage.	14	CO3	An	SMPS-cuk converter

<u>UNIT – 4 INVERTERS</u>

A 1	Inverters converts							
	a) dc power to dc power	b) ac power to dc power						
	c) dc power to ac power	d) ac power to ac power						
A 2	based inverters do not require self-commutation.							
	a) IGBT	b) MOSFET						
	c) SCR	d) GTO						
A 3	In a single-phase half wave inverter	SCR(s) are/is gated at a time.						
	a) 1	b) 2						
	c) 3	d) 4						
A4	In a single-phase full wave inverter	SCR(s) are/is gated at a time.						
	a) 1	b) 2						
	c) 3	d) 4						
A5	Safe commutation can be achieved in ca	ase of the operating mode.						
	a) 180°	b) 120°						
	c) 360°	d) None of these						
A6	In current source inverters							
	a) L filter is used before the CSI (input side)	b) L filter is used after the CSI (load side)						
	c) C filter is used before the CSI (input side)	d) C filter is used after the CSI (load side)						
A7	In the PWM voltage control method							
	a) external commutating capacitors	b) higher order harmonics are minimized						
	are required							
	c) more average output voltage can be obtained	d) lower order harmonics are minimized						

A 8	In a VSI (Voltage source inverter)	
	a) the internal impedance of the DC	b) the internal impedance of the DC
	source is negligible	source is very very high
	c) the internal impedance of the AC	d) the IGBTs are fired at 0 degrees
	source is negligible	, C
A9	Single phase half bridge inverters requir	res
	a) two wire ac supply	b) two wire dc supply
	c) three wire ac supply	d) three wire dc supply
A10	The output voltage from a single phase	full wave bridge inverter varies from
	a) Vs to zero	b) Vs/2 to zero
	c) Vs to –Vs	d) Vs/2 to Vs/2
A11	Below given circuit is a	
	a) SCR based inverter	b) GTO based inverter
	c) IGBT based inverter	d) B.IT based inverter
Δ12	The output of a single-phase half bridge	inverter on R load is ideally
	a) a sine wave	h) a square wave
	c) a triangular wave	d) constant dc
Δ13	The Total Harmonic Distortion (THD) is t	be ratio of
	a) rms value of all the harmonic	b) average value of all the harmonic
	components to the rms value of the	components to the rms value of the
	fundamental component	fundamental component
	c) rms value of all the third harmonic	d) rms value of all the fundamental
	component to the rms value of the	component to the rms value of all the
	fundamental component	barmonic components
A14	In voltage fed thyrister inverters	commutation is required
A14	a) load	b) forced
	a) rodu	d) any commutation technique can be
		used
Δ15	A three-phase bridge inverter require	a minimum of switching
	devices	
		b) 4
A46	C) 0	d) o
A10	In the three-phase bridge inverter, each	
	c) 90°	d) will depend on the value of the firing
		angle
A17	in the 180° mode VSI, devi	ces conduct at a time
	a) 2	b) 3
1	C) 4	d) 5

S.No	Part – B	Marks	CO	BTL	Topic in Syllabus
1	Define inverter.	2	CO4	R	Introduction
2	Mention the applications of an inverter.	2	CO4	R	Introduction
3	Classify the main types of an inverter.	2	CO4	R	Introduction
4	List the types of inverter.	2	CO4	R	Introduction
5	Thyristors are not preferred for inverters, justify the answer.	2	CO4	U	Introduction
6	Define VSI.	2	CO4	U	Voltage source inverter
7	Justify the answer - diodes should be connected antiparallel with thyristors in inverter circuits. Or What is meant by feedback diode in inverter circuit?	2	CO4	U	Voltage source inverter
8	Write the types of single phase inverters.	2	CO4	R	Single phase bridge inverter
9	Mention the two possible modes in order to fire the thyristors in three phase inverter.	2	CO4	R	Three phase voltage source inverter
10	Compare 120° mode with 180° mode of three phase inverter.	2	CO4	An	Three phase voltage source inverter
11	Write the advantage of 120° mode inverter over 180° mode.	2	CO4	An	Three phase voltage source inverter
12	Delineate PWM control.	2	CO4	U	Voltage control using PWM technique
13	State the advantages of PWM control.	2	CO4	R	Voltage control using PWM technique
14	List the different methods of PWM techniques.	2	CO4	R	Voltage control using PWM technique
15	Define Modulation index (MI) or Amplitude modulation index (AMI).	2	CO4	U	Voltage control using PWM technique
16	Mention the methods to reduce the	2	CO4	R	Harmonic

	harmonic contents.				reduction
17	List the disadvantages of the harmonics content present in inverter system.	2	CO4	R	Harmonic reduction
18	Define CSI.	2	CO4	U	Current source inverters
19	Give the advantages of current source inverter.	2	CO4	R	Current source inverters
20	Compare voltage source inverter with current source inverter.	2	CO4	An	Current source inverters

S.No	Part –C & D	Marks	СО	BTL	Topic in Syllabus
1	Elucidate the operation of single phase half bridge inverter with a neat sketch.	7	CO4	U	Single phase inverters
2	Elucidate the operation of single phase full bridge inverter with a neat sketch.	7	CO4	U	Single phase inverters
3	Expound the 180° conduction mode of firing operation of three phase inverter with relevant circuit and waveforms.	14	CO4	An	Three phase inverters
4	Illuminate the 120° conduction mode of firing operation of three phase inverter with relevant circuit and waveforms.	14	CO4	An	Three phase inverters
5	Demonstrate the various PWM techniques used for voltage control in inverters with necessary waveforms.	10	CO4	An	Voltage control of PWM techniques
6	Illustrate the working operation of current source inverter with neat sketch.	7	CO4	U	Current source inverters

<u>UNIT – 5 AC TO AC CONVERTERS</u>

A 1	AC voltage controllers convert voltage						
	a) fixed ac to variable dc	b) fixed dc to variable dc					
	c) fixed dc to variable dc	d) variable ac to variable dc					
A 2	Earlier then the semiconductor technology, devices were used for						
	voltage control applications						
	a) vacuum tubes	b) tap changing transformer					
	c) induction machine	d) Cycloconverters					
A 3	The AC voltage controllers are used in _	applications					
	a) power generation	b) electric heating					
	c) conveyor belt motion	d) power transmission					
A4	In AC voltage controllers the is obtained						
	a) variable dc with fixed frequency	b) variable dc with variable frequency					

	c) C. variable ac with fixed frequency	d) D. variable ac with variable frequency					
A5	In the principle of phase control						
	a) the load is on for some cycles and	b) control is achieved by adjusting the					
	off for some cycles	number of on off cycles					
	c) control is achieved by adjusting the	d) control cannot be achieved					
	firing angle of the devices	,					
A6	A single-phase half wave voltage controller consists of						
	a) one SCR is parallel with one diode	b) one SCR is anti-parallel with one					
		diode					
	c) two SCRs in parallel	d) two SCRs in anti-parallel					
A7	The below given output voltage wavefor	m can be obtained by a					
	150						
	100						
	-50						
	-100						
	10 20	30 40					
		Time (ms)					
	a) half wave ac voltage controller	b) full wave ac voltage controller					
	c) full wave inverter	a) None of these					
Að	Inree phase full wave ac voltage contro	lier is also called as					
	a) Unidirectional controller	b) Bidirectional controller					
	c) None of these	d)					
A9	A cycloconverter is a						
	a) one stage power converter	b) one stage voltage converter					
	c) one stage frequency converter	d) none of the mentioned					
A10	Applications of cyclo converters include						
	a) Speed control of ac drives	b) induction heating					
	c) Static VAR compensation	d) All of these					
A11	The single phase mid-point type cycloco	onverter uses number of					
	SCRs						
	a) 4						
	c) 8	d) None of these					
A12	In a three phase half-wave cycloconverter						
	a) both inverting and converting action	b) only inversion action takes place					
	takes place						
	c) only conversion action takes place	d) None of these					
A13	A13 A 3-phase to 3-phase cycloconverter requires						
	a) 18 SCRs for 6-pulse device	b) 36 SCRs for 3-pulse device					
	c) 36 SCRs for 6-pulse device	d) None of these					
A14	An intergroup reactor is used in a 1-pha	se cycloconverter circuit to					
	a) reduce current ripples	b) reduce voltage ripples					
_	c) limit circulating current	d) limit di/dt in the semiconductor switch					
A15	An advantage of a cycloconverter is						

a) very good power factor	b) requires few number of thyristors
c) commutation failure does not short	d) load commutation is possible
circuit the source	•

S.No	Part – B	Marks	CO	BTL	Topic in Syllabus
1	Depict ac voltage controller.	2	CO5	U	Introduction
2	Mention the applications of ac voltage controller.	2	CO5	R	Introduction
3	State the merits of ac voltage controller.	2	CO5	R	Single phase ac voltage controller
4	List the methods of control in ac voltage controller.	2	CO5	R	Control Strategy
5	State about integral cycle control.	2	CO5	U	Control Strategy
6	Differentiate on-off control with phase control.	2	CO5	An	Control Strategy
7	Write the advantage and disadvantage of on-off control.	2	CO5	R	Control Strategy
8	Write down the expression for duty cycle in on-off control.	2	CO5	R	Control Strategy
9	Define cycloconverter.	2	CO5	U	Cyclo converter introduction
10	List the types of cycloconverter.	2	CO5	R	Cyclo converter introduction
11	Define step up and step down cycloconverter.	2	CO5	U	Cyclo converter introduction
12	Mention the applications of cyclo converter.	2	CO5	U	Cyclo converter introduction
13	Identify positive converter group in a cyclo converter	2	CO5	U	Single phase cyclo converter
14	Identify negative converter group in a cyclo converter	2	CO5	U	Single phase cyclo converter

S.No	Part – C & D	Marks	СО	BTL	Topic in Syllabus
1	Illustrate the working operation of single phase ac voltage controller (RL load) with neat sketches. Also derive the expression for average dc output voltage and RMS	14	CO5	An	Single phase ac voltage controller

	output voltage.				
2	Demonstrate the working operation of three phase ac voltage controller (R load) with neat sketches.	8	CO5	U	Three phase ac voltage controller
3	With neat sketches enlighten the operation of single phase to single phase cyclo converter center tapped transformer configuration type.	7	CO5	U	Single phase cycloconverter
4	With neat sketches enlighten the operation of single phase bridge type cyclo converter.	7	CO5	An	Single phase cycloconverter
5	Describe about three phase to single phase cyclo converter operations with necessary circuit and waveforms.	8	CO5	U	Three phase cycloconverter
6	Summarize the operation of three phase to three phase cyclo converter with relevant circuit arrangement using 18 thyristors.	7	CO5	U	Three phase cycloconverter
7	Discuss about power factor control.	4	CO5	U	Power factor control