NANDHA ENGINEERING COLLEGE

(An Autonomous Institution affiliated to Anna University Chennai and approved by AICTE, New Delhi)

Erode-638 052, Tamil Nadu, India, Phone: 04294 – 225585

Curriculum and Syllabi for B.E – Agriculture Engineering [R17] [CHOICE BASED CREDIT SYSTEM]

(This Curriculum and Syllabi are applicable to Students admitted from the academic year 2017-2018 onwards)

SEPTEMBER 2021

N. Jupporp

INSTITUTE VISION AND MISSION

VISION	• To be an institute of excellence providing quality Engineering, Technology and Management education to meet the ever-changing needs of the society.
	• To provide quality education to produce ethical and competent professionals with social Responsibility
MISSION	• To excel in the thrust areas of Engineering, Technology and Entrepreneurship by solving real- world problems.
	• To create a learner centric environment and improve continually to meet the changing global needs.

B.E – Agricultural Engineering

VISION	 To foster academic excellence by imparting knowledge in Agricultural Engineering to meet the ever-growing needs of the society.
	• To provide quality education to produce agricultural engineers with social responsibility.
	• To excel in the thrust areas of agricultural engineering to identify and solve the real-
MISSION	world problems.
	• To create a learner-centric environment by upgrading knowledge and skills to cater the
	needs and challenges of the society.
	The graduates of Agricultural Engineering will be
PROGRAMME	• PEO1: Core Competency: Successful professional with core competency and inter- disciplinary skills to satisfy the Industrial needs.
OBJECTIVES (PEO)	• PEO2: Research, Innovation and Life-long Learning: Capable of identifying technological requirements for the society and providing innovative solutions to real time problems.
	• PEO3: Ethics, Human values and Entrepreneurship: Able to demonstrate ethical practices and managerial skills through continuous learning
	The students of Agricultural Engineering will be able to
PROGRAMME SPECIFIC OUTCOMES	• PSO1: Design, analyze and apply the knowledge gained on agricultural machinery, tools, implements and production technologies to increase crop production, improve land use, soil nutrient and conserve resources like water, fertilizer and energy.
(PSO)	• PSO2: Apply the comprehensive knowledge of engineering properties of agricultural
	products for upgrading the unit operation and developing innovative process, value-
	Agriculture.

PROGRAM OUTCOMES:

At the end of a programme a student will be able to demonstrate

GRADUATE ATTRIBUTES	PO No.	PROGRAMME OUTCOMES
Engineering		Apply the knowledge of mathematics, science, engineering fundamentals, and an
Knowledge	PO1	engineering specialization to the solution of complex engineering problems.
		Identify, formulate, review research literature, and analyze complex engineering
Problem Analysis	PO2	problems reaching substantiated conclusions using first principles of mathematics,
		natural sciences, and engineering sciences.
		Design solutions for complex engineering problems and design system
Design and	PO3	components or processes that meet the specified needs with appropriate
Development of		consideration for the public health and safety, and the cultural, societal, and
5010110113		environmental considerations.
		Use research-based knowledge and research methods including design of
Investigation of	PO4	experiments, analysis and interpretation of data, and synthesis of the information to
complex Problems		provide valid conclusions.
		Create, select, and apply appropriate techniques, resources, and modern
Modern Iool	PO5	engineering and IT tools including prediction and modeling to complex
Usage		engineering activities with an understanding of the limitations.
		Apply reasoning informed by the contextual knowledge to assesssocietal, health,
The Engineer and	DOG	safety, legal and cultural issues and the consequent responsibilities relevant to the
Society	P06	professional engineering practice.
		Understand the impact of the professional engineering solutions in societal and
Environment and	PO7	environmental contexts, and demonstrate the knowledge of, and need for
Sustainability		sustainable development.
Ethics		Apply ethical principles and commit to professional ethics and responsibilities and
Ethics	PO8	norms of the engineering practice.
Individual and	DOO	Function effectively as an individual, and as a member or leader in diverse teams,
Team Work	P09	and in multidisciplinary settings.
		Communicate effectively on complex engineering activities with the engineering
Communication		community and with society at large, such as, being able to comprehend and write
Communication	PO10	effective reports and design documentation, make effective presentations, and give
		and receive clear instructions.
Project		Demonstrate knowledge and understanding of the engineering and
Management and	PO11	management principles and apply these to one's own work, as a member and
Finance		leader in a team, to manage projects and in multidisciplinary environments.
		Recognize the need for, and have the preparation and ability to engage in
Lifelong Learning	PO12	independent and life-long learning in the broadest context of technological
		change.

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES WITH PROGRAMME OUTCOMES

A broad relation between the programme objective and the outcomes is given in the following table

PROGRAMME		PROGRAMME OUTCOMES											
EDUCATIONAL OBJECTIVES	А	В	С	D	E	F	G	н	I	J	к	L	
1	3	3	3	2	3	3	1	2	1	1	1	1	
2	3	3	3	3	2	2	2	2	2	1	1	2	
3	3	3	3	2	3	2	2	2	2	1	1	1	

Contribution

1: Reasonable

2: Significant

3: Strong

NANDHA ENGINEERING COLLEGE (AUTONOMOUS), ERODE – 638 052 REGULATIONS – 2017 (R17) CHOICE BASED CREDIT SYSTEM (CBCS) B.E. AGRICULTURE ENGINEERING

CURRICULAM: I – VIII SEMESTERS

SYLLABUS: 1 TO 8 SEMESTERS

SEMESTER: I											
SL. NO		COURSE TITLE	CATEGORY	PRERQUISITE		L	т	Р	с		
THEC	DRY				T EIRIODO						
1.	17EYA01	Professional English – I	HS	-	4	2	0	2	3		
2.	17MYB01	Calculus and Solid Geometry	BS	-	5	3	2	0	4		
3.	17PYB01	Physics for Engineers	BS	-	3	3	0	0	3		
4.	17CYB01	Applied Chemistry	BS	-	3	3	0	0	3		
5.	17EEC01	Basic Electrical and Electronics Engineering	ES	-	3	3	0	0	3		
6.	17CSC01	Problem Solving and Python Programming	ES	-	3	3	0	0	3		
PRAC	CTICAL										
7.	17GYP01	Physics and Chemistry Laboratory	BS	-	4	0	0	4	2		
8.	17CSP01	Problem Solving and Python Programming Laboratory	ES	-	4	0	0	4	2		
9.	17GEP01	Personal Values	HS	-	2	0	0	2	0		
				TOTAL	31	17	2	12	23		
			SEMESTER:	II							
SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	PRERQUISITE	CONTACT PERIODS	L	т	Р	С		
THEC	DRY										
1.	17EYA02	Professional English – II	HS	17EYA01	4	2	0	2	3		
2.	17MYB02	Complex Analysis and Laplace Transforms	BS	17MYB01	5	3	2	0	4		
3.	17CYB03	Environmental Science	BS	-	3	3	0	0	3		
4.	17AGC01	Principles and Practices of Crop Production	РС	-	3	3	0	0	3		
5.	17MEC01	Engineering Graphics	ES	-	4	2	2	0	3		
6.	17MEC02	Engineering Mechanics	ES	-	5	3	2	0	4		
PRAC	CTICAL		1				1		1		
7.	17AGP01	Crop Production and Husbandry Laboratory	РС	-	4	0	0	4	2		
8.	17GYP02	Engineering Practices Laboratory	ES	-	4	0	0	4	2		
9.	17GEP02	Interpersonal Values	HS	17GEP01	2	0	0	2	0		
				TOTAL	34	16	6	12	24		

			SEMESTER:	II					
SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRERQUISITE	CONTACT PERIODS	L	т	Р	С
THEC	RY	·	•						
1.	17MYB03	Fourier series and Partial Differential Equation	BS	-	4	2	2	0	3
2.	17AGC02	Soil Science and Engineering	РС	-	4	2	0	2	3
3.	17AGC03	Fluid Mechanics and Hydraulics	PC	-	4	4	0	0	4
4.	17AGC04	Surveying and Levelling	ES	-	3	3	0	0	3
5.	17AGC05	Mechanics of Farm Machines	РС	-	4	2	2	0	3
6.	17AGC06	Thermodynamics for Agricultural Engineers	ES	-	4	2	2	0	3
PRAC	TICAL								
7.	17AGP02	Surveying and Levelling Laboratory	ES	-	4	0	0	4	2
8.	17AGP03	Fluid Mechanics and Hydraulics Laboratory	РС	-	4	0	0	4	2
9.	17GED01	Soft Skills – Listening and Speaking	EEC	-	2	0	0	2	0
				TOTAL	33	15	6	12	23
			SEMESTER: I	V					
SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	PRERQUISITE	CONTACT PERIODS	L	т	Ρ	С
THEC	RY								
1.	17MYB06	Statistics and Numerical Methods	BS	-	4	2	2	0	3
2.	17AGC07	Heat and Mass Transfer for Agricultural Engineers	РС	17AGC06	4	2	2	0	3
3.	17AGC08	Crop Process Engineering	PC	-	3	3	0	0	3
4.	17AGC09	Farm Tractor Systems	PC	17AGC05	3	3	0	0	3
5.	17AGC10	Hydrology and Water Resources Engineering	PC	17AGC03	4	2	2	0	3
6.	17AGC11	Mechanics of Materials	ES	-	4	2	2	0	3
PRAC	TICAL								
7.	17AGP04	Crop Process Engineering Laboratory	PC	-	4	0	0	4	2
8.	17AGP05	Farm Tractors and Engines Laboratory	РС	-	4	0	0	4	2
9.	17GED02	Soft Skills – Reading and Writing	EEC	-	2	0	0	2	0
10.	17GED03	Personality and Character Development	EEC	-	2	0	0	2	0
				TOTAL	34	14	8	12	22

			SEMESTER:	V			-	-	
SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	PRERQUISITE	CONTACT PERIODS	L	т	Ρ	с
THEC	DRY		ſ				1	1	
1.	17AGC12	Unit Operations in Agricultural Processing	PC	17AGC08	3	3	0	0	3
2.	17AGC13	Farm Implement and Equipment	РС	17AGC09	4	2	0	2	3
3.	17AGC14	Irrigation and Drainage Engineering	РС	17AGC10	3	3	0	0	3
4.	17AGC15	Bio and Thermo- chemical Conversion of Biomass	РС	-	3	3	0	0	3
5.	E — 1	Elective – I (PSE)	PSE	-	3	3	0	0	3
6.	E — 2	Elective – II (PSE)	PSE	-	3	3	0	0	3
PRAC	CTICAL								
7.	17AGP06	Unit Operations in Agricultural Processing Laboratory	PC	-	4	0	0	4	2
8.	17AGP07	Irrigation and Drainage Engineering Laboratory	РС	-	4	0	0	4	2
9.	17GED07	Constitution of India	EEC	-	2	2	0	0	0
			-	TOTAL	29	19	0	10	22
			SEMESTER:	VI		1	1	r	
SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	PRERQUISITE	CONTACT PERIODS	L	т	Ρ	С
THEC	DRY								
1.					[r	
	17AGC16	Plant Protection and Harvesting Machinery	РС	17AGC13	3	3	0	0	3
2.	17AGC16 17AGC18	Plant Protection and Harvesting Machinery Design of Micro Irrigation System	PC PC	17AGC13 17AGC14	3	3	0	0	3
2. 3.	17AGC16 17AGC18 E – 3	Plant Protection and Harvesting Machinery Design of Micro Irrigation System Elective – III (PSE)	PC PC PSE	17AGC13 17AGC14 -	3 4 3	3 2 3	0 2 0	0 0 0	3 3 3
2. 3. 4.	17AGC16 17AGC18 E - 3 E - 4	Plant Protection and Harvesting MachineryDesign of Micro Irrigation SystemElective – III (PSE)Elective – IV (PSE)	PC PC PSE PSE	17AGC13 17AGC14 - -	3 4 3 3	3 2 3 3	0 2 0 0	0 0 0 0	3 3 3 3
2. 3. 4. 5.	17AGC16 17AGC18 E-3 E-4 E-5	Plant Protection and Harvesting MachineryDesign of Micro Irrigation SystemElective – III (PSE)Elective – IV (PSE)Elective – V ((PSE/OE)	PC PC PSE PSE PSE/OE	17AGC13 17AGC14 - - -	3 4 3 3 3	3 2 3 3 3	0 2 0 0 0	0 0 0 0 0	3 3 3 3 3
2. 3. 4. 5. 6.	17AGC16 17AGC18 E - 3 E - 4 E - 5 E - 6	Plant Protection and Harvesting MachineryDesign of Micro Irrigation SystemElective – III (PSE)Elective – IV (PSE)Elective – V ((PSE/OE))Elective – VI (PSE/OE)	PC PC PSE PSE PSE/OE PSE/OE	17AGC13 17AGC14 - - - - -	3 4 3 3 3 3 3	3 2 3 3 3 3 3 3	0 2 0 0 0 0 0	0 0 0 0 0 0	3 3 3 3 3 3 3
2. 3. 4. 5. 6. PRAC	17AGC16 17AGC18 E - 3 E - 4 E - 5 E - 6 TICAL	Plant Protection and Harvesting MachineryDesign of Micro Irrigation SystemElective – III (PSE)Elective – IV (PSE)Elective – V (PSE/OE)Elective – VI (PSE/OE)	PC PC PSE PSE/OE PSE/OE	17AGC13 17AGC14 - - - -	3 4 3 3 3 3 3	3 2 3 3 3 3 3 3	0 2 0 0 0 0	0 0 0 0 0 0	3 3 3 3 3 3
2. 3. 4. 5. 6. PRAC 7.	17AGC16 17AGC18 E - 3 E - 4 E - 5 E - 6 CTICAL 17AGP08	Plant Protection and Harvesting MachineryDesign of Micro Irrigation SystemElective – III (PSE)Elective – IV (PSE)Elective – V (PSE/OE)Elective – VI (PSE/OE)Elective – VI (PSE/OE)Elective – VI (PSE/OE)	PC PC PSE PSE/OE PSE/OE PSE/OE	17AGC13 17AGC14 - - - - 17AGC13	3 4 3 3 3 3 3 4	3 2 3 3 3 3 3 0	0 2 0 0 0 0 0	0 0 0 0 0 0	3 3 3 3 3 3 2
2. 3. 4. 5. 6. PRAC 7. 8.	17AGC16 17AGC18 E - 3 E - 4 E - 5 E - 6 TICAL 17AGP08 17AGP09	Plant Protection and Harvesting MachineryDesign of Micro Irrigation SystemElective – III (PSE)Elective – IV (PSE)Elective – V ((PSE/OE))Elective – VI (PSE/OE)Elective groupDrawing of Farm Structures	PC PC PSE PSE/OE PSE/OE PSE/OE PC PC	17AGC13 17AGC14 - - - 17AGC13 17AGC13	3 4 3 3 3 3 4 4	3 2 3 3 3 3 3 0	0 2 0 0 0 0 0	0 0 0 0 0 0 4 4	3 3 3 3 3 3 2 2 2
2. 3. 4. 5. 6. PRAC 7. 8. 9.	17AGC16 17AGC18 E - 3 E - 4 E - 5 E - 6 TICAL 17AGP08 17AGP09 17GED08	Plant Protection and Harvesting MachineryDesign of Micro Irrigation SystemElective – III (PSE)Elective – IV (PSE)Elective – V ((PSE/OE))Elective – VI (PSE/OE)Elective groupDrawing of Farm StructuresEssence of Indian Traditional Knowledge	PC PC PSE PSE/OE PSE/OE PC PC EEC	17AGC13 17AGC14 - - - 17AGC13 17AGC13 -	3 4 3 3 3 3 3 4 4 4 2	3 2 3 3 3 3 3 0 0 2	0 2 0 0 0 0 0 0	0 0 0 0 0 0 4 4 4	3 3 3 3 3 3 2 2 2 0
2. 3. 4. 5. 6. PRAC 7. 8. 9.	17AGC16 17AGC18 E - 3 E - 4 E - 5 E - 6 TICAL 17AGP08 17AGP09 17GED08 17GED06	Plant Protection and Harvesting MachineryDesign of Micro Irrigation SystemElective – III (PSE)Elective – IV (PSE)Elective – V ((PSE/OE))Elective – VI (PSE/OE)Elective groupDrawing of Farm StructuresEssence of Indian Traditional KnowledgeComprehension	PC PC PSE PSE/OE PSE/OE PSE/OE PC PC EEC EEC	17AGC13 17AGC14 - - - 17AGC13 17AGC13 - - -	3 4 3 3 3 3 3 4 4 4 2 2 2	3 2 3 3 3 3 3 3 0 0 2 0	0 2 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 4 4 4 0 2	3 3 3 3 3 3 3 2 2 2 0 0

			SEMESTER: \	/11					
SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	PRERQUISITE	CONTACT PERIODS	L	т	Ρ	с
THEC	DRY								
1.	17AGC17	Protected Cultivation	PC	17AGC01	3	3	0	0	3
2	17AGC19	Food and Dairy Engineering	РС	17AGC12	3	3	0	0	3
3.	17AGC20	Testing and Management of Farm Machinery	РС	17AGC13	3	3	0	0	3
4.	17AGC21	Remote Sensing and GIS for Agricultural Engineers	РС	17AGC04	4	2	0	2	3
5.	E — 7	Elective – VII (OE)	OE	-	3	3	0	0	3
PRAC	TICAL			Γ				r	
6.	17AGP10	Food and Dairy Engineering Laboratory	РС	-	4	0	0	4	2
7.	17AGP11	Operation and Maintenance of Farm Machinery Laboratory	РС	17AGP05	4	0	0	4	2
8.	17AGP12	Industrial Training (4 weeks)	EEC	-	0	0	0	0	1
9.	17AGD01	Project Work–I	EEC	-	8	0	0	8	4
				TOTAL	32	14	0	18	24
			SEMESTER: V	7111					
SL. NO	COURSE CODE	COURSE TITLE	CATEGORY	PRERQUISITE	CONTACT PERIODS	L	Т	Р	с
THEC	DRY								
1.	E — 8	Elective – VIII (PSE)	PSE	-	3	3	0	0	3
2.	E – 9	Elective – IX (OE)	OE	-	3	3	0	0	3
PRAC	TICAL			1					
3.	17AGD02	Project Work – II	EEC	-	16	0	0	16	8
				TOTAL	22	6	0	16	14

TOTAL No. OF CREDITS: 174

NANDHA ENGINEERING COLLEGE (AUTONOMOUS), ERODE – 638 052

REGULATIONS – 2017

CHOICE BASED CREDIT SYSTEM

B.E. AGRICULTURE ENGINEERING

(A) HS, BS, and ES Courses											
(a)H	umanities a	nd Social Sciences (HS)									
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRERQUISITE	CONTACT PERIODS	L	т	Ρ	С	P. S	
1.	17EYA01	Professional English-I	HS	-	4	2	0	2	3	Ι	
2.	17GEP01	Personal Values	HS	-	2	0	0	2	0	Ι	
3.	17EYA02	Professional English-II	HS	17EYA01	4	2	0	2	3	II	
4.	17GEP02	Internal Personal Values	HS	17GEP01	2	0	0	2	0	П	
(b)	Basic Scie	nces (BS)									
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRERQUISITE	CONTACT PERIODS	L	т	Р	С	P. S	
1.	17MYB01	Calculus and Solid Geometry	BS	-	5	3	2	0	4	I	
2.	17PYB01	Physics for Engineers	BS	-	3	3	0	0	3	Ι	
3.	17CYB01	Applied chemistry	BS	-	3	3	0	0	3	I	
4.	17GYP01	Physics and Chemistry Laboratory	BS	-	4	0	0	4	2	I	
5.	17MYB02	Complex Analysis and Laplace Transforms	BS	17MYB01	5	3	2	0	4	П	
6.	17CYB03	Environmental Science	BS	-	3	3	0	0	3	П	
7.	17MYB03	Fourier series and Partial Differential Equation	BS	-	4	2	2	0	3	111	
8.	17MYB06	Statistics and Numerical Methods	BS	-	4	2	2	0	3	IV	
(c)Eı	ngineering S	ciences (ES)				r	1	1			
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRERQUISITE	CONTACT PERIODS	L	т	Р	С	P.S	
1.	17EEC01	Basic Electrical and Electronics Engineering	ES	-	3	3	0	0	3	Ι	
2.	17CSC01	Problem Solving and Python Programming	ES	-	3	3	0	0	3	Ι	
3.	17CSP01	Problem Solving and Python Programming Laboratory	ES	-	4	0	0	4	2	Ι	
4.	17MEC01	Engineering Graphics	ES	-	4	2	2	0	3	II	
5.	17MEC02	Engineering Mechanics	ES	-	5	3	2	0	4	П	

6.	17GYP02	Engineering Practices Laboratory	ES	-	4	0	0	4	2	II
7.	17AGC04	Surveying and Levelling	ES	-	3	3	0	0	3	
8.	17AGC05	Mechanics of Farm Machines	ES	-	4	2	2	0	3	111
9.	17AGC06	Thermodynamics for Agricultural Engineers	ES	-	4	2	2	0	3	111
10.	17AGP02	Surveying and Levelling laboratory	ES	-	4	0	0	4	2	111
11.	17AGC11	Mechanics of Materials	ES	-	4	2	2	0	3	IV

(B) Pi	rogramme C	ore Courses (PC)								
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRERQUISITE	CONTACT PERIODS	L	т	Р	с	P. S
1.	17AGC01	Principles and Practices of Crop Production	РС	-	3	3	0	0	3	II
2.	17AGP01	Crop Production and Husbandry Laboratory	РС	-	4	0	0	4	2	П
3.	17AGC02	Soil Science and Engineering	РС	-	4	2	0	2	3	111
4.	17AGC03	Fluid Mechanics and Hydraulics	РС	-	4	4	0	0	4	111
5.	17AGP03	Fluid Mechanics and Hydraulics Laboratory	РС	-	4	0	0	4	2	111
6.	17AGC07	Heat and Mass Transfer for Agricultural Engineers	PC	17AGC06	4	2	2	0	3	IV
7.	17AGC08	Crop Process Engineering	PC	-	3	3	0	0	3	IV
8.	17AGC09	Farm Tractor Systems	РС	17AGC05	3	3	0	0	3	IV
9.	17AGC10	Hydrology and Water Resources Engineering	РС	17AGC03	4	2	2	0	3	IV
10.	17AGP04	Crop Process Engineering Laboratory	РС	-	4	0	0	4	2	IV
11.	17AGP05	Farm Tractors and Engines Laboratory	РС	-	4	0	0	4	2	IV
12.	17AGC12	Unit Operations in Agricultural Processing	РС	17AGC08	3	3	0	0	3	V
13.	17AGC13	Farm Implement and Equipment	РС	17AGC09	4	2	0	2	3	V
14.	17AGC14	Irrigation and Drainage	РС	17AGC10	3	3	0	0	3	V

15.	17AGC15	Bio and Thermo- chemical Conversion of Biomass	PC	-	3	3	0	0	3	V
16.	17AGP06	Unit Operations in Agricultural Processing Laboratory	PC	_	4	0	0	4	2	v
17.	17AGP07	Irrigation and Drainage Engineering Laboratory	РС	-	4	0	0	4	2	V
18.	17AGC16	Plant Protection and Harvesting Machinery	РС	17AGC14	3	3	0	0	3	VI
19.	17AGC18	Design of Micro- irrigation System	РС	17AGC14	4	2	2	0	3	VI
20.	17AGP08	CAD for Agricultural Engineering	PC	17AGC13	4	0	0	4	2	VI
21.	17AGP09	Drawing of Farm Structures	PC	17AGC13	4	0	0	4	2	VI
22.	17AGC17	Protected Cultivation	PC	17AGC01	3	3	0	0	3	VI
23.	17AGC19	Food and Dairy Engineering	PC	17AGC12	3	3	0	0	3	VII
24.	17AGC20	Testing and management of Farm Machinery	PC	17AGP05	3	3	0	0	3	VII
25.	17AGC21	Remote Sensing and GIS for Agricultural Engineers	PC	-	4	2	0	2	3	VII
26.	17AGP10	Food and Dairy Engineering Laboratory	PC	-	4	0	0	4	2	VII
27.	17AGP11	Operation and Maintenance of Farm Machinery Laboratory	PC	17AGP05	4	0	0	4	2	VII

(C) E	(C) Elective Courses											
(a)Pı	rogram Spec	cific Electives (PSE)										
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRERQUISITE	CONTACT PERIODS	L	т	Ρ	С			
1.	17AGX01	Design of Agricultural Machinery	PSE	-	3	3	0	0	3			
2.	17AGX05	Refrigeration and Air Conditioning for Agricultural Engineers	PSE	-	3	3	0	0	3			
3.	17AGX06	Packaging and Storage Techniques for Agricultural	PSE	-	3	3	0	0	3			

								1	1	
		Commodities								
4.	17AGX10	Mechanics of Tillage and Traction	PSE	-	3		3	0	0	3
5.	17AGX11	Special Farm Equipment	PSE	-	3		3	0	0	3
6.	17AGX13	Sustainable Agriculture	PSE	-	3		3	0	0	3
7.	17AGX14	Building Materials and Farm Structures	PSE	-	3		3	0	0	3
8.	17AGX17	Fundamentals and application of nanotechnology	PSE	-	3		3	0	0	3
9.	17AGX20	Organic Farming	PSE	-	3		3	0	0	3
10.	17CSX31	Problem Solving and Programming	OE	-	3		3	0	0	3
11.	17ITX26	Problem Solving and Algorithmic Skills	OE	-	3		3	0	0	3
(b) C)pen Electiv	es		AICTE Credit	Distributio	n No	orm:	18		
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- RQUISITE	CONTACT PERIODS	L	Т	Ρ	С	P.S
1.	17AGZ01	Baking and Confectionery Technology	OE	-	3	3	0	0	3	VII
2.	17AGZ02	Food safety and quality control system	OE	-	3	3	0	0	3	VII
3.	17AGZ03	Farm Mechanization	OE	-	3	3	0	0	3	VIII
4.	17AGZ04	Processing of Fruits and Vegetables	OE	-	3	3	0	0	3	VIII
5.	17CHZ01	Waste Water Treatment	OE	-	3	3	0	0	3	VII
6.	17CHZ02	Piping Engineering	OE	-	3	3	0	0	3	VII
7.	17CHZ03	Process Automation	OE	-	3	3	0	0	3	VII
8.	17CHZ04	Process Instrumentation	OE	-	3	3	0	0	3	VII
9.	17CEZ01	Energy conservation in buildings	OE	-	3	3	0	0	3	VII
10.	17CEZ02	Air Pollution Management	OE	-	3	3	0	0	3	VIII
11.	17CEZ03	Building Services	OE	-	3	3	0	0	3	VIII
12.	17CEZ04	Road Safety Management	OE	-	3	3	0	0	3	VII
13.	17CEZ05	Waste Management	OE	-	3	3	0	0	3	VII/VIII
14.	17CSZ01	Design Thinking	OE	-	3	3	0	0	3	VII
15.	17CSZ02	Digital Marketing	OE	-	3	3	0	0	3	VII
16.	17CSZ03	Software Engineering	OE	-	3	3	0	0	3	VIII
17.	17CSZ04	Unified Functional Testing	OE	-	3	3	0	0	3	VIII
18.	17CSZ05	C Programming	OE	-	3	3	0	0	3	VI
	17CSZ06	Data Structures	OE	-	3	3	0	0	3	VI
19.	17CSZ07	Web Services using Java	OE	-	3	3	0	0	3	VI
20.	17ECZ01	Modern wireless	OE	-	3	3	0	0	3	VII

		communication system								
21.	17ECZ02	Consumer Electronics	OE	-	3	3	0	0	3	VII
22.	17ECZ03	Automotive Electronics	OE	-	3	3	0	0	3	VIII
23.	17ECZ04	Electronic Testing	OE	-	3	3	0	0	3	VIII
24.	17EEZ01	Renewable Energy Technology	OE	-	3	3	0	0	3	VII
25.	17EEZ02	Smart Grid	OE	-	3	3	0	0	3	VII
26.	17EEZ03	Energy Auditing, Conservation and Management	OE	-	3	3	0	0	3	VIII
27.	17EEZ04	Electrical Machines	OE	-	3	3	0	0	3	VIII
28.	17EIZ01	Autotronix	OE	-	3	3	0	0	3	VII
29.	17EIZ02	Industrial Automation	OE	-	3	3	0	0	3	VII
30.	17EIZ03	Fiber Optic Sensors	OE	-	3	3	0	0	3	VIII
31.	17EIZ04	Ultrasonic Instrumentation	OE	-	3	3	0	0	3	VIII
32.	17ITZ01	Software Testing Tool	OE	-	3	3	0	0	3	VII
33.	17ITZ02	User Experience	OE	-	3	3	0	0	3	VII
34.	17ITZ03	Developing Mobile Apps	OE	-	3	3	0	0	3	VIII
35.	17ITZ04	Software Project Management	OE	-	3	3	0	0	3	VIII
36.	17ITZ05	Java Programming	OE	-	3	3	0	0	3	VII
37.	17MEZ01	Engineering Ergonomics	OE	-	3	3	0	0	3	VII / VIII
38.	17MEZ02	Energy Audit and Resource Management	OE	-	3	3	0	0	3	VII / VIII
39.	17MEZ03	Electric Vehicle Technology	OE	-	3	3	0	0	3	VII / VIII
40.	17MEZ04	Value Engineering	OE	-	3	3	0	0	3	VII / VIII
41.	17MEZ05	Smart Mobility	OE	-	3	3	0	0	3	VII / VIII
42.	17MEZ06	Smart Sensor Systems	OE	-	3	3	0	0	3	VII / VIII
43.	17MYZ01	Mathematical Structures	OE	-	3	3	0	0	3	VII
44.	17MYZ02	Optimization Techniques	OE	-	3	3	0	0	3	VII
45.	17MYZ03	Statics for Engineers	OE	-	3	3	0	0	3	VII
46.	17MYZ04	Statistics for Engineers	OE	-	3	3	0	0	3	VII
47.	17PYZ01	Nanomaterials	OE	-	3	3	0	0	3	VII
48.	17PYZ02	Nuclear physics and Reactors	OE	-	3	3	0	0	3	VII
49.	17PYZ03	Space science and technology	OE	-	3	3	0	0	3	VII
50.	17CYZ01	Chemistry for Every Day Life	OE	-	3	3	0	0	3	VII
51.	17CYZ02	E - Waste Management	OE	-	3	3	0	0	3	VII
52.	17CYZ03	Industrial Chemistry	OE	-	3	3	0	0	3	VII
53.	17EYZ01	Communicative Hindi	OE	-	3	3	0	0	3	VII

54.	17EYZ02	Fundamentals of German	OE	-	3	3	0	0	3	\	/
55.	17EYZ03	Basics of Japanese	OE	-	3	3	0	0	3	١	/
56.	17EYZ04	Employability Enhancement and Analytical Skills	OE	-	3	3	0	0	3	١	/
57.	17EYZ05	Workplace Communication	OE	-	3	3	0	0	3	١	/
58.	17GYZ01	Biology for Engineers	OE	-	3	3	0	0	3	١	/
59.	17BMZ01	Health care technology	OE	-	3	3	0	0	3	/	/
60.	17BMZ02	Telemedicine	OE	-	3	3	0	0	3	\	/
61.	17BMZ03	Epidemiology and Pandemic Management	OE	-	3	3	0	0	3	١	/
62.	17BMZ04	Medical Ethics	OE	-	3	3	0	0	3	/	/
63.	17EYX01	Effective Communication	OE	-	3	3	0	0	3	/	/
64.	17AIZ01	Fundamentals of artificial intelligence and machine learning	OE	-	3	3	0	0	3	١	/11
65.	17AIZ02	Data science fundamentals	OE	-	3	3	0	0	3	١	/
66.	17AIZ03	Introduction to Business analytics	OE	-	3	3	0	0	3	٧	/111
67.	17AIZ04	Augmented reality/virtual reality technologies	OE	-	3	3	0	0	3	١	/11
68.	17AGZ01	Baking and Confectionery Technology	OE	-	3	3	0	0	3	١	/
(D) E	mployability	/ Enhancement Courses									
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PREREQUISITE	CONTAC PERIOD	ST S	L	Т	Ρ	С	P.S
1.	17GED06	Comprehension	EEC	-	2		0	0	2	0	VI
2.	17AGD01	Project Work-I	EEC	-	8		0	0	8	4	VII
3.	17AGP12	Industrial Training (4 weeks)	EEC	-			0	0	0	1	VII
4.	17AGD02	Project Work-II	EEC	17AGD01		16		0	16	8	VIII

Honor Degree Courses													
		Vertical I - Water	Management	and Protected Cu	ltivation								
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PREREQUISITE	CONTACT PERIODS	L	т	Ρ	С	P.S			
1.	17AGX08	Watershed Management	PSE	-	3	3	0	0	3	VI			
2.	17AGX12	Soil and Water Conservation Engineering	PSE	-	3	3	0	0	3	VI			
3.	17AGX09	On Farm Water Management	PSE	-	3	3	0	0	3	VI			
4.	17AGX21	Irrigation water quality and waste water management	PSE	-	3	3	0	0	3	VI			
5.	17AGX07	Seed Technology Applications	PSE	-	3	3	0	0	3	VI			
6.	17AGX04	Climate Change and Adaptation	PSE	-	3	3	0	0	3	VII			
7.	17AGX22	Landscape architecture	PSE	-	3	3	0	0	3	VII			
8.	17AGX19	Design and maintenance of greenhouse	PSE	-	3	3	0	0	3	VII			

	Vertical II - Agricultural Management and IoT in Agri													
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PREREQUISITE	CONTACT PERIODS	L	Т	Ρ	С	P.S				
1.	17AGX02	Agricultural Business Management	PSE	-	3	3	0	0	3	VI				
2.	17AGX15	Extension methods and transfer of technology	PSE	-	3	3	0	0	3	VII				
3.	17AGX23	Integrated farming system	PSE	-	3	3	0	0	3	VII				
4.	17AGX16	Food plant design, food safety and management	PSE	-	3	3	0	0	3	VII				
5.	17ECX16	Internet of Things and Its Applications	PSE	-	3	3	0	0	3	VII				
6.	17AGX24	IT in agricultural system	PSE	-	3	3	0	0	3	VII				

7.	17AGX03	Systems Analysis and Soft Computing in Agricultural Engineering	PSE	-	3	3	0	0	3	VII
8.	17AGX18	Human Engineering and Safety in Agriculture	PSE	-	3	3	0	0	3	VII

SUMMARY												
	SUBJECT			CREI	DITS AS F	PER SEM	ESTER			CREDITS		
5. NO.	AREA	I	П	111	IV	v	VI	VII	VIII	TOTAL		
1.	HS	3	3	0	0	0	0	0	0	6		
2.	BS	12	7	3	3	0	0	0	0	25		
3.	ES	8	9	8	3	0	0	0	0	28		
4.	PC	0	5	12	16	16	13	13	0	75		
5.	PSE	0	0	0	0	6	9	3	3	21		
6.	OE	0	0	0	0	0	0	3	3	6		
7.	EEC	0	0	0	0	0	0	5	8	13		
CREDIT	CREDITS TOTAL		24	23	22	22	22	24	14	174		

17EYA01– PROFESSIONAL ENGLISH – I											
	(Commo	on to A	ll Branches)								
				L	Т	Ρ	С				
				2	0	2	3				
PRERE	QUISITE: NIL QUE	STION	PATTERN: TYPE – 1								
COURS	COURSE OBJECTIVES AND OUTCOMES:										
Course Objectives Course Outcomes : The students will be able to											
	To articulate and enunciate words		Construct clear, gramma	tical	ly	cor	rect				
1.0	and sentences clearly and efficiently	1.1 sentences using a variety of sentences									
using grammatical structures. structures and appropriate vocabulary											
	To acquire information through		on د	one's ov							
2.0	listening and apply it to persuade or	2.1	point of view in different circuit	nsta	inces						
	articulate one's own point of view.		P								
	To enable students to express										
3.0	themselves fluently and	3.1	Apply appropriate communica	tion	skill	s ac	ross				
	appropriately in social and		settings, purposes, and audien	ces.							
	To superparize and newsphysics		Distinguish main ideas and a			ماد	ha:la				
4.0	information in a taut through		Distinguish main ideas and su	ippo	orting	ae					
4.0	reading skills	4.1	and employ active reading	s si um	.rateg	gies	ιο				
	To understand different techniques			um	ievel	•					
5.0	and contents based on the written	E 1	Equip themselves with writing	skill	s nee	eded	for				
5.0	communication	academic as well as workplace contexts.									
	communication.		academic as well as workplace contexts.								

UNIT I - FOCUS ON LANGUAGE	(6+6)						
Parts of Speech – Articles - Primary Auxiliaries – Modal Auxiliaries - Questions ('Yes/No' & ' – Negatives - Prepositions – Conjunctions - Tenses (Simple, Continuous, Perfect, Perfect Co - Vocabulary (Synonyms & Antonyms) - Homophones – Homonyms - One Word Substitution	Wh' Type) ontinuous) า						
UNIT II – LISTENING FOR EFFECTIVENESS	(6+6)						
Listening to Short Conversations or Monologues - Listening to Verbal and N Communication – Listening to Announcements - Listening and Note-taking – Listening to T Conversations – Listening to TED/ Ink talks- Intensive listening to fill in the gapped text	on-Verbal elephonic						
JNIT III – COMMUNICATION BOOSTERS (6+6)							
Introducing Oneself – Exchanging Personal information (Likes & Dislikes) – Talking about Friends - Asking about Routine Actions and Expressing Opinions - Participating Conversations - Situational Talk	Family & in Short						
UNIT IV – PROFESSIONAL READING	(6+6)						
Skimming – Scanning (Short Texts and Longer Passages) – Inferring Technical Texts – Re Interrogation – Reading Newspaper, Advertisements and Interpreting – Practicing Speed Reading Comprehension (Multiple choice / Short / Open ended Questions) - Gap Filling	eading for Reading -						
UNIT V – TECHNICAL CORRESPONDENCE	(6+6)						
Seeking Permission for Industrial Visit & In-plant Training – Checklist – Instruction - E-mail Report Writing (Accident & Survey)	Writing -						

LIST OF SKILLS ASSESSED IN THE LABORATORY

- 1. Language Skills.
- 2. Listening Skills.
- 3. Speaking Skills.
- 4. Reading Skills
- 5. Writing Skills

TOTAL (L:30, P:30) = 60 PERIODS

TEXT / REFERENCE BOOKS:

- 1. Sudharshana, N.P and Saveetha.C. "English for Technical Communication". Cambridge University Press,
 - New Delhi, 2016.
- Jackman, Vanessa and Russell, Whitehead. "Cambridge English Business Preliminary Practice Tests". Oxford University Press, New Delhi, 2016.
- 3. Rizvi, Ashraf M. "Effective Technical Communication". Tata McGraw Hill Publishing Company Limited,

New Delhi, 2006.

4. Hewings, M. "Advanced English Grammar". Cambridge University Press, Chennai, 2000.

					PRO	GRAMI	ME OU	тсомі	ES				PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1									3			3		
2				3						3	3	3		
3				3						3	3	3		
4				2						3	3	2		
5				3						2	2	3		
CO(W.A)				3					3	3	3	3		

	17MYB01 - CALCULUS AND SOLID GEOMETRY (Common to all Branches)											
	(00)		<i>in Druhenesy</i>	L	т	Ρ	С					
				3	2	0	4					
PRERE	QUISITE: NIL	QUESTION	PATTERN: TYPE – 4									
COURS	SE OBJECTIVES AND OUTCOMES:		-									
Course	e Objectives	Cours	e Outcomes The students will be	abl	e to							
1.0	algebra techniques of matri algebra techniques those ar needed by engineers for practica applications.	x e al 1.1	Apply the concept of orthogo diagonalize the given matrix.	nal	redu	ctio	n to					
2.0	To se the techniques, Skills an Engineering tools necessary fo engineering practice, wit Geometric concepts.	es, Skills and necessary for trice, with 2.1 Have knowledge about the geometrical asp of sphere.										
3.0	To improve their ability in solvin geometrical applications control differential calculus problems.	g of 3.1	Find the radius of curvature, ci and centre of curvature for a g	rcle iven	of cu curv	irva e.	ture					
4.0	To learn the important role of Mathematical concepts i engineering applications with th functions of several variables.	of n e 4.1	Classify the maxima and minima for a give function with several variables, through finding stationary points.									
5.0	To acquaint the student wit mathematical tools needed i evaluating multiple integrals an their usage.	with d in s and 5.1 Demonstrate the use of double and t integrals to compute area and volume.										

UNIT I – MATRICES

Characteristic Equation-Eigen values and Eigen vectors of a matrix –Properties (statement only)-Cayley Hamilton Theorem and its applications- Orthogonal transformation of a symmetric matrix to a diagonal form - Quadratic form-Reduction of a Quadratic form to canonical form by orthogonal transformation.

UNIT II - ANALYTICAL GEOMETRY OF THREE DIMENSIONS

Equation of a Plane –Angle between two planes - Equation of straight lines-Coplanar lines- skew lines- Equation of a sphere – Orthogonal spheres.

UNIT III - GEOMETRICAL APPLICATIONS OF DIFFERENTIAL CALCULUS

Curvature – Curvature in Cartesian co-ordinates-Centre and Radius of curvature-Circle of curvature-Evolutes and Involutes-Envelopes.

UNIT IV - FUNCTIONS OF SEVERAL VARIABLES

Partial derivatives - Euler's theorem on homogeneous function-Jacobian-Maxima and Minima of functions of two variables-Constrained Maxima and Minima by Lagrange's multiplier method.

UNIT V - MULTIPLE INTEGRALS

Double integration in Cartesian Co-ordinates-Change of order of integration-Area as double integral-Triple integration in Cartesian Co-ordinates-Volume as triple integrals.

TOTAL (L: 45+T:30) = 75 PERIODS

(9+6)

(9+6)

(9+6)

(9+6)

(9+6)

Note : Simulation of Engineering Problems (Qualitative Analysis) using open source software

TEXT BOOKS:

- 1. Dr.B.S.Grewal, "Higher Engineering Mathematics", 42nd Edition, Khanna publications, 2012.
- 2. Erwin Kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & sons, 2013.

3. Veerarajan.T, "Engineering Mathematics for Semester I & II ", Third Edition, Tata McGraw Hill, 2014.

REFERENCES:

- 1. N.P.Bali, Manish Goyal, "A text book of Engineering Mathematics: Sem-II", 5th Edition, Laxmi Publications.2011.
- 2. Kandasamy .P, Thilagavathy .K , Gunavathy .K , "Engineering Mathematics for first Year", 9th Rv. Ed., S.Chand & Co Ltd, 2013.
- 3. Glyn James, "Advanced Engineering Mathematics", 7thEdition, Wiley India, 2007.

COURSE		PROGRAMME OUTCOMES												
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	1	3		3		2		3		3	3	1	1
2	2	3	3		2	3			3		2		1	1
3	3	1	3						3		1		1	2
4	3	3	2	3							3		1	
5	2	3	3	3		3			3		3		1	
CO(W.A)	2	2	3	3	3	3	2		3		2	3	1	1

	17PYB01- PHYSICS FOR ENGINEERS (Common to All Branches except CSE and IT)								
				L	Т	Ρ	С		
				3	0	0	3		
PRERE	QUISITE: NIL QUI	STIO	N PATTERN: TYPE – 1						
COURS	SE OBJECTIVES AND OUTCOMES:	1							
Course	Objectives	Cou	rse Outcomes :The students will	be a	able t	0			
1.0	To provide the basic ideas in all the kinds of engineering branches	1.1	Acquire knowledge regarding ultrasonic	Ac	coust	ics	and		
2.0	To develop the skills of the students in physics under various applications	2.1	Apply knowledge in the fields technology	of o	ptics	& Ia	aser		
3.0	To cultivate the censor designing ability of the students	3.1	Design the sensors using the kn optics	owl	edge	of f	iber		
4.0	To provide knowledge in wave and particle physics	4.1	Gain the knowledge of wave, and matter waves	pa	rticle	nat	ture		
5.0	To provide the fundamental knowledge in basics of crystals	5.1	Analyze the different kind of c and crystal growth	ryst	al st	ructi	ures		

UNIT I - ULTRASONIC'S & ACOUSTICS(9)Ultrasonic's: Introduction - Properties of Ultrasonic- Magnetostriction and piezo electric methods.
Measurement of velocity using acoustic grating- Ultrasonic A B C scan method - Sonogram.

Acoustics: characteristics of musical sound – loudness – Weber – Fechner law – absorption coefficient – reverberation – reverberation time – Factors affecting acoustics of buildings and their remedies.

UNIT II – OPTICS & LASER TECHNOLOGY

Interference: Air wedge – theory – uses – testing of flat surfaces – determination of thickness of a thin wire.Types of lasers – Nd – YAG laser – CO_2 laser – semiconductor laser (homojunction & hetrojuction). Applications: Determination of particle size using laser - Holography – construction – reconstruction – Lasers in industry (Material Processing) and Medical field (Surgery)

UNIT III - FIBER OPTICS AND SENSORS

Principle of light transmission through fiber - expression for acceptance angle and numerical aperture – Fabrication of optical fibers- Double crucible method - types of optical fibers (material, refractive Index profile and mode) fiber optic communication system. Splicing – Applications of optical fiber - Sensors- temperature- pressure sensor and displacement sensor Medical Endoscope.

UNIT IV – WAVE AND PARTICLE PHYSICS

Development of quantum theory – de Broglie wavelength – properties of matter waves - G.P Thomson experiment - Schrödinger's wave equation – time dependent – time independent wave equations – physical significance – applications – particle in a one dimensional potential box -Compton Effect – theory and experimental verification.

(9)

(9)

UNIT V - CRYSTALLOGRAPHY

Lattice – unit cell – Bravais lattices – lattice planes – Miller indices – 'd' spacing in cubic lattice – calculation of number of atoms per unit cell – atomic radius – coordination number – packing factor for SC, BCC, FCC and HCP structures – Crystal growth techniques- solution, melt (Czochralski) and vapour growth techniques (qualitative).

TOTAL(L:45) = 45 PERIODS

TEXTBOOKS:

- 1. V. Rajendran," Engineering Physics", Tata McGraw-Hill, New Delhi, 2011.
- 2. G Senthilkumar. "Engineering Physics" VRB Publishers, 2011

REFERENCES:

1. P. K. Palanisami, "Physics for Engineers" Vol. 1, SciTech Pub. (India) Pvt. Ltd., Chennai, 2002.

2. M. N. Avadhanulu and P. G. Kshirsagar, "A Textbook of Engineering Physics", S. Chand & Company Ltd., New Delhi, 2005

3. R. K. Gaur and S. L. Gupta, "Engineering Physics", Dhanpat Rai Publishers, New Delhi, 2006.

COURSE					PRO	GRAMI	ME OU	тсомі	ES				PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3			3										2
2	2				3								1	2
3				2	2								1	
4		3		3									1	2
5	2							3					1	2
CO(W.A)	2	3		3	3			3					1	2

	17CYB01 - APPLIED CHEMISTRY (Common to MECH, CIVIL, AGRI & CHEMICAL ENGG. Branches)								
		-	-	L	Т	Ρ	С		
				3	0	0	3		
PRERE		UESTIC	DN PATTERN: TYPE – 3						
Course	e Objectives	Cou	rse Outcomes The students will be a	ble	to				
1.0	To understand the principles of water characterization and treatment methods	1.1	Apply knowledge of fundament chemistry	al p	orinci	ples	of		
2.0	To introduce the basic concepts of electrode potential and batteries	2.1	Solve engineering problems, utilization of creative and innovativ	inc ve sk	ludir ills	ıg	the		
3.0	To understand the principles and applications of corrosion	3.1	Gain practical experience with c equipment as well as to analyze an	hem d int	ical terpr	pro et d	cess ata		
4.0	To gain knowledge on engineering materials and industrial importance of fuels and combustion	4.1	Understand the impact of enginee a global, economic, environment content	ering al,	; solu and	tion soci	s in etal		
5.0	To understand the concept of various analytical techniques	5.1	Understand the concept of enginee	ering	g mat	eria	ls		

UNIT I : WATER TECHNOLOGY

Hardness - types - estimation by EDTA method - Domestic water treatment - disinfection methods (chlorination, ozonation and UV treatment) - Boiler troubles (scale, sludge, priming, foaming and caustic embrittlement) -Internal conditioning(carbonate, phosphate and calgon) - External conditioning - demineralization process - desalination - reverse osmosis method.

UNIT II : ELECTROCHEMISTRY

Electrochemistry - electrode potential - Nernst equation and problems - Reference electrode - standard hydrogen electrode - calomel electrode - potentiometric titration (redox) - conductometric titration (strong acid – strong base) - Batteries - types - lead acid battery – fuel cell – hydrogen and oxygen fuel cell.

UNIT III : CORROSION SCIENCE

Corrosion - definition – types - chemical and electrochemical corrosion (mechanism) – Galvanic corrosion – Differential aeration corrosion - Pitting corrosion – Factors influencing corrosion-Corrosion control - sacrificial anode method.

UNIT IV : FUELS AND COMBUSTION

Fuels -Solid fuels - coal - proximate analysis - metallurgical coke - manufacture by Otto-Hoffmann method - Liquid fuels - synthetic petrol - Fischer Tropsch and Bergius processes - knocking - octane number - cetane number - -Gaseous fuels - water gas - producer gas - Combustion - flue gas analysis - Orsat apparatus.

(9)

(9)

(9)

UNIT V : ANALYTICAL TECHNIQUES

Colorimetry - principles – estimation of Iron by colorimetry – UV–Visible spectroscopy – principles - instrumentation (block diagram only) - IR spectroscopy – principles - instrumentation (block diagram only) - Flame Photometry – principles - instrumentation (block diagram only) - estimation of sodium by flame photometry – Atomic absorption spectroscopy – principles - instrumentation (block diagram only) - estimation of nickel by atomic absorption spectroscopy.

TOTAL (L:45)= 45 PERIODS

TEXT BOOKS:

- 1. P.C. Jain.and Monica Jain, "Engineering Chemistry", Vol I & II, Dhanpat Rai Pub, Co., 15th ed., New Delhi, 2013.
- 2. Dr.Ravikrishnan.A, "Engineering chemistry I & Engineering Chemistry II, SriKrishnaHitech Publishing chem Co. Pvt Ltd., 13th ed., Chennai, 2014.

REFERENCES:

- 1. S.S. Dara, "A Text book of Engineering Chemistry", S.Chand & Co. Ltd., New Delhi, 2014.
- 2. N. Krishna murthy, D. Vallinayagam, "Engineering chemistry" PHI Learning Pvt Ltd., 2014.
- 3. B. Sivasankar, "Engineering Chemistry", Tata McGraw-Hill Pub. Co. Ltd., New Delhi (2012).

COURSE	PROGRAMME OUTCOMES										PSOs			
OUTCOMES	1	1 2 3 4 5 6 7 8 9 10 11 12										1	2	
1	2	3	3									3	2	3
2	3	3		3	3		3					2	2	3
3	2	2			2							3	3	2
4	3		3			2	3					3	3	2
5	3				3			2				2	1	
CO(W.A)	3	3	3	3	3	2	3	2				3	2	3

17EEC01 – BASIC ELECTRICAL AND ELECTRONICS ENGINEERING									
	(Common to	AGRI.	ana CIVIL Branches)	1	т	Р	C		
				3	0	0	3		
PRERE	QUISITE : NIL	QUES	STION PATTERN: TYPE – 3						
COURS	SE OBJECTIVES AND OUTCOMES:								
Course	Objectives	Cours	e Outcomes: The students will be	able	to				
1.0	To impart knowledge on electric circuit laws, single phase circuits and measuring instruments.	1.1	Apply the basic laws and investigate behavior of electric circuits by an instruments.	ates alyti	the cal				
2.0	To learn the basic principles of electrical machines and their performance.	2.1	Identify the electrical component the characteristics of electrical m	s an achi	d exp nes.	olore	2		
3.0	To expound the fundamentals of semiconductor and applications.	3.1	Analyze the various characteristic semiconductor devices and applic	s of	ons.				
4.0	To introduce the fundamentals of digital circuits, combinational and sequential circuit.	4.1	Expose the concept of digital elec	tror	nics				
5.0	To impart knowledge on communication systems.	5.1	Understand the fundamental of c systems.	omr	nuni	catio	n		

UNIT I - ELECTRICAL CIRCUITS & MEASURMENTS

Ohm's Law – Kirchhoff's Laws – Mesh and Nodal analysis– Introduction to AC circuits – Power and Power factor - Classification of instruments – Operating principles of moving coil, moving iron instruments and dynamometer type wattmeter - Induction type energy meter.

UNIT II - ELECTRICAL MACHINES

DC Generator - DC Motor - Single phase transformer - Single phase induction motor: construction, principle of operation, basic equations and applications.

UNIT III - SEMICONDUCTOR DEVICES AND APPLICATIONS

Introduction - Characteristics of PN junction diode and Zener diode – Half wave and Full wave rectifier – Bipolar junction transistor: CB, CE, CC configurations and characteristics.

UNIT IV - DIGITAL ELECTRONICS

Binary number system - Logic gates – Boolean laws –Half and Full adders – Introduction to sequential circuits: Flip-Flops (RS, D, T and JK), shift registers and counters - ADC and DAC.

UNIT V - FUNDAMENTALS OF COMMUNICATION ENGINEERING

Introduction - Elements of communication systems - Amplitude and Frequency modulation - Demodulation - Communication systems: Radio, TV, ISDN, Microwave, Satellite and Optical fibre. (Block Diagram Approach only)

TOTAL (L: 45) = 45 PERIODS

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. D P Kothari and I.J Nagarath," Electrical Machines "Basic Electrical and Electronics Engineering", McGraw Hill Education(India) Private Limited, Third Reprint ,2016.
- 2. R.Muthusubramaian, S.Salivahanan and K.A.Muraleedharan, "Basic Electrical, Electronics and Computer Engineering", 2nd ed., Tata MCGraw Hill. 2012.

REFERENCE BOOKS:

- 1. Sedha R.S., "Applied Electronics", S. Chand & Co., 2008.
- 2. Mittle and V. N. Mittle, "Basic Electrical Engineering", Tata McGraw Hill Edition, New Delhi, 2005.
- 3. S.K.Bhattacharya "Basic Electrical and Electronics Engineering", Pearson India, 2011.
- 4. Nageswara Rao.T, "Circuit Theory", A.R. Publications, Chennai, 2014.

COLIDEE	PROGRAMME OUTCOMES										PS	PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	3		3		3						3	2	2
2	3	2		3		3						2	2	2
3	2	2	2		2	3						3	3	1
4	3		2		2	3						3	3	
5	3		2		3	2						2	1	
CO (W.A)	3	2	2	3	2	3						3	2	2

	17CSC01 – PROBLEM SOLVING AND PYTHON PROGRAMMING											
	(Common to CIVIL, M	ЕСН., А	GRI. & CHEMICAL Branches)									
				L	Т	Ρ	С					
				3	0	0	3					
PRERE	QUISITE : NIL	QUESTIC	ON PATTERN: TYPE - 1									
COURS	E OBJECTIVES AND OUTCOMES:											
Course	Objectives 0	Course (Dutcomes The students will be ab	le to)							
1.0	To gain knowledge about the basics of computer	1.1	Identify the appropriate problem techniques to drive the solution problem.	n sol for t	ving the g	iven						
2.0	To educate about problem solving strategies	2.1	Solve problems using various str	ateg	gies							
3.0	To impart the fundamental concepts of Python Programming	3.1	Develop programs on Python Pr constructs	ogra	mmi	ng						
4.0	To gain exposure about string manipulation, list, and tuples	4.1	Realize the need of strings, list, a	and	tuple	!S						
5.0	To get knowledge about dictionaries, function and modules	5.1	Design programs involving diction	onari	es ar	nd						

UNIT I BASICS OF COMPUTERS

Computer Basics - Applications and characteristics of Computer – Generations of Computers - Computer organization - Computer Software -Types of software - Software Development steps – Basic Internet Terminologies.

UNIT II PROBLEM SOLVING STRATEGIES

Number System and Arithmetic - Algorithms, building blocks of algorithms (instructions/statements, state, control flow, functions), notation (pseudo code, flow chart, programming language), simple strategies for developing algorithms (iteration, recursion). – Programming Errors – Programming Paradigm.

UNIT III INTRODUCTION TO PYTHON

(9)

(9)

(9)

(9)

History – Features – Execution of python program – Flavors of Python – Comments - Data Types -Built-in data types– Sequences - Literals– Operators – Input and Output Statements - Conditional Statements : if – if-else – Nested if-else – For – While – Nested loops – Break – Continue - pass - assert - return

UNIT IV STRINGS, LISTS AND TUPLES

Strings and Characters: Creating – Length – Indexing – Slicing – Repeating – Concatenation – Comparing - Removing Spaces - Finding Sub Strings - Counting Substrings in a String - Strings are Immutable - Replacing a String with another String - Splitting and Joining Strings - Changing Case of a String - Checking Starting and Ending of a String - Formatting the Strings - Working with Characters - Sorting Strings - Searching - Finding Number. Lists: Creating Lists – Updating - Concatenation - Repetition - Methods – Sorting. Tuples: Creating - Accessing – Operations – Functions - Nested Tuples - Inserting Elements, Modifying Elements, Deleting Elements from a Tuples.

UNIT V DICTIONARIES AND FUNCTIONS

Dictionaries: Operations – Methods - Using for Loop with Dictionaries – Sorting the Elements of a Dictionary using Lambdas - Converting Lists and Strings into Dictionary - Passing Dictionaries to Functions - Ordered Dictionaries.

Functions: Defining – Calling – Returning - Pass by Object Reference – Formal, Actual, Positional, Keyword, Default & Variable Length Arguments - Local and Global Variables - Recursive Functions - Lambdas - Function Decorators.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. Ashok.N.Kamthane, "Computer Programming", 2nd ed., Pearson Education (India), 2012.
- 2. Dr. R. Nageswara Rao, "Core Python Programming", Dreamtech Press, ed., 2017

REFERENCES:

- 1. Kenneth A. Lambert, "Fundamentals of Python: First Programs", Cengage Learning, 2012.
- 2. Wesley J. Chun, "Core Python Programming", Pearson Education, 2nd ed., 2010.

COURSE		PROGRAMME OUTCOMES												
OUTCOMES	1	1 2 3 4 5 6 7 8 9 10 11 12											1	2
1	3		3							3	3		1	
2	3		2							3				
3	3	3	2							3	2		1	1
4	2	3	2								3			
5	3	2	3								3			
CO(W.A)	3	3	2							3	3		1	1

17GY	YP01 - PHYSICS AND CHEMISTRY LABORATO	RY
((Common to All Branches Except CSE & IT)	

L	Т	Ρ	С
0	0	4	2

PRERE	QUISITE : NIL									
COURS	SE OBJECTIVES AND OUTCOMES:									
Course	e Objectives	Cour	se Outcomes: The students will be able to							
1.0	To provide the basic practical exposure to all the engineering and technological streams in the field of physics.	1.1	Acquire the fundamental knowledge in optics such as interference, Diffraction and Understand about the spectral instruments etc							
2.0	To provide the basic practical exposure to all the engineering and technological streams in the field of chemistry	2.1	Gain the basic knowledge about handling the laser light and Identify the basic parameters of an optical fibre							
3.0	To know about the water containing impurities and some physical parameters	3.1	Analyze the properties of matter with sound waves							
4.0	To gain the knowledge about light, sound, laser, fiber optics and magnetism	4.1	Apply knowledge of measurement of hardness producing ions, chloride, alkalinity, DO, conductance, EMF and pH							
5.0	To develop the knowledge of conductometric titration and viscometry	5.1	Understand the impact of water quality and solve engineering problems							

LIST OF EXPERIMENTS

PHYSICS LABORATORY- I (Any Five)

- 1. Determination of velocity of sound and compressibility of liquid Ultrasonic interferometer.
- 2. Determination of thickness of a thin wire Air wedge method.
- 3. Determination of laser parameters wavelength, particle size and angle of divergence of a Laser.
- 4. Determination of acceptance angle and numerical aperture of an optical fiber.
- 5. Determination of wavelength of mercury spectrum spectrometer grating.
- 6. Determination of Young's modulus of the material non uniform bending.
- 7. Determination of Band Gap of a semiconductor material.
- 8. Determination of viscosity of liquid Poiseuille's method.
- 9. Solar cell VI characteristics
- 10. V-I characteristics of PN junction diode.
- 11. Determination of thermal conductivity of a bad conductor Lee's Disc method.

CHEMISTRY LABORATORY- I (Any Five)

- 1. Determination of total, temporary & permanent hardness of water by EDTA method.
- 2. Determination of alkalinity in water sample.
- 3. Determination of chloride content of water sample by argentometric method.
- 4. Conductometric titration of strong acid vs strong base.
- 5. Estimation of iron content of the given solution using potentiometer.
- 6. Determination of strength of given hydrochloric acid using pH meter
- 7. Determination of molecular weight of polyvinyl alcohol using Ostwald viscometer.
- 8. Estimation of iron content of the water sample using spectrophotometer

TOTAL(P:60) = 60 PERIODS

COURSE OUTCOMES	PROGRAMME OUTCOMES												PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2		3			2					3	3	
2	3	3		3			2						3	1
3	3	3		3										1
4	3	3		3			3						1	2
5	2	2		3			3						2	2
CO(W.A)	3	3		3			3					3	2	2

M. The Atta

17CSP01 – PROBLEM SOLVING AND PYTHON PROGRAMMING LABORATORY
(Common to Civil, Mech., Agri. & Chemical Branches)

L	Т	Ρ	С
0	0	4	2

0 0 4 2

PRERE												
COURS	SE OBJECTIVES AND OUTCOMES:											
Course	e Objectives	Cou	Course Outcomes: The students will be able to									
1.0	To identify and understand word document and excel sheets.	1.1	Use MS Word and MS Excel for document preparation.									
2.0	To impart the fundamental concepts of Python Programming	2.1	Understand the basics of Python Programming constructs									
3.0	To gain exposure about string manipulation, list, and tuples	3.1	Realize the need of string manipulation, list, and tuples									
4.0	To get knowledge about dictionaries, function and modules	4.1	Design programs involving dictionaries, function and modules									
5.0	To learn about exception handling	5.1	Develop simple programs with exception handling									

Word Process	ing
1.	Document creation, Text manipulation with Scientific notations.
2.	Table creation, Table formatting and
3.	Mail merge and Letter preparation
Spread Sheet	
4.	Chart - Line, XY, Bar and Pie.
5.	Formula - formula editor
RAPTOR – Too	
6.	Drawing - flow Chart
Python-Progra	amming
7.	Program Using Operators
8.	Program Using Conditional Statements
9.	Program Using Looping
10). Program Using Strings
11	. Program Using Lists
12	. Program Using Dictionaries
13	. Program Using Functions

HARDWARE / SOFTWARE REQUIRED FOR A BATCH OF 30 STUDENTS Hardware

• LAN System with 33 nodes (OR) Standalone PCs – 33 Nos, Printers – 3 Nos. Software

- OS Windows / UNIX Clone
- Application Package Office suite
- RAPTOR Tool

TOTAL (P:60) = 60 PERIODS

COURSE OUTCOMES	PROGRAMME OUTCOMES												PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3		3							3			1	1
2	3	3									3		1	
3	3	3	2						3		2			1
4	2	3	3						3		3		1	
5	3	3			3				3				1	1
CO(W.A)	3	3	3		3				3	3	3		1	1

17GEP01 - PERSONAL VALUES (Common to All Branches) L т Ρ С 2 0 0 0 **PREREQUISITE : NIL COURSE OBJECTIVES AND OUTCOMES: Course Objectives** Course Outcomes: The students will be able to To make students to learn individual 1.0 **1.1** Become an individual in knowing the self in knowing them self То enable the student to Acquire and express Gratitude, Truthfulness, understand Gratitude, Truthfulness, 2.0 2.1 Punctuality, Cleanliness & fitness. Punctuality, Cleanliness & fitness. enable То the student to Practice simple physical exercise and breathing 3.0 understand physical exercise and 3.1 techniques breathing techniques To make the students to Yoga asana Practice Yoga asana which will enhance the 4.0 which will enhance the quality of 4.1 quality of life. life. To motivate the students to 5.0 5.1 Practice Meditation and get Practice Meditation and get benefited. benefited

Values through Practical activities:

1.Knowing the self

Introduction to value education - Need & importance of Value education – Knowing the self – realization of human life – animal instinct vs sixth sense.

2. Mental Health

Evolution of senses – functioning steps of human mind – Body and Mind coordination - Analysis of thoughts – moralization of desires– autosuggestions – power of positive affirmations. – Meditation and its benefits.

3.Physical Health

Physical body constitution– Types of food - effects of food on body and mind – healthy eating habits – food as medicine– self healing techniques.

4.Core value Self love& Self care:

Gratitude - Happiness - Optimistic –Enthusiasm – Simplicity – Punctual - Self Control - Cleanliness & personal hygiene - Freedom from belief systems.

5.Fitness

Simplified physical exercises – Sun salutation - Lung strengthening practices: Naadi suddhi pranayama – Silent sitting and listening to nature – Meditation.

TOTAL(P:30): 30 PERIODS

REFERENCES:

- Know Yourself Socrates pdf format at www.au.af.mil/au/awc/awcgate/army/rotc_selfaware.pdf.
- 2. Steps to Knowledge: the book of Inner Knowing pdf format at www.newmessage.org/wp content/uploads/ pdfs/books/stk_nkl_v1.5.pdf.
- 3. Promoting Mental Health World Health Organization pdf.
- 4. www.who.int/mental_health/evidence/mh_promotion_book.pdf

- 5. Learning to be: A Holistic and Integrated Approach to Values UNESCO pdf format at www.unesdoc.unesco.org/ images/ 0012/001279/127914e.pdf
- 6. Personality Development by Swami Vivekananda -www.estudantedavedanta.net/personalitydevelopment.pdf

COURSE OUTCOMES	PROGRAMME OUTCOMES												PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3					3								
2	3						3							
3	3		3											
4	3		3			3								
5	3					3								
CO(W.A)	3		3			3	3							

	17EYA02 – PROFESSIONAL ENGLISH – II												
	(Common	to All	Branches)		-								
				L	Т	Ρ	С						
				2	0	2	3						
PRERE	QUISITE : 17EYA01	QUESTION PATTERN : TYPE – 1											
COURSE OBJECTIVES AND OUTCOMES:													
Course	e Objectives	Cour	se Outcomes: The students will	ll be	able	to							
1.0	To enable students to get familiar with words, phrases and sentences relevant to the immediate communication tasks.	1.1	Communicate using a varie structures and appropriate vo	ety cab	of s ulary	ente	ence						
2.0	To help students to develop their listening skills and comprehend them by asking questions.	2.1	Comprehend conversations and short talks delivered in English and respond accordingly.										
3.0	To enhance students' speaking skills by making them to participate in Technical Presentation, Group Discussion, etc.	3.1	Speak appropriately and effersituations.	ctive	ely in	var	ious						
4.0	To inculcate reading habit and to develop effective reading skills.	4.1	Employ active reading strategies to understand texts at the maximum level.										
5.0	To foster the ability to write convincing Job Application and effective Formal Letters.	5.1	Equip themselves with writing formal letter and winning Job Application.										

UNIT I - LANGUAGE DEVELOPMENT

Vocabulary (Prefixes & Suffixes) - Active Voice and Passive Voice - Impersonal Passive Voice - Conditional Clauses – Subject - Verb Agreement - Direct and Indirect Speech - Idioms and Phrases - Discourse Markers - Error Spotting

UNIT II – LISTENING COMPREHENSION

Listening for Specific Information and Match / Choose / Fill in the texts - Short Films, News, Biographies, Roles and Responsibilities in Corporate, Funny Shows – Listening to Iconic Speeches and making notes – Listening to Interviews

UNIT III – ACQUISITION OF ORAL SKILLS

Describing a Person - Making Plans – Asking for and Giving Directions - Talking about Places - Talking over Phone – Narrating Incidents – Introduction to Technical Presentation - Story Telling – Group Discussion

UNIT IV – READING NUANCES

(6+6)

(6+6)

(6+6)

(6+6)

Intensive Reading – Extensive Reading – Finding key information in a given text - Reading and Understanding Technical Articles - Reading and Interpreting Visual Materials

UNIT V -	EXTENDED	WRITING
•••••		

(6+6)

Job Application with Resume – Recommendation – Inviting Dignitaries - Accepting & Declining Invitation - Paragraph Writing (Topics and Images)

LIST OF SKILLS ASSESSED IN THE LABORATORY

- 1. Language Skills.
- 2. Listening Skills.
- 3. Speaking Skills.
- 4. Reading Skills.
- 5. Writing Skills

TOTAL (L:30, P:30) = 60 PERIODS

TEXT / REFERENCE BOOKS:

- 1. Kumar, Suresh. E. "Engineering English". Orient Blackswan : Hyderabad, 2015.
- 2. Raman, Meenakshi and Sangeetha Sharma. "Technical Communication Principles and Practice". Oxford University Press: New Delhi, 2014.
- Board of Editors. "Fluency in English A Course Book for Engineering and Technology". Orient Blackswan: Hyderabad, 2016.
- 4. Comfort, Jeremy, et al. "Speaking Effectively: Developing Speaking Skills for Business English". Cambridge University Press: Cambridge, 2011.

COURSE OUTCOMES	PROGRAMME OUTCOMES													PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1									1			1			
2				1						3	1	3			
3				1						3	1	3			
4				1						3	1	3			
5				1						3	1	3			
CO(W.A)				1					1	3	1	3			

17MYB02 COMPLEX ANALYSIS AND LAPLACE TRANSFORMS (Common to All Branches)												
	Commo		All Branchesj	L	т	Р	С					
				3	2	0	4					
PRERE	QUISITE : 17MYB01		QUESTION PATTERN : TYPE – 4	L								
COUR	SE OBJECTIVES AND OUTCOMES:											
Course	e Objectives	Cou	rse Outcomes: The students will	be a	ble t	c						
1.0	To expose the concepts of differential equations.	1.1	Predict the suitable method t and higher order differential equ	o so uatio	olve ons	sec	ond					
2.0	To communicate the problem solutions using correct Mathematical terminology of vector calculus.	2.1	Apply the concepts of Differentiation and Integration to Vectors.									
3.0	To apply rigorous and analytic approach to analyse the conformal mapping.	3.1	Compute an analytic function, when its real imaginary part is known.									
4.0	To acquiring the knowledge of evaluating contour integrals using residue theorem.	4.1	Identify the Singularities and its correspondi Residues for the given function.									
5.0	To Apply the concepts of Laplace transforms & its applications to various problems related to Engineering.	5.1	Predict a suitable method to Contour integration.	o e	valua	ate	the					

UNIT I - ORDINARY DIFFERENTIAL EQUATIONS

Higher order linear differential equations with constant coefficients - Method of variation of parameters Cauchy's and Legendre's Equations.

UNIT II - VECTOR CALCULUS

Gradient and Directional derivative -Divergence and Curl – Irrotational,solenoidal and scalar potential –Line integral over a plane curve-Surface Integral and Volume Integral-Green's theorem in a plane-Gauss divergence theorem and Stokes Theorem (Excluding Proofs)-Simple Applications Involving Square, Rectangles, Cube and Parallelopiped.

UNIT III- ANALYTIC FUNCTIONS

Functions of a complex variable-Analytic functions– Necessary and sufficient conditions of Cauchy's -Riemann Equations in Cartesian Coordinates (Excluding Proofs) – Properties of Analytic Functions – Harmonic conjugate – Construction of an analytic function by Milne's Thomson Method– Conformal mapping :w = c+z, cz, 1/z and Bilinear Transformation.

UNIT IV - COMPLEX INTEGRATION

Statement and Simple applications of Cauchy's integral theorem and Cauchy's integral formula(Excluding Proofs) – Taylor's and Laurent's Series Expansions - Singularities - Residues – Cauchy's Residue theorem (Statement only) – Evaluation of contour integration over unit circle and semi circle (Excluding poles on Real axis)

UNIT V- LAPLACE TRANSFORM

Condition for existence - Transforms of Elementary functions –Basic Properties- First & Second Shifting Theorems (Statement only) –Transforms of derivatives and integrals- Transform of periodic functions - Initial and Final value Theorems. Inverse Laplace transforms -Convolution theorem (Statement only) –Solution of linear second order Ordinary differential equations with constant coefficients using Laplace transforms

TOTAL (L: 45+T:30) = 75 PERIODS

(9+6)

(9+6)

(9+6)

(9+6)

(9+6)

Note : Simulation of Engineering Problems (Qualitative Analysis) using open source software TEXT BOOKS:

- 1. Dr.B.S.Grewal, "Higher Engineering Mathematics", 42nd Edition, Khanna publications, 2012.
- 2. Erwin Kreyszig, "Advanced Engineering Mathematics", 9th Edition, John Wiley & sons, 2013.
- 3. Veerarajan.T, "Engineering Mathematics for Semester I & II", Third Edition, Tata McGraw Hill, 2014.

REFERENCES:

- 1. N.P.Bali, Manish Goyal, "A text book of Engineering Mathematics: Sem-II", 5th Edition,Laxmi Publications.2011.
- Kandasamy .P, Thilagavathy .K, Gunavathy. K, "Engineering Mathematics for first Year", 9th Rv. Ed. S.Chand & Co Ltd, 2013.
- 3. Glyn James, "Advanced Engineering Mathematics", 7thEdition, Wiley India, (2007).

COURSE					PRO	GRAMI	ME OU	тсомі	ES				PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	1	1		2	1	3					2	2	2	1	
2	1	1			2	1						2		1	
3	1	1		2				2					2		
4	1	1			3	2				1			2		
5	1		2				1					2	2		
CO(W.A)	1	1	2	2	2	2	1	2		1	2	2	2	1	

	17CYB03 ENVIRONMENTAL SCIENCE (Common to All Branches)												
				L	Т	Ρ	С						
				3	0	0	3						
PREREQUISITE : NIL QUESTION PATTERN : TYPE – 3													
COURS	SE OBJECTIVES AND OUTCOMES:												
Course	Objectives	Cour	rse Outcomes: The students will be	able	to								
1.0	To understand the constitutes of the environment	1.1	Design a system, component, or desired needs.	proc	cess	to m	neet						
2.0	2.0 The students should be conversant with valuable resources 2.1 Identify, formulate, and solve environment engineering problems												
3.0	To know about the role of a human being in maintaining a clean environment.	3.1	Understand the professional responsibility as related to the pra- environmental engineering and engineering solutions in a global co	a ctice the onte	nd e of e im xt.	eth pact	ical of						
4.0	To maintain ecological balance and preserve bio-diversity.	4.1	Use the techniques, skills, and modern engineeri tools necessary for environmental engineeri practice.										
5.0	To get knowledge about the conservation of environment for the future generation.	5.1	Acquire the knowledge of information in environmental science.	atior	n tec	hnol	ogy						

UNIT I : INTRODUCTION TO ENVIRONMENTAL STUDIES AND NATURAL RESOURCES

(9)

(9)

(9)

Environment: Scope – importance - need for public awareness - Forest resources - Use-over exploitation-deforestation - Water resources - use-over utilization of surface and ground water - conflicts over water - Mineral resources - use-exploitation-environmental effects of extracting and using mineral resources - Food resources - world food problems changes caused by agriculture - Effects of modern agriculture - fertilizer- pesticide problems - Energy resources - Renewable energy sources - solar energy - wind energy. Land resources - land degradation - soil erosion - Role of an individual in conservation of natural resources.

UNIT- II ECOSYSTEMS AND BIODIVERSITY

Concepts of an ecosystem - Structure and function of an ecosystem - Producers, consumers and decomposers - Food chains- food webs - types of ecosystem - structure and functions of forest ecosystem and river ecosystem – Biodiversity - value of biodiversity - consumptive use-productive use - social values - ethical values - aesthetic values - Hotspots of biodiversity -Threats to biodiversity - Habitat loss - poaching of wildlife and man wildlife conflicts- Conservation of biodiversity - In-situ and Ex-situ conservation of biodiversity.

UNIT III : ENVIRONMENTAL POLLUTION

Pollution: Causes - effects and control measures of Air pollution - Water pollution - Soil pollution and Noise pollution - Solid waste management - Causes - effects -control measures of urban and industrial wastes - Role of an individual in prevention of pollution - Disaster managements - Floods - cyclone- landslides.

UNIT IV : SOCIAL ISSUES AND THE ENVIRONMENT	(9)

Water conservation - rain water harvesting - global warming - acid rain - ozone layer depletion - Environment protection act - Air (Prevention and control of pollution) Act - Water (prevention and control of pollution) Act - Green Chemistry – Principle of Green chemistry – Application of Green chemistry.

UNIT V : HUMAN POPULATION AND THE ENVIRONMENT

Population growth - variation among nations - Population explosion - Family welfare programme - Human rights - HIV/AIDS – Human health and environment - women and child welfare - Role of information technology in environment and human health.

TOTAL(L:45) = 45 PERIODS

(9)

TEXT BOOKS:

- 1. Anubha Kaushik and C.P. Kaushik, Environmental Science and Engineering, New Age International Publishers, New Delhi (2015)
- 2. Dr. A.Ravikrishan, Envrionmental Science and Engineering., Sri Krishna Hitech Publishing co. Pvt. Ltd., Chennai,12th Edition (2016)

REFERENCES:

- 1. Masters, Gilbert M, "Introduction to Environmental Engineering and Science", Second Edition, Pearson Education, New Delhi (2012).
- 2. Santosh Kumar Garg, Rajeshwari garg, smf Ranjni Garg "Ecological and Environmental Studies" Khanna Publishers, Nai Sarak, Delhi (2014).
- 3. Miller T.G. Jr., "Environmental Science", Tenth Edition, Wadsworth Publishing Co. (2015).

COURSE					PRO	GRAMI	ME OU	тсомі	ES				PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1		3	2								3		3	3	
2				3					3				3	2	
3	3				3	3	2	3					3	2	
4	3				2	2							3		
5	3		3				3		3			3	2		
CO(W.A)	3	3	3	3	3	3	3	3	3		3	3	3	2	

17AGC01 PRINCIPLES AND PRACTICES OF CROP PRODUCTION												
				L	Т	Ρ	С					
				3	0	0	3					
PRERE	QUISITE : NIL	QUE	STION PATTERN : TYPE –I									
COURS	SE OBJECTIVES AND OUTCOMES:											
Course	e Objectives	Cou	rse Outcomes: The students	will	be a	ble	to					
1.0 To introduce agriculture and crop 1.1 Examine agricultural production prac												
2.0To acquire knowledge on crop selection and establishment2.1Plan various field preparati for crops							es					
3.0	To know crop protection techniques for better crop production	3.1	Classify various weeds, pes nutrient management for c	t & crop	disea s	ises,	,					
4.0	To Acquire adequate knowledge on production practices of agricultural crops	4.1	Recommend various agricultural crop production practices									
5.0	To Acquire adequate knowledge on production practices of horticultural crops	5.1	Recommend various hortic production practices	ultu	ıral c	rop						

UNIT I – AGRICUTLURE AND CROP PRODUCTION

Introduction to agriculture and its crop production sub-sectors - field crop production and horticulture; Factors affecting crop growth and production: genetic (internal) and environmental (external) factors; Crop management through environmental modification and adaptation of crops to the existing environment through crop cultural practices

UNIT II – CROP SELECTION AND ESTABLISHMENT

Regional and seasonal selection of crops; Systems of crop production; Competition among crop plants; Spacing and arrangement of crop plants; Field preparation for crops including systems of tillage; Establishment of an adequate crop stand and ground cover, including selection and treatment of seed, and nursery growing.

UNIT III – CROP MANAGEMENT

Crop water Management; Crop nutrition management - need for supplementation to soil Supplied nutrients, sources, generalized recommendations, methods and timing of application of supplemental nutrients including fertigation scheduling; Crop protection including management of weeds, pests and pathogens; Integrated methods of managing water, nutrients and plant protection; Types and methods of harvest

UNIT IV – PRODUCTION PRACTICES OF AGRICULTURAL CROPS

Generalized management and cultivation practices for important groups of field crops in Tamil Nadu: cereal crops, grain legumes, oil seed crops, sugarcane, and fiber crops, and special purpose crops such as those grown for green manure and fodder.

UNIT V – PRODUCTION PRACTICES OF HORTICULTURAL CROPS

Important groups of horticultural crops in Tamil Nadu such as vegetable crops, fruit crops, Flower crops; Cultivation practices of representatives of each group; Special features of production of horticultural crops - green house cultivation.

TOTAL (L: 45) = 45 PERIODS

(9)

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. Rajendra Prasad, Text Book of Field Crop Production. Directorate of Information and Publication, Krishi Anusandhan Bhavan, Pusa, New Delhi, 2015.
- 2. Reddy T. Sankara G.H. Yellamanda Reddi, Principles of Agronomy, Kalyani Publishers, New Delhi, 2005.

REFERENCES:

- 1. Bose T. K. and L.P.Yadav. Commercial Flowers, Naya Prakash, Calcutta.1989.
- 2. Crop Production Guide, Tamil Nadu Agricultural University Publication, Coimbatore. 2005
- 3. Kumar, N., Abdul Khader, M. Rangaswami, P. and Irulappan, I. Introduction to spices, plantation crops, medicinal and aromatic plants. Rajalakshmi Publications, Nagercoil.1993.
- 4. Kumar, N.,"Introduction to Horticulture", Rajalakshmi Publications. Nagercoil, 7th edition, 2015.
- 5. Shanmugavel, K.G. Production Technology of Vegetable Crops. Oxford India Publications, New Delhi. 1989.
- 6. Handbook of Agriculture. ICAR publications, New Delhi. 2016.

COURSE		PROGRAMME OUTCOMES												
S	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1		2	3		3		3		2		1	2	3	
2			3		3		2				2	2	3	
3		3	3		3		1		1		2	2	3	
4		2	3		2			1			1	2	3	
5		2	3		2			1			1	2	3	
CO(W.A)		2	3		3		2	1	2		1	2	3	

	17MEC01 – ENGINEERING GRAPHICS (Common to All Branches except CSE and IT)											
		<i>i biunc</i>		L	Т	Ρ	С					
				2	2	0	3					
PRERE	QUISITE : NIL		QUESTION PATTERN : TYPE - 2									
COURS	SE OBJECTIVES AND OUTCOMES:											
Course	e Objectives	Cours	e Outcomes: : The students will b	L I P C 2 2 0 3 PATTERN : TYPE - 2 : The students will be able to enic sections and special curves of ecifications oncept of first angle projection to ct of straight lines, planes, solids and lids urface drawing of a solid model with sions raphic, isometric projections of a								
1.0	To gain knowledge about conic sections and plane curves	1.1	Construct conic sections and spectre required specifications	cial	curve	es of						
2.0	To learn the concept of first angle projection of points, lines and plane	2.1	Apply the concept of first angle projection to create project of straight lines, planes, solids and section of solids									
3.0	To understand and familiarize with the projection of solids	3.1	Develop a surface drawing of a solid model with given dimensions									
4.0	To learn the concept of sectioning of solids and developing the surfaces	4.1	Build orthographic, isometric projections of a three dimensional object									
5.0	To understand the orthographic, isometric and perspective projections of three dimensional objects	5.1	Make use of the knowledge of er drawing to create physical mode	ngine Is	eerin	g						

CONCEPTS AND CONVENTIONS:

Importance of graphics in engineering applications - Use of drafting instruments - BIS conventions and specifications - Size, layout and folding of drawing sheets - Lettering and dimensioning – Scales

UNIT I - PLANE CURVES

Basic Geometrical constructions, Curves used in engineering practices - Conics - Construction of ellipse, parabola and hyperbola by eccentricity method - Construction of cycloid - construction of involutes of square and circle - Drawing of tangents and normal to the above curves - Theory of Projection - Principle of Multi-view Orthographic projection - Profile plane and Side views - Multiple views - Representation of Three Dimensional objects - Layout of views

UNIT II - FIRST ANGLE PROJECTION OF POINTS, LINES AND PLANE	(6+6)
---	-------

Principal planes - First angle projection - Projection of points. Projection of straight lines (only First angle projections) inclined to both the principal planes - Determination of true lengths and true inclinations by rotating line method - Projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

(6+6)

	/ - SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES	(6+6)
Sectior cutting true sh pyrami	ning of solids (Prism, Cube, Pyramid, Cylinder and Cone) in simple vertical position plane is inclined to the one of the principal planes and perpendicular to the other - nape of section. Development of lateral surfaces of simple and sectioned solids ds cylinders and cones. Development of lateral surfaces of solids with cut-outs and h	when the obtaining - Prisms, oles.
UNIT V	- ISOMETRIC, ORTHOGRAPHIC AND PERSPECTIVE PROJECTIONS	(6+6)
Princip simple objects of obje	les of isometric projection - Isometric scale - Isometric projections of lines, plan solids and truncated solids - Prisms, pyramids, cylinders, cones - combination of in simple vertical positions - Free hand sketching of Orthographic views from Isome cts. Perspective projection of simple solids - Cube, Prisms and pyramids by visual ray	e figures, two solid tric views method
	TOTAL (L:30+T:30) = 60	PERIODS
TEXT B	OOKS:	
1.	K.Venugopal and V.Prabhu Raja, "Engineering Graphics", New Age International (P 2013.) Limited,
2.	N.S Parthasarathy and Vela Murali, "Engineering Drawing", Oxford University Press,	2015
REFERE	INCES:	
1.	N.D.Bhatt and V.M.Panchal, "Engineering Drawing", Charotar Publishing House, 50 2010.	th Edition,
2.	K.R.Gopalakrishna., "Engineering Drawing" (Vol I&II combined) Subhas Stores, B 2007	angalore,
3.	K. V.Natarajan, "A text book of Engineering Graphics", 28 th Edition, Dhanalakshmi P Chennai, 2015.	ublishers,
4.	Dr. M. Saravanan, Dr. M. Arockia Jaswin and J. Bensam Raj, "Engineering Graphics Publications.	s", Tri Sea
5.	Luzzader, Warren.J., and Duff, John M, "Fundamentals of Engineering Drawing introduction to Interactive Computer Graphics for Design and Production", Eastern Edition. Prentice Hall of India Pvt Ltd. New Delhi. 2005	; with an Economy
6.	M.B.Shah and B.C.Rana, "Engineering Drawing", Pearson, 2 nd Edition, 2009	
INSTRU Special	IMENT : <i>use of mini drafter is compulsory</i> points applicable to End semester Examinations on Engineering Graphics:	
1.	The answer paper shall be of A3 size drawing sheets	
2.	Minimum one question and not more than two questions from a unit	
3.	Question paper consists of Part A and Part B	
4.	Part A: One compulsory question carries 20 marks from any one of five units	
5.	Part B: 4 out of 8 open choice questions carry 20 marks each	

Projection of simple solids like prisms, pyramids, cylinder, cone and truncated solids when the axis is

UNIT III - PROJECTION OF SOLIDS

inclined to both the principal planes by rotating object method

(6+6)

COURSE					PRO	GRAMI	ME OU	тсом	ES				PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2		3	2	2				3		2	3		3
2	2		2	1					3		3	2		2
3	3		3	3	3				3		2	2	3	3
4	3		3	3					2		3	3	2	
5	1		2	2					2		3	3	3	2
CO(W.A)	2		3	2	3				3		3	3	3	3

M. Apartation

	17MEC02 – EN (Common to Agri	NGINE i. and	ERING MECHANICS Mechanical Branches)										
	· · · · · · · · · · · · · · · · · · ·		-	L	Т	Ρ	С						
				3	2	0	4						
PRERE			QUESTION PATTERN : TYPE - 1										
COUR	SE OBJECTIVES AND OUTCOMES:	Cour	Course Outcomercy The students will be able to										
Course		Cou	Se Outcomes The students will	De a	ible i	.0							
1.0	To acquire knowledge on the behaviour of a particle under the action of forces	1.1	Solve the engineering proble particles using conditions for equ	ems uilib	on rium	sta	able						
2.0	To analyse the behaviour of the rigid body under the action of forces	2.1	Calculate the reaction forces of v and resultant forces on rigid bod	/ario ies	ous s	upp	orts						
3.0	To gain knowledge related to friction and their types	3.1	Solve the problems involving dr equilibrium conditions	y fr	ictio	n ur	ıder						
4.0	To introduce the geometric properties of the different surfaces and solids	4.1	Determine the centroid, centre moment of inertia of various sur	of face	grav s and	/ity d so	and lids.						
5.0	To teach energy and momentum methods related to Dynamics of particles	5.1	Solve the problems involving particles and rigid bodies	g d	ynar	nics	of						

UNIT I - STATICS OF PARTICLE

Units and dimensions - fundamental principles - laws of mechanics, lame's theorem, parallelogram and triangular law of forces, principle of transmissibility - coplanar forces - resultant force - statics of particles in two dimension - equilibrium of particles in two dimension

UNIT II - STATICS OF RIGID BODY

Equilibrium of rigid free body diagram - types of supports and their reactions - requirements of stable equilibrium - moments and couples - moment of a force about a point and about an axis - Varignon's theorem - equilibrium of rigid bodies in two dimensions

UNIT III - FRICTION

(9+6)

(9+6)

(9+6)

Frictional force - Laws of Coulomb friction - angle of friction - cone of friction - simple contact friction - ladder friction - belt friction - transmission of power through belts - rolling resistance - problems involving the equilibrium of a rigid bodies with frictional forces

UNIT IV - PROPERTIES OF SECTIONS

Centroid - first moment of area - Theorems of Pappus and Guldinus - second moment of area - moment and product of inertia of plane areas - transfer theorems - parallel axis theorem and perpendicular axis theorem - polar moment of inertia - principal axes and principal moment of inertia

UNIT V - DYNAMICS OF PARTICLES

Displacements, velocity and acceleration, their relationship - absolute and relative motion method - linear motion - curvilinear motion - Newton's law - work energy equation of particles - impulse and momentum - impact of elastic bodies

TOTAL (L:45 + T:30) = 75 PERIODS

TEXTBOOKS:

- 1. Vela Murali, "Engineering Mechanics", Oxford University Press (2010)
- 2. Ferdinand P. Beer and E. Russell Johnson, "Vector Mechanics for Engineers: Statics and Dynamics", 9th ed., Tata McGraw Hill International Edition, 2010

REFERENCES:

- 1. Irving H. Shames, "Engineering Mechanics : Statics and Dynamics", Prentice Hall of India Private limited, 2003.
- 2. Russell C Hibbeler, "Engineering Mechanics: Statics and Dynamics", 12th ed., Prentice Hall, 2009.
- 3. Anthony M. Bedford and Wallace Fowler, "Engineering Mechanics: Statics and Dynamics", 5th ed., Prentice Hall, 2007.
- 4. Palanichamy, M.S and Nagan, S, "Engineering Mechanics Statics and Dynamics", 3rd ed., Tata McGraw-Hill, New Delhi, 2005.
- 5. Meriam.J.L and Kraige.L.G, "Engineering Mechanics: Statics and Dynamics", 6th ed., Wiley Publishers, 2006.
- 6. Rajasekaran.S and Sankarasubramanian.G, "Fundamentals of Engineering Mechanics", 3rd ed., Vikas Publishing House Pvt. Ltd., New Delhi, 2005.

COURSE OUTCOMES	PROGRAMME OUTCOMES												PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	3										3		3
2	2	3	2	1								3		3
3	3	3	2	2		1			2		3	3		3
4	3	3	2	2					2		3	3		3
5		3	2	2	2				2		2	3		3
CO(W.A)	3	3	2	2	2	1			2		3	3		3

M. Apartity.

(9+6)

(9+6)

17AGP01 CROP PRODUCTION AND HUSBANDRY LABORATORY											
	L	Т	Ρ	С							
				0	0	4	2				
PRERE	QUISITE : NIL										
COURSE OBJECTIVES AND OUTCOMES:											
Course	e Objectives	Cour	se Outcomes: : The students	will	be al	ole t	0				
1.0	To acquire knowledge on field preparation, seed selection and seed treatment	1.1	Work on different agronomic practices								
2.0	To learn about nursery preparation	2.1	Prepare nursery for different crops								
3.0	To learn management of crops	3.1	Imply management concepts on crop								
4.0	To learn different harvest methods	4.1	Suggest suitable harvesting techniques								
5.0	To acquire knowledge on post harvest techniques like pre-cooling, transportation and storage	5.1	Minimize post harvest losses	;							

LIST OF	EXPERIMENTS
1.	Field preparation studies
2.	Seed selection and seed treatment procedures
3.	Seed bed and Nursery preparation
4.	Sowing / transplanting
5.	Biometric observation for crops
6.	Nutrient management Studies
7.	Water management and irrigation scheduling
8.	Weed management studies
9.	Integrated pest management studies
10.	Harvesting
11.	Post harvesting
12.	Study on meteorological instruments
13.	Integrated farming system
	TOTAL (P:60) = 60 PERIODS

COURSE OUTCOMES	PROGRAMME OUTCOMES												PSO	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1		2	3	3	2		2				1	2	1	
2	2		3		3		2				2	2	2	
3	2	3	3	2	3		1				2	2	3	
4	2	2	3	1	2						1	2	1	2
5	2	2	3	1	2						1	2		3
CO(W.A)	2	2	3	2	2		2				1	2	2	3

M______

17GYP02 – ENGINEERING PRACTICES LABORATORY (Common to All Branches)

(Common to All Branches)												
		L	Т	Ρ	С							
				0	0	4	2					
PRERE	QUISITE : NIL											
COURSE OBJECTIVES AND OUTCOMES:												
Course	e Objectives	Course Outcomes: : The students will be able to										
1.0	To provide hands on training on various basic engineering practices in Civil Engineering	1.1	Understand various civil engineering practices like plumbing, carpentry and relevant tools									
2.0	To provide hands on training on various basic engineering practices in Mechanical Engineering	2.1	Understand various manufacturing processes like welding, machining and sheet metal work									
3.0	To understand the basic working principle of electric components	3.1	Make residential house wiring and Measure energy and resistance to earth of an electrical equipment									
4.0	To understand the basic working principle of electronic components	4.1	Perform the assembling and testing of the PC based electronic circuits.									
5.0	To develop the skill to make / operate/utilize the simple engineering components	5.1	Make / operate / utilize the simple engineerir components									

GROUP-A (MECHANICAL AND CIVIL ENGINEERING)								
I - CIVI	L ENGINEERING PRACTICE	(15)						
Buildin	gs:							
а	Study of plumbing and carpentry components of residential and industrial buildings	s, Safety						
aspects	5							
Plumbi	ng Works:							
a.	Study of pipeline joints, its location and functions: valves, taps, couplings, unions, re	ducers,						
	elbows in household fittings							
b.	Study of pipe connections requirements for pumps and turbines							
с.	Preparation of plumbing line sketches for water supply and sewage works							
d.	Hands-on-exercise:							
Basic p	ipe connections - Mixed pipe material connection - Pipe connections with different join	ning						
compo	nents							
e.	Demonstration of plumbing requirements of high-rise buildings							
Carpen	try using Power Tools only:							
a.	Study of the joints in roofs, doors, windows and furniture							
b.	Hands-on-exercise: Planning, Tee joints							
II - ME	CHANICAL ENGINEERING PRACTICE	(15)						
Weldin	g:							
a.	Preparation of edges for welding and study of welding symbols							
b.	Arc welding- butt joints, lap joints and tee joints							
с.	Gas welding							
d.	Study of standard size of bars, rods, sections, sheet metals							
e.	Study of work piece types and parameters of welding such as welding current, air							
	gap, filler metal							
Basic N	Nachining:							
a.	Facing & Plain turning							

b.	Drilling Practice									
с.	Study of different types of screw drivers, screws, bolts and nuts									
Sheet I	Metal Work:									
a.	Model making using bending and forming - Trays, cone									
b.	Study of thickness gauges, wire gauges									
GROUP - B (ELECTRICAL AND ELECTRONICS)										
I - ELEC	TRICAL ENGINEERING PRACTICE	(15)								
a.	Residential house wiring using switches, fuse, indicator, lamp and energy meter									
b.	Fluorescent lamp wiring									
с.	Stair case wiring									
d.	Measurement of electrical quantities - voltage, current, power& power factor in RLC	Circuit								
e.	Measurement of energy using single phase energy meter									
f.	Measurement of resistance to earth of electrical equipment.									
II - ELEO	CTRONICS ENGINEERING PRACTICE	(15)								
a.	Study of Electronic components - Resistor (Colour coding), Inductor, Capacitor.									
b.	Measurement of AC signal parameter (peak-peak, RMS period, frequency) using CRC	Э.								
с.	Study of logic gates AND, OR, XOR and NOT.									
d.	Study of Clock Signal.									
e.	Soldering practice -Components Devices and Circuits - Using general purpose PCB.									
f.	Study of Half Wave Rectifier (HWR) and Full Wave Rectifier (FWR).									
g.	Study of Telephone, FM Radio and Cell Phone.									
	TOTAL(P:60) = 60 PERIODS									

PROGRAMME OUTCOMES PSOs COURSE OUTCOMES CO(W.A)

17GEP02 – INTER PERSONAL VALUES (Common to All Branches)

L T P C

0 0 2 0	
---------	--

PREREQUISITE : 17GEP01 COURSE OBJECTIVES AND OUTCOMES:

Course	e Objectives	Cou	rse Outcomes: : The students will be able to							
1.0	To know interpersonal values.	1.1	Develop a healthy relationship & harmony with others.							
2.0	To train the students to maneuver their temperaments.	2.1	Practice respecting every human being.							
3.0	To achieve the mentality of appreciating core values of a person.	3.1	Practice to eradicate negative temperaments.							
4.0	To analyze the roots of problems and develop a positive attitude about the life.	4.1	Acquire Respect, Honesty, Empathy, Forgiveness and Equality.							
5.0	To understand the effects of physical activities on mental health.	5.1	Practice Exercises and Meditation to lead a healthy life and Manage the cognitive abilities of an Individual.							

UNIT II – INTRODUCTION	(6)						
Introduction to interpersonal values – Developing harmony with others –Healthy relationshi	ip – Need						
& importance of interpersonal values for dealing with others and team - Effective communication							
with others.							
UNIT II - MANEUVERING THE TEMPERAMENTS	(6)						
From Greed To Contentment - Anger To Tolerance -Miserliness To Charity – Ego To E	Equality -						
Vengeance to Forgiveness.							
UNIT III - CORE VALUE	(6)						
Truthfulness - Honesty –Helping–Friendship – Brotherhood – Tolerance –Caring & S	Sharing –						
Forgiveness – Charity –Sympathy — Generosity – Brotherhood -Adaptability.							
UNIT IV – PATHWAY TO BLISSFUL LIFE	(6)						
Signs of anger – Root cause – Chain reaction – Evil effects on Body and Mind – Analyzing	g roots of						
worries – Techniques to eradicate worries.							
UNIT V - THERAPEUTIC MEASURES	(6)						
Spine strengthening exercises - Nero muscular breathing exercises - Laughing therapy - Mi	ndfulness						
meditation.							
TOTAL (P:30): 30	PERIODS						
REFERENCES:							
1. Interpersonal Skills Tutorial (Pdf Version) – Tutorials Point							
www.tutorialspoint.com/interpersonal_skills/interpersonal_skills_tutorial.pdf							
2. Interpersonal Relationships At Work - Ki Open Archive - Karolinska							
www.publications.ki.se/xmlui/bitstream/handle/10616/39545/thesis.pdf?sequence=1							
3. Values Education For Peace, Human Rights, Democracy – UNESCO.							
www.unesdoc.unesco.org/images/0011/001143/114357eo.pdf							
4. Maneuvering Of Six Temperaments - Vethathiri Maharishi.							
www.ijhssi.org/papers/v5(5)/F0505034036.pdf							
5. The Bliss Of Inner Fire: Heart Practice Of The Six. – Wisdom Publications -							
www.wiedompube.org/cites///Dlice/20of/20lppor/20Eiro/20Dec//20Droview.pd							

www.wisdompubs.org/sites/.../Bliss%20of%20Inner%20Fire%20Book%20Preview.pd

COURSE OUTCOMES	PROGRAMME OUTCOMES													PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3					3									
2	3						3								
3	3		3												
4	3		3			3									
5	3					3									
CO(W.A)	3		3			3	3								

17MYB03 FOURIER SERIES AND PARTIAL DIFFERENTIAL EQUATION	
(Common to Agriculture, Civil, Mechanical and Chemical Branches)	

				L	Т	Ρ	С	
				2	2	0	3	
PRERE	QUISITE : NIL QU	ESTION	PATTERN: TYPE - IV					
COURS	SE OBJECTIVES AND OUTCOMES:							
	Course Objectives	Cou	rse Outcomes : : The students w	ll be able to				
1.0	To acquire knowledge to solve hal range Fourier series and harmonianalysis.	1.1	Ability to have fundamental u Fourier series and give Fourier given function.	unde ' exp	rstar bansi	nding ons	g of of a	
2.0	To understand the concept of Fourie transforms and enhance the problen solving skill.	2.1	Apply transform techniqu engineering problems.	ies	to	S	olve	
3.0	To introduce how to solve linea partial differential equations with different methods.	3.1	Analyze and simulate the first a linear partial differential equat	and s ions	secor	nd o	rder	
4.0	To get the analytical solution fo second and higher orde homogeneous linear PDE's.	4.1	Demonstrate a firm unders solution techniques for hom PDE's.	tanc ogei	ling neou	of s lir	the near	
5.0	To solve different forms of wave and heat equations.	5.1	Ability to apply partial different to solve the physical engineering to so	entia ng pr	l tec oble	hnic ms.	lues	

UNIT - I FOURIER SERIES

(6+6)

(6+6)

(6+6)

Dirichlet's conditions - Fourier series: Half range sine series - Half range cosine series - Parseval's identity for half range series - Root -Mean square value of a function - Harmonic Analysis (π , degree and T- forms).

UNIT - II FOURIER TRANSFORMS

Fourier integral theorem (statement only) – Fourier transform pair – Sine and Cosine transforms – Properties – Transforms of simple functions – Convolution theorem.

UNIT- III FIRST ORDER NON LINEAR PARTIAL DIFFERENTIAL EQUATIONS

Formation of partial differential equations by elimination of arbitrary constants and arbitrary functions - Solution of standard types of first order partial differential equations: (i) f(p,q)=0, (ii) Clairaut's type, (iii) f(z,p,q) = 0, (iv) f(x,p) = g(y,q).

UNIT IV LINEAR PARTIAL DIFFERENTIAL EQUATIONS

(6+6)

General solution of Lagrange's linear equation Pp+Qq = R - Solutions of simultaneous equations dx/P=dy/Q = dz/R by the method of grouping & method of multipliers-Homogeneous linear partial differential equations of second and higher order with constant coefficients (R.H.S = 0, e^{ax+by} , cos(ax+by), sin(ax+by), x^ry^s).

UNIT- V APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS	UNIT- V APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS	(6+6)
--	--	-------

Classification of second order quasi linear partial differential equations - Solutions of one dimensional wave equation(zero and Non-zero Boundary conditions) - One dimensional heat equation(Reduced to zero & non zero temperature)- Steady state solution of two dimensional heat equation (Finite and infinite plate).

TOTAL (L: 30+P:30) = 60 PERIODS

TEXT BOOKS

- 1. Veerarajan,T. " (Transforms and Partial Differential Equations)", 2nd ed., Tata Mc Graw Hill, New Delhi, Second reprint, 2015.
- 2. Kandasamy, P., Thilagavathy, K., and Gunavathy, K., "Engineering Mathematics; Volume III", S. Chand & Co Ltd., 2008.

REFERENCES

- 1. Goyal. Manish and Bali, N.P, "A Textbook of Engineering mathematics", 6th ed., Laxmi Publication (P) Ltd. New Delhi, 2012.
- 2. Grewal, B.S. "Higher Engineering Mathematics", 42nd ed., Khanna publishers, New Delhi, 2012.
- 3. Kreyszig, Erwin. "Advanced Engineering Mathematics", 9th ed., Wiley Publications, New Delhi, 2006.

COURSE		PROGRAMME OUTCOMES													
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	2	3	1	3							2	3		2	
2	2	3	3			3	3							3	
3	3	3	2						3		3	1	3	3	
4	3	3	2	3	3							3		3	
5	3	2	3	2							1		3	2	
CO(W.A)	3	3	2	3	3	3	3		3		2	2	3	3	

17AGC02 SOIL SCIENCE AND ENGINEERING												
				L	Т	Ρ	С					
				2	0	2	3					
PRERE	QUISITE : NIL	QUE	STION PATTERN: TYPE – I									
COURS	E OBJECTIVES AND OUTCOMES:											
Course	Objectives	Cour	se Outcomes: : The students wil	l be	able	to						
1.0	To enhance the knowledge on rock cycle and soil formation process	1.1	Classify different soil and p formation	oroc	ess	of	soil					
2.0	To gain knowledge on physical, chemical and biological properties of soil	2.1	Express the relationship of diff soil	fere	nt pł	ase	s of					
3.0	To know about the nutrient content, deficiency of soil	3.1	Impart knowledge of physical p	rope	erties	s of s	soil					
4.0	To know about the major soil distribution	4.1	Suggest suitable crop									
5.0To study the relationship between soil, water and plant5.1Suggest nutrient content and determine soil deficiency												

UNIT I – CLASSIFICATION AND FORMATION OF SOILS

Pedalogical and edaphological concepts- definition of soil, rocks and minerals-composition of earth-Weathering of rocks and minerals - physical, chemical and biological weathering - factors affecting soil formation processes

UNIT II – PHASE RELATIONSHIP OF SOIL

Soil texture and textural classes - Soil structure and classification - absolute specific gravity - capillary and non-capillary porosity- Weight and Volume relationships- Gradation analysis- Soil consistencyclassification of soil particles and their determination- Soil survey methods- Major soil types of India

UNIT III – PHYSICAL PROPERTIES OF SOIL

Physical properties of soil and their significance - Bulk density, particle density and porosity - Soil colour - significance - causes and measurement- Soil temperature - Soil air - Soil water- Soil water potentials - Soil moisture constants - Movement of soil water - saturated and unsaturated flow - Infiltration, hydraulic conductivity, percolation, permeability and drainage

UNIT IV – SOIL COLLOIDS

Soil colloids - Properties, types and significance - Layer silicate clays - their genesis and sources of charges - soil pH- Ion exchange - CEC, AEC and Base saturation - Factors influencing Ion exchange - significance. Soil reaction, Buffering capacity and EC

UNIT V – SOIL FERTILITY

(6)

(6)

(6)

(6)

(6)

Soil organic matter – Composition – decomposition and mineralization, C : N ratio, Carbon cycle – Fractions of soil organic matter – Humus formation. Soil organisms – Beneficial and harmful effects-saline and alkali soils and their reclamations- significance of macro and micro nutrients, soil and water testing, soil fertility management- important fertilizers-Soil profile

Practical

- 1. Soil sample collection
- 2. Visit to soils of different terrains and study of soil profiles
- 3. Determination of bulk density, particle density and porosity cylinder, wax coating and core methods
- 4. Soil textural analysis feel method, International pipette method
- 5. Determination of soil colour and temperature Determination
- 6. Determination of soil moisture

- 7. Determination of Infiltration rate
- 8. Determination of hydraulic conductivity
- 9. Determination of soil pH and EC
- 10. Estimation of soil organic carbon

TOTAL (L: 30+P:30) = 60 PERIODS

TEXT BOOKS:

- 1. Brady, N.C. and Raymond, C.Weil. 2013. The Nature and Properties of Soils (14th Edition). Pearson Education, Inc. Publishing as Prentice Hall.
- 2. Sehgal, J. 2005. Pedology concepts and applications, Kalyani Publishers, New Delhi.
- 3. Dilip Kumar Das. 2004. Introductory Soil Science, Kalyani Publishers, New Delhi
- 4. Fundamentals of Soil Science. 2009. ISSS Publication, New Delhi

REFERENCES:

- 1. Fanning, D.S. and C.B.Fanning. 1989. Soil: Morphology, Genesis and Classification. John Wiley and Sons, New York.
- 2. Garrison Sposito. 2008. The Chemistry of Soils. Amazon Publishers, India.
- 3. Ghildyal, B.P. and Tripathi, R.P. 2001. Soil Physics. New Age International Publications.

COURSE				PR	OGR/	AMME	OUTC	OMES					PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3			2			2	2				2	2	
2	3			1			2	2				1	1	
3	3			1			1	1				1	1	
4	3	1	2	2			2	1				3	3	
5	3	1	2	2			2	2				3	3	
CO(W.A)	3	1	2	2			2	2				2	2	

M. The state

17AGC03 FLUID MECHANICS AND HYDRAULICS											
				L	Т	Ρ	С				
				4	0	0	4				
PRERE	QUISITE : NIL	QUES	TION PATTERN: TYPE – III								
COURS	SE OBJECTIVES AND OUTCOMES:	1									
Course	Objectives	Cour	se Outcomes: : The students will be	able	to						
1.0	To study the different properties of fluids	1.1	Involved in design of pipes and cha	nnel	S						
2.0	To gain knowledge on different types of fluid flow	2.1	Apply conceptual knowledge in sele for water flow	ectic	on of	pipe	S				
3.0	To impart knowledge on open channel flow	3.1	Apply knowledge in construction of	⁻ cha	innel	S					
4.0	To study the law governing the flow and its measurement	4.1	Apply knowledge in design of drip a irrigation system	and s	sprin	kler					
5.0	To gain an understanding of flow measurement	5.1	5.1 Determine the quantity of water required, water loss etc.								

UNIT I – HYDROSTATICS

(12)

(12)

Ideal & real fluids, Properties of fluids – units of measurement – Hydrostatics - Pascal's Law - proof, Pressure at any point, Fluid pressure and measurement – simple, differential and micro manometers - Mechanical gages

Hydrostatic forces on surfaces – total pressure and centre of pressure - Horizontal- vertical and inclined plane surface - Pressure diagram. Archimede's principles – buoyancy – Centre of Buoyancy - Meta centre – metacentric height

UNIT II – HYDROKINEMATICS – I

Types of fluid flow - velocity and acceleration of a fluid particle - Rotational – irrotational – circulation and vorticity, one dimensional, two dimensional, three dimensional flows, continuity equation in Cartesian co-ordinates - Acceleration of fluid particle, convective and local - Stream function, Potential function, stream line, equipotential line, stream tube, path line and steak line - flow net

Euler's equation of motion, Bernoulli's equation –applications, Kinetic energy correction factor-Orifices - Flow through orifice under variable head – time of emptying a tank - Flow through pipes – laminar and turbulent flow in pipes - Reynold's experiment, siphon

UNIT III - HYDROKINEMATICS - II & HYDRODYNAMICS AND MODELS

(12)

Friction loss in pipe flow – Darcy-Weisbach derivation – moody's chart - power of a fluid flow - Minor losses - Hydraulic gradient line, Total energy line – Impulse-momentum equation – Moment of momentum equation – Water hammer – Gradual and sudden closure of valve

Dimensional analysis – Raleigh & Buckingham-pi theorem, Models & similitude - distorted and undistorted models - scale effect - non-dimensional numbers, Reynolds & Froude - concept of geometric, kinematic and dynamic similarity

UNIT IV - OPEN CHANNEL FLOW - UNIFORM Types of flow in channel, velocity distribution, Application of energy – momentum equation - Energy

depth relations, Specific energy and critical depth - momentum in open channel flow – specific force – Uniform flow - Chezy - Darcy weisbach - Mannings roughness coefficient, equivalent roughness -Computation of uniform & critical flow - the most economical sections of channel.

UNIT V - OPEN CHANNEL FLOW - NON-UNIFORM & FLOW MEASUREMENT

Non-uniform flow in open channels - gradually varied flow- Dynamic equation for gradually varied flow, Relation between water surface & water surface profiles - Rapidly varied flow - hydraulic jump energy dissipation - types -derivation of energy loss in hydraulic jump - Flow measurement - weirs and notches - cipoletti, triangular, broad crested and submerged, Flumes - parshall and cut-throat

PERIODS

TEXT BOOKS:

- 1. Rajput, R. K. 2012. "A Textbook of Fluid Mechanics and Hydraulic Machines", (Revised 2nd Edition), S. Chand and Company Limited, New Delhi.
- 2. Modi P.N and Seth. 2010. "Hydraulics and Fluid Mechanics including Hydraulic Machines", Standard Book House, New Delhi.

REFERENCES:

- 1. Douglas, J.F. 2011. "Fluid Mechanics", (6th Edition), Prentice Hall of India, New Delhi.
- 2. Roberson J.A and Crowe C.T. 2010. "Engineering Fluid Mechanics", Jaico Books Mumbai.
- 3. Fox W.R. and McDonald A.T. 2005. "Introduction to Fluid Mechanics", John-Wiley and Sons, Singapore.
- 4. Jain A. K. 2008. "Fluid Mechanics", Khanna Publishers, New Delhi.
- 5. Streeter, V.L. Wylie, E. B. and Bedford K.W. 2008 "Fluid Mechanics", (9th Edition) Tata McGraw Hill, New Delhi.

COURSE					PRO	GRAMI	ME OU	тсомі	ES				PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	2	2										3		
2	3	2	2	3		2							2		
3	3	2	2		2								2		
4	3	3	3	2	2	3							2		
5	3	2	2	2	2	3							3		
CO(W.A)	3	2	2	2	2	3							2		

60 | Page

(12)

(12)

TOTAL (L: 60) = 60

	17AGC04 S	URVE	YING AND LEVELLING				
				L	Т	Ρ	С
		1		3	0	0	3
PRERE	QUISITE : NIL	QUE	STION PATTERN: TYPE – III				
COURS	SE OBJECTIVES AND OUTCOMES:	1					
Course	Objectives	Cour	se Outcomes: The students will be a	ble	to		
1.0	To understand the principle, concepts and methods of surveying	1.1	Identify the instruments required the survey in level and sloping grou	for nd	⁻ соі	nduc	ting
2.0	To know how to compute area and volume	2.1	Calculate area and volume of earth construction of farm structures	wo	rk ne	eede	d in
3.0	To practice compass traversing and plane table surveying	3.1	Identify the angle between the stati compass and conduct the plane tal locating the new station	ons ole s	by p surve	rism ying	atic for
4.0	To learn and practice leveling and contouring	4.1	Conduct leveling and contouring in regions for efficient irrigation	n pla	ains a	and	hilly
5.0	To gain knowledge in total station survey	5.1	Conduct survey of a given field usir	ig To	otal s	statio	on

UNIT I - PRINCIPLES OF SURVEYING	(9)
Introduction - Principles and basic concepts and uses of surveying - classification and basic n	nethods
of surveying- Types of chains, Ranging rod, Ranging - Direct and Indirect methods –Method	of
Chaining on level and sloping ground - Obstacles in chaining.	
UNIT II - COMPUTATION OF AREA AND VOLUME	(9)
Introduction – Formulae for calculation of cross sectional area – calculation of volume - Area	а
computation, Mid-Ordinate rule, Average ordinate rule, Trapezoidal rules, Simpson rule and	1
Coordinate method of finding area-Computation of volume. Computation of Area from field	l notes
and plot plan	
UNIT III - COMPASS TRAVERSING	(9)
Basic terminologies of Compass traversing – Prismatic and Surveyors Compass - Cheraccuracy of traverse - Errors and mistakes in Compass survey - Plane tabling - instrum accessories - Radiation, Traversing, Orientation - Intersection and Resection.	cking the ients and
UNIT IV - LEVELLING AND CONTOURING	(9)
Levelling - definition - Benchmarks - different types of levels - Basic principles of leveling - simple, compound, cross sectional and reciprocal levelling -Contouring - definition - characteristics - direct and indirect methods -gradient contour - uses – Minor instrument	Theory of · contour nts, Hand

level - Clinometer - Abney level- Theodolite types - adjustments - setting up - reading angles -

measurements – Area and elevation determination.

UNIT V - TOTAL STATION

Introduction- Accuracy of a Total Station- Accessories for Total Station- Functions Performed by Total Stations- Applications of Total Station- Remote Elevation Measurement (REM)- Missing Line Measurement (MLM)- Area Calculation- Setting out

TOTAL(L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. Punmia. B.C "Surveying (Vol- I & Vol-II)" Laxmi publications, New Delhi. 1991.
- 2. Kanetkar, T.P. & Kulkarni, S.V., "Surveying & leveling". Part –I, A.V.G. Prakashan, Poona. 1984.
- 3. Basak. V.N, "Surveying and Levelling", Tata McGraw hill publications, New Delhi. 1994.

REFERENCES:

- 1. Duggal, S.K. 2013 Surveying 4th edition, McGraw hill education (India) Pvt. Ltd.New Delhi
- 2. Kanetkar, T.P., and S.V. Kulkarni. Surveying and levelling Part II, Pune Vidyarthi Griha Prakashan
- 3. Bharikatti, S.S. 2013. Surveying Theory and Practice. I.K. international publishing house Pvt.Ltd. NewDelhi
- 4. Narinder Singh, 1992. Surveying. Tata McGraw hill publishing company Ltd., New Delhi
- 5. Michael, A.M., and T.P. Ojha. 2009. Principles of Agricultural Engineering, Vol. II, Jain Brothers, New Delhi

COURSE				PR	OGRAN	MME (ουτο	OMES					PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	2	2					2	2					
2	3	3	3	3					3	1		3	2	2	
3	3	3		3	2				3			3			
4	3	3	3	3	3				3	2		2	2	2	
5	3	3	3	3	3	3			3	2		2	2	2	
CO(W.A)	3	3	3	3	3	3			3	2		3	2	2	

17AGC05 MECHANICS OF FARM MACHINES													
				L	Т	Ρ	С						
				2	2	0	3						
PRERE	QUISITE : NIL	QUE	STION PATTERN: TYPE – III										
COURS	SE OBJECTIVES AND OUTCOMES:	ECTIVES AND OUTCOMES:											
Course	e Objectives	Cou	rse Outcomes: The Students will be	abl	e to								
1.0	To understand the mechanism of kinematics pairs and linkages	1.1	Design suitable farm implements, handling equipments	, ma	teria	I							
2.0	To learn the mechanism involved in brakes and clutches2.1Apply in tractors and power tillers												
3.0	To impart knowledge on gear and gear trains	3.1	Know the mechanism of gear and	gea	ar tra	ins							
4.0	To know and understand different types of cam and flywheel	4.1	Understand the working of cam a	nd f	lywh	eel							
5.0	To learn about working principle and applications of governors	5.1	Gain knowledge on governors										

UNIT I - INTRODUCTION TO MECHANISM

(6+6)

(6+6)

(6+6)

(6+6)

(6+6)

Definition of a machine - kinematic pair – types – links - types of constrained motion - types of joints - degrees of freedom - Kinematic chain - Classification of kinematic pairs - four bar chain, slider crank chain and their inversions - Mechanical advantages - determination of velocity and acceleration by relative velocity method for simple four bar and slider crank mechanism

UNIT II - FRICTION AND FRICTION DRIVES

Brakes – band and shoe brakes – Clutches, working principles of single and multiple plate and cone clutches - Power drives - belt drives, types, belt materials, length of belt - power transmitted - velocity ratio - effect of centrifugal tension - creep and slip on power transmission

UNIT III - GEAR AND GEAR TRAINS

Gear terminology - law of gearing - velocity of sliding between two teeth in a mesh - Involute and cycloidal profile for gear teeth - gears trains - simple, compound, reverted and epicyclic - determining velocity ratio by tabular method

UNIT IV - CAM AND FLYWHEEL

Cam and follower – types – knife edge, roller and flat faced followers - cam nomenclature – displacement diagram – cam profiles for uniform velocity and acceleration - simple harmonic and cycloidal motion – theory of fly wheel and its applications

UNIT V - GOVERNORS

Types of governors - constructional details and working of Watt, Porter, Proell and hartnell governors - Sensitiveness, stability, hunting, isochronisms, power and effort of a governor

TOTAL (L: 30+T:30) = 60 PERIODS

TEXT BOOKS:

- 1. Rattan, S.S. 1993. Theory of machines, Tata McGraw Hill Publishing Co. New Delhi.
- 2. Ballaney, P.L. 1994. Theory of machines. Khanna publishers. New Delhi.
- 3. Jagdish Lal. 1992. Theory and mechanisms and machines. Metropoliton Book Pvt. Ltd. New Delhi

REFERENCES:

- 1. Rao, J.S. and Dukkipatti, R.V. 1990. Mechanisms and machine theory, Wiley Eastern. New Delhi.
- 2. Thomas Beven. 1984. Theory of machines, CBS publishers and Distributors, New Delhi

COURSE				Ρ	ROGR	AMME	ουτα	OMES					PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	2	2	2	1	1					1	2	
2	3	1				1	1	1	1				2	
3	3		1				1						2	
4	3	1	1										2	
5	3		1		1	2							2	
CO(W.A)	3	1	1	2	2	1	1	1	1			1	2	

17AGC06 THERMODYNAMICS FOR AGRICULTURAL ENGINEERS

				L	Т	Ρ	С					
				2	2	0	3					
PRERE	QUISITE : NIL	QUESTION PATTERN: TYPE – III										
COURS	E OBJECTIVES AND OUTCOMES:											
Course	e Objectives	Cours	Course Outcomes: The Students will be able to									
1.0	To know the basic concepts of thermodynamics	1.1	Exemplify the basic concepts an thermodynamics.	nd z	erotł	n lav	v of					
2.0	To study the properties of pure substances	Determine the thermodynamic propure 2.1 Determine the thermodynamic propure substances and its phase change					s of sses					
3.0	To know about laws of thermodynamics	3.1	Apply the first law of thermody and steady flow process	nam	nics to	o clo	sed					
4.0	To impart knowledge on gas power cycles	4.1	Solve the problems related to devices using second law of the	cycl rmo	es ar dyna	nd cy mic:	/clic s					
5.0	To know about chemical reaction during combustion	5.1	Evaluate various chemic combustion processes and chen	al nica	re l equ	acti ilibr	ons, ium					

UNIT I – BASIC CONCEPTS OF THERMODYNAMICS

Basic concepts of thermodynamics – application areas of thermodynamics – dimensions and units closed and open systems-properties of a system – state and equilibrium – processes and cycles forms of energy and environment –temperature and zeroth law of thermodynamics-pressure and measurements – thermodynamic aspects of biological systems.

UNIT II – PROPERTIES OF PURE SUBSTANCES

Properties of pure substances – phase and phase change – property tables – ideal gas equation other equation of state – specific heat – internal energy, enthalpy and specific heats of ideal gas – vapour pressure and phase equilibrium – energy transfer by heat, work and mass.

UNIT III – FIRST LAW OF THERMODYNAMICS

The first law of thermodynamics-energy balance for closed and steady flow systems – energy balance for unsteady processes – the second law of thermodynamics-thermal energy reservoirs – heat engines – energy conversion efficiencies.

UNIT IV – GAS POWER CYCLES

Gas power cycles – basic consideration in the analysis of power cycles – the Carnot cycle and its values in engineering – reciprocating engines – ottoman cycle – diesel cycle and other cycles-saving fuel – efficiency.

UNIT V - CHEMICAL REACTIONS

Chemical reactions – fuels and combustion – theoretical and actual combustion processes – enthalpy of formation and combustion – adiabatic flame temperature – second law analysis of reacting systems – fuels cells – chemical and phase equilibrium

TOTAL (L: 30+T:30) = 60 PERIODS

(6+6)

(6+6)

(6+6)

(6+6)

(6+6)

TEXT BOOKS:

- 1. Rajput, R.K. 2010. Fourth edition. Engineering Thermodynamics. Laxmi Publication
- 2. Nag, P.K. 2014. Second edition. Basic and applied thermodynamics. Tata McGraw Hill Publication

REFERENCES:

- 1. Michael .J. Moran, and Howard N Shapiro 2000. Fundamentals of Engineering Thermodynamics, John Wiley & Sons. USA.
- 2. Valan Arasu. A. 2006. Engineering Thermodynamics, Vijay Nicole Imprints Limited Chennai-600029.
- 3. Vijayaraghavan, G.K. and S.Sundaravalli 2006. Engineering Thermodynamics, Lakshmi Publication, Arapakkam, Sirkali, Nagappatinam 609 111.
- 4. Cengel,Y.A and Boles,M.A. Thermodynamics An Engineering Approach, McGraw hill Publication, Fifth edition, 2012

COURSE OUTCOMES		PROGRAMME OUTCOMES												PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3			2		2					3	3		
2	3	3					2					2		3	
3	3	3	3		2		2	2				2			
4	3	3	3		2		3	2	1		1	1	3	3	
5	3	3	1				2		1		1	3	2		
CO(W.A)	3	3	2		2		2	2	1		1	2	3	3	

M. Then the

17AGP02 SURVEYING AND LEVELLING LABORATORY

L	Т	Ρ	С
0	0	Δ	2

			0 0 4 2								
PRERE	QUISITE : NIL										
COURS	E OBJECTIVES AND OUTCOMES:										
Course	Objectives	Cour	Course Outcomes The Students will be able to								
1.0	To practice different types of surveying	1.1	Acquaint with different surveying methods								
2.0	To gain knowledge on computation of area by different methods	2.1	Select suitable method of survey to the given filed								
3.0	To know the use of Dumpy level	3.1	Determine the contours								
4.0	To practice on leveling	veling 4.1 Calculate area and volume of earth work in construction of farm structures									
5.0	To gain knowledge and practice on Theodolite surveying	5.1	Conduct leveling and contouring in plains and hilly regions								

LIST OF EXPERIMENTS:

- 1. Linear measurement and offset setting
- 2. Area computation by cross staff survey and plotting
- 3. Compass Survey radiation method-Closed compass traversing, Plotting and correction of closing error
- 4. Open compass traversing-Problems on Compass traversing
- 5. Differential levelling problems-Cross-sectioning plotting
- 6. Contouring Direct & Grid method-Plotting of contour preparation of map Computation of volume
- 7. Cross sectioning with theodolite and plotting -Traversing with a Theodolite Plotting theodolite survey
- 8. Area and elevation determination by measuring horizontal and vertical angles-Volume of earthwork computation
- 9. Missing Line Measurement Using Total Station
- 10. Area measurement using Total Station
- 11. Study on layout preparation using total station

TOTAL (P: 60) = 60 PERIODS

COURSE OUTCOMES	PROGRAMME OUTCOMES												PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2		2	2										
2	2	2	3	2	2									
3	2	2	3	3	3									
4	2	2	3	3	3								1	
5	2	2	3	2	3								1	
CO(W.A)	2	2	3	2	3								1	

M. The state

17AGP03 FLUID MECHANICS AND HYDRAULICS LABORATORY

L T P C

			0 0 4 2
PREREC	QUISITE : NIL		
COURS	E OBJECTIVES AND OUTCOMES:		
Course	Objectives	Cours	e Outcomes The Students will be able to
1.0	To study the different properties of fluids	1.1	Design of pipes and channels
2.0	To gain knowledge on different types of fluid flow	2.1	Apply conceptual knowledge in selection of pipes for water flow
3.0	To impart knowledge on open channel flow	3.1	Imply in constructional knowledge of channels
4.0	To study the law governing the flow and its measurement	4.1	Apply in design of drip and sprinkler irrigation system
5.0	To gain an understanding of flow measurement	5.1	Determine the quantity of water required, water loss etc.

LIST OF EXPERIMENTS:

- 1. Verification of Bernoulli's theorem experimentally
- 2. Determination of coefficient of discharge of Venturimeter
- 3. Determination of coefficient of discharge of Orificemeter
- 4. Calculation of rate of flow using Rotameter
- 5. Determination of pipe frictional loss
- 6. Determination of minor energy losses in pipe fittings
- 7. Calculation of flow of water through Notch apparatus
- 8. Calculation of discharge of fluid through Pitot tube
- 9. Determination of Metacentric height
- 10. Conducting experiments and drawing the characteristic curves of reciprocating pump
- 11. Conducting experiments and drawing the characteristic curves of centrifugal pump

TOTAL (P: 60) = 60 PERIODS

COURSE OUTCOMES		PROGRAMME OUTCOMES										PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	2	2		2	1	1	1	1					
2	2	1	1		1	1	1						1	
3	2	1	1		2	1	1						1	
4	3		2		1	2	1	1					2	
5	2	2	1	1									2	
CO(W.A)	2	2	1	1	2	1	1	1	1				2	

M. Apartity.

	17GED01 – SOFT SKILLS – LISTENING AND SPEAKING												
				L	Т	Р	С						
				0	0	2	0						
PREF	REQUISITE : NIL	QU	ESTION PATTERN : TYPE – I	NIL									
COU	RSE OBJECTIVES AND OUTCOMES:												
	Course Objectives	Со	urse Outcomes: The Stude	nts wi	ll be a	ble to							
1.0	To recollect the functional understanding of basic grammar and its structure.	1.1	Apply the knowledge of basic grammar to classify the types of verbs and questions and to construct the sentences.										
2.0	To acquire the listening skills through note completion, matching and multiple choice modes.	2.1	Develop the listening skill completion, matching and modes.	s thro d mult	ugh n iple cl	ote noice							
3.0	To develop speaking skills through self introduction, short talk and topic discussion.	3.1	Organize a presentation c	on the	given	topic.	,						

UNIT I – GRAMMAR	(10)
Tenses - Verb (Auxiliary and Modal) - 'Yes/No' Type Questions - Reported Speech - Gerund -	Phrasal
Verbs	
UNIT II – LISTENING	(10)
Part I: Note completion	
Part II: Matching	
Part III: Multiple Choice	-
UNIT III- SPEAKING	(10)
Part I : Self Introduction	
Part II: Short talk on business topics	
Part III: Discussion in pairs	
TOTAL (L: 30) = 30 F	PERIODS
REFERENCES:	
1 Murphy Devenend "Ecceptic Company in Use" Comparidge University Dress UK 2007	

- 1. Murphy, Raymond, "Essential Grammar in Use", Cambridge University Press, UK, 2007
- 2. Whitby, Norman,"Business Benchmark Pre- Intermediate to Intermediate Preliminary, 2nd ed., Cambridge University Press, 2013.

COURSE OUTCOMES		PROGRAMME OUTCOMES											PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1									3		3	3		
2									3		2	3		
3									3		3	2		
CO(W.A)									3		3	3		

M. Apartation

17MYB06 STATISTICS AND NUMERICAL METHODS (Common to Agriculture and Mechanical Branches) [Use of Normal, t, F and Chi-square Tables permitted]

	L	Т	Ρ	С							
				2	2	0	ß				
PRERE	QUISITE : NIL	QUESTION PATTERN: TYPE – IV									
COURS	SE OBJECTIVES AND OUTCOMES:										
	Course Objectives	Co	Course Outcomes : The Students will be able to								
1.0	To provide students with the foundations of probabilistic and statistical analysis.	1.1	Understand the common statistical techniques.								
2.0	To understand the knowledge of design of experiments.	2.1	Apply Analysis of Variance for selected number factors for a significance	the naly	data zing	set the	of				
3.0	To understand the method of solving algebraic and transcendental equations using direct and indirect method.	3.1	Apply the suitable numerical techniques to solve practical engineering problems.								
4.0	To understand the numerical methods of interpolation and integration.	4.1	Demonstrate the concept of i and numerical integration wh empirical data sets.	nter en c	pola lealir	tion າg w	ith				
5.0	To introduce the numerical solution methods for solving ordinary differential equations	5.1	Make use of numerical methor solution of ordinary differenti which are useful in solving en problems	ods i ial e gine	n the quati ering	e ions g					

UNIT I : STATISTICS

Introduction of basic statistics – Probability distributions: Binomial, Poisson and Normal – Evaluation of statistical parameters for these three distributions – Regression and correlation.

UNIT II : TESTING OF HYPOTHESIS

Introduction to Sampling distributions – Large Sample – Tests for single mean, Difference of means – Small sample – Students t-test - F-test -Chi-square test for goodness of fit – Independence of attributes using Binomial distribution.

UNIT III: SOLUTIONS OF ALGEBRAIC AND TRANSCENDENTAL EQUATIONS

Newton Raphson method – Direct methods – Gauss Elimination method – Gauss Jordan method – Iterative methods – Gauss Jacobi and Gauss Seidel method – Matrix Inversion by Gauss Jordan method.

UNIT IV : INTERPOLATION AND NUMERICAL INTEGRATION

Lagrange's and Newton's divided difference interpolation - Newton's forward and backward difference interpolation –Numerical Integration using Trapezoidal rule and Simpson's rule.

(6+6)

(6+6)

(6+6)

(6+6)
UNIT V : NUMERICAL SOLUTION OF ORDINARY DIFFERENTIAL EQUATIONS

(6+6)

Taylor's series method - Euler's method – Modified Euler's method – Fourth order Runge-Kutta method for solving first order and simultaneous equations - Adam's and Milne's predictor and corrector methods for solving first order equations.

TOTAL (L: 30+T:30) = 60

PERIODS

TEXT BOOKS:

- 1. S.C.Gupta and V.K.Kapoor, "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi- 2006.
- 2. P.Kandasamy, K.Thilagavathy and K.Gunavathy, "Numerical Methods", S.Chand& Co. Ltd. New Delhi, 2003.

REFERENCES:

- 1. Spiegel, M.R. J. Schiller and Srinivasan. R.A, "Schaum's Outlines Probability and Stastistics", 3rd ed., Tata McGraw Hill, New Delhi, 2010.
- 2. Chapra.C, Steven and Canale. P, Raymond, "Numerical Methods for Engineers", 5th ed., Tata McGraw Hill, New Delhi, 2007.
- 3. T.Veerarajan and T.Ramachandran, "Numerical methods with Programming in C", 2nd edition, Tata McGraw Hill 2006, Eighth reprint-2011.
- 4. Jay L.DeVore,"Probability And Statistics for Engineering and the Sciences", 8thed, Cengage learning, 2011.

					PRO	GRAMI	ME OU	тсом	ES				PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3		2	2		3					2			
2	3	3		2	2						1	2			
3	3	3		2	2		3				1	2			
4	3	3		2	2							2			
5	3	3		2	2		3				1	2			
CO(W.A)	3	3		2	2		3				1	2			

M. April 17-

	17AGC07 HEAT AND MASS	TRAN	SFER FOR AGRICULTURAL ENGINEER	S			
				L	Т	Ρ	С
		1		2	2	0	3
PRERE	QUISITE : 17AGC06	QUE	STION PATTERN: TYPE – III				
COURS	SE OBJECTIVES AND OUTCOMES:	1					
Course	Objectives	Cour	se Outcomes: The Students will be a	ble	to		
1.0	To gain knowledge on conduction, and laws governing conduction heat transfer	1.1	Impart concept on conduction mod transfer in concentration and dryin materials	le of g of	f hea food	t	
2.0	To impart the knowledge on the laws governing convection mode of heat transfer	2.1	Impart concept on convection mod transfer in concentration and dryin materials	e of g of	heat food		
3.0	To study about the radiation mode of heat transfer and laws governing	3.1	Impart concept on radiation mode in concentration and drying of food	of h I ma	eat t teria	rans Is	fer
4.0	To analyze and evaluate the performance of heat exchangers	4.1	Design heat exchanger for effective	e hea	at uti	lizat	ion
5.0	To gain knowledge on mass transfer and the law's governing	5.1	Apply knowledge in mass transfer r	necl	hanis	m	

UNIT I – HEAT TRANSFER – CONDUCTION

Basic transfer processes – heat, mass and momentum – heat transfer process – conductors and insulators – conduction – Fourier's fundamental equation – thermal conductivity and thermal resistance – linear heat flow – heat transfer through homogenous wall, composite walls, radial heat flow through cylinders and sphere – solving problems in heat transfer by conduction.

UNIT II – HEAT TRANSFER – CONVECTION

Newton Rikhman's law – film coefficient of heat transfer – convection – free and forced convection – dimensional analysis and its application – factors affecting the heat transfer coefficient in free and forced convection heat transfer – overall heat transfer coefficient – solving problems in heat transfer by convection.

UNIT III – HEAT TRANSFER: RADIATION

Radiation heat transfer – concept of black and grey body - monochromatic total emissive power – Kirchoff's law – Planck's law – Stefan-Boltzman's law – heat exchange through non-absorbing media – solving problems in heat transfer by radiation.

UNIT IV – HEAT TRANSFER – HEAT EXCHANGER

Heat exchangers – parallel, counter and cross flow – evaporator and condensers - Logarithmic Mean Temperature Difference – overall coefficient of heat transfer – tube in tube heat exchanger, shell and tube heat exchanger, plate heat exchanger – fouling factor – applications of heat exchangers – solving problems in heat exchangers.

(6+6)

(6+6)

(6+6)

(6+6)

UNIT V – MASS TRANSFER

Mass transfer – introduction – Fick's law for molecular diffusion – molecular diffusion in gases – equimolar counters diffusion in gases – diffusion through a varying cross sectional area – diffusion coefficients for gases – molecular diffusion in liquids.

TOTAL (L: 30+30) = 60 PERIODS

TEXT BOOKS:

- 1. Geankoplis C.J.2017. Fourth edition. Transport Processes and Separation Process Principles. Pearson India Education Services Pvt. UP.
- 2. R.K.Rajput. 2002. Heat and mass transfer. S.Chand and company, Ram Nagar, NewDelhi.

- 1. Jacob and Hawkins. 1983. Elements of Heat Transfer. John Willey and Sons Inc.Ne York.
- 2. EcKert, E.R.G. 1981. Heat and Mass Transfer. McGraw Hill Book Co., New York.
- 3. Holman, E.P.2001. Heat Transfer. McGraw-Hill Publishing Co. New Delhi.

COURSE					PRO	GRAMI	ME OU	тсом	ES				PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	2	1										2	
2	3	3	1	2	2									2	
3	3	3	2		2							1		2	
4	2	3	3	2					3			2	3	3	
5	3	3	1	2	2								2	3	
CO(W.A)	3	3	2	2	2				3			2	3	2	

	17AGC08 CROP	PROC	ESS ENGINEERING				
				L	Т	Ρ	С
				3	0	0	3
PRERE	QUISITE : NIL	QUE	STION PATTERN: TYPE – III				
COURS	E OBJECTIVES AND OUTCOMES:						
Course	Objectives	Cour	se Outcomes: The Students will be	able	e to		
1.0	To know the importance of moisture content during harvesting, threshing and storage of non perishable crops	1.1	Predict moisture content of crop a threshing techniques to minimize losses.	and pos	use t-har	vest	
2.0	To gain knowledge on engineering properties and psychrometry and its uses	2.1	Design material handling equipme structures and dryers for different	ent, t typ	stora e of (ge crop	S
3.0	To know the different types of cleaning, grading and material handling equipments	3.1	Recommend cleaners, graders and equipment.	d co	nveyi	ng	
4.0	To acquire knowledge on availability of different dryers and storage structures	4.1	Design drying and storage structur post-harvest losses	re to	o min	imiz	e
5.0	To gain knowledge on milling of cereals, pulses and oil seeds	5.1	Use various technique to minimize losses during milling	e po	st-ha	rves	t

UNIT I – INTRODUCTION

Post harvest engineering – introduction – objectives – post harvest losses of cereals, pulses and oilseeds – importance – optimum stage of harvest. Threshing – traditional methods mechanical threshers – types – principles and operation –moisture content – measurement - direct and indirect methods – moisture meters – equilibrium moisture content.

UNIT II – PHYSICAL PROPERTIES AND PSYCHROMETRY

(9)

(9)

Physical properties of agricultural produces. Psychrometry – importance – Psychrometric charts and its uses –humidification operations, gas-liquid contents, gas laws and their application in determining psychrometric properties of air-water-vapour mixture.

UNIT III – CLEANING, GRADING AND MATERIAL HANDLING

(9)

(9)

Principles – air screen cleaners – types – adjustments – cylinder separator – spiral separator – magnetic separator – colour sorter – inclined belt separator – length separators – effectiveness of separation and performance index. Different types of graders for cereals, pulses and oil seed crops. Materials handling – belt conveyor – screw conveyor – bucket elevators – pneumatic conveying.

UNIT IV – DRYING AND STORAGE

Drying – principles and theory of drying – thin layer and deep bed drying – Hot air drying – methods of producing hot air – Types of grain dryers – selection – construction, operation and maintenance of dryers – Design of dryers. Direct and indirect types of damages – sources of infestation, traditional and modern types of storage structures – vertical, horizontal and underground storages – storage structure designs.

UNIT V – PROCESSING OF CEREALS, PULSES AND OILSEEDS

Paddy processing – parboiling of paddy – methods – merits and demerits – dehusking of paddy – methods – merits and demerits – rice polishers – types – constructional details – polishing – layout of modern rice mill – performance evaluation of modern mills. Wheat milling. Pulse milling methods – Wet, Dry, CFTRI, CIAE, Punjab. Oil seed processing. Principles and operation – maize sheller, husker sheller for maize – groundnut decorticator – castor sheller.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. Chakraverty, A. 2017. Third Edition. Post Harvest Technology of cereals, pulses and oilseeds. Oxford & IBH publishing & Co. Pvt. Ltd., New Delhi.
- 2. Sahay, K.M. and K.K. Singh. 2004. Second revised and enlarged edition. Unit operations in Agricultural Processing, Vikas Publishing House Pvt. Ltd., New Delhi,
- 3. Ojha, T.P. and A.M. Michael. 2018. Tenth edition. Principles of Agricultural Engineering. Vol.- 1. Jain Brothers, New Delhi.

- 1. Henderson, S.M. and R.L.Perry. 1995. Agricultural process engineering, John Willey and Sons, New York.
- 2. Pandey, P.H. 1994. Principles of agricultural processing, Kalyani Publishers, Ludhiana,
- 3. N.N. Mohsenin, Physical Properties of Plant And Animal Materials, Gordon and Breach publishers, New York, 1986
- 4. W.L. McCabe and J.C. Smith, Seventh Edition. Unit Operations of Chemical Engineering, McGraw Hill Education (India) Pvt. Ltd, Tokyo, 2015

COURSE					PRO	GRAMI	ME OU	тсом	ES				PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	1										1		2	
2	3	2		1	1				1		1	2		3	
3	3	2	2	2	1				1		1	1	2	3	
4	3	3	3	2					1		1	1	2	3	
5	3	2	2	2	2				1		1	1	2	3	
CO(W.A)	3	2	2	2	1				1		1	1	2	3	

	17AGC09 FAF	RM TR	ACTOR SYSTEMS										
				L	Т	Ρ	С						
				3	0	0	3						
PRERE	QUISITE : 15AGC05	QUE	STION PATTERN: TYPE – III										
COURS	SE OBJECTIVES AND OUTCOMES:												
Course	Objectives	Cour	urse Outcomes: The Students will be able to										
1.0	To gain knowledge on classification of tractors, tractor engines	1.1	Categorize and suggest differe their functions.	nt ⁻	tract	ors	and						
2.0	To impart the knowledge on working of engine system	2.1	Calculate valve timing and diagram and rectify problems in	repr the	esen tract	t b ors.	y a						
3.0	To know about the power transmission mechanism	3.1	Impart knowledge on effective power and braking system	tra	nsmi	ssio	n of						
4.0	To develop skills on safe and efficient use of tractors	4.1	Apply knowledge on hydraul tractor and estimate the tractior	ics n.	yster	n i	n a						
5.0	To acquire knowledge on test procedure to assess the performance of tractors and power tillers	5.1	Test and assess the performanc power tillers	e of	trac	ors	and						

UNIT I – TRACTORS

Classification of tractors – Tractor engines – Principles of operation of IC engines – construction of engine blocks, cylinder head and crankcase – features of cylinder, piston, connecting rod and crankshaft – firing order – combustion chambers.

UNIT II – ENGINE SYSTEMS

Valves – inlet and outlet valves – valve timing diagram. Air cleaner – exhaust – silencer – Cooling systems – lubricating systems – fuel system – properties of fuels – governor – electrical system – engine trouble shooting.

UNIT III – TRANSMISSION SYSTEMS

Transmission – clutch – gear box – sliding mesh – constant mesh – synchro mesh – Differential, final drive and wheels – Steering geometry – steering systems – front axle and wheel alignment – wheel ballasting – Brake – types – system.

UNIT IV – HYDRAULIC SYSTEMS

Hydraulic system – working principles, three point linkage – draft control – weight transfer, theory of traction – tractive efficiency – tractor chassis mechanics – stability – longitudinal and lateral – Controls – visibility – operators seat – tractor safety.

UNIT V – POWER TILLER AND TRACTOR TESTING

Power tiller – special features – clutch – gear box – steering and brake – Makes of tractors and power tillers – Types of tests – test procedure – need for testing & evaluation of farm tractor –Test code for performance testing of tractors and power tillers.

TOTAL (L: 45) = 45 PERIODS

(9)

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. Jain, S.C. and C.R. Rai. 2016. Third Edition. Farm tractor maintenance and repair. Standard publishers and distributors, New Delhi.
- 2. Sanjay Kumar. 2014. Farm power resources and technologies. Kalyani Publishers. Ludhiana. Punjab.

- 1. Barger, E.L., J.B. Liljedahl and E.C. McKibben, 1997. Tractors and their Power Units. Wiley Eastern Pvt. Ltd., New Delhi.
- 2. Domkundwar A.V. 1999. A course in internal combustion engines. Dhanpat Rai & Co. (P) Ltd., Educational and Technical Publishers, Delhi.
- 3. Black, P.O. 1996. Diesel engine manual. Taraporevala Sons& Co., Mumbai.
- 4. Grouse, W.H. and Anglin, D.L. 1993. Automative mechanics. Macmillan McGraw- Hill, Singapore.
- 5. Indian Standard Codes for Agril. Implements. Published by ISI, New Delhi.

COURSE					PRO	GRAMI	ME OU	тсом	ES				PSOs	
OUTCOMES	1	1 2 3 4 5 6 7 8 9 10 11 12											1	2
1	3	3			3								2	
2	3	3			2								2	
3	3	3			3								2	
4	3	3	2	2	3								2	
5	3	3	3	3	3	1		1			2	1	2	
CO(W.A)	3	3	3	3	3	1		1			2	1	2	

	17AGC10 HYDROLOGY AND) WATE	R RESOURCES ENGINEERING				
				L	Т	Ρ	С
				2	2	0	3
PRERE	QUISITE : 17AGC03	QUES	TION PATTERN: TYPE - III				
COURS	SE OBJECTIVES AND OUTCOMES:						
Course	e Objectives	e Outcomes The Students will be	e ab	le to			
1.0	To acquire knowledge on hydrologic cycle	1.1	Determine the loss of water an cycle.	d hy	drol	ogic	
2.0	To understand the importance and measurement of infiltration and runoff	2.1	Measure increase infiltration ra level and minimize runoff	ite, į	grou	ndw	ater
3.0	To know about the importance of hydrograph	3.1	Analyze water levels and flood				
4.0	To gain knowledge on groundwater flow	Apply concept to increase grou and effective utilization	ndw	vater	leve	!	
5.0	To understand the well hydraulics so as to locate wells for the extraction of ground water	5.1	Locate and effectively utilize the	ne gi	roun	dwa	ter

UNIT I – HYDROLOGIC CYCLE AND INITIAL LOSSES

Hydrology - Introduction – scope - definition, Water Resources of Globe & India, hydrologic cycle - Precipitation – measurement of precipitation, Raingauge network - Missing data - consistency of data, Arithmetic mean - Thiessen polygon – Isohyetal - Rainfall-depth-area-duration and Intensity-area-duration, Frequency analysis - Probable maximum precipitation, Indian summer monsoon rainfall, southern oscillation, El Nino, LaNina - Abstraction from precipitation – evaporation - energy budget method, Evapotranspiration - interception, depression storage, Infiltration - mechanics – Factors.

UNIT II – INFILTRATION & RUNOFF

Infiltration measurement – Horton – Philips – Kostiakov - Greenampt, Infiltration indices - ϕ index - W index - Stream types – flow measurement, Velocity measurement, direct, indirect methods – Slope-area, stage-discharge relations – Run off process, Hydrograph, SCS-CN method.

UNIT III – HYDROGRAPH

Hydrograph - base flow separation - Unit hydrograph – theory-applications - 'S' curve – Floods – peak flow – Rational method.- empirical methods – Flood frequency analysis, Flood routing – basics – level pool method – channel routing.

UNIT IV – GROUNDWATER FLOW

Groundwater – development - potential in India, Aquifer properties, Land subsidence due to groundwater withdrawal - Types of aquifer - Movement of groundwater – Darcy's law - Anisotropy, Water table contour maps, Flow net analysis - Groundwater flow potential, unconfined-steady 1-d flow - with recharge, confined 1d-flow. Continuity equation –derivation - Hydraulics of wells, steady-radial flow into wells, unsteady state confined aquifer -Theis method, Jacob method.

(6+6)

(6+6)

(6+6)

(6+6)

UNIT V - WELLS	(6+6)										
Recuperation test, Leaky artesian aquifer - unsteady radial flow - Unconfined aquifer - unsteady radial flow, Image well theory - Partially penetrating wells, Well losses - Step draw down test – yield - Geophysical investigation - Surface methods, Subsurface methods, Wells – design-diameter, depth, screen, Open well versus bore wells, design-bore wells, infiltration galleries, Well development - yield testing.											
TOTAL (L: 30+T:30 PERIODS) = 60										
TEXT BOOKS:											
1. Michael, A.M. 2009. Irrigation: Theory and Practices, Vikas Publishing House Pvt.,	Limited.										
2. Raghunath, H.M. 2011. Groundwater, New Age International(p) Ltd., New Delhi											
3. Subramanya, K. 2013. Engineering Hydrology, Tata McGraw Hill pub. Co. New Dell	ni										

- 1. Mutreja.K.N.1990, Applied Hydrology, Tata McGraw Hill pub. Co. New Delhi
- 2. Ven te chow, David R.Maidment, LarryW.Mays, Applied Hydrology, McGraw Hill pub. Co. New Delhi.

COURSE				PR	OGRAI	MME	ουτα	COME	S				PSOs	
OUTCOMES	1	1 2 3 4 5 6 7 8 9 10 11 12												
1	3	2		2	2		3					3	3	
2	3	3	2	3	3		3		3		3	2	2	
3	3	3		3	2		3					3	3	
4	3	2	2	2	2		3					3	3	
5	3	2	2	2	2		3		3		2	2	2	
CO(W.A)	3	2	2	2	2		3		3		3	3	3	

17AGC11 MECHANICS OF MATERIALS

				L	Т	Ρ	С						
				2	2	0	3						
PRERE	QUISITE : NIL	QUE	STION PATTERN: TYPE – III										
COURS	SE OBJECTIVES AND OUTCOMES:												
Course	e Objectives	Course Outcomes: The Students will be able to											
1.0	To develop theoretical and practical basics of stresses and strains	1.1	Apply the concepts of mechanic solids in different applications	s of	defo	rma	ble						
2.0	To understand the importance of centroid and centre of gravity	2.1	Imply concept of stress and stra farm structures	in ir	n desi	ignir	ng						
3.0	To gain knowledge to analyze framed structures	3.1	Solve solid mechanics related e problems in systematic methods	ngin S	eerin	g							
4.0	To gain knowledge on cantilever beams and simply supported beams	4.1	Construct storage godowns and	farn	n stru	ıctu	res						
5.0	To know about the column, shells and shafts and the laws governing	5.1	Construct farm structures										

UNIT I - BASICS OF STRESSES AND STRAINS

Simple Stresses and Strains – Hooke's Law – Modulus of Elasticity – Principle of Superposition – bars of varying sections - thermal stresses and strains - Elastic Constants - Poisson's Ratio - Bulk Modulus – Shear Modulus – interrelationships – Strain Energy and Impact Loading – Proof Resilience Modulus of Resilience – Principal Stresses and Strains – Oblique sections – Analytical method – Graphical method (Mohr's Circle method)

UNIT II - CENTRE OF GRAVITY AND MOMENT OF INERTIA

Centroid and Centre of Gravity – geometrical considerations – method of moments – Plane (laminae) sections - symmetrical sections - unsymmetrical sections - solid bodies and sections with cut our holes – Moment of Inertia – Routh's rule – method of integration – Theorem of Parallel axes – Theorem of Perpendicular axes – geometric sections - solid and hollow sections – composite and built-up sections

UNIT III - ANALYSIS OF FRAMED STRUCTURES (TRUSSES)

Structures built of Frames - Types of Frames - Perfect and imperfect frames - deficient and redundant frames – Loads and stresses – Method of Joints – Method of sections – Graphical method - Bow's notations - polar diagram - funicular polygon - vector diagram - cantilever trusses - freely supported trusses –King Post and Queen Post Trusses

UNIT IV - SHEAR FORCE, BENDING MOMENT AND DEFLECTION (BEAMS)

Cantilever beams and simply supported beams – continuous beams and overhanging beams – Uniformly distributed load and gradually varying load - Shear Force and Bending Moment distributions – Theory of Simple Bending - Bending stress – modulus of section – deflection in beams and cantilevers – Double integration method – Macaulay's method.

(6+6)

(6+6)

(6+6)

(6+6)

UNIT V - COLUMNS, SHELLS AND SHAFTS

Columns and struts – Slenderness ratio – Buckling and crushing - Euler's Column theory – applications – Rankine's formula – Johnson's formula – Indian Standards – Shells – Cylindrical and spherical shells – thin and thick shells – Shafts – torsion in circular shafts – Polar Moment of Inertia – strain energy due to torsion.

TOTAL (L: 30+T:30) = 60 PERIODS

TEXT BOOKS:

- 1. Bhavikatti,S.S. 2008. Engineering Mechanics, 3rd edition, New Age International.
- 2. Punmia, B.C., A.K. Jain and A.K. Jain, 2002. Strength of Materials, Firewall Media.
- 3. Ramamrutham, S. (2008). Strength of Materials. 16th edition. Dhanpat Rai Publishing Co., India

REFERENCE:

1. Rajput, R.K. (2010). Strength of Materials (Mechanics of Solids). 4th edition. S.Chand & Company Ltd. India

COURSE					PRO	GRAM	ME OU	тсом	ES				PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3		2								2	2	3	
2	3	3	2	1		1	1					2	3	3	
3	3	3	1	1								2	2	3	
4	3	3	2	2	1	1	1	1	1			2	2	2	
5	3	3	1	2	1	1	1	1	1			2	1	2	
CO(W.A)	3	3	2	2	1	1	1	1	1			2	2	3	

1/AGPU4 CROP PROCESS EINGINEERING LADORATORT
--

L T P C

				U	U	4	Z					
PRERE	QUISITE : NIL											
COURS	COURSE OBJECTIVES AND OUTCOMES:											
Course	Objectives	Course Outcomes: The Students will be able to										
1.0	To know the moisture content determination methods	1.1	Minimize post harvest loss duri milling	ng st	torag	;e,						
2.0	To gain knowledge to determine engineering properties of agricultural produces and products	2.1	Design various post harvest equ	ıipm	ents							
3.0	To know the different types of cleaning, grading equipments	3.1	Design cleaners and graders									
4.0	To gain knowledge on different material conveying equipments	4.1	Design different conveying equ	ipme	ent							
5.0	To know the shelling methods of cereals	5.1	Design or alter the existing met minimize post harvest loss	hod	s to							

LIST OF EXPERIMENTS:

- 1. Determination of moisture content of grains, potato slice by oven-dry method and draw the drying characteristic curves
- 2. Determination of true density, bulk density and porosity of grains
- 3. Determination of coefficient of friction and angle of repose of grains
- 4. Evaluation of efficiency of grain cleaning cum grading machine
- 5. Evaluation of cleaning efficiency of spiral separator
- 6. Evaluation of cleaning efficiency of inclined belt separator
- 7. Determination of conveying efficiency of bucket elevator
- 8. Determination of conveying efficiency of screw conveyor
- 9. Performance evaluation of paddy parboiling drum
- 10. Evaluation of shelling efficiency of rubber roll sheller
- 11. Visit to modern rice mill / pulse / oil milling industries / flour industries

TOTAL (P: 60) = 60 PERIODS

COURSE		PROGRAMME OUTCOMES													
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	2	1			2	2			1				2	3	
2	3	2	2		1				2				2	3	
3	3	2	2			2							2	3	
4	3	2	2		2	2			1				2	3	
5	3	2	2		1	3							3	3	
CO(W.A)	3	2	2		2	2			1				2	3	

17AGP05 FARM TRACTORS AND ENGINES LABORATORY

L T P C

			0 0 4 2
PRERE	QUISITE : NIL		
COURS	E OBJECTIVES AND OUTCOMES:		
Course	Objectives	Cours	e Outcomes: The Students will be able to
1.0	To gain knowledge on classification of tractors, tractor engines	1.1	Suggest suitable tractor for different field
2.0	To impart the knowledge on working of engine system	2.1	Apply knowledge for effective utilization of power
3.0	To know about the power transmission mechanism	3.1	Utilize effective power transmission.
4.0	To develop skills on safe and efficient use of tractors	4.1	Avoid accidents at farm level
5.0	To acquire knowledge on test procedure to assess the performance of tractors and power tillers	5.1	Test tractors and power tillers

LIST OF EXPERIMENTS:

- 1. Study the working of two stroke and four stroke cycle SI and CI engines.
- 2. Study the valve system of an internal combustion engine and drawing valve timing diagram
- 3. Study of cooling system of tractor engine
- 4. Study of an engine lubrication system
- 5. Study of air cleaners of tractor engine
- 6. Study of gear transmission system
- 7. Study of differential and final drive of a tractor
- 8. Study of steering mechanism of a tractor
- 9. Study of fuel supply system of tractor engine
- 10. Study of tyres, rims and ballasting methods of a tractor
- 11. Study of clutches and brakes

TOTAL (P: 60) = 60 PERIODS

COURSE OUTCOMES			PSOs											
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3		1		2	1		2				2	2	
2	3		1		1	1		2					2	
3	3		1		1	1		2					2	
4	3		1		1	1		2					2	
5	3		1		1	1		2					2	
CO(W.A)	3		1		1	1		2				2	2	

M. The Att.

	17GED02 – SOFT SK	ILLS –	READING AND WRITING										
				L	Т	Ρ	С						
				0	0	2	0						
PREF	REQUISITE : NIL		QUESTION PATTERN : TYPE – NIL										
COU	RSE OBJECTIVES AND OUTCOMES:												
	Course Objectives	Course Outcomes: The Students will be able to											
1.0	To recollect the functional understanding of parts of speech and basic grammar.	1.1	.1 Apply the knowledge to identify the parts speech and construct the sentences.										
2.0	To acquire the reading skills through cloze texts, matching and multiple choice modes.	2.1	Develop the reading skills t matching and multiple choice	hroug: mode	;h clo: es.	cloze texts,							
3.0	To enhance the writing skills for a variety of purposes.	3.1	Interpret effectively through of purposes.	writin	g for	a vari	ety						

UNIT I – GRAMMAR	(10)
Articles - Adjectives - Conjunctions - Prepositions - Idioms & Phrases.		
UNIT II – READING	(10)
Part I: Matching 7 sentences to four short texts		
Part II: Text with sentences missing		
Part III: Text with multiple choice questions		
Part IV: Text with multiple choice gaps		
Part V: Identification of additional unnecessary words in text		
UNIT III- WRITING	(10)
Part I: E-mail writing, Writing short notes, Memo, Agenda & Minutes		
Part II: Report Writing, Complaint Letter, Writing Proposals		
	TOTAL (L: 30) = 30 PERIO	ODS
REFERENCES:		

1. Murphy, Raymond, "Essential Grammar in Use", Cambridge University Press, UK, 2007.

2. Whitby, Norman, "Business Benchmark Pre - Intermediate to Intermediate Preliminary", 2nd ed., Cambridge University Press, 2013

COURSE OUTCOMES		PROGRAMME OUTCOMES													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3		3								2			
2	3			3	2										
3	3					3					3				
CO(W.A)	3	3		3	2	3					3	2			

174GC12 UNIT	OPERATIONS IN AGRICULTURAL	PROCESSING
TAUCTS ONIT	OF LINATIONS IN AGNICOLI ONAL	FROCESSING

PREREQUISITE : 17AGC08	
------------------------	--

QUESTION PATTERN: TYPE – III

COURSE OBJECTIVES AND OUTCOMES:

Course	Objectives	Cour	se Outcomes: The Students will be able to
1.0	To acquire basic knowledge in engineering process like evaporation and concentration	1.1	Select and design suitable evaporators for different agricultural processing
2.0	To know about the different mechanical separation involved in agricultural processing	2.1	Select suitable mechanical separators for different agricultural processing
3.0	To understand the basic concept involved in various size reduction equipments for agricultural processing	3.1	Calculate, select and design suitable size reduction machineries for various agricultural processing operations
4.0	To know the various crystallization and distillation process	4.1	Apply crystallization and distillation process in agricultural processing
5.0	To understand membrane separation process	5.1	Apply membrane separation process in food processing

UNIT I - EVAPORATION AND CONCENTRATION

Unit operations in food processing –conservation of mass and energy – overall view of an engineering process-dimensions and units – dimensional and unit consistency – dimensionless ratios-evaporation – definition – liquid characteristics – single and multiple effect evaporation – types of evaporators – performance of evaporators and boiling point elevation – capacity – economy and heat balance – evaporation of heat sensitive materials.

UNIT II - MECHANICAL SEPARATION

Filtration – definition – filter media – types and requirements-constant rate filtration – constant pressure filtration – filter cake resistance-filtration equipment – rotary vacuum filter – filter presssedimentation – gravitational sedimentation of particles in a fluid – Stoke's law, sedimentation of particles in gas-cyclones – settling under sedimentation and gravitational sedimentation-centrifugal separations – rate of separations – liquid-liquid separation – centrifuge equipment.

UNIT III - SIZE REDUCTION, MIXING AND BLENDING

(9)

(9)

(9)

(9)

Т

L 3 0 Ρ С

0 3

Size reduction - grinding and cutting - principles of comminuting - characteristics of comminuted products – particle size distribution in comminuted products-energy and power requirements in comminuting - crushing efficiency - Rittinger's, Bond's and Kick's laws for crushing-size reduction equipments - crushers - jaw crusher, gyratory crusher-crushing rolls - grinders - hammer mills rolling compression mills - attrition, rod, ball and tube mills - construction and operation- Mixingkneading-blending- emulsification-homogenization.

UNIT IV – CRYSTALLIZATION AND DISTILLATION

Crystallization – equilibrium – solubility and equilibrium diagram – rate of crystal growth – equilibrium crystallization-crystallization equipment - classification - construction and operation-tank, agitated batch, Swenson-Walker vacuum crystallizers. Distillation - binary mixtures - flash and differential distillation-steam distillation – theory – consumption – continuous distillation with rectification -

vacuum distillation - batch distillation - operation and process - advantages and limitations - azeotrpic distillation-distillation equipments - construction and operation - factors influencing the operation

UNIT V - MEMBRANE SEPARATION

(9)

Membrane separation-osmosis –ultra filtration- reverse osmosis-rate of flow through membranes-Thevan't Hoff equation-membrane equipment.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. Geankoplis C.J. 2017. Fourth edition. Transport Processes and Separation Process Principles. Pearson India Education Services Pvt. UP.
- 2. K. M. Sahay and K.K.Singh, Unit operations of Agricultural Processing, Vikas Publishing House Pvt. Ltd., New Delhi, 2004. (Second revised and enlarged edition).

- 1. J.M. Coulson and J.F. Richardson, Chemical Engineering, Volume I to V. The Pergamon Press, New York, 1999.
- 2. W.L. McCabe, J.C.Smith and P.Harriot, Unit Operations of Chemical Engineering, McGraw-Hill. Inc. Kosaido Printing Ltd. Tokyo, Japan, 2001.
- 3. R.L.Earle and M.D. Earle. 1989 Second edition. Unit Operations in Food Processing. The New Zealand Institute of Food Science and Tecnology Inc.

COURSE OUTCOMES		PROGRAMME OUTCOMES													
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3	3	2	3		2			3	2	2	3	
2	3	3	2	1	1	3		2			1	2	1	3	
3	3	3	3	2	2	3					3	2		3	
4	3	3	1	1	2	2		2			3		2	3	
5	3	3	1	1		2		2			1			3	
CO(W.A)	3	3	2	2	2	3		2			2	2	2	3	

	17AGC13 FARM IMPLEMENT AND EQUIPMENT											
				L	Т	Ρ	С					
				2	0	2	3					
PRERE	QUISITE : 17AGC09	QUES	TION PATTERN: TYPE - III									
COURS	E OBJECTIVES AND OUTCOMES:											
Course	Objectives	Cours	e Outcomes: The Students will be	abl	e to							
1.0	To gain knowledge on various farm mechanization operations	1.1	Effectively utilize the implement production	s fo	r bet	ter						
2.0	To impart knowledge on primary tillage implements	2.1	Select and calculate the forces in primary tillage implements	וסער	ved i	n						
3.0	To impart knowledge on secondary tillage implements	3.1	Select and adjust the various sec implements	conc	lary t	illag	e					
4.0	To understand the basic principle involved and methods of sowing equipment	4.1	Select and test the sowing equip	ome	nt							
5.0To know the fertilizer application methods5.1Select suitable fertilizer applicators												

UNIT I – FARM MECHANIZATION

Farm mechanization – status and challenges. Tillage – methods – primary tillage implements – secondary tillage implements – animal drawn ploughs – construction. Types of farm implements – trailed, mounted and semi mounted implements. Field capacity.

UNIT II – PRIMARY TILLAGE IMPLEMENTS

(6)

(6)

Mould board plough – attachments – mould board shapes and types. Forces acting on tillage tool – mould board plough. Disc plough – force representation on disc – Types of disc ploughs – Subsoiler plough – Rotary plough – spading machine – coir pith applicators.

UNIT III – SECONDARY TILLAGE IMPLEMENTS

(6)

(6)

(6)

Cultivators – types – construction – adjustments. Disc harrows – Bund former – ridger – leveller. Basin lister – Wetland preparation implements – puddler – cage wheel – leveller. Hitch systems – vertical and horizontal hitching of pull type and mounted implements – force analysis on trailed, mounted and semi mounted implements.

UNIT IV – SOWING EQUIPMENT

Crop planting – methods – row crop planting systems. Seeding machines – Devices for metering seeds – furrow openers – furrow closers – types – Types of seed drills and planters.

UNIT V – FERTILIZER APPLICATION

Drill calibration – application of fertilizers – metering devices – seed cum fertilizer drill – application of liquid fertilizers.

Practical

- 1. Operation of tractor drawn mould board plough adjustments and determination of field capacity
- 2. Operation of tractor drawn disc plough adjustments and determination of field capacity
- 3. Operation of tractor drawn cultivator adjustments and determination of field capacity
- 4. Operation of subsoiler adjustments and determination of field capacity
- 5. Study on Calibration of seed drills
- 6. Operation of paddy drum seeder in the field and determination of field capacity
- 7. Dismantling, parts identification and assembly of different components of knapsack power sprayer and duster
- 8. Field testing of rocker arm sprayer, power sprayer and their maintenance
- 9. Study of different types of nozzles and analysis of spray pattern
- 10. Determination of operational cost of farm implement

TOTAL (L: 30+P:30) = 60 PERIODS

TEXT BOOKS:

- 1. Jagdishwar Sahay. 2006. Elements of Agricultural Engineering. Standard Publishers Distributors, Delhi 6
- Ojha T.P. and A.M. Michael. 2018. Tenth edition. Principles of Agricultural Engineering, Vol 1. Jain Brothers, New Delhi.

REFERENCES:

- 3. Donnell Hunt. 2013. Farm power and machinery management. Scientific International Pvt. Ltd. New Delhi.
- 4. Harris Pearson Smith et al. 1996. Farm machinery and equipments. Tata McGraw-Hill pub., New Delhi.
- 1. Kepner, R.A., R.Bainer, E.L. Barger. 2005. Third Edition. Principles of farm machinery. CBS Publishers and Distributers, Delhi.
- 2. Srivastava, A.C. 1990. Elements of Farm Machinery. Oxford and IBH Pub. Co., New Delhi

COURSE					PRO	GRAMI	ME OU	тсом	ES				PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3			2	3						3	2	1	1	
2	3			2	3						3	2	3	1	
3	3		1	2	3						3	2	3	1	
4	3		2	2	3						3	2	3	1	
5	3	3	2	2	3						3	2	2	1	
CO(W.A)	3	3	2	2	3						3	2	2	1	

M. The statter

17AGC14 IRRIGATION AND DRAINAGE ENGINEERING

				3	0	0	3
PRERE	QUISITE : 17AGC10	QUEST	ION PATTERN: TYPE – III				
COURS	SE OBJECTIVES AND OUTCOMES:						
Course	Objectives	Cour	se Outcomes: The Students will	be a	able t	0	
1.0	To understand the concept of soil- water relationship	1.1	Describe the soil-water relation	nshij	0		
2.0	To acquire knowledge on water resources	2.1	Calculate the irrigation water re	equi	ireme	ent	
3.0	To understand the concept of irrigation methods	3.1	Select suitable irrigation methor utilization of water resources	ods f	or ef	fecti	ive
4.0	To understand the concept and functioning of command area development programme	4.1	Implement new techniques for development	con	nmar	nd ar	rea
5.0	To understand different agricultural drainage systems	5.1	Design suitable drainage syster crop production	n fo	r effe	ectiv	e

UNIT I –IRRIGATION SOURCES AND REQUIREMENTS

Surface and ground water resources – River basins- Irrigation- development and Utilization in India and Tamilnadu- Moisture use of crop- Evapotranspiration- ET-plot. Crop water Requirement – duty and delta- Effective rainfall- Scheduling- Irrigation Requirement- Irrigation Frequency, Irrigation Efficiencies.

UNIT II – SOIL WATER TENSION AND MEASUREMENT OF SOIL WATER

Rooting characteristics – soil water tension and soil water stress – Soil water potential concept – total and gravitational potential – soil water retention – hydraulic conductivity – determination. Measurement of soil water-gravimetric, thermo-gravimetric – tensiometric, electrical resistance, pressure plate and pressure membrane apparatus methods – neutron scattering, immersion, dielectric, thermal conductivity, penetrometric and air permeability methods.

UNIT III – METHODS OF IRRIGATION

Methods of Irrigation – Pressurized Irrigation- Hydraulics and design - Erodible and non-erodible, alluvial channels- Kennedy's and Lacey's theories, Materials for lining water courses and field channel, Water control and diversion structure - Underground pipeline irrigation system - Land grading - Land levelling methods.

UNIT IV – COMMAND AREA DEVELOPMENT

Command area - Concept, Components of CADA - CADA programmes in Tamil Nadu - On Farm Development works, Execution - maintenance and economics of OFD WORKS, Farmer's committee and its role for water distribution and system operation, Strategic outlet command – stream size for efficient warabandhi and rotational irrigation system.

(9)

(9)

(9)

(9)

L T P C

UNIT V - AGRICULTURAL DRAINAGE SYSTEMS

Agricultural drainage - Drainage coefficient, principles of flow through soils, Darcy's law – infiltration theory, Surface drainage systems - Subsurface drainage - Design of subsurface drainage - Pipe materials - mole drains, drainage wells, Leaching requirements - irrigation and drainage water quality - recycling of drainage water for irrigation.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. A.M. Michael. 2015. Second edition. Irrigation -Theory and Practice, Vikas publishing house, New Delhi.
- 2. V.V.N. Murthy. 2016. Sixth edition. Land and water management, Kalyani publishing, New Delhi.

REFERENCES:

- Dilip Kumar Majumdar, Irrigation water Management-Principles and Practice, Prentice-Hall of India Pvt. 3Ltd, New Delhi, 2006.
- 2. J.N. Luthin, Drainage Engineering, John Wiley and Sons, New York, 1966.

COURSE		PROGRAMME OUTCOMES													
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	2	3	2	3			2			1		2		
2	3	2	3	2	3			2			1	2	3	1	
3	3	2		1	3			2			2	2	2	2	
4	3	1		1	1	3					3		2	2	
5	3	1	3	2	3			2			2	2	3	2	
CO(W.A)	3	2	3	2	3	3		2			2	2	2	2	

(9)

				L		Р	L
				3	0	0	3
PRERE	QUISITE : NIL	QUE	STION PATTERN: TYPE – III				
COURS	E OBJECTIVES AND OUTCOMES:						
Course	Objectives	Cour	se Outcomes: The Students will be	able	to		
1.0	To understand the characters of biomass	1.1	Suggest suitable biomass conversi	on n	netho	ods	
2.0	To impart knowledge on biochemical conversion of biomass	2.1	Suggest effective utilize the bioch conversion	emic	al		
3.0	To gain knowledge on thermochemical conversion by combustion	3.1	Effectively convert biomass for en	ergy	gene	erati	on
4.0	To know the importance of gasifiers and prylosis	4.1	Utilize the biomass for production products	for	vario	us e	nd
5.0	To understand the importance of cogeneration and waste heat recovery	5.1	Suggest suitable methods for effe of heat energy	ctive	utili	zatic	on

UNIT I - BIOMASS CHARACTERIZATION

Biomass – types – fuels from biomass. Terms and units used in biomass production. Biomass fuel characterization – physical, chemical and thermal – energy release. Supply chain – harvesting / collection-- transportation and processing. Briquetting – types – pelletizing.

UNIT II - BIOCHEMICAL CONVERSION

Biochemical degradation – factors affecting biogas production - types of biogas plants – construction details – operation and maintenance – utilization of biogas - slurry handling, utilization and enrichment – high rate biomethanation process – landfills – bioethanol – feedstock – process – utilization-- composting - methods – machinery.

UNIT III - THERMO CHEMICAL CONVERSION BY COMBUSTION

Thermochemical degradation. Stoichiometric air requirement - Combustion process – chemistry of combustion - combustion zones – emissions. Co firing of biomass. Incinerators - layout. Combustion of wastes and MSW. Wood burning stoves – types – operation.

UNIT IV - THERMOCHEMICAL CONVERSION BY GASIFICATION AND PYROLYSIS

Biomass gasification – chemistry of gasification – types of gasifier – Gas cleaning & conditioning - utilization of producer gas - emissions – commercial gasifies plants. Pyrolysis – product recovery – types – biochar – bio oil – operation – application.

UNIT V - COGENERATION AND WASTE HEAT RECOVERY

Cogeneration technology – cycles – topping – bottoming – problems – applications – waste heat recovery. Carbon cycle - Carbon sequestration - CDM concept - CDM technologies - Carbon emission reduction calculation.

TOTAL (L: 45) = 45 PERIODS

(9)

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. Chakraverty, A. Biotechnology and other alternate technologies for utilisation of biomass, Oxford and IBH Publising Co, New Delhi, 1993.
- 2. Chawla, O.P. Advances in Biogas Technology, ICAR Publication, New Delhi, 1986.
- 3. Nijaguna, B.T. Biogas Technology. New age international publishers. 2006.

- 1. Kothari, D.P., K.C.Singal and Rakesh Ranjan. 2008. Renewable energy sources and emerging technologies. Prentice Hall of India Pvt. Ltd., New Delhi 01.
- 2. Myung Kyoon Lee, 2005. Baseline methodologies for clean development mechanism projects A guide book Vol. I. UNEP Publication.
- 3. Francis, D.K., Chingand and Ian M.Shapiro. 2004. Green Building. John Wiley and sons, Inc. New Jersey.
- 4. Sengio C. Capareda. 2014. Introduction to biomass energy conservations. CRC Press.

COURSE				PF	ROGRA	MME (оотоо	MES					PSOs		
S	1	2	3	4	5	6	7	8	9	1 0	11	12	1	2	
1	3	2	2	2		2	3					2		2	
2	3	3	3	3		3	3		1		2	3	3	2	
3	3	3	3	3		3			1		2	3	3	3	
4	3	3	3	3		3	3		2		2	3	3	3	
5	3	3	3	3	1	3	3		2		2	3	2	3	
CO(W.A)	3	3	3	3	1	3	3		2		2	3	3	3	

17AGP06 UNIT OPERATIONS IN AGRICULTURAL PROCESSING LABORATORY

P C

LT

				0	0	4	2
PRERE	QUISITE : NIL						
COURS	E OBJECTIVES AND OUTCOMES:						
Course	Objectives	Cour	se Outcomes: The Students will b	e ab	le to		
1.0	To understand the working principles of various separators	1.1	Calculate and design various sep in agricultural processing operat	arat ions	ors i	nvol	ved
2.0	To gain knowledge on size reduction equipment	2.1	Calculate energy requirement ar size reduction equipment	nd se	elect	suita	able
3.0	To know the importance of mixing in agricultural processing	3.1	Determine the mixing index				
4.0	To understand the evaporation methods for heat sensitive materials	4.1	Select and design suitable evapo concentration of heat sensitive r	orato nate	ors fo erials	r	
5.0	To acquire the knowledge on various unit operations in sugar, solvent extraction industry	5.1	Design and minimize loss in agric processing units	cultu	ıral		

LIST OF EXPERIMENTS:

- 1. Determination of separation efficiency of centrifugal separator
- 2. Determination of collection efficiency in cyclone separator
- 3. Performance evaluation of a sieve and determination of particle size of granular foods by sieve analysis
- 4. Determination of energy requirement in size reduction using the burr mill
- 5. Determination of energy requirement in size reduction using the ball mill
- 6. Determination of energy requirement in size reduction using the hammer mill
- 7. Determination of energy requirement in size reduction using the pin mill
- 8. Determination of thermal efficiency of open pan evaporator for concentration of juice
- 9. Visit to sugar industry
- 10. Visit to solvent extraction industry / flour mill

TOTAL (P: 60) = 60 PERIODS

COURSE					PRO	GRAM	ME OU	тсом	ES				PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	1	2											3	
2	3	2	2											3	
3	3	2	2											3	
4	3	2	2											3	
5	3	1	1	2				2	2	2	2			3	
CO(W.A)	3	2	2	2				2	2	2	2			3	

M. the Att

17AGP07 IRRIGATION AND DRAINAGE ENGINEERING LABORATORY

-			•
L	Т	Ρ	С

			U			4	Z
PRERE	QUISITE : NIL						
COURS	E OBJECTIVES AND OUTCOMES:						
Course	Objectives	Cour	se Outcomes: The Students will	l be	abl	e to	
1.0	To impart knowledge on various water resources	1.1	Effectively utilize the water res	sour	ces	i	
2.0	To understand the methods for soil moisture content determination	2.1	Determine moisture content				
3.0	To know the estimation methods of water requirements	3.1	Minimize water loss				
4.0	To understand various irrigation system	4.1	Select and design suitable irrig	gatio	n s	yste	m
5.0	To develop knowledge on micro irrigation system	5.1	Design micro irrigation system utilization of available water re	for esou	eff Irce	ectiv es	ve

LIST OF EXPERIMENTS:

- 1. Study of River basins, irrigation projects, irrigation tanks and water resources in Tamil Nadu
- 2. Determination of soil moisture by different methods gravimetric and tensiometer
- 3. Problems on duty of water Duty and delta relationship
- 4. Estimation of water requirement by different methods
- 5. Estimation of Evapotranspiration
- 6. Determination of irrigation efficiencies and design of basin and furrow irrigation systems
- 7. Design of drip irrigation system
- 8. Design of sprinkler irrigation system
- 9. Design of underground pipeline system
- 10. Design of surface and sub-surface drainage systems

TOTAL (P: 60) = 60 PERIODS

COURSE					PRO	GRAMI	ME OU	тсом	ES				PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	2	2				1	1				3	2	2		
2	2		2		3			2			2	1	2		
3	2	2	2	1	2						1		3	1	
4	1					2		2			2	1	3	1	
5	1		2	1	2	2		2			2	1	3	1	
CO(W.A)	2	2	2	1	2	2	1	2			2	1	3	1	

M. the Att

17GED07- CONSTITUTION OF INDIA												
				L	Т	Ρ	C					
PREREQUISITE : NIL												
COURSE OBJECTIVES AND OUTCOMES:												
Course Objectives Course Outcomes: The students will be able to												
1.0	To educate about the Constitutional Law of India	1.1	Gain Knowledge about the Constitutional Law of India									
2.0	To motivate students to Understand the Fundamental Rights and Duties of a citizen	2.1	Understand the Fundamental Rights and Duties of a citizen									
3.0	To make students to understand about Federal structure of Indian Government	3.1	Apply the concept of Fe Indian Government	ederal	stru	cture	of					
4.0	To understand about Amendments and Emergency provisions in the Constitution	4.1	Analyze the Amendments and Emergence provisions in the Constitution									
5.0	To educate a holistic approach in their life as a Citizen of India	5.1	Develop a holistic approach in their life as a Citizen of India									

UNIT I – Introduction to Indian Constitution Meaning of the constitution law and constitutionalism – Histo

Meaning of the constitution law and constitutionalism – Historical perspective of the Constitution – Salient features and characteristics of the Constitution of India

UNIT II – Fundamental Rights

Scheme of the fundamental rights – Right to Equality – Fundamental Right under Article 19 – 102 Scope of the Right to Life and Liberty – Fundamental Duties and its legal status – Directive Principles of State Policy – Its importance and implementation

UNIT III – Federal Structure

Federal structure and distribution of legislative and financial powers between the Union and the States – Parliamentary Form of Government in India – The constitutional powers and status of the President of India

UNIT IV – Amendment to Constitution

Amendment of the Constitutional Powers and Procedure – The historical perspectives of the constitutional amendments in India

UNIT V – Emergency Provisions

National Emergency, President Rule, Financial Emergency Local Self Government – Constitutional Scheme in India

TOTAL = 30 PERIODS

(6)

(6)

(6)

(6)

(6)

COURSE OUTCOMES	PROGRAMME OUTCOMES											PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1						3		2				3		
2						2	3	2						
3						3	2	2						
4						3	3	3						
5						3		3				2		
CO(W.A)						3	3	2				3		

17AGC16 PLANT PROTECTION AND HARVESTING MACHINERY

L	Т	Ρ	С
3	0	0	3

PREREQUISITE : 17AGC13

QUESTION PATTERN: TYPE – III

COURSE OBJECTIVES AND OUTCOMES:

Course	Objectives	Cours	e Outcomes: The Students will be able to							
1.0	To impart knowledge on interculture equipment	1.1	Select and design interculture equipment							
2.0	To study about types, parts and function of sprayers	2.1	Calculate the particle size and area covered by different sprayers							
3.0	To understand the duster application, care and maintenance	3.1	Maintain the duster for effective utilization							
4.0	To gain knowledge on working principle of various harvesting equipments.	4.1	Select suitable harvesting equipment							
5.0	To understand the construction and working of threshers and other machineries	5.1	Use fruit pluckers, tree shakers, post hole diggers and chaff cutter							

UNIT I - WEEDING EQUIPMENT (9) Weeding and Interculture equipment. Junior hoe - guntaka - blade harrow - dry land weeders - tractor mounted and engine operated sweeps. Engine operated and rotary weeders for upland and low land - selection, constructional features and adjustments. **UNIT II – SPRAYERS** (9) Sprayers – classifications - parts and accessories - atomizers - agitators - determination of particle size and distribution. Number Median Diameter (NMD) and Volume Median Diameter (VMD). Sprayer operation – boom sprayer - precaution - coverage - factors affecting drift. Rotating disc sprayers – Controlled Droplet Application (CDA) - Electrostatic sprayers - Arial spraying. **UNIT III – DUSTERS** (9) Dusters - types - mist blower cum duster - other plant protection devices, care and maintenance. **UNIT IV - HARVESTERS** (9) Principles and types of cutting mechanisms. Harvesters - types - mower mechanism - construction and adjustments - registration and alignment. Mowers, windrowers, reapers, reaper binders and forage harvesters. Combine harvester – types - parts - construction and working. Diggers for potato, groundnut and other tubers. Sugarcane harvesters - cotton pickers - corn harvesters. UNIT V -THRESHERS AND OTHER MACHINERIES (9) Thresher – construction and working of multi crop thresher. Fruit pluckers - tree shakers - fruit harvesting machinery. Forest machinery - shrub cutters - tree cutting machines - post hole diggers -

Chaff cutter.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. Kepner, R.A., R.Bainer and E.L. Barger. 2005. Third Edition. Principles of farm machinery. CBS Publishers and Distributers, Delhi.
- 2. Donnell Hunt. 2013. Farm power and machinery management. Scientific International Pvt. Ltd. New Delhi.
- 3. Jagdishwar Sahay. 2006. Elements of Agricultural Engineering. Standard Publishers Distributors, Delhi 6
- 4. Srivastava, A.C. 1990. Elements of Farm Machinery. Oxford and IBH Pub. Co., New Delhi

- 1. Sanjay Kumar. 2013. Fundamentals of Agricultural Engineering. Kalyani publishers, Ludhiana 141 008.
- 2. Surendar singh, 2011. Farm Machinery Principles and Applications. Indian Council of Agricultural Research, New Delhi-12.

COURSE	PROGRAMME OUTCOMES												PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3		3		3								3	
2	3	2	2	3	3	2	3	1					3	
3	3		1	2		2	3						3	
4	3	2	3	2	3	2		2				2		3
5	3	2	3	2	3	3	1	2				2		3
CO(W.A)	3	2	2	2	3	2	2	2				2	3	3

				1	r						
				L	Т	Ρ	С				
				2	2	0	3				
PRERE	QUISITE : 17AGC14	QUESTION PATTERN: TYPE – III									
COURSE OBJECTIVES AND OUTCOMES:											
Course	e Objectives	Course Outcomes: The Students will be able to									
1.0	To learn the various water lifting devices	1.1	1.1 Categorize the different types of pumps ar water lifting devices								
2.0	To understand the types of valves	2.1	Differentiate, select and maintain pump valves								
3.0	Gain knowledge on traditional and micro irrigation methods and advantages	3.1	Imply modern irrigation concepts								
4.0	Acquire knowledge on components, design, operation and maintenance of drip irrigation system	4.1	Design drip irrigation system								
5.0	Acquire knowledge on components, design, operation and maintenance of sprinkler irrigation system	5.1	Design sprinkler irrigation syste	em							

UNIT I - WATER LIFTS AND PUMPS	(6+6)
Pump classification Variable displacement pumps-Centrifugal pump- Submersible pum	np- Vertical
Turbine pumps mixed flow – Jet and Airlift pumps-Pump selection and installation- Pur	np troubles
and Remedies.	
UNIT II - PUMP VALVES	(6+6)
Types of valves- Pressure relief valve- Gate valve-Isolated valve- Non return valve- But	terfly valve-
Solenoid valves- Automated control valve- selection, repair and maintenance.	
UNIT III - MICRO IRRIGATION CONCEPT AND APPLICATIONS	(6+6)
Micro irrigation- Comparison between Traditional and Micro irrigation methods -	Merits and
demerits of micro-irrigation system, Types and components of micro irrigation system-	Scope and
potential problem of micro irrigation - Low cost Micro irrigation Technologies- Gravity	y fed micro
irrigation -Care and maintenance of micro-irrigation System- Economics of micro-irriga	tion system
automation in micro-irrigation-Surge and cablegation irrigation- Greenhouse irrigati	on system-
hydroponics- aeroponics- soilless cultivation	
UNIT IV - DRIP IRRIGATION DESIGN	(6+6)
Drip irrigation - Components- Dripper- types and equations governing flow through dripp	ers-Wetting
pattern- Chemigation application- Pump capacity-Installation- Operation and maintena	nce of Drip
irrigation system Design of surface and sub-surface drip irrigation.	
UNIT V - SPRINKLER IRRIGATION DESIGN	(6+6)
Sprinkler irrigation- Components and accessories - Hydraulic design - Sprinkler selection a	nd spacing-
Capacity of sprinkler system - types - Sprinkler performance- Sprinkler discharge- Raing	un and POP
irrigation. Water distribution pattern- Droplet size, filtering unit, fertigation - System mair	ntenance.
TOTAL (L: 30+T:30) = (50 PERIODS

TEXT BOOKS:

- 1. Suresh, R., "Principles of Micro-Irrigation Engineering", Standard Publishers Distributors, New Delhi, 2010.
- 2. Michael, A.M. 2015. Second Edition. Irrigation: Theory and Practices, Vikas Publishing House Pvt., Limited.

- 1. Modi, P.N., and Seth, S.M., "Hydraulics and Fluid Mechanics", Standard Book House, New Delhi, 1991.
- 2. Jack Keller and Rond Belisher., "Sprinkler and Trickle Irrigation", Vannistr and Reinhold, New York, 1990.
- 3. Sivanappan R.K., "Sprinkler Irrigation", Oxford and IBH Publishing Co., New Delhi, 1987.
- 4. Keller.J and D. Karmeli, "Trickle Irrigation Design", Rainbird Sprinkler Irrigation Manufacturing Corporation, Glendora, California, USA.

COURSE	PROGRAMME OUTCOMES												PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	2	2	2	2	1	1					2	3	
2	3	3		1	2	2	1					2	3	
3	3	2	3	2	1	2	2					1	3	
4	2	2	3	3	2	1	1		1			1	3	
5	2	2	3	2	1	1	2		1			1	3	
CO(W.A)	2	2	3	2	2	1	1		1			1	3	

17AGP08 CAD FOR AGRICULTURAL ENGINEERING

Т	Ρ	С
•		(

L

				U	U	4	Z					
PREREC	QUISITE : NIL											
COURS	E OBJECTIVES AND OUTCOMES:											
Course	Objectives	Cour	Course Outcomes: The Students will be able to									
1.0	To develop software skills for drawing orthographic views	1.1 Draw orthographic views										
2.0	To understand the software tools usage	2.1 Draw two dimensional and three dimension views of machine components				nal						
3.0	To gain knowledge on different machine components	3.1	Design machine components	ients								
4.0	To acquire knowledge on software available	4.1	Create three dimensional assembl	y mo	odel							
5.0	To develop drawing skills	5.1	Effectively utilize the software skil	ls								

LIST OF EXPERIMENTS:

- 1. Create a orthographic views of machine components from isometric component drawing
- 2. Create a three dimensional model of spur gear
- 3. Create a three dimensional model of helical gear
- 4. Create a three dimensional assembly model of bolt and nut from detailed orthographic drawings
- 5. Create a three dimensional assembly model of bearing from detailed orthographic drawings
- 6. Create a three dimensional assembly model of coupling from detailed orthographic drawings
- 7. Create a three dimensional assembly model of IC engine components from detailed orthographic drawings
- 8. Create a three dimensional assembly model of valves from detailed orthographic drawings
- 9. Create a three dimensional assembly model of simple mechanism
- 10. Create a three dimensional assembly model of power transmission system

TOTAL (P: 60) = 60 PERIODS
COURSE					PRO	GRAM	ME OU	тсом	ES				PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2		3	2	3	1							3	
2	2		3	2	3	1						3	3	
3	2		3	2	3	1						3	3	
4	2		3	2	3	1						3	3	
5	2		3	2	3	1						1	3	
CO(W.A)	2		3	2	3	1						3	3	

M. The statt

17AGP09 DRAWING OF FARM STRUCTURES

-			
PRERE	QUISITE : NIL		
COURS	E OBJECTIVES AND OUTCOMES:		
Course	Objectives	Cour	se Outcomes: The Students will be able to
1.0	To acquire know on farmstead, machine shed and workshop	1.1	Design farmstead, machine shed and workshop
2.0	To acquire knowledge on dairy and poultry house	2.1	Design dairy and poultry house
3.0	To understand the importance of ventilation system for dairy and poultry house	3.1	Design ventilation system for dairy and poultry house
4.0	To study the different silo and storage structures	4.1	Design different storage structure for foods and silage
5.0	To understand the importance of fencing and sanitary structure	5.1	Design fencing and sanitary structure

LIST OF EXPERIMENTS:

- 1. Planning and Layout of farmstead
- 2. Design of stall bam
- 3. Design of loose housing and milk parlors
- 4. Design of poultry house
- 5. Design of a sheep / goat house
- 6. Design of ventilation system for dairy and poultry house
- 7. Design of silos over ground and underground and hay storages
- 8. Design of farm fencing system
- 9. Design of machinery and equipment shed and workshops
- 10. Design of septic tank and sanitary structures

TOTAL (P: 60) = 60 PERIODS

COURSE					PRO	GRAM	ME OU	тсом	ES				PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3		3	3									3	
2	3		3	3									3	
3	3		3	3									3	2
4	3		3	2									3	3
5	3		3	2									3	
CO(W.A)	3		3	3									3	3

	17GED08 - ESSENCE OF INDIAN TRADITIONAL KNOWLEDGE											
				L	Т	Ρ	C					
				2	0	0	0					
PREF	REQUISITE : NII											
COU	COURSE OBJECTIVES AND OUTCOMES:											
	Course Objectives Course Outcomes: The students will be able to											
1.0	To Understand the basics of Indian tradition and Indian traditional knowledge systems	1.1	Gain Knowledge about of Indian tradition and Indian traditional knowledge systems									
2.0	To know about basics of technologies and its scientific perspectives.	2.1	Understand basics of technolog perspectives.	gies ar	nd its s	cient	ific					
3.0	To study the basics of Indian traditional health care ,	3.1	Understand basics of Indian traditional health care									
4.0	To know the basics of Indian artistic tradition knowledge	4.1	1 Understand basics of Indian artistic tradition									
5.0	5.0To develop the basics of linguistic tradition5.1Develop the basics of linguistic tradition											

UNIT I - Indian Tradition:	(6)
Fundamental unity of India, India's heroic role in world civilization, The Indian way of life, Introduct	ion to
Indian tradition, The Scientific Outlook and Human Values.	
UNIT II - Indian Knowledge System and Modern Science:	(6)
Relevance of Science and Spirituality, Science and Technology in Ancient India, Superior intelliger	nce of
Indian sages and scientists	
UNIT III - Indian Traditional Health Care:	(6)
Importance and Practice of Yoga, Pranayam and other prevailing health care techniques	
UNIT IV - Indian Artistic Tradition:	(6)
Introduction and overview of significant art forms in ancient India such as painting, sculpture, Civil Engineering, Architecture, Music, Dance, Literature etc	
UNIT V - Indian Linguistic Tradition:	(6)
Ancient Indian languages and literary Heritages, Phonology, Morphology, Syntax and Semantics	1
TOTAL = 30 P	PERIODS

TEXT BOOKS:

- 1. Sivaramakrishnan, V., Cultural Heritage of India- Course Material, Bharatiya Vidya Bhavan, Mumbai 5th Edition, 2014
- 2. Swami Jitatmananda, Modern Physics and Vedanta, Bharatiya Vidya Bhavan, 2004.
- 3. Raman V.V., Glimpses of Indian Heritage, Popular Prakashan, 1993
- 4. Jha V.N., Language, Thought and Reality
- 5. Krishna Chaitanya, Arts of India, Abhinav Publications, 1987

COURSE					PRO	GRAMI	ME OU	тсом	ES				PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3					3		2							
2	3					2									
3	3					2						1			
4	3					2						3			
5	3					3		3							
CO(W.A)	3					2		3				2			

M. The Att.

	17GED06 COMPREHENSION												
				L	Т	Ρ	С						
				0	0	2	0						
PREF	REQUISITE : NIL												
COU	COURSE OBJECTIVES AND OUTCOMES:												
	Course Objectives		Course Outcomes: The Student will be able to										
1.0	To comprehend the knowledge acquired from the first Semester to Sixth Semester of B.E. Degree course through periodic exercise.	1.1	Understand and comprehend any related to Agriculture Engineering	y giv g fie	en pi Id.	roble	em						

METHOD OF EVALUATION

The student will be assessed for his understanding of the basic principles of the core engineering subjects. The internal assessment for a total of 50 marks will be evaluated by a committee comprising of the faculty members of the department. The committee will conduct two assessments of objective question type from the subjects as follows

- Test 1 Fluid Mechanics, Crop Process Engineering, Farm Tractor Systems, Hydrology and Water Resources, Crop production.
- Test 2 Heat and Mass Transfer, Unit operation, Irrigation systems- Pumps and motors, Micro irrigation, Thermodynamics, Refrigeration and air-conditioning.

The end semester examination, which carries a total of 50 marks, will be an objective question type examination conducted by a committee of one internal examiner appointed by the COE of our college.

TOTAL (P: 30) = 30 PERIODS

COURSE OUTCOMES					PRO	GRAM	ME OU	тсоме	S				PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	2		3		2	3				2		
CO(W.A)	3	3	2		3		2	3				2		

	17AGC19 FOOD	AND D	AIRY ENGINEERING										
				L	Т	Ρ	С						
				3	0	0	3						
PRERE	QUISITE : 17AGC12 C	QUESTIC	DN PATTERN: TYPE – III										
COURS	E OBJECTIVES AND OUTCOMES:												
Course	Objectives	Cours	e Outcomes: The Student will be	abl	e to								
1.0	To understand the basic concepts and methods of food concentration	1.1	Explain the different food methods	C	once	ntra	tion						
2.0	To understand the importance of thermal processing in food processing 2.1 Apply thermal processing technique to improve the shelf life of foods												
3.0	To acquire knowledge on drying and dehydration	3.1	Apply suitable drying and dehydration methods to minimize food loss										
4.0	To know the importance and properties of milk	ΓοknowtheimportanceandAssessthe suitableproperties of milkandandandandand											
5.0	To gain knowledge on working principle and value products of milk	5.1	Test milk and produce value from milk	add	ed p	orod	ucts						

UNIT I – METHODS OF CONCENTRATION OF FOOD MATERIALS

Constituents of food and their energy values – Engineering properties of food materials – Physical, mechanical, thermal, rheological, electrical and physico-chemical properties of food materials – texture of food materials – definition – Terminologies – viscometry – basic concepts – Concentrations of foods – freeze concentration – membrane concentration

UNIT II – THERMAL PROCESSING OF FOODS

(9)

(9)

Thermal processing of foods – product-time-temperature relationships – cooking, blanching – pasteurization techniques – UHT Processing – sterilization of solid and liquid foods - interaction of heat energy on food components – kinetics of microbial destruction – Decimal reduction time – Temperature dependence of kinetics – Arrhenius equation – Thermal Death Time Curves – loss of nutrient in Newtonian and non-Newtonian liquid foods – batch and continuous sterilization equipment. Preservation by irradiation – retort processing – principles and applications – microwave and radio frequency heating in food processing – Canning.

UNIT III – DRYING AND DEHYDRATION

(9)

(9)

Food spoilage – causes for spoilage – Moisture content – free moisture – bound and unbound moisture – equilibrium moisture content – Water activity – sorption behaviour of foods – dehydration – methods of dehydration – types of dryers – tray, tunnel, drum, spray, dryers-advantages and disadvantages – osmotic dehydration – microwave drying – foam mat drying of materials – freeze drying.

UNIT IV – MILK PROCESSING

Physical, chemical, thermal and rheological properties of milk – storage tanks. Receiving handling and testing of milk – storage. Pasteurization – principles and methods – equipment – Low Temperature Long Time – High Temperature Short Time – Ultra High Temperature 2pasteurization.

UNIT V - DAIRY EQUIPMENT AND PRODUCTS	(9)
Homogenisation - theory and working of homogenisers - high pressure homogenizatio	n of milk
and other food suspensions - design criteria for homogenizing equipment- cream sep	aration -
principles - types of separators. Clarifiers - butter churns – ghee manufacture - equi	pment –
whey manufacture – techniques – equipment – ice cream freezers – condensed mil	k – milk
powder manufacturing – drying equipment - drum drier and spray drier - milk pr	oducts –

paneer – casein – probiotic dairy products – milk plant sanitation requirements - Cleaning in-

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

place and its functions.

- 1. R.Paul Singh and R.Dennis Heldman, Introduction to Food Engineering. Third Edition, Academic Press, London, 2004.
- 2. H.G.Kessler, Food Engineering and Dairy Technology, Freising, Germany, Verlag A. Kessler, 1981.
- 3. Norman N. Potter and Joseph H. Hotchkiss, Food Science, Fifth Edition, Food Science Text Series, 3. ISBN: 978-1-4613-7263-9 (Print) 978-1-4615-4985-7 (Online), 1995
- 4. R.M. Teledo, Fundamentals of Food Process Engineering, 2nd Ed. Van Nostrand Reinhold, New York, 1991.

REFERENCES:

- 1. C.W. Hall and T.J. Hedrick, Drying of milk and milk products, AVI Publishing Co., West Port, Connecticut, USA, 1971.
- 2. Ahmed, Tufail "Dairy Plant Engineering and Management", Kitab Mahal, Allahabad, 1997.
- 3. P. T. Walstra, J. Geurts, A. Nooman, A. Jellema and M.A. J.S Van Boekel, Dairy Technology, Marcel Dekker Inc. New York, 2005.

COURSE				P	ROGR	AMM	E OUT	COMES	5				PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3					2								2	
2	3	2	1	3	2	3						3	1	3	
3	3	3	2	2	1	2							2	3	
4	3	3	2	3	2	3						3	2	3	
5	3				3	3							1	2	
CO(W.A)	3	3	2	3	2	3						3	2	3	

4. S.E.Charm, The fundamentals of Food engineering, AVI Pub.Co., Inc, 1971.

	17AGC20 TESTING AND MANAGEMENT OF FARM MACHINERY													
				L	Т	Ρ	С							
				3	0	0	3							
PRERE	QUISITE : 17AGC13	QUES	TION PATTERN: TYPE – III											
COURS	SE OBJECTIVES AND OUTCOMES:													
Course	Objectives	Cours	e Outcomes: The Student will be	e abl	e to									
1.0	To understand the different constrains involved in field machinery system	1.1	Manage the constrains involved in field machinery system											
2.0	To gain knowledge on testing and evaluation of tractor	2.1	Analyze the performance of tractor											
3.0	To gain knowledge on testing and evaluation of power tiller	3.1	Analyze the performance of power tiller											
4.0	To understand the testing and evaluation of tillage and sowing equipment	4.1	Test and evaluate tillage and sowing equipmer											
5.0	To understand the testing and evaluation of plant protection and harvesting machinery	5.1	5.1 Test and evaluate plant protection and harvesting machinery											

UNIT I – MANAGEMENT OF MACHINERY	(9)									
Field machinery system – Importance of farm machinery management- field Performance and requirements. Cost of operation - Machinery for operator comfort and safety.	nd Power									
UNIT II – TRACTOR	(9)									
Testing and evaluation systems in India – General Guidelines on the use of test codes. Te Evaluation of agricultural tractors – Indian standards. Performance of agricultural tractors – of results – Nebraska tractor test and test reports.	sting and – analysis									
UNIT III - POWER TILLER AND IMPLEMENTS	(9)									
Testing and evaluation of power tiller. Testing and evaluation of tillage implements- Mould rotovator.	d board –									
UNIT IV - TILLAGE AND SOWING EQUIPMENT	(9)									
Testing and evaluation of Tillage machinery - seed cum fertilizer drill – weeders - Rice transp	olanter.									
UNIT V - PLANT PROTECTION AND HARVESTING MACHINERY	(9)									
Testing and evaluation of manually operated sprayer and duster - Combine harvester - thresh	ner.									
TOTAL (L: 45) = 45	TOTAL (L: 45) = 45 PERIODS									

TEXT BOOKS:

- 1. Metha M.L., SR.Verma, K Mishra and V.K. Sharma. 1995. Testing and Evaluation of Agricultural Machinery, National Agricultural Technology Information Centre, Ludhiana-141001.
- 2. RNAM test codes and procedure for farm machinery, 1983
- 3. Donnell Hunt. 2013. Farm power and machinery management. Scientific International Pvt. Ltd. New Delhi.
- 4. Indian standard test codes related to tractors, power tillers and agricultural implements.

- 1. Liljedahl, J.B., P.K. Turnquist, D.W.Smith and M.Hoki. 2004. Fourth Edition. Tractors and their power units. CBS Publishers and Distributers, Delhi.
- 2. Kepner, R.A., R.Bainer, E.L. Barger. 2005. Third Edition. Principles of farm machinery. CBS Publishers and Distributers, Delhi.
- 3. Claude Culpin (198) Profitable farm mechanization Crosby Lockwood & Sons Ltd., 26, Old Brompton Road, SW.7
- 4. Donnell R. Hunt 1986. Engineering models for Agricultural production. The AVI publishing co.INC, Connecticut-06881.

COURSE OUTCOMES	PROGRAMME OUTCOMES													PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3					3	3	3			2		
2	3	3	3	3	2			3	2			2	3	2	
3	3	3	3	3	3			1				2	2	3	
4	3	3	3	3	3			1				2			
5	3	3	3	3	3			1				2	2		
CO(W.A)	3	3	3	3	3			2	3	3		2	2	3	

17AGC21 REMOTE SENSING AND GIS FOR AGRICULTURAL ENGINEERS

Т	Ρ	C

L

PREREQUISITE : 17AGC04

QUESTION PATTERN: TYPE – III

2 0 2 3

COURSE OBJECTIVES AND OUTCOMES:

Course	e Objectives	Cours	Course Outcomes: The Student will be able to					
1.0	To understand the fundamentals of remote sensing	1.1	Describe the basics of remote sensing					
2.0	To gain knowledge on types, applications of remote sensing satellites and sensors	2.1	Explain the role of remote sensing satellite and sensors					
3.0	To understand the digital image processing	3.1	Discuss the concepts of GIS and coordinate system					
4.0	To understand the basic concepts and types of GIS	4.1	Interpret the spatial images of vegetation, soil, water					
5.0	To know the application of GIS	5.1	Explain the application of GIS in different sectors					

UNIT I - REMOTE SENSING

Introduction-Fundamentals of Remote Sensing-Definition, Advantages-Components- Physics of Remote Sensing-Electro Magnetic Spectrum (EMR)-Radiation laws – Wave theory-Stefan-Boltzmann Laws-Interaction of EMR with Atmosphere- Scattering-Rayleigh, Mie and Non-Selective scattering-Absorption-Atmospheric windows-interaction of EMR with Earth objects-Spectral signature-Spectral reflectance characteristics of vegetation, soil and water

UNIT II - REMOTE SENSING SATELLITES AND SENSORS

Platforms-Types-Applications – Sun synchronous and geo synchronous orbits-Active and Passive sensors-Resolution-Spatial, Spectral, Radiometric and Temporal, significance of Resolution-Satellites and Sensors- LANDSAT, SPOT, IRS, RESOURCESAT, CARTOSAT, LISS Images, Thematic Mapper-High Resolution commercial satellites-METEOSAT,NOAA-ERS, RADARSAT.

UNIT III – GEOGRAPHICAL INFORMATION SYSTEM

(6)

(6)

(6)

(6)

Definition- Concept of GIS - Maps and their influences- Characteristics of Maps- Elements - Projection-Coordinate system- sources of spatial data- History and development of GIS

UNIT IV – DATA INPUT AND ANALYSIS

Data- spatial, Non spatial- Hirerachial Network- Data types- Raster and vector –files and their organization. Methods of Data input – Data Editing, Data structure- Database Management – digitizer – reclassification – spatial analysis – buffering – map –overlay – interpolation – Digital Elevation Model- Output data – devices for output.

UNIT V - GIS APPLICATIONS

(6)

Land and Water resources Management-Agriculture-Surface and Ground water hydrology-Soil erosion assessment-Pollution abatement-Earth sciences-watershed management.

Practical

- 1. Measurement of relief displacement using parallex bar
- 2. Stereoscopic vision test Visual
- 3. Aerial Photo interpretation visual
- 4. Satellite images interpretation Visual
- 5. Database Management systems
- 6. Spatial data input and editing Digitizing
- 7. Raster analysis problem Database query
- 8.GIS application in watershed analysis
- 9. GIS application in rainfall runoff modeling
- 10. GIS application in Soil erosion modelling

Total (L:30+P:30)=60 Periods

TEXT BOOKS:

- 1. M.Anji Reddy, Textbook of Remote Sensing and Geographical Information System, 3rd Edition, BS Publications, 2008.
- 2. Floyd F.Sabins, Remote Sensing: Principles and Interpretation, III edition, Freeman and Company, New York, 1997.

- 1. Ian Heywood, An Introduction to GIS, Pearson Education, New Delhi, 2001.
- 2. P.A. Burrough, Principle of GIS for land resources assessment, Oxford Publications, 1990.

COURSE OUTCOMES	PROGRAMME OUTCOMES												PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3					2	3		3				2	2
2	3					3	2		3			3	2	2
3	3				3				3				2	
4	3	2	1	2	3				3			3	2	1
5	3	3	3	3	3	3	3		3			3	1	
CO(W.A)	3	3	2	3	3	3	3		3			3	2	2

17AGC17 PROTECTED CULTIVATION														
				3	0	0	3							
PRERE	QUISITE : 17AGC01	QUESTION PATTERN: TYPE – III												
COURS	SE OBJECTIVES AND OUTCOMES:													
Course	Objectives	Cour	se Outcomes: The Student will be a	able	to									
1.0	To impart knowledge on protected cultivation and its types	1.1	Differentiate protected cultivation imply in crop production	n me	ethoo	ds ar	าd							
2.0	 To acquire knowledge on hi-tech cultivation techniques for vegetable crops 2.1 Apply hi-tech techniques for effective for vegetable crops 													
3.0	To acquire knowledge on hi-tech cultivation for flower crops	3.1	Apply hi-tech techniques for effect for flower crops	tive	proc	duct	ion							
4.0	To develop skills in precision farming techniques	4.1	Apply precision farming techniques for effective production											
5.0	To learn and practice the various production practices for cut flowers and other high value crops	5.1	Assesses the technology for hortic	cultı	ure ci	rops								

UNIT I – PROTECTED CULTIVATION AND ITS TYPES

Importance and methods of protected culture in horticultural crops. Importance and scope of protected cultivation, different growing structures of protected culture *viz.*, green house, poly house, net house, poly tunnels, screen house, protected nursery house. Study of environmental factors influencing green house production, cladding / glazing / covering material, ventilation systems, cultivation systems including nutrient film technique / hydroponics / aeroponic culture, growing media and nutrients, canopy management, micro irrigation and fertigation systems.

UNIT II – PROTECTED CULTIVATION OF VEGETABLE CROPS

Protected cultivation technology for vegetable crops: Hi-tech protected cultivation techniques for tomato, capsicum nursery, cucumber, gherkins, strawberry and melons, integrated pest and disease management, postharvest handling.

UNIT III – PROTECTED CULTIVATION OF FLOWER CROPS

(9)

(9)

(9)

(9)

Protected cultivation technology for flower crops: Hi-tech protected cultivation of cut roses, cut chrysanthemum, carnation, gerbera, Asiatic lilies, anthurium, orchids, cut foliages and fillers, integrated pest and disease management, postharvest handling.

UNIT IV – PRECISION FARMING TECHNIQUES

Concept and introduction of precision horticulture: importance, definition, principles and concepts. Role of GIS and GPS. Mobile mapping system and its application in precision farming. Design, layout and installation of drip and fertigation in horticultural crops, role of commuters in developing comprehensive systems needed in site specific management (SSM), georeferencing and photometric correction. Sensors for information gathering, geostatistics, robotics in horticulture, postharvest process management (PPM), remote sensing, information and data management and crop growth models, GIS based modeling.

UNIT V -	PRECISION FARMING OF HORTICULTURAL CROPS	(9)

Precision farming techniques for horticultural crops: Precision farming techniques for tomato, chilli, bhendi, bitter gourd, bottle gourd, cauliflower, cabbage, grapes, banana, rose, jasmine, chrysanthemum, marigold, tuberose, china aster, turmeric, coriander, coleus and gloriosa.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. Lyn.Malone, Anita M.Palmer, Chrisitne L. Vloghat Jach Dangeermond. Mapping out world: GIS lessons for Education, ESRI press, 2002.
- 2. David Reed, Water, media and nutrition for green house crops. Ball publishing USA, 1996.
- 3. Adams, C.R., K.M.Bandford and M.P.Early, Principles of Horticulture, CBS publishers and distributors, Darya ganj, New Delhi, 1996.

- 1. H.Panda, Essential oils Handbook, National Institute of Industrial Research, ISBN, New Delhi, 2000.
- 2. Anonymous, Handbook of oils, fats and derivatives with refining and packaging technology, Engineers India Research Institute, New Delhi, 2004.
- 3. T.P. Hilditch, Industrial chemistry of the fats and waxes, Bailliere, Tindall and Co Publishers, London, 1943.

COURSE	PROGRAMME OUTCOMES												PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	2	3	3	3	2	2		2		2	2	3	1
2	2	1		1	3	2	2				2	1	3	
3	2	1		1	3	2	2				2	1	3	
4	3	3	3	3	3	2	2		2		2	3	3	1
5	2	1		1	3	2	2				2	1	1	
CO(W.A)	2	2	3	2	3	2	2		2		2	2	3	1

17AGP10 FOOD AND DAIRY ENGINEERING LABORATORY

L T P C 0 0 4 2

PRERE	QUISITE : NIL									
COURS	COURSE OBJECTIVES AND OUTCOMES:									
Course	Objectives	Cour	se Outcomes: The Student will be able to							
1.0	To know the microbial determination in food materials	1.1	Detect the type and concentration of microbial load							
2.0	To understand working of different dryers	2.1	Select and design suitable dryers for agricultural produce							
3.0	To acquire knowledge on dehydration and rehydration ratio	3.1	Produce value added products of fruits							
4.0	To know the importance and properties of milk	4.1	Assess the suitable preservation technique for milk							
5.0	To gain knowledge on working principle and value products of milk	5.1	Test milk and produce value added products from milk							

LIST OF EXPERIMENTS:

- 1. Estimation of microbial load in food materials
- 2. Determination of water activity
- 3. Analysis of adulteration in foods
- 4. Determination of drying rate in tray dryer
- 5. Determination of drying rate of foam mat dryer
- 6. Experiment on microwave oven heating of food
- 7. Experiment on osmotic dehydration of foods
- 8. Determination of rehydration ratio of dehydrated foods
- 9. Determination of properties of milk
- 10. Determination of separation efficiency of cream separator
- 11. Visit to a dairy industry

TOTAL (P: 60) = 60 PERIODS

COURSE OUTCOMES	PROGRAMME OUTCOMES													PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	3	3		2	3			3	3					
2	3	3	3		2	3			3	3			2		
3	3	3	3		2	3			3	3			2		
4	3	3	3		2	3			3	3					
5	3	3	3		2	3			3	3			2		
CO(W.A)	3	3	3		2	3			3	3			2		

17AGP11 OPERATION AND MAINTENANCE OF FARM MACHINERY LABORATORY

P C

LT

				0	0	4	2					
PRERE	QUISITE : 17AGC05											
COURS	COURSE OBJECTIVES AND OUTCOMES:											
Course	Objectives	Course Outcomes: The Student will be able to										
1.0	To understand the tractor system	e tractor system 1.1 Identify the major tractor system										
2.0	To impart knowledge on hitching and operating of implements with the tractor	2.1	Hitch and operate farm implement tractor	nts v	vith t	the						
3.0	To understand the periodical maintenance of various farm implements and equipment	3.1	3.1 Implement various maintenance technique various farm implements and equipment									
4.0	To understand the operating mechanism of seed drill with tractor	4.1	Operate, adjust seed drill with tra	actor	r							
5.0	To study the trouble shooting and remedies in tractor	5.1	Take remedial action for mainten	ance	e for	trac	tor					

LIST OF EXPERIMENTS:

- 1. Identification of major systems of a tractor and general guidelines and preliminary check measures
- 2. Practice in hitching and operating the mould board plough with the tractor operational adjustments, maintenance and safety aspects
- 3. Practice in hitching and operating the disc plough with the tractor operational adjustments, maintenance and safety aspects
- 4. Practice in hitching and operating the rotovator with the tractor operational adjustments, maintenance and safety aspects
- 5. Practice in hitching and operating cultivator with tractor operational adjustments, maintenance and safety aspects
- 6. Study on periodical maintenance maintenance and safety aspects for various tillage implements and sowing equipment attached to the tractor and weeding equipment
- 7. Practice in operating seed drill with tractor operational adjustments, maintenance and safety aspects
- 8. Practice in operating trailer with tractor operational adjustments, maintenance and safety aspects
- 9. Study on the trouble shooting and remedies in tractor
- 10. Study on periodical maintenance aspects of tractor including tyre and battery

TOTAL (P: 60) = 60 PERIODS

COURSE					PROG	GRAMN		rcome	S				PS	SOs	
OUTCOMES	1	1 2 3 4 5 6 7 8 9 10 11 12											1	2	
1	3	1	1	2		3	2	2	2	2		2	3	3	
2	3	3	2	2		3	1	1	2			2	3	2	
3	3	2	2	2		3	1	1	2			2	3	3	
4	3	3	2	2		3	1	1	2			2	2	3	
5	3	1	2	3		3	2	1	2	2		2	3	3	
CO(W.A)	3	2	2	2		3	1	1	2	2		2	3	3	

	17AGP12– Ir	ndustri	ial Training (4 weeks)								
				L	Т	Ρ	С				
				0	0	2	1				
PRERE	QUISITE : NIL										
COURS	SE OBJECTIVES AND OUTCOMES:										
Course Objectives Course Outcomes: The Student will be able to											
1.0	To train the students in field work so as to have a firsthand knowledge of practical problems in carrying out engineering tasks.	1.1	Better experience in practical kno level.	wle	dge a	ıt far	m				
2.0To develop skills in facing and solving the field problems.2.1Implement and rectify the problems of implements/ equipments at field level.											

STRATEGY:

The students individually under take training in reputed agriculture engineering companies for the specified duration. At the end of the training, a report on the work done will be prepared and presented. The students will be evaluated through a viva voce examination by a team of internal staff

EVALUATION PROCEDURE

The industrial training shall carry 100 marks and shall be evaluated through internal assessment.

The method of evaluation will be as follows :

1. Evaluation of industrial training report (Evaluated by the internal examiner) : 50 marks

2. Power point presentation : 50 marks (Evaluated by the internal examiner appointed by the HoD)

TOTAL (L: 30) = 30PERIODS

COURSE					PROG	GRAM	ME O	UTCO	MES				PS	SOs
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1				3				3		3	3	3	3	
2				3				3		3	3	3	3	
CO(W.A)				3				3		3	3	3	3	

	17AGD01 – PR	OJECT	WORK-I								
				L	Т	Р	С				
				0	0	8	4				
PREF	REQUISITE : NIL	QUESTION PATTERN : TYPE -NIL									
COU	RSE OBJECTIVES AND OUTCOMES:										
	Course Objectives	(Course Outcomes: T	he Stude	ent will	be able	to				
1.0	To practice the fundamental Agriculture Engineering concepts and principles in addressing a real time situation autonomously or in a team.	1.1	Study problems in engineering throu reviews.	the field gh literat	of agri ure sur	culture vey and	its				
2.0	To develop an ability to solve problem by making a literature review and finding a solution for the same.	2.1	Undertake problem and solution	m identif	ication,	formula	ation				
3.0	To Study various types of methodology based on the problem.	3.1	Design engineerin problems utilising develop projects	g solution a system	ns to co is appro	mplex bach and	1				
4.0	To create platform to communicate and present the ideas in written and oral form	4.1	Communicate effe clearly	ectively a	nd to p	resent io	deas				
5.0	To create a team work to exhibit the knowledge and skills to contribute to the society.	5.1	Demonstrate the I a team to achieve	knowledg commor	ge, skills I goal	s and wo	ork as				

DESCRIPTION

Project work may be allotted to a single student or to a group of students not exceeding 4 per group. The title of project work is approved by head of the department under the guidance of a faculty member and student(s) shall prepare a comprehensive project report after completing the work to the satisfaction of the guide. The Head of the department shall constitute a review committee for project work. There shall be three reviews during the semester by the committee to review the progress. Student(s) shall make presentation on the progress made by him / her / them before the committee and evaluation is done as per Rules and Regulations.

TOTAL (P: 120) = 120 PERIODS

COURSE				Р	ROGRA	MME (оитсо	MES					PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3				2			3	3		1	3		2
2	3	3		2	2	3	3	2	3		3	2	2	1
3	3	3	3	3	2	3	3	3	3		3	2	3	3
4	3				2			2	3	3	1	1		
5	3				2	3	3	1	3	3	3	3		2
CO(W.A)	3	3	3	3	2	3	3	2	3	3	2	2	3	2

MI-Jp-A-TH-

	17AGD02 – PR	ROJEC	T WORK-II				
				L	Т 0	P 16	C 8
PREREC	QUISITE: 17AGD01		QUESTION PATTERN : TYPE -	NIL	_	-	
COOKS	E OBJECTIVES AND OUTCOMES:						
	Course Objectives		Course Outcomes: The Stude	ent wil	l be a	ble to	
1.0	To practice the fundamental Agriculture Engineering concepts and principles in addressing a real time situation autonomously or in a team.	1.1	Study problems in the Engineering through liter reviews.	field ature	of <i>i</i> surve	Agricul ey and	lture 1 its
2.0	To develop an ability to solve problem by making a literature review and finding a solution for the same.	2.1	Undertake problem ident and solution.	tificatio	on, fo	ormula	ation
3.0	To Study various types of methodology based on the problem.	3.1	Design engineering sol problems utilising a sys develop projects	utions stems	to appr	com oach	plex and
4.0	To create platform to communicate and present the ideas in written and oral form	4.1	Communicate effectively clearly	and to	o pre	sent i	deas
5.0	To create a team work to exhibit the knowledge and skills to contribute to the society.	5.1	Demonstrate the knowledge team to achieve common g	ge, skil joal	ls anc	l work	as a
DESCRI	PTION						
per gro project departr project	Project work may be allotted to a single s up. The title of project work (same title as in work-II or the title will be selected based nent under the guidance of a faculty memil report after completing the work to the sati	studei n proj on d ber ai sfactio	nt or to a group of students ect work-I if the same projec ifferent project) is approved nd student(s) shall prepare a on of the guide. The Head of	not ex ct is co by he comp the de	cceedi ntinu ead o orehei eparti	ing 4 ed in f the nsive ment	

shall constitute a review committee for project work. There shall be three reviews during the semester by the committee to review the progress. Student(s) shall make presentation on the progress made by him / her / them before the committee and evaluation is done as per Rules and Regulations.

TOTAL (P: 240) = 240 PERIODS

COURSE																
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
1	3				2			3	3		1	3		2		
2	3	3		2	2	3	3	2	3		3	2	2	1		
3	3	3	3	3	2	3	3	3	3		3	2	3	3		
4	3				2			2	3	3	1	1				
5	3				2	3	3	1	3	3	3	3		2		
CO(W.A)	3	3	3	3	2	3	3	2	3	3	2	2	3	2		

	(Use of Approved Desi	an da	ta book is permitted)				
	(<u>y</u>		L	Т	Ρ	С
				3	0	0	3
PREREC	QUISITE : NIL	QUE	STION PATTERN: TYPE – IV				
COURS	E OBJECTIVES AND OUTCOMES:						
Course	Objectives	Cour	se Outcomes: The Student v	will b	e abl	e to	
1.0	To understand the stress involved in machine members	1.1	Calculate the stress i members	involv	ved	in	machine
2.0	To gain knowledge on power transmission systems	2.1	Design power transmissior	n syst	ems		
3.0	To gain knowledge on shafts and couplings	3.1	Design shafts and coupling	s			
4.0	To impart knowledge on energy storing elements	4.1	Design various energy stor	ing e	leme	nts	
5.0	To impart knowledge on gears	5.1	Design gears				

UNIT I - STRESSES IN MACHINE MEMBERS	(9)
Procedure in design process - factors influencing machine design - selection of materials based on m properties preferred numbers ,fits and tolerance - direct, bending and torsional stress equation - failure- bending stress in curved beams - crane hook and 'C' frame - factor of safety.	nechanical Modes of
UNIT II - DESIGN OF POWER TRANSMISSION SYSTEMS	(9)
Selection of V-Belts and pulleys - selection of flat belts and pulleys - selection of transmission sprockets.	chains and
UNIT III - DESIGN OF SHAFTS AND COUPLINGS	(9)
Design of solid and hollow shafts based on strength and rigidity - Design of keys and keyways - O types - design of muff coupling, unprotected type flange coupling, bushed pin flexible coupling.	Couplings -
UNIT IV - DESIGN OF ENERGY STORING ELEMENTS	(9)
Springs- types, helical springs, materials, end connections, terms used in compression springs - st deflection in helical springs of circular wire - surge in springs - design of leaf springs	resses and:
UNIT V - DESIGN OF GEARS	(9)
Gears - spur gear and helical gear - terminology - strength of gear teeth - Lewis equation - B equation.	uckingham
TOTAL (L: 45) = 45	5 PERIODS
TEXT BOOKS:	

- 1. Bhandari, V. B. Design of Machine Elements, Tata McGraw-Hill Publishing Company Pvt. Ltd., New Delhi, 2010
- 2. Shigley J. E. and Mischke, C. R., Mechanical Engineering Design, Tata McGraw-Hill Publishing Company Pvt. Ltd., New Delhi, 2011

- 1. Khurmi.R.S and Gupta.J.K, "A Textbook of Machine Design", S.Chand and Company Ltd., New Delhi, 2014
- 2. Jalaludeen S.Md, "Machine Design (Volume-1)", 4th ed., Anuradha Publications, Chennai, 2011
- 3. Sundararajamoorthy T. V. Shanmugam. N, "Machine Design", Anuradha Publications, Chennai, 2003
- Robert C. Juvinall, Kurt M. Marshek, "Machine Component Design", Wiley India Pvt Ltd., 2016
 Ganesh Babu.K, Srithar.K, "Design of Machine Elements", 2nd ed., McGraw Hill Education (India) Private Limited, 2009

COURSE					PRO	GRAMI	ME OU	тсом	ES				PSOs	
OUTCOMES	1	1 2 3 4 5 6 7 8 9 10 11 12											1	2
1	3	3	1	2	1							2	3	2
2	3	3	3	2	2							2	3	2
3	3	3	3	2	2							3	3	2
4	3	3	3	2	3							3	3	2
5	3	3	3	2	3							3	3	2
CO(W.A)	3	3	3	2	2							3	3	2

	17AGX02 AGRICUL	TURAI	L BUSINESS MANAGEMENT										
				L	Т	Ρ	С						
				3	0	0	3						
PRERE	QUISITE : NIL	QUEST	TION PATTERN: TYPE – III										
COURS	SE OBJECTIVES AND OUTCOMES:												
Course	e Objectives	Cour	se Outcomes: The Student will be a	ble	to								
1.0	To study the basic concept of agricultural business	1.1	Describe the concept of agricultur	al b	usine	ess							
2.0	To study the principle and management approaches of agribusiness organization	2.1	Assess the management technique business	e in	agri-								
3.0	To understand the functions and planning of agricultural marketing	3.1	Plan and estimate agricultural pro	duc	t mai	keti	ng						
4.0	To acquire knowledge on agricultural business finance	4.1	Plan agri-business project										
5.0	To gain skills in market promotion and human resources	arket promotion ces5.1Apply the skills for effective marketing by utilization of human resources											

UNIT I - CONCEPTS OF AGRICULTURAL BUSINESS

Agri-business – scope, characteristics, types. Management - importance, definition, management and administration, management thoughts, Small business – characteristics and stages of growth – Management functions – planning, organizing, leading.

UNIT II - AGRI – BUSINESS ORGANIZATION

Principles, forms of agri-business organizations, staffing, directing, supervision and motivation. Controlling – types, performance evaluation and control techniques. Management approaches -Profit Centered Approach, Management by objectives and Quality Circles. Strength, Weakness, Opportunities and Threat (SWOT) Analysis.

UNIT III - AGRICULTURAL MARKETING

Functional areas of Agri-business – Production and Operations management – functions, planning physical facilities and managing quality. Agro-inputs and products inventory management – raw material procurement, inventory types, and costs. Marketing management – Marketing environment, marketing mix – Agricultural input marketing firms.

UNIT IV - AGRICULTURAL BUSINESS FINANCE

Forms of agri-business organizations – Role of lead bank in agribusiness finance – Financial management. Acquiring capital – Budget analysis. Concepts and determinants – Business project scheduling of raw material procurement – production management – launching products (branding, placement) – Input marketing promotion activities.

UNIT V - MARKET PROMOTION AND HUMAN RESOURCES

(9)

(9)

(9)

(9)

(9)

Agricultural products – marketing promotion activities – product pricing methods. District Industries Centre – Consumer survey – Agricultural inputs retailing – Market potential assessment – types of distribution channels - Return on Investment – Personnel management. Recruitment, selection and training – Technology in Agri-business.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. Himanshu, "Agri Business Management Problems and prospects", Ritu Publications, Jaipur, 2005.
- 2. Smita Diwase, "Indian Agriculture and Agribusiness Management", Krishi resource Management Network, Pune 2004.

- 1. Chandra Prasanna, "Projects: Preparation, Appraisal, Budgeting and Implementation", Tata McGraw Hill Publications, New Delhi, 2001.
- 2. Kotler, P., "Marketing Management. Analysis, Planning and Control", Prentice Hall Inc., New York, 2001.
- 3. Rao, V.S.P., and Narayana, P.S., "Principles and Practices of Management", Konark Publishing Private Limited, New Delhi, 2001.
- 4. Tripathy, P.C., and Reddy, P.N., "Principles of Management", Tata McGraw Hill Publications, New Delhi, 2000.

COURSE		PROGRAMME OUTCOMES														
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
1						2		3			3	2				
2		2		2	2	1		3		2	2	3				
3		2	2	2	2	2		3		2	3	3				
4		2	2	2	2	2		3			3	3				
5		1	2	2	3	2		3		2	3	3				
CO(W.A)		2	2	2	2	2		3		2	3	3				

	17AGX03 SYSTEMS ANALYSIS AND SOFT COMPUTING IN AGRICULTURAL ENGINEERING												
				L	Т	Ρ	С						
				3	0	0	3						
PRERE	QUISITE : NIL	QUES	TION PATTERN: TYPE – III										
COURS	SE OBJECTIVES AND OUTCOMES:												
Course	e Objectives	Cour	rse Outcomes: The Student will be	able	e to								
1.0	1.0 To understand the basic concept of system engineering 1.1 Apply system approach for water resources and irrigation												
2.0	To impart knowledge on linear programming and dynamic programming	2.1	Apply linear programme techniques in agricultural operations										
3.0	To understand the basic principle and concept of simulation	3.1	Apply simulation technique in irri scheduling	gati	on								
4.0	To gain knowledge on neural network	4.1	Apply neural network in agricultu	iral (opera	atio	15						
5.0	To understand basic concepts and properties of fuzzy logic	5.1	Apply fuzzy logic in agricultural o	pera	ntion	s							

UNIT I - SYSTEM CONCEPTS

Definition, classification, and characteristics of systems – Scope and steps in systems engineering – Need for systems approach to water resources and irrigation.

UNIT II - LINEAR PROGRAMMING & DYNAMIC PROGRAMMING

Introduction to operations research – Linear programming, problem formulation, graphical solution, solution by simplex method – Sensitivity analysis – application – Bellman's optimality criteria, problem formulation and solutions – application.

UNIT III – SIMULATION

Basic principles and concepts – Random variate and random process – Monte Carlo techniques – Model development – Inputs and outputs – Deterministic and stochastic simulation – Irrigation Scheduling - application.

UNIT IV - NEURAL NETWORKS

Neuron, Nerve structure and synapse, Artificial Neuron and its model, Neural network architecture: networks, Various learning techniques; perception and convergence rule, Auto-associative and hetro-associative memory- Architecture: model, solution, single layer and multilayer perception model; back propagation learning methods, applications.

UNIT V - FUZZY LOGIC AND GENETIC ALGORITHM

Basic concepts of fuzzy logic, Fuzzy set theory and operations, Properties of fuzzy sets, Membership functions, interference in fuzzy logic, Fuzzy implications and Fuzzy algorithms, Fuzzy Controller, Industrial applications.

Genetic Algorithm (GA) - Basic concepts, working principle, procedures, flow chart, Genetic representations, encoding, Initialization and selection, Genetic operators, Mutation – applications

TOTAL (L: 45) = 45 PERIODS

(9)

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. Vedula, S., and Majumdar, P.P. Water Resources Systems Modeling Techniques and Analysis Tata McGraw Hill, New Delhi, Fifth reprint, 2010.
- 2. Robert M Peart and W David Shoup, Agricultural Systems Management Optimizing efficiency and performance, CRC Press, 2013.
- 3. Gupta, P.K., and Man Mohan, "Problems in Operations Research", (Methods and Solutions), Sultan Chand and Sons, New Delhi, 1995.

- 1. Chaturvedi, M.C., "Water Resources Systems Planning and Management", Tata McGraw Hill, New Delhi, 1997.
- 2. Taha, H.A., "Operations Research", McMillan Publication Co., New York, 1995.
- 3. Hiller, F.S., and Liebermann, G.J., "Operations Research", CBS Publications and distributions, New Delhi, 1992.
- 4. Timothy J. Ross, "Fuzzy Logic with Engineering Applications" Wiley India.
- 5. Rajsekaran, S. & Vijayalakshmi Pai, G.A., "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis and Applications" Prentice Hall of India.

COURSE OUTCOMES				F	PROG	RAMI	ME OU	тсом	ES				PSOs		
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3		3		3	3	3	2			2	2	2		
2	3	3	3	3	2			3	2			2	2		
3	3	3	3	2	3		2		2		2	2	3		
4	3	2	2	2	2			2			2	3	2		
5	3	2	2	2	3			3			3	2	2		
CO(W.A)	3	3	3	2	3	3	3	3	2		2	2	2		

17AGX04 CLIMATE CHANGE AND ADAPTATION													
				L	Т	Ρ	С						
				3	0	0	3						
PRERE	QUISITE : NIL	QUEST	ION PATTERN: TYPE – III										
COURSE OBJECTIVES AND OUTCOMES:													
Course	Objectives	Cour	Course Outcomes: The Student will be able to										
1.0	To understand the concept of earth climate system	1.1	1.1 Assess the greenhouse effect and climate change										
2.0	To acquire knowledge on atmosphere and its pattern	2.1	1 Analysis temperature profile and pollution dispersion pattern										
3.0	To understand the concept of climate change and its impacts	3.1	Apply the impact analysis in Agricu and Ecosystem	ıltur	e, Fo	rest	ſγ						
4.0	To learn the concept of climate change and carbon credits	4.1	Apply clean development mechanism.										
5.0	To understand the concept of mitigation measures of climate change	5.1	Apply alternate energy sources.										

UNIT I – EARTH'S CLIMATE SYSTEM

Role of ozone in environment - ozone layer - ozone depleting gases - Green House Effect, Radiative effects of Greenhouse Gases - Hydrological Cycle - Green House Gases and Global Warming – Carbon Cycle.

UNIT II – ATMOSPHERE AND ITS COMPONENTS

Importance of Atmosphere - Physical Chemical Characteristics of Atmosphere - Vertical structure of the atmosphere-Composition of the atmosphere-Atmospheric stability - Temperature profile of the atmosphere-Lapse rates-Temperature inversion-effects of inversion on pollution dispersion.

UNIT III – IMPACTS OF CLIMATE CHANGE

Causes of Climate change : Change of Temperature in the environment - Melting of ice Pole-sea level rise-Impacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement and Society – Methods and Scenarios – Projected Impacts for Different Regions – Uncertainties in the Projected Impacts of Climate Change – Risk of Irreversible Changes.

UNIT IV – OBSERVED CHANGES AND ITS CAUSES

(9)

(9)

(9)

(9)

(9)

Climate change and Carbon credits- CDM- Initiatives in India-Kyoto Protocol Intergovernmental Panel on Climate change- Climate Sensitivity and Feedbacks – The Montreal Protocol – UNFCCC– IPCC – Evidences of Changes in Climate and Environment – on a Global Scale and in India .

UNIT V – CLIMATE CHANGE AND MITIGATION MEASURES

Clean Development Mechanism –Carbon Trading- examples of future Clean Technology – Biodiesel – Natural Compost – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Bio-fuels – Solar Energy – Wind – Hydroelectric Power – Mitigation Efforts in India and Adaptation funding Key Mitigation Technologies and Practices – Energy Supply – Transport – Buildings – Industry – Agriculture – Forestry - Carbon sequestration – Carbon capture and storage (CCS) - Waste (MSW & Bio waste, Biomedical, Industrial waste – International and Regional cooperation.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOK:

1. Dash Sushil Kumar, "Climate Change – An Indian Perspective", Cambridge University Press India Pvt. Ltd, 2007.

- 1. Adaptation and mitigation of climate change-Scientific Technical Analysis. Cambridge University Press, Cambridge, 2006.
- 2. Atmospheric Science, Wallace, J.M., and Hobbs, P.V., Elsevier / Academic Press 2006.
- 3. Jan C. van Dam, Impacts of "Climate Change and Climate Variability on Hydrological Regimes", Cambridge University Press, 2003.

COURSE				ĺ	PROGR	AMM	E OUT	COME	S				PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3		3		3	3	2	2			2	2	3		
2	3	3	3	3	2			2	2			2	2		
3	3	3	3	2	3		2		3		3	3	3		
4	3	2	2	2	2			2			2	3	2		
5	3	2	2	2	3			3			3	2	2		
CO(W.A)	3	3	3	2	3	3	2	2	3		3	2	2		

17AGX05 REFRIGERATION AND AIR CONDITIONING FOR AGRICULTURAL ENGINEERS

L	Т	Ρ	С

				3	0	0	3
PRERE	QUISITE : NIL	QUEST	ION PATTERN: TYPE – III				
COURS	E OBJECTIVES AND OUTCOMES:						
Course	Objectives	Cour	rse Outcomes: The Student will be	able	to		
1.0	To acquire knowledge on principles of refrigeration	1.1	Explain refrigeration cycle				
2.0	To understand the components and working of refrigerator	2.1	Detect problems in refrigerator				
3.0	To understand the properties of refrigerant	3.1	Select suitable refrigerant for efferent refrigeration without environmer	ectiv ntal	e pollu	ition	
4.0	To understand working and application of air conditioning system	4.1	Apply air conditioning according t	to w	eath	er	
5.0	To know the application of refrigeration in agriculture	5.1	Design refrigerator vehicle and co	old s	tora	ge	

UNIT I - REFRIGERATION -VAPOUR COMPRESSION SYSTEM	(9)
Refrigeration – principles - refrigeration effect – coefficient of performance – units of refrigeration	geration -
simple vapour compression cycle – T-S diagram – p-h chart- vapour compression system	-different
types-solving problems.	
UNIT II - REFRIGERATION COMPONENTS	(9)
Refrigeration components – compressor – classification - principle and working – condenser	s -types -
construction, principle and working. Evaporators – types-principle and working. Expansion	device –
types construction, principle and working.	
UNIT III - REFRIGERANTS AND VAPOUR ABSORPTION CYCLE	(9)
Refrigerants – properties – classification – comparison and advantages – chloroflouro carl	bon (CFC)
refrigerants - effect on environmental pollution - alternate refrigerants - vapour absorptic	on cycle –
simple and practical vapour absorption system- advantages- ideal vapour absorption	system-
Electrolux refrigerator – Lithium-bromide refrigeration-construction and principles.	
UNIT IV – AIR CONDITIONING SYSTEM	(9)
Air conditioning systems-equipments used-classification-comfort and Industrial air cor	nditioning
system- Winter, summer and year- round air conditioning system- unitary and central air cor	nditioning
system- application of refrigeration and air conditioning-domestic refrigerator-refrigerated t	rucks- ice
manufacture.	
UNIT V - APPLICATION OF REFRIGERATION IN AGRICULTURE	(9)
Cold chain concept to minimize post harvest losses. Role and importance of refrigerato	r vehicle.
Design of cold storage	

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. Sadhu Singh. 2017. Refrigeration and Air Conditioning. Khanna Book Publishing Co. (P). Ltd.
- 2. Kurmi.R.S and J.K.Gupta. 2002. A Text book of Refrigeration and Air conditioning. Eurasia Publishing House (P) Ltd, Ram Nagar, New Delhi.

- 1. Bellaney, P.L. 2001. Thermal Engineering. Khanna Publishers, New Delhi.
- 2. William, H.S., R.F. Julian, 1986. Air conditioning and Refrigeration. John Wiley & Sons, Inc. London.
- 3. Arora, C. P. 1981. Refrigeration and Air conditioning. Tata-McGraw-Hill Publishing Co., New Delhi.

COURSE		PROGRAMME OUTCOMES												
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	1		1		2	1				1		2
2	3		1		2		2				2		1	1
3	2		2		1	2	3	2				1		2
4	2					2	3							1
5	3	2	3	2	2	3	2		1			2	2	3
CO(W.A)	3	2	2	2	2	2	2	2	1		2	1	2	2

17AGX06 – PACKAGING A	AND STORAGE	TECHNIQUES	FOR AGRICULTURAL CON	ЛМС	ODITI	ES	
				-	_	_	—

				L		Р	C
				3	0	0	3
PRERE	QUISITE : NIL	QUESTI	ON PATTERN: TYPE – III				
COURS							
Course	Objectives	Cour	se Outcomes: The Student will b	e ab	ole to		
1.0	To understand the storage losses of food grains	f 1.1	Control the losses of food grain	S			
2.0	To gain knowledge on storage methods	2.1	Select suitable storage methods to minimize loss				
3.0	To gain knowledge on functions of packaging materials	f 3.1	Suggest suitable packaging materials for different kinds of food				
4.0	To acquire knowledge on various testing methods for packaging methods	3 4.1	Test the properties of packaging	g ma	ateria	als	
5.0	To impart knowledge on specia packaging techniques	5.1	Assess the packaging technique kinds of food	s fo	r diff	erer	nt

UNIT I - SPOILAGE AND STORAGE LOSSES (9) Direct damages, indirect damages of perishable and durable commodities - control measures factors affecting storage – types of storage – Losses in storage and estimation of losses. **UNIT II - STORAGE METHODS** (9) Improved storage methods for grain-modern storage structures-infestation-temperature and moisture changes in storage structures-CAP storage-CA storage of grains and perishablesconstruction operation and maintenance of CA storage facilities- cold storage. **UNIT III - FUNCTIONS OF PACKAGING MATERIALS** (9) Introduction – packaging strategies for various environment – functions of package – packaging materials – cushioning materials – bio degradable packaging materials – shrink and stretch packaging materials. **UNIT IV - FOOD PACKAGING MATERIALS AND TESTING** (9) Introduction – paper and paper boards - flexible - plastics - glass containers – cans - aluminium foils package material testing-tensile, bursting and tear strength. UNIT V -SPECIAL PACKAGING TECHNIQUES (9) packaging - retort pouching - edible film packaging - tetra Vacuum and gas packaging - aseptic

Vacuum and gas packaging - aseptic packaging - retort pouching – edible film packaging – tetra packaging – antimicrobial packaging – shrink, stretch and active packaging.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. D.W.Hall 1990. Handling and Storage of Food grains in tropical and sub tro[pical areas. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.
- 2. Richard Coles, Derek Mcdowell and Mark J. Kirwan. 2003. Food Packaging Technology, CRC press, London. 2nd Edn
- 3. Gorden L.Roberttson. 2006. Food Packaging-Principles and Practices. CRC

REFERENCES:

- 1. Himangshu Barman. 2008, Post Harvest Food grain storage. Agrobios (India), Jodhpur.
- 2. Frank a. Paine and Heather Y. Paine. 1992. A Handbook of Food Packaging. Springer Science, New Delhi. 2nd Edition.
- 3. Food Packaging Technology, Hand book, 2004. NIIR Board, New Delhi
- 4. Chakaraverty, A. 2000. Third edition. Post harvest technology of cereals, pulses and oil seeds. Oxford & IBH publishing & Co. Pvt. Ltd. New Delhi.

COURSE		PROGRAMME OUTCOMES												PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
1	3		3		1	1			2		3	2	2	1		
2	3		3		3	2			3			1		2		
3	3		3		2	2	3		3		2		1	1		
4	3		3		3	2	3		3		2	2	2	1		
5	3		3		3	2	3				2	3	2	1		
CO(W.A)	3		3		2	2	3		3		2	2	2	1		

M. Then 1-The

	17AGX07 SEED TECHNOLOGY APPLICATIONS												
				L	Т	Ρ	С						
				3	0	0	3						
PRERE	QUISITE : NIL	QUE	STION PATTERN: TYPE – III										
COURS	E OBJECTIVES AND OUTCOMES:												
Course	Objectives	Course Outcomes: The Student will be able to											
1.0	To understand characteristics of seed	1.1	.1 Classify seed based on seed characters										
2.0	To gain knowledge on seed production and certification process	2.1	Apply techniques for seed production and certify seed										
3.0	To learn various seed processing and testing methods	3.1	Apply techniques for seed processir	ıg									
4.0	To understand various seed developing programmes	4.1	Plan programmes for seed development										
5.0	To gain knowledge on seed production in specific crops	5.1	5.1 Produce seeds in specific crops										

UNIT I - SEED CHARACTERS

Definition and characteristics of seed and how it differs from grain; Propagation of crop plants through true seed and vegetative means; Features of good quality seed; Importance of seed in successful crop production; Floral biology: self and cross pollination; Methods of genetic improvement of crop plants such as selection, hybridization, mutation and polyploidy; Seed legislations promulgated in India from 1966 to date and the purpose of each of these legislations.

UNIT II - SEED PRODUCTION AND CERTIFICATION

Multiplication of seed and seed material: systems of seed multiplication, classes of seed, multiplication models, multiplication ratio, field selection, planting ratio, isolation needs and rouging; Harvest and extraction of seed; Methods of hybrid seed production; Genetic deterioration during crop production cycles; Seed certification process: legal basis, pre-requisites for applicability, detailed description of the specific steps of the certification process (with particular Semphasis on field inspection).

UNIT III - SEED PROCESSING AND TESTING

Components of seed processing in a broader sense; Steps in seed processing in its narrower sense: preliminary cleaning, basic cleaning and grading, and equipment used in each of the steps; Seed treatment; Seed drying; Seed sampling; Seed testing: details of specific tests conducted for different purposes (service, certification and seed law enforcement); Standards prescribed for different crops.

UNIT IV - DEVELOPING SEED PROGRAMMES

Types of organizations involved in seed production (public, quasi-governmental, private and cooperative), and their objectives and features; Organizational set up of a seed company; Steps involved in planning and developing a seed programme; Seed marketing activities, and analysis of seed demand and supply; Costing and pricing strategies; Economics of production of different crop seed; Seed packaging; Opportunities for Indian seed companies to have a greater share of world seed market; Visit to seed organizations; Preparing seed projects to obtain credit; Export procedures and formalities; Seed/plant quarantine methods.

(9)

(9)

(9)

(9)
UNIT V	- SEED PRODUCTION IN SPECIFIC CROPS	(9)
Princip selectii	les and special techniques used for seed production in important horticultural ng representatives of vegetable / flower / fruit / spice / condiment / plantation crops.	crops by
	TOTAL (L: 45) = 45	PERIODS
ТЕХТ В	OOKS:	
1. 2.	Singh, S.P., Commercial Vegetable Seed Production, Kalyani Publishers, Chennai, 20 Agarwal, R.L., Seed Technology, Oxford IBH Publishing Co., New Delhi, 1995.	01.
REFER	ENCES:	
1. 2.	Subir Sen and Ghosh, N., Seed Science, Kalyani Publishers, Chennai, 1999. Dahiya, B.S., and Rai, K.N., Seed Technology, Kalyani Publishers, Chennai, 1997.	
<u> </u>	George, Kaymond, A.L., Vegetable Seed Production, Longman Orient Press, London	and New

- 3. George, Raymond, A.T., Vegetable Seed Production, Longman Orient Press, London and New York, 1985.
- 4. Hand Book of Seedling Evaluation, ISTA, 1979.

COURSE					PRO	GRAMI	ME OU	тсом	ES				PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2				3			2				1		
2	2		2		3						2	2	3	1
3	2		3		3			1			3	2	1	3
4	1		2					2			3	3		1
5	2		1		3						2	2	3	1
CO(W.A)	2		2		3			2			3	2	2	2

	17AGX08 W	ATERS	HED MANAGEMENT				
				L	Т	Ρ	С
				3	0	0	3
PRERE	QUISITE : NIL	QUE	STION PATTERN: TYPE – III				
COURS	SE OBJECTIVES AND OUTCOMES:						
Course	e Objectives	Cour	se Outcomes: The Student will be ab	le to)		
1.0	To understand the concept of watershed	1.1	Apply the land use pattern in water	sheo	b		
2.0	To impart knowledge on planning of watershed	2.1	Estimate watershed planning				
3.0	To understand the watershed management strategies	3.1	Apply water conservation praction lands and dry lands	ces	in i	rriga	ted
4.0	To understand the concept of water conservation practices	4.1	Implement the water harvesting effective ground water recharge	teo	hniq	ues	for
5.0	To acquire knowledge on watershed development programme	on ent 5.1 Adopt suitable techniques in water development					

UNIT I – INTRODUCTION

Watershed – Definition - concept - challenges – Land capability classification - priority watersheds - land resource regions in India.

UNIT II - WATERSHED PLANNING

Planning principles – collection of data – present land use - Preparation of watershed development plan - Estimation of costs and benefits - Financial plan – selection of implementation agency - Monitoring and evaluation system.

UNIT III - WATERSHED MANAGEMENT

Participatory Irrigation Management - run off management - Factors affecting runoff – Temporary, Permanent gully control measures - Water conservation practices in irrigated lands - Soil and moisture conservation practices in dry lands.

UNIT IV - WATER CONSERVATION PRACTICES

In-situ & Ex-situ moisture conservation principle and practices - Afforestation principle - Micro catchment water harvesting - Ground water recharge – percolation ponds -Water harvesting - Farm pond - Supplemental irrigation - Evaporation suppression - Seepage reduction.

UNIT V - WATERSHED DEVELOPMENT PROGRAMME

River Valley Project (RVP) - Hill Area Development Programme (HADP) - National Watershed Development Programme for Rainfed Agriculture (NWDPRA) - Other similar projects operated in India – Govt. of India guidelines on watershed development programme - Watershed based rural development – infrastructure development - Use of Aerial photography and Remote sensing in watershed management - Role of NGOs in watershed development.

TOTAL (L: 45) = 45 PERIODS

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. Suresh, R. 2005. Soil and Water Conservation Engineering, Standard Publishers & Distributors, New Delhi.
- 2. Ghanashyam Das, "Hydrology and Soil Conservation Engineering", Prentice Hall of India Private Limited, New Delhi, 2000.

- 1. Gurmel Singh et al. 2004. Manual of soil and water conservation practices. Oxford & IBH publishing Co. New Delhi.
- 2. Suresh, R. 2008. Land and water management principles, Standard Publishers & Distributors, New Delhi.
- 3. Tripathi R.P. and H.P.Singh 2002, Soil erosion and conservation, Willey Eastern Ltd., New Delhi
- 4. Murthy, V.V.N. 2005, Land and water management, Kalyani publishing, New Delhi.
- 5. Tideman, E.M., "Watershed Management", Omega Scientific Publishers, New Delhi, 1996.

COURSE				F	PROGR	AMM	e out	сом	ES				PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3		3		2		1	1			2	1		3
2	3	1	2	1	2			2	1			2		2
3	3	1	3	1	2		1		2		1	3		3
4	3		2		2							2		2
5	3		3		2							3		3
CO(W.A)	3	1	3	1	2		1	2	2		2	2		3

	17AGX09 ON FA	RM W	ATER MANAGEMENT				
				L	Т	Ρ	С
				3	0	0	3
PRERE	QUISITE : NIL	QUES	TION PATTERN: TYPE - III				
COURS	SE OBJECTIVES AND OUTCOMES:						
Course	e Objectives	Cours	e Outcomes: The Student will be	able	e to		
1.0	To acquire the knowledge on design of irrigation channels	1.1	Apply the Kennedy's and Lacey's design the irrigation channels	s the	eorie	s to	
2.0	To gain the knowledge on command area development programme	2.1	Describe water distributing syste area	em i	n cor	nma	and
3.0	To acquire knowledge on surface and ground water resources	3.1	Apply Markov chain method in r	ainf	all ar	nalys	sis
4.0	To understand the concept of water balance	4.1	Calculate water use efficiency in	fiel	d lev	el	
5.0	To understand the concept of socio-economic prospective in farm water management	5.1	Calculate water pricing in comm	and	area	I	

UNIT I - DESIGN OF IRRIGATION CHANNELS

Design of Erodible and Non-Erodible, Alluvial channels- Kennedy" s and Lacey" s Theories - Materials for Lining watercourses and field channel - Water control and Diversion structure - Design - Land grading - Land Leveling methods.

UNIT II - COMMAND AREA

Command area - Concept – CADA Programmes in Tamil Nadu - Duty of water - expression - relationship between duty and delta - Warabandhi - water distribution and Rotational Irrigation System – case studies.

UNIT III - CONJUNCTIVE USE OF SURFACE AND GROUNDWATER

Availability of water - Rainfall, canal supply and groundwater – Irrigation demand - water requirement and utilization - Prediction of over and under utilization of water – Dependable rainfall – Rainfall analysis by Markov chain method – Probability matrix.

UNIT IV - WATER BALANCE

Groundwater balance model – Weekly water balance - Performance indicators – Adequacy, Dependability, Equity and efficiency – conjunctive use plan by optimization – Agricultural productivity indicators – Water use efficiency.

UNIT V - SPECIAL TOPICS

National water policy - Institutional aspects - Socio-economic perspective- Reclamation of salt affected soils- Seepage loss in command area- Irrigation conflicts- Water productivity – Water pricing.

TOTAL (L: 45) = 45 PERIODS

(9)

(9)

(9)

(9)

TEXT BOOK:

1. Michael, A.M. Irrigation Theory and practice, Vikas publishing house, New Delhi, 2006

- 1. Keller, .J. and Bliesner D.Ron, 2001 Sprinkler and Trickle irrigation, An ari book, Published by Van No strand Rein hold New York.
- 2. Israelson, 2002, Irrigation principles and practices, John Wiley & sons, New York.
- 3. Modi, P.N., 2002. Irrigation and water resources and water power engineering, Standard Book House, New Delhi.
- 4. Michael, A.M. and Ojha, T.P. 2002. Principles of Agricultural Engineering Vol II Jain Brothers, New Delhi.
- 5. Suresh, R. 2008. Land and water management principles, Standard Publishers & Distributors, New Delhi.

COURSE					PRO	GRAMI	ME OU	тсом	ES				PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3		3		3	3	2	2			2	3	3	
2	3	3	3	3	2			2	2			2	2	
3	3	3	3	2	3		2		2		3	2	3	
4	3	2	2	2	2			2			2	3	2	
5	3	2	2	2	3			3			2	3	3	
CO(W.A)	3	3	3	2	3	3	2	2	2		2	3	3	

	17AGX10 MECHNAN	IICS OF	TILLAGE AND TRACTION				
				L	Т	Ρ	С
				3	0	0	3
PRERE	QUISITE : NIL	QUES	TION PATTERN: TYPE - III				
COURS	E OBJECTIVES AND OUTCOMES:						
Course	Objectives	Cours	e Outcomes: The Student will be	able	to		
1.0	To understand the basic concept of tillage	1.1	Determine soil properties, relationship with tillage tools	st	ress	st	rain
2.0	To gain knowledge on principles of dynamics of tillage	2.1	Design tillage tools				
3.0	To understand the basic concept of traction	3.1	Apply techniques for effective pl	oug	hing		
4.0	To understand the details of tyres	4.1	Test tyres and selct proper ty traction	/re	for e	effec	tive
5.0	To understand the concept of GIS application in soil dynamics	5.1	Apply GIS techniques for preparation	eff	ectiv	e l	and

UNIT I - MECHANICS OF TILLAGE

Introduction to mechanics of tillage tools, engineering properties of soil, principles and concepts, stress strain relationship.

UNIT II – DYNAMICS OF TILLAGE

Design of tillage tools principles of soil cutting, design equation, force analysis, application of dimensional analysis in soil dynamics performance of tillage tools.

UNIT III – TRACTION

Introduction to traction and mechanics, off road traction and mobility, traction model, traction improvement, traction prediction

UNIT IV – TYRES

Tyre size, tyre lug geometry and their effects, tyre testing

UNIT V - APPLICATIONS

Soil compaction and plant growth, variability and geo statistics, application of GIS in soil dynamics.

TOTAL (L: 45) = 45 PERIODS

(9)

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. Klenin, N.L.; Popov, I.F. and V.A. Sakum, (1985). Agricultural machines. Amerind Pub. Co. NewYork
- 2. Liljedahl, J. B., Turnquist, P. K., Smith, D. W. & Hoki, M. 1996. Tractors and their power units. Fourth ed. American Society of Agricultural Engineers, ASAE
- 3. Kepner, R. A., Roy Bainer and E. L. Barger. 1978. Principles of farm machinery. Third edition; AVI Publishing Company Inc: Westport, Connecticut.

- 1. Ralph Alcock.1986. Tractor Implements System. AVI Publ.
- 2. Jain, S. C. Farm Machinery- An Approach

COURSE					PROG	iRAMI	ME OU	тсом	ES				PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3		3		3	3	2	2			2	3	3	
2	3	3	3	3	2			2	2			2	3	
3	3	3	3	2	3		2		2		3	2	3	
4	3	2	2	2	2			2			2	3	3	
5	3	2	2	2	3			3			2	3	3	
CO(W.A)	3	3	3	2	3	3	2	2	2		2	3	3	

	17AGX11 S	PECIAL	FARM EQUIPMENT						
				L	Т	Ρ	С		
				3	0	0	3		
PRERE	QUISITE : NIL	QUES	TION PATTERN: TYPE – III						
COURS	E OBJECTIVES AND OUTCOMES:								
Course	e Objectives	Cours	e Outcomes: The Student will be at	ole t	0				
1.0	To impart knowledge on interculture equipment	1.1	Select and design interculture equ	ipm	ent				
2.0 To study about types, parts and function of sprayers and dusters 2.1 Calculate the particle size and area covered by different sprayers									
3.0	To gain knowledge on working principle of various harvesting equipments.	3.1	Select suitable harvesting equipme	ent					
4.0	To understand the construction and working of threshers and other machineries	4.1	Use fruit pluckers, tree shakers, po and chaff cutter	ost h	ole c	ligge	ers		
5.0	To understand the working principle of special farm equipment	Operate special farm equipment							

UNIT I - MOWERS AND WEEDING EQUIPMENT

Weeding and intercultural equipment. Junior hoe - guntaka - blade harrow - rotary weeders for upland and low land - selection, constructional features and adjustments - Spading machine – coir pith applicators - Mower mechanism – lawn mowers.

UNIT II - SPRAYERS AND DUSTERS

Sprayers – Sprayer operation – boom sprayer - precaution - coverage - factors affecting drift. Rotating disc sprayers – Controlled Droplet Application (CDA) - Electrostatic sprayers - Areal spraying – Air assist sprayers - orchard sprayers - Dusters - types - mist blower cum duster - other plant protection devices, care and maintenance.

UNIT III - THRESHERS AND HARVESTERS

Construction and adjustments - registration and alignment. Windrowers, reapers, reaper binders and forage harvesters. Diggers for potato, groundnut and other tubers. Sugarcane harvesters - cotton pickers - corn harvesters - fruit crop harvesters – vegetable harvesters.

UNIT IV - THRESHERS AND OTHER MACHINERIES

(9)

(9)

(9)

(9)

(9)

Thresher – construction and working of multi crop thresher. Forest machinery - shrub cutters - tree cutting machines – post hole diggers – Chaff cutter- flail mowers - lawn mowers – tree pruners.

UNIT V - SPECIALIZED FARM EQUIPMENT

Pneumatic planters – air seeders – improved ploughs – reversible ploughs – suction traps – seed and fertilizer broadcasting devices, manure spreaders, sweep weeders – direct paddy seeders, direct paddy cum daincha seeder, coconut tree climbing devices, tractor operated hoist, tractor operated rhizome planter - Transplanters and Balers.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. Jagdishwar Sahay. 2010. Elements of Agricultural Engineering. Standard Publishers Distributors, Delhi 6.
- 2. Michael and Ojha. 2005. Principles of Agricultural Engineering. Jain brothers, New Delhi.

- 1. Kepner, R.A., et al. 1997. Principles of farm machinery. CBS Publishers and Distributers, Delhi.
- 2. Harris Pearson Smith et al. 1996. Farm machinery and equipments. Tata McGraw-Hill pub., New Delhi.
- 3. Srivastava, A.C. 1990. Elements of Farm Machinery. Oxford and IBH Pub. Co., New Delhi.

COURSE					PROG	RAMM	1E OU	тсом	ES				PS	Os
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3		3		3	3	2	2			2	3	3	
2	3	3	3	3	2			2	2			2	3	
3	3	3	3	2	3		2		2		3	2	3	
4	3	2	2	2	2			2			2	3	3	
5	3	2	2	2	3			3			2	3	3	
CO(W.A)	3	3	3	2	3	3	2	2	2		2	3	3	

	17AGX12 SOIL AND WA	TER CC	DNSERVATION ENGINEERING				
				L	Τ	Ρ	С
				3	0	0	3
PRERE	QUISITE : NIL	QUEST	TION PATTERN: TYPE – III				
COURS	SE OBJECTIVES AND OUTCOMES:						
Course	e Objectives	Cour	se Outcomes: The Student will be	e ab	e to		
1.0	To understand the concept soil erosion	1.1	Apply universal soil loss equation the soil erosion process.	n to	estir	nate	2
2.0	To acquire knowledge on erosion control techniques	2.1	Adopt the techniques bunds and control erosion	l ter	race	s to	
3.0	To learn the concept gully control structures	3.1	Adopt the techniques wind brea breaks to control gully erosion	ks a	nd sl	nelte	er
4.0	To understand the concept the watershed management system	4.1	Know planning and developmen	t wa	aters	hed	
5.0	To acquire knowledge on water harvesting techniques	5.1	Adopt the water harvesting tech pond and percolation pond	niq	ues li	ke fa	arm

UNIT I - SOIL EROSION

Problems of soil erosion - Geological and Accelerated erosion, Factors affecting water erosion, Types of water erosion - Splash, sheet and rill, Gully, stream bank and road erosion and ravines, Universal Soil Loss Equation (USLE) & soil loss tolerance, Rainfall Erosion Index, Soil erodibility Index, Slope, slope length and topographical factors, Crop management for soil erosion 'C' factor, Conservation practice factor 'P', Measurement of runoff and soil loss - Multislot divisor unit - Coshocton rotating wheel sampler - Rainfall simulation and simulator - Sediment yield and sedimentation, Wind erosion mechanics - Methods of estimation of wind erosion - Desertification, deforestation and shifting cultivation.

UNIT II - EROSION CONTROL

Erosion control measures, Contour bunds and Graded bunds, Broad beds and furrows, wide based terraces and dykes, Random tie ridging, basin listing and mulching, Bench terraces, stone walls and contour trenches, - Contour cultivation, strip cropping, mixed cropping, mixed farming, crop rotation for erosion control, Afforestation - Diversion drains and vegetative water ways.

UNIT III - GULLY CONTROL STRUCTURES

Gully control and control of landslides, Temporary gully control measures, Permanent Gully Control Structures - Wind erosion control - wind breaks and shelter belts.

UNIT IV - WATERSHED MANAGEMENT

Watershed – concept – planning, Principles – Components of watershed development – Watershed management plan - Biological. Watershed management plan – Engineering.

(9)

(9)

(9)

UNIT V - WATER HARVESTING

Water harvesting methods, Farm pond – lined and unlined – Computation of capacity, Percolation pond – Selection of site – components, Dry farming techniques for improving crop production.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. Suresh, R. 2012. Soil and Water Conservation Engineering, Standard Publishers & Distributors, New Delhi.
- 2. Michael, A.M. and Ojha, T.P. 2012. Principles of Agricultural Engineering Vol II Jain Brothers, New Delhi.

REFERENCES:

- 1. Gurmel Singh et al. 1996. Manual of soil and water conservation practices. Oxford & IBH publishing Co. New Delhi.
- 2. Murthy, V.V.N. and Madan K. Jha. 2013, Land and water management, Kalyani publishing, New Delhi.
- 3. Gustafson, A.F., 2011. Conservation of the soil. Biotech Books, New Delhi-35
- 4. Ghanshyan das. 2009. Hydrology and soil conservation engineering. PHI learning private limited, New Delhi-1
- 5. Jana, B.L. 2008. Water harvesting and watershed management. Agrotech Publishing Academy, Udaipur-2
- 6. Juyal, G.P., V.N. Sharda. 2010. Water harvesting techniques and drainage line treatments in a watershed. Agrotech Publishing Academy, Udaipur-1.

COURSE					PROG	GRAMN		соме	S				PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3					3					3	2	
2	3	3	2		2		3					3	2	
3	3	2	2		3		3						3	
4	3	1	3			3	3	2	3	2	3		3	1
5	3	1	2		2	3	3					2	3	1
CO(W.A)	3	2	2		2	3	3	2	3	2	3	3	3	1

	17AGX13 SU	JSTAI	NABLE AGRICULTURE											
				L	Т	Ρ	С							
				3	0	0	3							
PRERE	QUISITE : NIL Q	UESTI	ON PATTERN: TYPE – III											
COURS	SE OBJECTIVES AND OUTCOMES:													
Course	Objectives	Cour	Course Outcomes: The Student will be able to											
1.0	To understand the concept of land resources and land degradation	1.1	Determine land utilization and cropp India	ing	patte	rn ir	ı							
2.0	To understand the concept of water resources and utilizable water in future	2.1	Estimate rainfall, drought and irrigati watershed	on p	ooter	ntial	in							
3.0	To get knowledge on sustainable agriculture and its components	3.1	Execute natural farming principle for agriculture	sus	taina	ble								
4.0	To acquire knowledge on trends in food production	4.1	Estimate the food supply and deman	d pr	oject	ions	i							
5.0	To understand the concept of policies of Natural Resources Use and sustainable livelihood	5.1	Able to execute the policies for food	secı	urity.									

UNIT I – LAND RESOURCE AND ITS SUSTAINABILITY

Land Resources of India, Population and land, Land utilization, Net Area Sown, changes in cropping pattern, land degradation.

UNIT II – WATER RESOURCE AND ITS SUSTAINABILITY

Rainfall forecasting - Adequacy of Rainfall for crop growth – Rainfall, Drought and production instability – Irrigation potential – Available, created and utilized – River basins; Watersheds and Utilizable surface water – Utilizable water in future (Ground water & Surface water).

UNIT III – SUSTAINABLE AGRICULTURE & ORGANIC FARMING

Agro-ecosystems - Impact of climate change on Agriculture, Effect on crop yield, effect on Soil fertility – Food grain production at State Level – Indicators of Sustainable food availability – Indicators of food production sustenance – Natural farming principles – Sustainability in rainfed farming – organic farming – principles and practices.

UNIT IV – FOOD PRODUCTION AND FOOD SECURITY

Performance of Major Food Crops over the past decades – trends in food production – Decline in total factor productivity growth – Demand and supply projections – Impact of market force – Rural Land Market – Emerging Water market – Vertical farming - Sustainable food security indicators and index – Indicator of sustainability of food Security – Path to sustainable development.

UNIT V – POLICES AND PROGRAMMES FOR SUSTAINABLE AGRICULTURE AND FOOD SECURITY

(9)

(9)

(9)

(9)

(9)

Food and Crop Production polices – Agricultural credit Policy – Crop insurance –Policies of Natural Resources Use – Policies for sustainable Livelihoods – Virtual water and trade - Sustainable food Security Action Plan.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. Desai, B.K., and Pujari, B.T. Sustainable Agriculture: A vision for future, New India Publishing Agency, New Delhi, 2007.
- 2. Saroja Raman, Agricultural Sustainability Principles, Processes and Prospects, CRC Press, 2013.

- 1. Swarna S. Vepa et al., Atlas of the sustainability of food security. MSSRF, Chennai, 2004.
- 2. Sithamparanathan, J., Rengasamy, A., Arunachalam, N. Ecosystem principles and sustainable agriculture, Scitech Publications, Chennai, 1999.
- 3. Gangadhar Banerjee and Srijeet Banerji, Economics of sustainable agriculture and alternate production systems, Ane Books Pvt Ltd., 2017
- 4. Swaminathan, M.S. Science and sustainable food security, World Scientific Publishing Co., Singapore, 2010.

					PROG	RAM	ME OU	тсом	ES				PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3		3		3	3	2	2			2	3	3	
2	3	3	3	3	2			2	2			2	3	
3	3	3	3	2	3		2		2		3	2	3	
4	3	2	2	2	2			2			2	3		2
5	3	2	2	2	3			3			2	3		2
CO(W.A)	3	3	3	2	3	3	2	2	2		2	3	3	2

17AGX14 BUILDING MATERIALS AND FARM STRUCTURES

				L	Т	Ρ	С					
				3	0	0	3					
PRERE	QUISITE : NIL	QUES	TION PATTERN: TYPE – III									
COUR	SE OBJECTIVES AND OUTCOMES:											
Course	e Objectives	Course Outcomes: The Student will be able to										
1.0	To recognize the good materials to be used for the construction work.	1.1	Describe the classification materials	of	cons	truc	tion					
2.0	To understand the functions of Lintels and Arches.	2.1	Design Lintels and Arches in far	m s	truct	ure	5.					
3.0	To select materials, design and supervision of suitable type of floor and roof.	3.1	Determine the flooring type selected farm structure.	rec	luire	d fo	or a					
4.0	To gain knowledge about doors, windows, ventilators and to take suitable engineering measures.	4.1	Apply safety standards in selection doors and windows in farm structure to the structure of	ctin _{ uctu	g loca res.	atio	n of					
5.0	To understand the concept of man- machine system.	5.1	Design all types of farm structu	ires								

Unit I - BUILDING MATERIALS (9) Stone as building material; Bricks; Classification, Requirement of good bricks. Cement Concrete blocks, Sizes, requirement of good blocks. Mortar: types and requirements. Timber as construction material, Fine aggregate: Natural and manufactured; Coarse aggregate: Natural and manufactured; Concrete: types and requirements. **Unit II - LINTELS AND ARCHES** (9) Lintels and Arches: Definition, function and classification; Arches: Elements and Stability of an Arch. Balconies, chejja and canopy. **UNIT III - FLOORS AND ROOFS** (9) Floors; Requirement of good floor, Components of ground floor, Selection of flooring material, Laying of Concrete, Mosaic, Marble, Granite, Tile flooring, Cladding of tiles. Roof;-Requirement of good roof, Types of roof, Elements of a pitched roof, Trussed roof, King post Truss, Queen Post Truss, Steel Truss, Different roofing materials, R.C.C. Roof. **UNIT IV - DOORS, WINDOWS AND VENTILATORS** (9) Location of doors and windows, technical terms, Materials for doors and windows, Paneled door, Flush door, Collapsible door, rolling shutter, PVC Door, Paneled and glazed Window, Bay Window, French window. Ventilators. Sizes as per IS recommendations. UNIT V -FARM STRUCTURES (9) Introduction to Farm Structures, Types -Farmstead, Stall barn, loose housing and milk parlors, poultry house, sheep / goat house, silos – over ground and underground and hay storages, Farm fencing system, Machinery and equipment shed and workshops, Septic tank and sanitary structures TOTAL (L: 45) = 45 PERIODS

TEXT BOOK:

- 1. Sushil Kumar "Building Materials and construction", 20th edition, reprint 2015, Standard Publishers
- 2. Dr. B.C.Punmia, Ashok kumar Jain, Arun Kumar Jain, "Building Construction", Laxmi Publications (P) ltd., New Delhi.

- 1. National Building Code(NBC) of India
- 2. P C Vergese, "Buliding Materials", PHI Learning Pvt. Ltd.
- 3. Jagadish.K.S, "Alternative Building Materials Technology", New Age International, 2007.
- 4. Rangawala S. C. "Engineering Materials", Charter Publishing House, Anand, India.
- 5. Thomas E., Frederick W. "Agricultural Drawing and the Design of Farm Structures", McGraw-Hill Book Company.

COURSE					PRO	GRAMI	ME OU	тсом	ES				PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3		3		3		1	1	2		2	1	2	2	
2	3		3		2		1	1			2	2		2	
3	3		3		2		2	2			2	2		2	
4	3		2		2		2	2			1	1		2	
5	3		2		2							1	2	2	
CO(W.A)	3		3		2		2	2	2		2	1	2	2	

17AGX15- EXTENSION METHODS AND TRANSFER OF TECHNOLOGY													
				L	Т	Ρ	С						
				3	0	0	3						
PRERE	QUISITE : NIL	QUEST	ION PATTERN: TYPE – III										
COURS	E OBJECTIVES AND OUTCOMES:												
Course	Objectives	Course Outcomes: The Student will be able to											
1.0	To impart knowledge on communication and programme planning	1.1	Understand the programme plan	ning									
2.0	To gain knowledge on extension teaching methods	2.1	Understand the different extension methods	on te	eachi	ng							
3.0	To understand the different Modern Communication Gadgets	3.1	Use modern communication gad	gets									
4.0	To learn the diffusion and adoption	4.1	Gain the knowledge of diffusion a	anda	adop	tion							
5.0	To understand the concepts of capacity building	5.1	Train the farmers through extens	ion	meth	ods							

UNIT I - COMMUNICATION AND PROGRAMME PLANNING

Communication – meaning – definition – models – elements and their characteristics – types and barriers in communication. Programme planning – meaning, definition, principles, steps in programme development process, monitoring and evaluation of extension programmes.

UNIT II - EXTENSION TEACHING METHODS

Extension teaching methods - Audio-Visual aids – definition – classification – purpose, planning and selection, combination and use – individual, group and mass contact methods – merits and demerits.

UNIT III - MODERN COMMUNICATION GADGETS

Modern communication sources – internet, video and teleconferencing, Interactive Multimedia Compact Disk (IMCD), village kiosks, Kissan Call Centre (KCC), mobile phone

UNIT IV - DIFFUSION AND ADOPTION

Diffusion – meaning and elements. Adoption – meaning –adopter categories and factors influencing adoption, stages of adoption, Innovation decision process and attributes of innovation consequences of adoption.

(9)

(9)

(9)

UNIT V - CAPACITY BUILDING

Capacity building of extension personnel and farmers – meaning – definition, types of training, training to farmers, farm women and rural youth, FTC & KVK.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOK:

- 1. **R**ay, G.L., 1999. Extension Communication and Management, Naya Prokash, 206, Bidhan Sarani, Calcutta.
- 2. Rogers, E.M. 1995. Diffusion of Innovations, The Free Press, Newyork

- 1. Indian Journal of Social Sciences, Serials Publications, New Delhi
- 2. Agricultural Extension Review, Department of Agriculture and Cooperation, Ministry of Agriculture, New Delhi
- 3. MANAGE, NAARM, Hyderabad Yojana, Ministry of Rural Development, New Delhi
- 4. Sandhu, A.S. 1996. Extension Programme Planning, Oxford & IBH Publishing Co. pvt. Ltd, New Delhi

COURSE					PRO	GRAMI	ME OU	тсом	ES				PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1			1			1		3	2	3	2	2			
2			1			2		3	2	3	2	2		1	
3			2		3	1		3	3	3	3	3		1	
4			1		3			1	2	3	1	2			
5			2	2				2	2	3	2	3			
CO(W.A)			1	2	3	1		2	2	3	2	2		1	

	17AGX16 – FOOD PLANT DESIGN, FOOD SAFETY AND MANAGEMENT												
				L	Т	Ρ	С						
				3	0	0	3						
PRERE	QUISITE : NIL	QUESTIC	ON PATTERN:										
COURS	SE OBJECTIVES AND OUTCOMES:												
Course	Objectives	Cours	e Outcomes: The Student will be	e ab	le to								
1.0	To impart knowledge on selection of plant layout for industry	1.1	Analyze and apply the suitable an industry.	plar	nt lay	out	for						
2.0	To learn the basic principles of Industrial safety and safety performance	2.1	Appraise the industrial safety p safety procedures	erfo	ormai	nce	and						
3.0	To learn the basic knowledge about the Accidents happening in the industry	3.1	Identify and apply the suitable methods for accidents	prev	/enti	on							
4.0	To know about the basic knowledge about the food safety	4.1	Analyze and apply the suitable measures	Foo	d saf	ety							
5.0	To impart knowledge on Food quality management system.	5.1	Understand the fundamental o food quality management syste	f co em.	ncep	t of							

UNIT I - SELECTION OF PLANT LAYOUT

Introduction and classification of food plants, Site selection of plant. Plant location factors plant lay out advantages types of layout-characteristics of an efficient layout. Techniques of plant layout. General requirements and considerations for construction, materials and floors. Drains and drain layout. Ventilation, fly control, mould prevention, illumination in food plants.

UNIT II – INDUSTRIAL SAFETY AND SAFETY PERFORMANCE

Process industries, potential hazards, toxic chemicals and physical safety analysis. Safety Appraisal, effective steps to implement safety procedures, periodic inspection and safety procedures; proper selection and replacement of handling equipments, personal protective equipments.

UNIT III -ACCIDENTS

Industrial accidents – accident costs – identification of accident spots, remedial measures, identification and analysis of causes of injury to men and machines – accident prevention -Fire prevention and fire protection.

UNIT IV - CONTEMPORARY FOOD SAFETY STRATEGIES

Principles and Need for quality control and safety – Strategy and criteria for food safety- Consumer lifestyle and demand- Issues in Food safety. Impact of food safety on world trade issues.

UNIT V - FOOD QUALITY MANAGEMENT SYSTEM

International Scenario on Food Safety , FSSAI Functions, duties & responsibilities of food safety regulators, Food safety and standards for food products. Advances in Food Safety & Quality Management, Food Safety Audit. ISO 22000. FSSC 22000

TOTAL (L: 45) = 45 PERIODS

(9)

(9)

(9)

(9)

TEXT BOOKS:

1. Handley William, —Industrial Safety Hand Book, 2nd Edition, McGraw Hill, New York, 1969.

2. Da-Wen Sun., "Handbook of Food Safety Engineering", John Wiley & Sons, New Jersey, 2011.

REFERENCE BOOKS:

1. Heinrich H.W., Dan Peterson P.E. and Nester Rood, —Industrial Accident Prevention, 2nd Edition, McGraw-Hill Book Co., 1980.

2. Blake R.P., —Industrial Safety, 3rd Edition, Prentice Hall Inc., New Jersey, 1993.

3. Ronald H. Schmidt, and Gary E. Rodrick., "Food Safety Handbook", John Wiley & Sons, New Jersey, 2005.

COURSE					PRO	GRAMI	ME OU	тсом	ES				PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3		3	2		3	2	2		2		2		2
2	3			3		2	2	2		2		2		3
3	3			2		2	2	2				1		2
4				2		2	3	3		2		3		3
5				2		3	3	3		2		2		3
CO(W.A)	3		3	2		2	2	2		2		2		3

	17AGX17 FUNDAMENTALS A	ND APF	PLICATION OF NANOTECHNOLOG	Y								
				L	Т	Ρ	С					
				3	0	0	3					
PRERE	QUISITE : NIL	QUES	TION PATTERN: TYPE - III									
COURS	SE OBJECTIVES AND OUTCOMES:											
Course	e Objectives	Cours	e Outcomes: The Student will be	able	e to							
1.0	To introduce the principles of nanoscience	1.1	Understand the principles of na	note	chno	ology	/					
2.0	To understand the synthesis of nanomaterials	2.1	Gain knowledge on synthesis of	Nar	io ma	ateri	als					
3.0	To know the types of properties and characterization of nanomaterials	3.1	Describe the properties of Nano	ma	teria	ls						
4.0	To gain knowledge on applications of nanotechnology at different fields	4.1	Apply nano technology in differe	ent f	ields							
5.0	To know about the nanotechnology applications in agriculture	5.1	Apply nano techniques in agricu	ltur	e							

UNIT I - PRINCIPLES OF NANOSCIENCE

History, definition, terminology in nanoscience and importance of Moore's law. Nanomaterials – Semiconductor – Diode – Quantum Dots - Buckyball - CNT -characteristics – applications. Nanomaterials: Polymers - Types – PLGA – Coreshell nanoparticles - Micelles - characteristics – Applications. Biosensors – Principle, Components, Types, Applications.

UNIT II - SYNTHESIS OF NANOMATERIALS

Top down and Bottom up approaches - Physical method, Physical Vapour Deposition (PVD), Etching - Molecular Beam Epitoxy – Sputtering – Lithography. Mechanical synthesis - Ball milling – Types - Mechanical alloying. Chemical synthesis – Sol-gel Method – Chemical Vapour Deposition (CVD) – electro-deposition- thin film. Biological synthesis using Microorganisms and Plants.

UNIT III - PROPERTIES AND CHARACTERIZATION OF NANOMATERIALS

Mechanical, magnetic and thermal properties of nanomaterials. Optical and electrical properties of nanomaterials. Principle, components and application of nanotechnology equipments: Scanning Electron Microscope (SEM) and Transmission Electron Microscope (TEM). Principle, components and application of nanotechnology equipments: X-ray Diffraction (XRD) – Fourier Transform Infra Red Spectroscopy (FT-IR) – Atomic Force Microscope (AFM).

UNIT IV - APPLICATIONS OF NANOTECHNOLOGY

NanoInfoTech: Information storage- nanocomputer, molecular switch, super chip, nanocrystal, Nanobiotechlogy: nanoprobes in medical diagnostics and biotechnology, Nano medicines, Targetted drug delivery, Bioimaging - Micro Electro Mechanical Systems (MEMS), Nano Electro Mechanical Systems (NEMS)- Nanosensors, nano crystalline silver for bacterial inhibition, Nanoparticles for sunbarrier products - In Photostat, printing, solar cell, battery.

(9)

(9)

(9)

UNIT V - NANOTECHNOLOGY APPLICATIONS IN AGRICULTURE (9)	UNIT V -	NANOTECHNOLOGY APPLICATIONS IN AGRICULTURE	(9)
---	----------	--	-----

Agriculture – Nano fertilizers – Nano-herbicides – Nano-pesticides – Seed technology. Energy, Environment and Health. Nanotechnology in Food Systems – Nano foods, Nano-encapsulation of functional foods, Nano- packaging, Quality assessment. Social, Economic and Ethical Issues in Nanotechnology and Nano-toxicology.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOK:

- 1. Nano: The essentials understanding nanoscience and Nano-T. Pradeep 2009 Mc Graw Hill.
- 2. Nano materials B. Viswanathan 2009 Narosa.
- 3. Introduction to nanotechnology Charles P. Poole; Frank J. Owens 2008 Wiley.

- 1. Fundamentals of physics David Halliday; Robert Resnick 2007 Willey.
- 2. Chemistry Raymond Chang 2009 Tata Mcgraw Hill.
- 3. Nanomaterial chemistry C.N. Rao, A.K. Chettam, A. Muller 2007 Wiley VCH.
- Nanotechnology Applications in Agriculture C.R. Chinnamuthu, B. Chandrasekaran and C. Ramasamy – 2008.
- 5. Fundamentals of biomems and medical microdevices Steven S. Saliterman 2006 Wiley Interscience.
- 6. Instrumental methods of analysis Hobart H. Willam; Lynne L. Merrit 2006 CBS.

COURSE					PROG	RAMI	ME OU	тсом	ES				PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3		3	2		3	1				1	1		1
2	3			3	2	2	2				1	2		1
3	3		3		3	2	2				1	1		2
4	3		2	2	2	2	1				2	3		2
5	3	2	2	2	3	3	3				2	1		3
CO(W.A)	3	2	3	2	3	2	2				1	2		2

	17AGX18 HUMAN ENGINEERING AND SAFETY IN AGRICULTURE											
				L	Т	Ρ	С					
				3	0	0	3					
PRERE	QUISITE : NIL	QUEST	TION PATTERN: TYPE – III									
COURS	SE OBJECTIVES AND OUTCOMES:											
Course	e Objectives	Cours	e Outcomes: The Student will be	able	e to							
1.0	To understand the basic concept of human engineering	1.1	Describe the importance of hum	nan e	engir	ieeri	ng					
2.0	To understand the human stress involved and methods of measurement	2.1	Determine the human stress inv different methods	olve	ed us	ing						
3.0	To gain knowledge on anthropometry and biomechanics	3.1	Calculate the physical and ment	al ca	apaci	ties						
4.0	To understand the human limitations to stress and safety standards	4.1	Apply safety standards to avoid farm	haza	ards i	n th	e					
5.0	To understand the concept of man- machine system	5.1	Design farm machines for huma	n co	mfor	ť						

UNIT I – INTRODUCTION	(9)
Concept and design criteria for optimum mutual adjustment of man and his work: Impo	rtance of
ergonomics and its application in agriculture, liberation and transfer of energy in hum	an body,
concept of indirect calorimeter, work physiology in various agricultural tasks.	
UNIT II - HUMAN STRESS AND MEASUREMENT	(9)
Physiological stress indices and their methods of measurement: Mechanical efficiency	of work,
fatigue and shift work.	
UNIT III - ANTHROPOMETRY AND BIOMECHANICS	(9)
Anthropometric data and measurement techniques, joint movement and method of meas	urement,
analysis and application of anthropometric data, measurement of physical and mental capa	cities.
UNIT IV - HUMAN LIMITATIONS TO STRESS AND SAFETY STANDARDS	(9)
Human limitations in relation to stresses and demands of working environments. M	echanical
environment; noise and vibration and their physiological effects, thermal environment; he	at stress,
thermal comfort, effect on performance and behavior, field of vision, color discrimination	n, general
guidelines for designing visual display, safety standards at work place during various farm o	perations
and natural hazards on the farm. Farm safety legislation.	
UNIT V - MAN-MACHINE SYSTEM CONCEPT	(9)
Human factors in adjustment of man and his work. Design aspects of foot and hand co	ntrols on
tractors and farm equipment. Design of operator's seat for tractors and agricultural eq	juipment.
Problems of posture and comfort; science of seating cushion functional requirements, s	static and
dynamic compatibility of operator-seat-machine; Engineering principles applied to indus	strial and
agricultural safety. Road accidents, road signs and accident prevention; Safety symbols a	and signs,
hand signals, colour codes for agricultural equipment.	
TOTAL (L: 45) = 45	PERIODS

TEXT BOOK:

- 1. R.S. Bridger, Introduction to Ergonomics, McGraw Hill, 1995.
- 2. Charles D Reese, Accident / Incident Prevention Techniques, Taylor & Francis, 2001.
- 3. Gavriel Salvendy, Hand Book of Human Factors and Ergonomics, John Wiley & Sons, 1997.

- 1. J Mathews & AA Knight, Ergonomics in Agricultural Design, National Institute of Agric. Engineering, Wrest Park, Silsoe, Bedford, 1971.
- 2. Mathews J Sanders, Cormicks MS & MCEj, Human Factors in Engineering and Design, 4th Ed, McGraw Hill, 1976.
- 3. Lea and Febiger Zander J, Principles of Ergonomics, Elsevier, 1972.

COURSE		PROGRAMME OUTCOMES												
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3					3	1					1		
2	3	3	3	3	2			2	2			2		
3	3	3	3	2	3			2	2		1	1		
4	3	2	2	2	2			2				3		2
5	3	2	2	2	3			3			2	1		2
CO(W.A)	3	3	3	2	3	3	1	2	2		2	2		2

	17AGX19 DESIGN AND MAINTENANCE OF GREENHOUSE												
				L	Τ	Ρ	С						
				3	0	0	3						
PRERE	QUISITE : NIL	QU	ESTION PATTERN: TYPE – III										
COURS	SE OBJECTIVES AND OUTCOMES:												
Course	e Objectives	Cour	se Outcomes: The Student will be ab	le to)								
1.0	To introduce the fundamentals of greenhouse technology	1.1	Understand the concepts of green h	ious	e								
2.0	To impart knowledge on construction of green house	2.1	Gain the knowledge on construction of green house										
3.0	To know the green house environment	3.1	Control the green house environme	nt									
4.0	To gain knowledge on green house media and nutrition	4.1	Prepare media for greenhouse plan	ts									
5.0	To know about the IPM management and economics of green house	5.1 Able to manage the pest and diseases of green houses and analyse the economics											

UNIT I - FUNDAMENTALS OF GREENHOUSE TECHNOLOGY

Importance and methods of protected culture in horticultural crops - Importance and scope of protected cultivation – different growing structures of protected culture viz., green house, poly house, net house, poly tunnels, screen house, protected nursery house. Introduction to green house-history and advantages of green houses. Planning and designing of green house- site selection, structures and glazing. Introduction, basics of greenhouse design. Types of green house based on-shape, utility, construction, covering material

UNIT II - CONSTRUCTION OF GREEN HOUSE

Framework for various types of green house- covering materials-wood, glass, polyethylene film, poly vinyl chloride film, tefzel T2 film, fiber glass reinforced plastic rigid panel. Construction of Poly house / Glass house / Net hose. Construction of pipe framed greenhouse. Design and layout of low cost green house structures. Automated greenhouses- application of computer in greenhouse technology

UNIT III - GREEN HOUSE ENVIRONMENT

Heating – sources of heat. Cooling- types of cooling. Environmental control- air temperature, sunlight, co_{2} , relative humidity, wind, rain. Ventilation- different types of ventilation systems. cultivation systems including nutrient film technique / hydroponics / aeroponic culture.

UNIT IV - GREEN HOUSE MEDIA AND NUTRITION

Preparation of soil and soil less media mixtures for planting. Plant nutrition- fertilizers, nutrient deficiencies and toxicities. Irrigation- water quality- methods of irrigation- hand watering, perimeter watering, overhead sprinklers, components of drip and sprinkler irrigation. Fertigation- devices used, advantages and disadvantages of fertigation.

(9)

(9)

(9)

UNIT V -	IPM MANAGEMENT AND ECONOMICS OF GREEN HOUSE	(9)
Pest and soi	l organisms of greenhouse plants, Diseases of greenhouse plants- management o	f pest and
	usiant shows include a state of the state of a set in the set of the set in the set of t	

diseases- physical, chemical, biological- IPM. Methods of pesticide application and types of equipment for spray- PGRs for green house plants. Economic analysis of green house- Construction cost for basic green house and different types of greenhouse and their maintenance- total investment- variable cost, capital cost and fixed cost.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOK:

- 1. Joe.J.Hanan. 1998. Green houses: Advanced Technology for Protected Horticulture, CRC Press, LLC. Florida.
- 2. Paul V. Nelson. 1991. Green house operation and management. Ball publishing USA.

- 1. Lyn. Malone, Anita M. Palmer, Christine L. Vloghat Jach Dangeermond. 2002. Mapping out world: GIS lessons for Education. ESRI press.
- 2. David Reed. 1996. Water, media and nutrition for green house crops. Ball publishing USA.
- 3. Adams, C.R. K.M. Bandford and M.P. Early. 1996. Principles of Horticulture. CBS publishers and distributors. Darya ganj, New Delhi.

COURSE	PROGRAMME OUTCOMES													PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3		3		3	3						1	2		
2	3		3	3	2	2	2	2	2			2	3		
3	3		3		3	2	2	2				1	3		
4	3		2	2	2	2	1	2	3			3	2		
5	3		2	2	3	3	3	3	3			1	3		
CO(W.A)	3		3	2	3	2	2	2	3			2	3		

17AGX20 ORGANIC FARMING											
				L	Т	Ρ	С				
				3	0	0	3				
PRERE		STION	PATTERN: TYPE – III								
COURS	SE OBJECTIVES AND OUTCOMES:	Cours	• Outcomes: The Student w	ill h	o ah	lo to					
Course	To study the principles and practices	cours	e outcomes. The Student w								
1.0	of organic farming	1.0	Learn the basics of organi	c fa	rmin	g					
2.0	To know the soil health management practices through organic farming	2.0	Ability to manage soil horganic management prace	neal ctice	th u es	ising					
3.0	To learn different organic production technologies including certification	3.0	Produce organic crops organic production technol	usi olog	ng gies	varic	ous				
4.0	To introduce different crop protection practices in organic farming	4.0	Protect crops using orgar	nic p	ract	ices					
ToexposethePostharvest5.0technologies,exportandmarket5.0Export various organic productavenues											
UNII	I - INTRODUCTION TO ORGANIC FARMING		a of Organic forming in To-		Nadi	(9)	4				
anima by G agricu	al components - Difference between conver overnment (central/state), NGOs and o ulture.	ntional ther or	and organic agriculture - Ini rganizations for promotion	tiati n o	ves t f or	take gani	n c				
UNII	II - SOIL MANAGEMENT IN ORGANIC FARM	IING				(9)					
orgar impro - long	nealth - concepts - problem diagnosis - cons nic farming - soil physical, chemical and bio ovement strategies - sources of organics - p g term effect	logical i roducti	improvement - organic carb on potentials - maintenance	on : on : of	tion stati soil l	und us ar heal [:]	er nd th				
UNIT	III - PRODUCTION TECHNOLOGIES FOR ORC	GANIC F	ARMING			(9)					
Crop	production technologies - Response of crop	s and va	arieties - cropping systems -	inte	ercro	ppin	g				
in rela	ation to maintenance of soil productivity; Ro	ole of gr	een manures and pulses - Ir	ndige	enou	IS					
Techr	nical Knowledge (ITK'S) - Integrated Farming	System	n (IFS) - Resource conservation	on -	enh	anci	ng				
crop	productivity and food production; Conserva	tive irrig	gation practices - problems of	of m	ode	rn					
irriga	tion system.										
UNIT	IV - CROP PROTECTION IN ORGANIC FARM	ING				(9)					
Weeds, Insects and diseases management under organic farming; Biological agents and pheromones, bio-pesticides for crop protection; Sustainable crop protection practices - ITK's in crop protection.											
UNIT	V - POST HARVEST AND CERTIFICATION					(9)					
Post	harvest technology - preservation - value	additio	on - quality parameters - r	mar	ketir	ng a	nd				
expoi	rt avenues; Organic certification - Standard	s and a	gencies - marketing and ex	port	ave	nue	s -				
certif	ication for exports; Sustainability indices	for eva	luating long term and ind	irec	t be	nefi	ts;				
Econo	omic evaluation of organic agricultural techr	nologies									
TOTAL (L: 45) = 45 PERIODS											

TEXT BOOK:

- 1. Dahama, A.K., "Organic Farming for Sustainable Agriculture", Agrobios (India), Jodhpur pp.301, 2002.
- 2. Palaniappan, SP. and K. Annadurai, "Organic farming: Theory and Practice", Scientific Publishers, Jodhpur, 1999.

- 1. Lampkin, N., "Organic farming", Ipswich, U. K. Farming Press Books pp.710, 1990.
- 2. Sharma, Arun K., "A Hand book of Organic Farming", Agrobios (India), Jodhpur pp. 627, 2002.
- 3. Thampan, P. K., "Organic Agriculture", Peekay Tree Crops Development Foundation, Cochin pp.354, 1995.
- 4. Vyas, S. C., Smriti Vyas, Sameer Vyas and H. A. Modi., "Biofertilizers and Organic farming", Akta Prakashan, Nadiad, pp.252,1998.
- 5. Anantha krishnan, T. N. (ed.), "Emerging Trends in Biological Control of Phytophagous Insects", Oxford & IBH,1992.

COURSE		PROGRAMME OUTCOMES												
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	2	3	3	1	2	1	1	1	1		
2	3	3	3	3	2	2	2	2	2	1	1	2		
3	3	3	3	2	3	2	2	2	2	1	1	1		
4	3	2	2	2	2	2	1	2	1	2	2	3		
5	3	2	2	2	3	3	3	3	3	2	2	1		
CO(W.A)	3	3	3	2	3	2	2	2	2	1	1	2		

	17ECX16 – INTERNET OF THINGS AND ITS APPLICATIONS											
				L	Т	Р	С					
				3	0	0	3					
PREF	REQUISITE : NIL	QUE	STION PATTERN : TYPE - 1									
COU	RSE OBJECTIVES AND OUTCOMES:											
	Course Objectives	Course Outcomes: The Student will be able to										
1.0To make the students to know about basics of Electrical and Electronic devices1.1Understand basics of Electrical circle Electronic devices												
2.0	To make the students to know about basics and block diagram of IoT	2.1	1 Understand IOT characteristics and its essential components.									
3.0	To make the students to know about Arduino processor and working of Analog and Digital I/O pins	3.1	Describe Arduino processor and working o Analog and Digital I/O pins									
4.0	To make the students to know about Raspberry pi and its interface with other devices	4.1	4.1 Understand Raspberry pi and its interfact with other devices									
5.0To motivate the students to implement the IoT using Arduino/ Raspberry Pi.5.1Implement a IoT system using Arduino/Raspberry Pi.												

UNIT I - BASIC ELECTRICAL CIRCUITS AND ELECTRONICS (9)

Introduction - Current, voltage and resistance - Analog and Digital Signal - conductors Vs Insulators – KCL- KVL - Basic Electronics components - calculating equivalent resistance for series and parallel circuits- Ohm's law- Color coding for a resistor – LED – LCD - LDR.

UNIT II - INTRODUCTION TO INTERNET OF THINGS

Introduction - Definition and characteristics of Internet of Things - General Block Diagram and essential components of IOT - Role of microprocessor & Micro controller- communication of things - IOT connection with internet.

UNIT III- ARDUINO PROCESSOR

Introduction to Arduino processor- General Block diagram- Working of Analog and Digital I/O pins- Serial (UART), I2C Communications and SPI communication - Arduino Boards: Mega, Due, Zero and 101 - Prototyping basics - Technical description - Setting Up Arduino IDE- Introduction to Arduino programming.

UNIT IV - RASPBERRY PI

Technical Description of Raspberry Pi - comparison of Raspberry Pi Vs Arduino - Operating Systems for RPi - Preparing SD Card for Pi - Connecting Raspberry Pi as PC - Exploring Raspberry Pi Environment-Logical design using Python.

UNIT V- APPLICATIONS OF IOT

Various Real time applications of IoT- automation - Smart Parking - Environment: Weather monitoring system - Agriculture: Smart irrigation – Domain Specific applications.

TOTAL (L: 45) = 45 PERIODS

(9)

(9)

(9)

TEXT BOOK:

1. Arshdeep Bahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universities Press, 2015.

- 1. Muthusubramanian R, Salivahanan S and Muraleedharan K A, "Basic Electrical, Electronics and Computer Engineering", Tata McGraw Hill, Second Edition, (2006).
- 2. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key applications and Protocols", Wiley Publications 2nd edition, 2013.
- 3. Marco Schwartz, Internet of Things with the Arduino Yun, Packt Publishing, 2014.
- 4. Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things", Wiley Publications, 2012.

					PROG	GRAMN		гсоме	S				PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3		3	2					2						
2	3	3		3	2										
3	3	3	3				2								
4	3	2	2							2					
5	3					3					2	2			
CO(W.A)	3	3	3	3	2	3	2		2	2	2	2			

	17ITX26- PROBLEM SOLVING AND ALGORITHMIC SKILLS												
				L	Т	Ρ	С						
				3	0	0	3						
PREF	REQUISITE: NIL	QUEST	TION PATTERN : TYPE - 1										
	COURSE OBJEC												
	Course Objectives	Course Outcomes: The Student will be able to											
1.0	To impart fundamental concepts of OOP using python	1.1	Understand the basics concepts in python.	of	object	: orie	ented						
2.0	To gain exposure about inheritance and polymorphism	e and 2.1 Develop applications using inheritance and polymorphism											
3.0	To understand the abstract data types and tree data structures	3.1	Implement the ADTs and t	rees									
4.0	To see how graphs and heaps can be used to solve a wide variety of problems	4.1	Design graph abstract data	a type	and I	neap							
5.0	To understand the sorting techniques and shortest path algorithms.	5.1	Implement the sorting tec path algorithms.	chniqu	ues ar	nd sho	ortest						

UNIT I - MOTIVATION OF FUNDAMENTAL CONCEPT IN PROGRAMMING	(9)
Implementation of Classes and Objects in Python - Class Attributes and Instance Att	ributes -
'self ' parameter - Static Methods and Instance Methods - init() method	
UNIT II - ADVANCED FEATURES IN CONCEPT OF PROGRAMMING	(9)
Performing Abstraction and Encapsulation in Python - Single Inheritance - Multiple Inl	heritance
- Multilevel Inheritance - Public, Protected and Private - Naming Conventions. Polym	orphism-
Overriding and the super() method - Diamond Shape Problem in Multiple Inhe	ritance -
Overloading an Operator - Implementing an Abstract Base Class (ABC)	
UNIT III - INTRODUCTION TO ALGORITHMIC THINKING AND PEAK FINDING	(9)
Array data structure - Linked List Data Structure and Its Implementation - Stacks and	Queues -
Binary Search Trees - Balanced Trees: AVL Trees and Red-Black Trees	
UNIT IV - MAPPING VALUES AND PRINCIPLE OF OPTIMALITY	(9)
Heaps - Heapsort Algorithm - Associative Arrays and Dictionaries - Ternary Search	Trees as
Associative Arrays - Basic Graph Algorithms - Breadth - First And Depth - First Search -	Spanning
Trees	

UNIT V - ANALYZING NUMBER OF EXCHANGES IN CRAZY-SORT

(9)

Shortest Path Algorithms, Dijkstra's Algorithm - Bellman-Ford Algorithm - Kruskal Algorithm - Sorting Algorithms- Bubble Sort, Selection Sort and Insertion Sort - Quicksort and Merge Sort, Non-Comparison Based Sorting Algorithms, Counting Sort and Radix Sort

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. Dusty Phillips, Python 3 Object-oriented Programming, Packt Publishing, Second Edition.
- 2. Bradley N. Miller, David L. Ranum,- Problem Solving with Algorithms and Data Structures Using Python, Franklin, Beedle & Associates, 2011.

- 1. Mark Summerfield Programming in Python 3, Pearson Education, 2nd Edition
- 2. Michael T. Goodrich, Irvine Roberto Tamassia, Michael H. Goldwasser, Data Structures and Algorithms in Python, 2013 edition.

COURSE	PROGRAMME OUTCOMES													PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3		3									1			
2	3	3	3	3	2						1	2			
3	3	3	3	2	3						1	1			
4	3	2	2	2	2						2	3			
5	3	2	2	2	3						2	1			
CO(W.A)	3	3	3	2	3						2	2			

17CSX31- PROBLEM SOLVING AND PROGRAMMING											
				L	Т	Ρ	С				
				3	0	0	3				
PREF	REQUISITE : 17CSC01 / 17CSC02	QUESTION PATTERN : TYPE 1									
COU	RSE OBJECTIVES AND OUTCOMES:										
	Course Objectives	Course Outcomes: The Student will be able to									
10	To gain knowledge about the basics of	1 1	Understand the basics of Python								
1.0	programming	1.1	Programming constructs.								
2.0	To gain exposure about selection	2.1	Design programs involving selection								
2.0	structure	2.1	structure								
2.0	To get knowledge about repetition	2.1	Design programs involving function, modules								
3.0	structure, function and modules	5.1	and loops.								
4.0	To gain exposure about string	4.1 Realize the need of strings.									
F 0	To get knowledge about mutable and	E 1	Realize the need of list, tuples and dictionary.								
5.0	Immutable types	5.1									

UNIT I - INTRODUCTION TO BASICS OF PROGRAMMING	(9)						
Basics - Variables and Assignment - Basic Data Types- Comments - Operators - print() - Floa							
UNIT II - SELECTION STRUCTURE	(9)						
Introduction to Selection Structure - if statements, else statements, nested elif stateme	nts, truthy						
and falsey values, Control Structure							
UNIT III - VALUE – REPETITION AND RETURNING STRUCTURE	(9)						
Loops - while loops, for loops - Nested Loops - Functions - modules - variable scope							
UNIT IV - DATA AND STRING PROCESSING							
Strings - Accessing the Strings - Traversing the Strings - Working with Strings - I	Formatting						
Strings							
UNIT V - MUTABLE AND IMMUTABLE TYPES AND METHODS	(9)						
Introduction to lists, indexing and slicing of list, del and list methods, Tuples, Diction	ary and its						
methods.							
TOTAL (L: 45) = 45 PERIODS							
TEXT BOOKS:							
1. Dr. R. Nageswara Rao, —Core Python Programming, Dreamtech Press, 2017 Edition.							
2. Reema Thareja - Problem Solving and Programming – Python, Oxford University Press, 2 nd							

Edition.

REFERENCES:

1. Wesley J. Chun, —Core Python Programming, Pearson Education, 2nd edition, 2010.

COURSE	PROGRAMME OUTCOMES													
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3		3									1		
2	3	3	3	3								2		
3	3	3	3	2							1	1		
4	3	2	2	2							2	3		
5	3	2	2	2							2	1		
CO(W.A)	3	3	3	2							2	2		

M. Anthen

	17AGX21 – IRRIGATION WATER QUALITY AND WASTE WATER MANAGEMENT												
				L	Т	Ρ	С						
		3	0	0	3								
PREF	REQUISITE : NIL												
COU	RSE OBJECTIVES AND OUTCOMES:												
Course Objectives Course Outcomes: The Student will be able to descr													
1.0	To know the basics concepts of irrigation water quality	1.1	1.1 the parameters of water quality										
2.0	To impart knowledge on water quality for irrigation purposes, besides relevant environmental	2.1	2.1 the concepts of water quality for irrigation										
3.0	To understand the importance of water quality for irrigation and major uses of water and the role environmental issues.	3.1	the water pollution and quality considerations										
4.0	To know the problems and recycle and reuse concepts	4.1 the recycling and reuse of water											
5.0To impart knowledge on water quality management for irrigation purposes5.1the management of water of							er quality						

UNIT I - WATER QUALITY	(9)						
Physical and chemical properties of water – Suspended and dissolved solids – EC and pH – major ions –. Water quality investigation – Sampling design - Samplers and automatic samplers – Data collection platforms – Field kits – Water quality data storage, analysis and inference – Software packages							
UNIT II -IRRIGATION WATER QUALITY	(9)						
Water quality for irrigation – Salinity and permeability problem – Root zone salinity – Irrigation practices for poor quality water – Saline water irrigation – Future strategies							
UNIT III- WATER POLLUTION	(9)						
Sources and Types of pollution – Organic and inorganic pollutants - BOD – DO relationships – impacts on water resources – NPS pollution and its control – Eutrophication control - Water treatment technologies - Constructed wetland.							
UNIT IV - RECYCLING AND REUSE OF WATER							
Multiple uses of water - Reuse of water in agriculture - Low cost waste water treatment te	chnologies -						
Economic and social dimensions - Packaged treatment units - Reverse osmosis and desalination in water							
reclamation							
UNIT V- WATER QUALITY MANAGEMENT							
Principles of water quality – Water quality classification – Water quality standards - Water quality indices – TMDL Concepts – Water quality models							
TOTAL (L: 45) = 45 PERIODS							

TEXT BOOKS:

- 1. . George Tchobanoglous, Franklin Louis Burton, Metcalf & Eddy, H. David Stense, "Waste water Engineering: Treatment and Reuse", McGraw-Hill, 2002.
- 2. Vladimir Novonty, "Water Quality: Diffuse pollution and watershed Management", 2nd edition,John Wiley & Sons, 2003

- 1. Mackenzie L Davis, David A Cornwell, "Introduction to Environmental Engineering", McGrawHill 2006.
- 2. Stum, M and Morgan, A., "Aquatic Chemistry", Plenum Publishing company, USA, 1985
- 3. Lloyd, J.W. and Heathcote, J.A., "Natural inorganic chemistry" in relation to groundwater resources, Oxford University Press, Oxford, 1988

COURSE	PROGRAMME OUTCOMES													PSOs		
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
1	3	2	3	2	-	-	-	-	2	-	-	-	2	-		
2	3	2	3	3	2	-	-	-	-	-	-	-	3	-		
3	3	3	3	-	3	-	2	-	-	-	-	-	3	2		
4	3	2	2		3	-	-	-	-	2	-	-		3		
5	3	-	-	-	-	3	-	-	-	-	2	2	3	-		
СО	3	2	3	3	3	3	2	-	2	2	2	2	3	3		
(W.A)																

17AGX22 – LANDSCAPE ARCHITECTURE											
				L	Т	Ρ	С				
				3	0	0	3				
PREF	PREREQUISITE : NIL										
COU	RSE OBJECTIVES AND OUTCOMES:	r									
	Course Objectives	Cours	e Outcomes: The Student	will b	e able	to					
	To understand the paradigms in landscape		Equip the students to do	lands	cape v	workii	ng				
1.0	architecture in the post-industrial	1.1	drawings and preparation	drawings and preparation of bill of							
	revolution era		quantities and estimation								
	to understand the multifaceted dimensions		Understand the design solutions for larger								
2.0	of landscape architecture such as ecology,	2.1									
	environment and sustainability										
	To understand the significance of landscape										
2.0	formulations in creating aesthetically	2.1	Understand the different concepts of								
3.0	pleasing, functional, and sustainable	5.1	landscape formulations								
	outdoor spaces.										
	to understand the fundamental principles										
	of illumination, including light sources,		Acquire the knowledge of illumination and								
4.0	color temperature, intensity, and	4.1	lighting								
	distribution.										
	To study the contemporary landscape and		Obtain the knowledge of	docia	m of .	votor					
5.0	the manifestation in the western and	5.1									
	Indian contexts.		bodies and irrigation systems.								

UNIT I - BASICS OF LANDSCAPE ARCHITECTURE

(9)

(9)

(9)

(9)

Site analysis, synthesis, suitability, landscape zoning and planning with landscape land uses for medium to large scale projects. Evolving an open space structure for the site and suggesting a suitable landscape treatment with respect to ecological, functional, cultural and visual contexts.

UNIT II - LANDSCAPE FORMULATIONS

Process for landscape project formulation and landscape design development based on synthesis. Examining how humans occupy exterior space and combines this information with the principles of design to create garden scale models.

UNIT III- SITE MOBILIZATION

Site mobilization; Sequence of site activity, site protection measures, site implementation checklist. Design and detailing of hard landscapes: Roads, paving, barriers, edge conditions -functions, types, criteria for selection, design aspects, detail

UNIT IV - ILLUMINATION

Outdoor lighting: Definition of technical terms, types of electrical lighting, types of fixtures, auxiliary fixtures. Principles of design for outdoor illumination, design and type of effects with electrical lighting. Safety precautions and drawbacks of electrical lighting, electrical accessories and their installation. Solar energy and lighting.
UNIT V- IRRIGATION FEATURES

Water features and Irrigation systems: Design of water features such as swimming pools, cascades, fountains etc., and their technical requirements. Consideration for design and detail of water bodies and natural ponds. Design of irrigation system – landscape area types, Course Overviews and design, water needs and sources, application, methods of installation. Control systems, scheduling and maintenance

TOTAL (L: 45) = 45 PERIODS

(9)

TEXT BOOK:

- 1. Simonds. J. O. 1961. Landscape Architecture: The Shaping of Man's Natural Environment. F.W. Dodge Cooperation, London Harris.C.W. and Din, N.T. 1997. Time Saver Standards For Landscape Architecture. Mcgraw Hill International Edition, Arch. Series
- 2. Starke .B. and Simonds, J. O. 2013. Landscape Architecture: A Manual of Site Planning and Design. 5th edition. McGraw-Hill Professional.

REFERENCES :

- 1. Shaheer, M., Dua, G.W. and Pal, A.2012. Landscape Architecture in India: A Reader. Indian Journal of Landscape Architecture.
- 2. Reid, G. W. 1993. From Concept to Form: In Landscape Design. John Wiley & Sons.

COURSE OUTCOMES	PROGRAMME OUTCOMES													PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	2	3	2	-	-	-	-	2	-	-	-	2	-	
2	3	2	3	3	2	-	-	-	-	-	-	-	3	-	
3	3	3	3	-	3	-	2	-	-	-	-	-	3	2	
4	3	2	2	-	3	-	-	-	-	2	-	-	-	3	
5	3	-	-		-	3	-	-	-	-	2	2	3	-	
CO (W.A)	3	2	3	3	3	3	2	-	2	2	2	2	3	3	

10. Metsen 690

	17AGX23 - INTEGRA	TED FA	RMING SYSTEM									
				L	Т	Р	С					
DDEE			3	0	0	3						
		QUL	SHON FATTERN .									
	Course Objectives	Course Outcomes: The Student will be able to										
1.0	To gain a practical understanding of different specialized farming systems, including their unique characteristics, techniques, and management practices.	1.1	Understand practical knowledge on specialized in different farming system.									
2.0	to apply recycling methods for the utilization of farm waste in Integrated Farming System (IFS) components, considering the principles of sustainability and resource efficiency.	cycling methods for the farm waste in Integrated tem (IFS) components, principles of sustainability fficiency.										
3.0	To conduct a comparative analysis to evaluate the benefits of different IFS components in terms of productivity, profitability, environmental impact, and social aspects.	3.1	Analysis of comparative benefits of the different IFS components									
4.0	to design a farming system model that integrates wetland, garden land, and dry land components, considering their specific requirements, synergies, and potential for sustainable resource utilization						for wetland,					
5.0	To evaluate the extent and effectiveness of the Integrated Farming System (IFS) in wetland, garden land, and dry land areas.	5.1	Evaluate the extent of w and dry land Integrated	etland Farmir	, gard 1g Syst	en lar :em	nd					

UNIT I INTRODUCTION OF FARMING SYSTEM	(9)						
Farming system – introduction – scope of farming system – importance – concept – principles of fa system - Types of farming systems – Advantages and limitations - suitability – factors affecting farming system							
UNIT II INTEGRATED FARMING SYSTEM	(9)						
Integrated farming system-historical background - objectives and characteristics advantages of IFS – Components of IFS - Integrated Farming System in Wetland – IFS in garden land –- IFS in dryland and fallow land							
UNIT III- LIVESTOCK PRODUCTION IN IFS	(9)						
IFS With Goats and Sheep – housing and feeding management – deworming – Young stock management - Dairy Farming in IFS - Fodder production in IFS - IFS With poultry rearing - Duck farming – Rabbit farming							

Dairy Farming in IFS – Piggery

UNIT IV - IFS COMPONENTS

Agroforestry – definition – types of agroforestry system – benefits of agroforestry system – Aquaculture – Fish cum agriculture and horticulture – Beekeeping – types and cast of bees – care and management in beekeeping – Sericulture - Mulberry cultivation – Silkworm rearing – Organic farming – Azolla – Small scale nursery.

UNIT V- RESOURCE RECYCLING IN IFS

Resource recycling in wetland IFS - Resource flow in crop , dairy , biogas , spawn ,silviculture In IFS -Biogas production through IFS – Resource recycling in crop + goat IFS - Uses and features of biogas -Structure and function of Dheenabandhu Gas plant - Vermicompost - Preparation of vermicompost from farm residue – Mushroom production in IFS.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. Nanda, Sankarsana. Integrated farming system practices: challenges and opportunities. New India Publishing Agency, 2016
- 2. Ravikiran Vasant Mane, Integrated Farming System: A Strategy for Sustainable Farm Production & Livelihood Security, Scitus Academics, 2016

REFERENCES:

- 1. EFERENCES 1. Zaman, Integrated Farming System and Agricultural, New India Publishing Agency, 2019
- 2. Nanwal R. K. Farming System and Sustainable Agriculture, Kalyani Publishers, 2017.

COURSE OUTCOMES	PROGRAMME OUTCOMES													PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	1	2	3	3	3	2	2	-	-	-	-	1	2	-	
2	2	2	2	2	3	-	3	3	-	-	-	1	3	2	
3	3	3	3	-	3	-	-	3	-	3	-	2	-	-	
4	2	2	2	2	3	-	-	-	3	3	3	2	3	-	
5	3	3	3	3	3	-	-	-	-	-	3	2	-	3	
CO (W.A)	2	2	3	3	3	2	3	3	3	3	3	2	3	3	

1. a. Metran QC

(9)

(9)

17AGX24 - IT IN AGRICULTURAL ENGINEERING									
				L	Т	Р	С		
DDEE		3	0	0	3				
		QUE	STION PATTERN :						
00	RSE OBJECTIVES AND OUTCOMES.	_							
	Course Objectives	Cours	e Outcomes: The Studen	t will k	be able	e to			
1.0	To introduce the students to areas of agricultural systems in which IT and computers play a major role.	1.1	Understand the applica sensing applications suc	ations h as D	of IT rones	in rer etc	note		
2.0	To expose the students to IT applications in precision farming, environmental control systems, agricultural systems management and weather prediction models	Get a clear understanding of how a greenhouse can be automated and its advantages							
3.0	To understand IT principles and concepts to effectively manage field operations in agriculture, including data collection, analysis, decision-making.	3.1	Apply IT principles and concepts f management of field operations						
4.0	To Acquire knowledge about weather models, their input data sources, and their applications in agriculture, including crop management, irrigation scheduling, pest and disease control, and risk assessment.	4.1	Get an understanding about weather mode their inputs and applications						
5.0	To Understand the role of IT in e- governance in agriculture, including the use of information systems, digital platforms, and online services.	5.1	Get an understanding of for e-governance in agri	of hov cultur	v IT ca e.	in be i	used		

UNIT I PRECISION FARMING	(9)						
Precision agriculture and agricultural management – Ground based sensors, Remote sensing, GPS, GIS and mapping software, Yield mapping systems, Crop production modeling.							
UNIT II ENVIRONMENT CONTROL SYSTEMS	(9)						
Artificial light systems, management of crop growth in greenhouses, simulation of CO2 consumption in greenhouses, on-line measurement of plant growth in the greenhouse, models of plant production and expert systems in horticulture.							
UNIT III- AGRICULTURAL SYSTEMS MANAGEMENT	(9)						
Agricultural systems - managerial overview, Reliability of agricultural systems, Simulation of crop growth and field operations, Optimizing the use of resources, Linear programming, Project scheduling, Artificial intelligence and decision support systems.							

UNIT IV - WEATHER PREDICTION MODELS	(9)
Importance of climate variability and seasonal forecasting, Understanding and predicting	world's
climate system, Global climatic models and their potential for seasonal climate forecasting,	General
systems approach to applying seasonal climate forecasts.	
UNIT V- E-GOVERNANCE IN AGRICULTURAL SYSTEMS	(9)
Expert systems, decision support systems, Agricultural and biological databases, e-commerce, et systems & applications, Technology enhanced learning systems and solutions, elearning, Rural development and information society.	ousiness

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- **1.** National Research Council, "Precision Agriculture in the 21st Century", National Academies Press, Canada, 1997.
- **2.** H. Krug, Liebig, H.P. "International Symposium on Models for Plant Growth, Environmental Control and Farm Management in Protected Cultivation", 1989.

REFERENCES:

- 1. Peart, R.M., and Shoup, W. D., "Agricultural Systems Management", Marcel Dekker, New York, 2004.
- 2. Hammer, G.L., Nicholls, N., and Mitchell, C., "Applications of Seasonal Climate", Springer, Germany, 2000

COURSE	PROGRAMME OUTCOMES													PSOs	
OUTCOMES	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	1	2	3	3	2	2	2	-	-	-	-	1	2	-	
2	2	2	2	2	2	3	3	-	-	-	-	1	3	3	
3	3	3	3	-	3	-	3	-	-	-	-	2	-	3	
4	2	3	2	2	2	-	-	-	-	-	3	2	3	-	
5	3	3	3	3	3	-	-	-	-	-	3	2	-	3	
CO (W.A)	2	3	3	3	2	3	3	-	-	-	3	2	3	3	

