NANDHA ENGINEERING COLLEGE

(An Autonomous Institution affiliated to Anna University Chennai and approved by AICTE, New Delhi) Erode-638 052, Tamilnadu, India, Phone: 04294 – 225585

Curriculum and Syllabi

for

B.E – Electrical and Electronics Engineering [R22]

[CHOICE BASED CREDIT SYSTEM]

[This Curriculum and Syllabi are applicable to Students Admitted from the Academic year 2024-2025 onwards]

JULY 2024

	INSTITUTE VISION AND MISSION
VISION	• To be an Institute of excellence providing quality Engineering, Technology and Management education to meet the ever changing needs of the society.
	• To provide quality education to produce ethical and competent professionals with social Responsibility
MISSION	• To excel in the thrust areas of Engineering, Technology and Entrepreneurship by solving real- world problems.
	• To create a learner centric environment and improve continually to meet the changing global needs.

	B.E – ELECTRICAL AND ELECTRONICS ENGINEERING
VISION	• To foster academic excellence imparting knowledge in Electrical, Electronics and allied disciplines to meet the changing needs of the society.
	• To equip the students with leadership qualities for accepting the challenges in various engineering sectors
MISSION	• To excel in the thrust areas of Electrical and Electronics Engineering to solve real world problems
	• To empower the students to adapt the latest technologies by providing innovative learning environment
	The graduates of Electrical and Electronics Engineering will be
PROGRAMME	PEOI: Core Competency: A Successful professional with domain knowledge in Electrical and Electronics Engineering using emerging techniques.
EDUCATIONAL OBJECTIVES (PEO)	PEO2: Research, Innovation and Entrepreneurship: Able to demonstrate multi- disciplinary skills through innovation and research to meet the societal needs
()	PEO3: Ethics, Human values and Life-long learning: Able to demonstrate ethical practices and managerial skills through continual learning.
	The students of Electrical and Electronics Engineering will be able to
PROGRAMME SPECIFIC OUTCOMES	 Analyze, design and validate processes, products by applying knowledge and skills in Power system, Electrical Machines and Power Electronics.
(PSO)	• Design and analyze the processes of smart grid and renewable energy systems using appropriate tools and techniques

PROGRAM OUTCOMES:

At the end of this programme the students will be able to

a-l	GRADUATE ATTRIBUTES	PO No.	PROGRAMME OUTCOMES
a	Engineering Knowledge	POI	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
b	Problem Analysis	PO2	Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
с	Design and Development of Solutions	PO3	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
d	Investigation of Complex Problems	PO4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions
e	Modern Tool Usage	PO5	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
f	The Engineer and Society	PO6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
g	Environment and Sustainability	PO7	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
h	Ethics	PO8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice
i	Individual and Team Work.	PO9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings
j	Communication	PO10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
k	Project Management and Finance	POII	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
I	Lifelong Learning	PO12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES WITH PROGRAMME

SEMESTER: I

OUTCOMES

A broad relation between the Programme Educational Objectives and the outcomes is given in the following table

PROGRAMME	PROGRAMME OUTCOMES											
EDUCATIONAL OBJECTIVES	Α	В	с	D	Е	F	G	н	I	J	к	L
I	3	3	3	3	3	2	2	I	2	2	3	2
2	2	3	3	2	3	3	2	2	3	2	3	2
3	3	2	I	I	2	2	2	3	3	3	2	3

MAPPING OF PROGRAM SPECIFIC OUTCOMES WITH PROGRAMME OUTCOMES

A broad relation between the Program Specific Objectives and the outcomes is given in the following table

PROGRAM	PROGRAMME OUTCOMES											
SPECIFIC OUTCOMES	А	В	с	D	E	F	G	н	I	J	к	L
I	3	3	3	3	2	2	2	2	2	2	2	3
2	3	3	2	3	3	2	2	2	2	2	2	3

Contribution

I: Reasonable

2: Significant

3: Strong

	COURSE				CONTACT						
S. NO.	CODE	COURSE TITLE	CATEGORY			L	Т	Ρ	С		
I	22MAN01	Induction Programme	MC	-	-	-	-	-	-		
THEOI	RY										
2	22EYA01	Professional Communication - I	HSMC	-	4	2	0	2	3		
3	22MYB01	Calculus and Linear Algebra*	BSC	-	4	3	I	0	4		
4	22CYB04	Engineering Chemistry	BSC	-	3	3	0	0	3		
5	22CSC01	Problem Solving and C Programming	ESC	-	3	3	0	0	3		
6	22MEC01	Engineering Graphics	ESC	-	4	2	0	2	3		
7	22GYA0I	தமிழர் மரபு _/ Heritage of Tamils*	HSMC	-	I	Ι	0	0	I		
			PRACTICAL								
8	22GEP01	Engineering Practices Laboratory	ESC	-	4	0	0	4	2		
9	22CSP01	Problem Solving and C Programming Laboratory	ESC	-	4	0	0	4	2		
10	22CYP01	Chemistry Laboratory*	BSC	-	2	0	0	2	I		
Mandatory Non Credit Courses											
11	22MAN03	Yoga - I*	MC	-	I	0	0	I	0		
				ΤΟΤΑΙ	30	14	I	15	22		

*Ratified by Eleventh Academic council

S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE - REQUISITE	CONTACT PERIODS	L	т	Р	с	
THEORY										
I	22EYA02	Professional Communication- II	HSMC	22EYA01	4	2	0	2	3	
2	22MYB03	Statistics and Numerical methods*	BSC	-	4	3	Ι	0	4	
3	22PYB03	Solid State Physics	BSC	-	3	3	0	0	3	
4	22CSC02	Data structures using C*	ESC	22CSC01	3	3	0	0	3	
5	22EEC03	Electric Circuit Theory	PCC	-	3	2	I	0	3	
6	22GYA02	தமிழரும் தொழில்துட்பமும் / Tamils and Technology*	HSMC	-	I	Ι	0	0	I	
		I	PRACTICAL							
7	22CSP02	Data Structures Laboratory*	ESC	22CSP01	4	0	0	4	2	
8	22PYP01	Physics Laboratory	BSC	-	2	0	0	2	Ι	
9	22EEP01	Electric Circuits Laboratory	PCC	-	4	0	0	4	2	
Mandatory Non Credit Courses										
10	22MAN02	Soft /Analytical Skills - I	MC	-	3	I	0	2	0	
11	22MAN05	Yoga - II*	MC	-	I	0	0	Ι	0	
				TOTAL	32	15	2	15	22	

* Ratified by Eleventh Academic Council

			SEMESTER: I	11						
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE - REQUISITE	CONTACT PERIODS	L	т	Р	с	
THEOR	Y									
I	22MYB07	Probability and Complex functions	BSC	-	4	3	Ι	0	4	
2	22EEC05	Electronic Devices and Circuits	PCC	-	3	3	0	0	3	
3	22EEC06	Electrical Machines-I	PCC	22EEC03	3	3	0	0	3	
4	22EEC07	Electromagnetic Fields	PCC	-	3	3	0	0	3	
5	22ITC06	Java Programming	ESC	-	3	3	0	0	3	
6	22EEC08	Digital Logic Circuits	PCC	-	3	3	0	0	3	
			PRACTICAL							
7	22EEP02	Electronic Devices and Circuits Laboratory	PCC	-	4	0	0	4	2	
8	22EEP03	Electrical Machines-I Laboratory	PCC	-	4	0	0	4	2	
9	22ITP04	Java Programming Laboratory	ESC	-	4	0	0	4	2	
Mandatory Non Credit Courses										
10	22MAN04R	Soft / Analytical Skills - II	MC		3	I	0	2	0	
11	22MAN09	Indian Constitution	MC		I	Ι	0	0	0	
				TOTAL	35	20	I	14	25	

	SEMESTER: IV												
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE - REQUISITE	CONTAC T PERIODS	L	т	Р	с				
THEOR	Y												
I	22EEC09	Electrical Machines-II	PCC	22EEC06	3	3	0	0	3				
2	22EEC10	Analog Integrated circuits	PCC	22EEC05	3	3	0	0	3				
3	22EEC11	Power Generation, Transmission and Distribution	PCC	22EEC03	3	3	0	0	3				
4	22EEC12	Measurements and Instrumentation	PCC	-	3	3	0	0	3				
5	22EEC13	Microprocessor and Microcontroller	PCC	22EEC08	3	3	0	0	3				
6	22CYB06	Environmental Science and Sustainability	BSC	-	3	3	0	0	3				
			PRACTICAL										
7`	22EEP04	Electrical Machines-II Laboratory	PCC	22EEP03	4	0	0	4	2				
8	22EEP05	Analog and Digital Integrated Circuits Laboratory	PCC	22EEP02	4	0	0	4	2				
9	22EEP06	Microprocessor and Microcontroller Laboratory	PCC	-	4	0	0	4	2				
Mandatory Non Credit Courses													
10	22MAN07R	Soft/Analytical Skills - III	MC	-	3	I	0	2	0				
11	22GED01	Personality and Character Development	EEC	-	0	0	0	I	0				
				TOTAL	33	19	0	15	24				

			SEMESTER:	v						
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE - REQUISITE	CONTAC T PERIODS	L	Т	Р	с	
THEOR	Y									
I	22EEC14	Power System Analysis	PCC	22EEC11	4	3	Ι	0	4	
2	22EEC15	Control Systems	PCC	22EEC06, 22EEC09	4	3	Ι	0	4	
3	22EEC16	Power Electronics	PCC	22EEC05	3	3	0	0	3	
4	EI	Elective (PEC)	PEC	-	3	3	0	0	3	
5	E2	Elective (PEC)	PEC	-	3	3	0	0	3	
6	E3	Elective (PEC)	PEC	-	3	3	0	0	3	
			PRACTICAL	-						
7`	22EEP07	Control and Instrumentation Laboratory	PCC	22EEP03, 22EEP04	4	0	0	4	2	
8	22EEP08	Power Electronics Laboratory	PCC	22EEP02	4	0	0	4	2	
Mandatory Non Credit Courses										
9	22MAN08R	Soft/Analytical Skills - IV	MC	-	3	I	0	2	0	
				TOTAL	31	19	2	10	24	

			SEMESTER: V	/I					
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE - REQUISITE	CONTA CT PERIO DS	L	т	Р	с
THEOR	Y								
I	22EEC17	Power System Protection and switch gear	PCC	22EEC11	3	3	0	0	3
2	22EEC18	Electric drives and Control	PCC	22EEC06, 22EEC09	3	3	0	0	3
3	E4	Elective (PEC)	PEC	22EEC16	3	3	0	0	3
4	E5	Elective (PEC)	PEC	-	3	3	0	0	3
5	E6	Elective (PEC)	PEC	-	3	3	0	0	3
6	E7	Elective (OEC)	OEC	-	3	3	0	0	3
			PRACTICAL						
7	22EEP09	Power System Simulation Practices Laboratory	PCC	22EEC11, 22EEC14	4	0	0	4	2
				TOTAL	22	18	0	4	20

			SEMESTER: N	/11					
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE - REQUISITE	CONTA CT PERIO DS	_	т	Ρ	с
THEO	RY								
I	22GEA01	Universal Human Values	HSMC	-	2	2	0	0	2
2	E8	Elective (OEC)	OEC	-	3	3	0	0	3
3	E9	Elective (OEC)	OEC	-	3	3	0	0	3
4	EIO	Elective (OEC)	OEC	-	3	3	0	0	3
5	EMI	Elective (Management)	HSMC	-	3	3	0	0	3
PRAC	TICAL								
6	22GED02	Internship/Industrial training	EEC	-	-	0	0	0	2
				TOTAL	14	14	0	0	16

	SEMESTER: VIII												
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE - REQUISITE	CONTA CT PERIO DS	L	т	Ρ	с				
			PRACTICA	L									
I	I 22EED01 Project Work* EEC - 20 0 0 20 10												
	TOTAL 20 0 0 20 10												

* Ratified by Eleventh Academic Council

	HS, BS, ES, PC, EEC and Mandatory Courses													
(a) H	(a) Humanities and Social Sciences (HS)													
S. NO.	COURSE CODE	COURSE TITLE	CATEG ORY	PRE- REQUISIT E	CONTACT PERIODS	L	т	Ρ	с					
١.	22EYA01	Professional Communication - I	HSMC	-	4	2	0	2	3					
2.	22GYA01	தமிழர் மரபு/ Heritage of Tamils	HSMC	-	Ι	I	0	0	I					
3.	22EYA02	Professional Communication- II	HSMC	22EYA01	4	2	0	2	3					
4.	22GYA02	தமிழரும் தொழில்நட்பமும் / Tamils and Technology	HSM C	-	I	Ι	0	0	I					
5.	22GEA01	Universal Human Values	HSMC		2	2	0	0	2					
6.	EMI	Elective (Management)	HSMC	-	3	3	0	0	3					

(b) Basic Scie	ences (BS)							
S. NO	COURSE CODE	COURSE TITLE	CATEGOR Y	PRE- REQUISI TE	CONTA CT PERIOD S	L	т	Ρ	с
١.	22MYB01	Calculus and Linear Algebra	BSC	-	4	3	I	0	4
2.	22CYB04	Engineering Chemistry	BSC	-	3	3	0	0	3
3.	22CYP01	Chemistry Laboratory	BSC	-	2	0	0	2	I
4.	22MYB03	Statistics and Numerical methods	BSC	-	4	3	I	0	4
5.	22PYB03	Solid State Physics	BSC	-	3	3	0	0	3
6.	22PYP01	Physics Laboratory	BSC	-	2	0	0	2	I
7.	22MYB07	Probability and Complex functions	BSC		4	3	I	0	4
8.	22CYB06	Environmental Science and Sustainability	BSC	-	3	3	0	0	3

(c)	Engineering S	ciences (ES)							
S. NO.	COURSE CODE	COURSE TITLE	CATEGOR Y	PRE- REQUISI TE	CONTA CT PERIOD S	L	т	Ρ	с
١.	22CSC01	Problem Solving and C Programming	ESC	-	3	3	0	0	3
2.	22MEC01	Engineering Graphics	ESC	-	4	2	0	2	3
3.	22GEP01	Engineering Practices Laboratory	ESC	-	4	0	0	4	2
4.	22CSP01	Problem Solving and C Programming Laboratory	ESC	-	4	0	0	4	2
5.	22CSC02	Data structures using C	ESC	22CSC01	3	3	0	0	3
6.	22CSP02	Data Structures Laboratory	ESC	22CSP01	4	0	0	4	2
7.	22ITC06	Java Programming	ESC	-	3	3	0	0	3
8.	22ITP04	Java Programming Laboratory	ESC	-	4	0	0	4	2

(d)	(d) Employability Enhancement Courses (EEC)													
S. NO.	COURSE CODE	COURSE TITLE	CATEGOR Y	PRE- REQUISI TE	CONTAC T PERIODS	L	т	Ρ	с					
١.	22GED01	Personality and Character Development	EEC	-	0	0	0	I	0					
2.	22GED02	Internship/Industrial training	EEC	-	0	0	0	0	2					
3.	22EED01	Project Work	EEC	-	20	0	0	20	10					

(e)	Programme	Core Courses (PC)							
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISI TE	CONTAC T PERIODS	L	т	Р	с
١.	22EEC03	Electric Circuit Theory	PCC	-	3	2	I	0	3
2.	22EEP01	Electric Circuits Laboratory	PCC	-	4	0	0	4	2
3.	22EEC05	Electronic Devices and Circuits	PCC	-	3	3	0	0	3
4.	22EEC06	Electrical Machines-I	PCC	22EEC03	3	3	0	0	3
5.	22EEC07	Electromagnetic Fields	PCC	-	3	3	0	0	3
6.	22EEC08	Digital Logic Circuits	PCC	-	3	3	0	0	3
7.	22EEP02	Electronic Devices and Circuits Laboratory	PCC	-	4	0	0	4	2
8.	22EEP03	Electrical Machines-I Laboratory	PCC	-	4	0	0	4	2
9.	22EEC09	Electrical Machines-II	PCC	22EEC06	3	3	0	0	3
10.	22EEC10	Analog Integrated circuits	PCC	22EEC05	3	3	0	0	3
11.	22EEC11	Power Generation, Transmission and Distribution	PCC	22EEC03	3	3	0	0	3
12.	22EEC12	Measurements and Instrumentation	PCC	-	3	3	0	0	3
13.	22EEC13	Microprocessor and Microcontroller	PCC	22EEC08	3	3	0	0	3
14.	22EEP04	Electrical Machines-II Laboratory	PCC	22EEP03	4	0	0	4	2
15.	22EEP05	Analog and Digital Integrated Circuits Laboratory	PCC	22EEP02	4	0	0	4	2
16.	22EEP06	Microprocessor and Microcontroller Laboratory	PCC	-	4	0	0	4	2
17.	22EEC14	Power System Analysis	PCC	22EEC11	4	3	I	0	4
18.	22EEC15	Control Systems	PCC	22EEC06, 22EEC09	4	3	I	0	4
19.	22EEC16	Power Electronics	PCC	22EEC05	3	3	0	0	3
20.	22EEP07	Control and Instrumentation Laboratory	PCC	22EEP03, 22EEP04	4	0	0	4	2
21.	22EEP08	Power Electronics	PCC	22EEP02	4	0	0	4	2

		Laboratory							
22.	22EEC17	Power System Protection and switch gear	PCC	22EEC11	3	3	0	0	3
23.	22EEC18	Electric drives and Control	PCC	22EEC06, 22EEC09	3	3	0	0	3
24.	22EEP09	Power System Simulation Practices Laboratory	PCC	22EEC11, 22EEC14	4	0	0	4	2

(f)	Mandatory No	on Credit Courses(MC)							
S. NO.	COURSE CODE	COURSE TITLE	CATEGO RY	PRE- REQUISI TE	CONTAC T PERIODS	L	т	Р	с
1	22MAN01	Induction Programme	MC	-	-	-	-	-	-
2	22MAN03	Yoga - I	MC	-	I	0	0	I	0
3	22MAN02	Soft /Analytical Skills - I	MC	-	3	I	0	2	0
4	22MAN05	Yoga - II	MC	-	I	0	0	I	0
5	22MAN04R	Soft / Analytical Skills - II	MC	-	3	I	0	2	0
6	22MAN09	Indian Constitution	MC	-	I	I	0	0	0
7	22MAN07R	Soft/Analytical Skills - III	MC	-	3	I	0	2	0
8	22MAN08R	Soft/Analytical Skills - IV	MC	-	3	Ι	0	2	0

	PROGE	RAMME ELECTIVE COURSE	S						
SL. N O	COURS E CODE	COURSE TITLE	CATEGO RY	PRE- RQUISITE	CONTA CT PERIOD S	L	т	Ρ	с
			VERTCAL 0						
		(CONVE	RTERS AND	DRIVES)	1	1	1	1	
١.	22EEX01	Power Switching Converters	PEC	-	3	3	0	0	3
2.	22EEX02	Special Electrical Machines	PEC	-	3	3	0	0	3
3.	22EEX03	Design of Electrical Machines	PEC	-	3	3	0	0	3
4.	22EEX04	Analysis of inverters	PEC	-	3	3	0	0	3
5.	22EEX05	Wind and Solar Electrical Systems	PEC	-	3	3	0	0	3
6.	22EEX06	IoT for smart grid	PEC	-	3	3	0	0	3

7.	22EEX07	Modern Power electronic	PEC	-	3	3	0	0	3
8.	22EEX08	Converters Bio Medical Instrumentation	PEC	-	3	3	0	0	3
		and Its Applications	VERTCAL I						
		(POWER S	YSTEM ENG	INEERING)					
9.	22EEX11	High Voltage Engineering	PEC	-	3	3	0	0	3
10.	22EEX12	HVDC Transmission Systems	PEC	-	3	3	0	0	3
11.	22EEX13	Power Quality	PEC	-	3	3	0	0	3
12.	22EEX14	Power System Operation and Control	PEC	-	3	3	0	0	3
13.	22EEX15	Fundamentals of electric Power utilization	PEC	-	3	3	0	0	3
14.	22EEX16	Energy Auditing, Conservation and Management	PEC	-	3	3	0	0	3
15.	22EEX17	Re structured power system	PEC	-	3	3	0	0	3
16.	22EEX18	Fundamentals of Fibre Optics and Laser Instrumentation	PEC	-	3	3	0	0	3
		(ELE	VERTCAL 2 CTRIC VEHI						
17.	22EEX21	Fundamentals of Electric Vehicles	PEC	-	3	3	0	0	3
18.	22EEX22	Battery pack modeling and Charging of Electric Vehicle	PEC	-	3	3	0	0	3
19.	22EEX23	Hybrid Electric Vehicles	PEC	-	3	3	0	0	3
20.	22EEX24	Testing and Electric Vehicle Policy	PEC	-	3	3	0	0	3
21.	22EEX25	EV Intelligent System	PEC	-	3	3	0	0	3
22.	22EEX26	Electrical Vehicles in Smart grid	PEC	-	3	3	0	0	3
23.	22EEX27	Design of motor and power converters for Electric Vehicles	PEC	-	3	3	0	0	3
24.	22EEX28	Electric Vehicle Architecture	PEC	-	3	3	0	0	3
			VERTCAL 3	IGINEERING)		•		•	
25.	22EEX31	Embedded System design	PEC	-	3	3	0	0	3
26.	22EEX32	Signals and Systems	PEC	-	3	3	0	0	3
27.	22EEX33	Embedded control system	PEC	-	3	3	0	0	3
28.	22EEX34	Signal Processing	PEC	-	3	3	0	0	3
29.	22EEX35	Embedded IoT	PEC	-	3	3	0	0	3
			l	1		1			<u> </u>

30.	22EEX36	Embedded Networking	PEC	-	3	3	0	0	3
31.	22EEX37	Embedded System for Automotive Applications	PEC	-	3	3	0	0	3
32.	22EEX38	MEMS and NEMS	PEC	-	3	3	0	0	3

	MANAG	EMENT ELECTIVES							
SL. N O	COURS E CODE	COURSE TITLE	CATEGO RY	PRE- RQUISITE	CONTAC T PERIODS	L	т	Ρ	с
THE	ORY								
١.	22GEA02	Principles of Management	HSMC	-	3	3	0	0	3
2.	22GEA03	Total Quality Management	HSMC	-	3	3	0	0	3
3.	22GEA04	Professional Ethics	HSMC	-	3	3	0	0	3

	OPEN E	LECTIVES							
SL. N O	COURS E CODE	COURSE TITLE	CATEG ORY	PRE- RQUISITE	CONTA CT PERIOD S	L	т	Р	с
THE	ORY								
Ι.	22EEZ01	Smart Grid	OEC	-	3	3	0	0	3
2.	22EEZ02	Renewable Energy Technology	OEC	-	3	3	0	0	3
3.	22EEZ03	Electric Vehicle	OEC	-	3	3	0	0	3
4.	22EEZ04	Energy Management and Auditing	OEC	-	3	3	0	0	3

	MINIOR	DEGREE													
	ELECTRICAL SYSTEMS														
SL. N O	COURS E CODE	COURSE TITLE	CATEGO RY	PRE- RQUISITE	CONTA CT PERIOD S	L	т	Р	с						
THE	ORY														
١.	22EEM01	Electric Circuits	OEC	-	3	3	0	0	3						
2.	22EEM02	Solid State Devices	OEC	-	3	3	0	0	3						
3.	22EEM03	Power Semiconductor devices	OEC	-	3	3	0	0	3						
4.	22EEM04	Electrical measurements and Instruments	OEC	-	3	3	0	0	3						
5.	22EEM05	Basics of Electrical Machines	OEC	-	3	3	0	0	3						
6.	22EEM06	Electric Drives	OEC	-	3	3	0	0	3						

7.	22EEM07	Power Systems	OEC	-	3	3	0	0	3
8.	22EEM08	Renewable Energy Systems	OEC	-	3	3	0	0	3

	SUMMARY														
	B.E- ELECTRICAL AND ELECTRONICS ENGINEERING														
S No	S. No SUBJECT CREDITS AS PER SEMESTER TOTAL Percenta														
0.110	AREA	I	П	III	IV	V	VI	VII	VIII	CREDITS	(%)				
I	HSMC	4	4					5		13	7.9				
2	BSC	8	8	4	3					23	4.				
3	ESC	10	5	5						20	12.2				
4	PCC		5	16	21	15	8			65	39.8				
5	PEC					9	9			18					
6	OEC						3	9		12	7.3				
7	EEC							2	10	12	7.3				
	TOTAL CREDITS	22	22	25	24	24	20	16	10	163	100				

		22EYA01 - PROFESSIONAL COMM (Common to All Brand					
		•		L	Т	Ρ	С
				2	0	2	3
PRERE	EQUISITE : N	IIL					
Course	Objective	To build essential English skills to a	ddress the challeng	ges of	comm	unicatio	on
Course	Objective:	To enhance communication emplo	ying LSRW skills				
	e Outcomes dent will be able	to	Cognitive Level	in	ighta; End S Exami	emes	ter
соі	Communicate environments.	effectively in various work	R		2	0%	
CO2	Involve indiver Skills.	se discourse forms utilizing LSRW	U		2	0%	
CO3	Participate act enhance the ci	ively in communication activities that reative skill.	U		2	0%	
CO4		n the target audience and contexts using f communication.	Ар		2	0%	
CO5	•	deas distinctly both in verbal and non- nication in work culture.	U		2	0%	

UNIT I -INTRODUCTORY SKILLS

Grammar – Parts of Speech – Verb (Auxiliaries – Primary & Modal, Main Verb) -**Listening** – Listening to Short Conversations or Monologues - Listening to Experiences – Listening to Descriptions- **Speaking** – Introducing Oneself – Exchanging Personal information - Talking about food and culture - **Reading**–

Reading for Interrogation – Reading Newspaper, Advertisements and Interpreting - Writing - Seeking Permission for Industrial Visit & In-plant Training

UNIT II – LANGUAGE ACUMEN

Grammar – Word Formation – Tenses (Present Tense) – Synonyms & Antonyms - **Listening** – Listeningto Announcements – Listening to Interviews - Listening and Note-taking - **Speaking** – Talking aboutHolidays & Vacations – Narrating Unforgettable Anecdotes - **Reading** – Skimming – Scanning (Short Textsand Longer Passages) – Critical Reading - **Writing** – Instruction – Process Description

UNIT III – COMMUNICATION ROOTERS

Grammar– Cause and Effect – Tenses (Past Tense) – Discourse Markers - **Listening** – Listening to Telephonic Conversations – Listening to Podcasts - **Speaking** – Talking about neoteric Technologies – Eliciting information to fill a form - **Reading** –Book Reading(Motivational) - Practicing Speed Reading

(6+6)

(6+6)

(6+6)

(reading newspaper reports & biographies) - **Writing** – Checklist – Circular, Agenda & Minutes of the Meeting

UNIT IV - DISCOURSE FORTE

(6+6)

Grammar – Tenses (Future Tense) –Yes/No & WH type questions – Negatives - **Listening** – Listening to TED/ Ink talks -**Speaking** – Participating in Short Conversations - **Reading** – Reading Comprehension (Multiple Choice / Short / Open Ended Questions) - **Writing** - E-Mail Writing

UNIT V - LINGUISTIC COMPETENCIES

(6+6)

Grammar – Articles – Homophones & Homonyms – Single line Definition – Phrasal Verb - **Listening** – Intensive listening to fill in the gapped text - **Speaking** –Expressing opinions through Situations & Role play - **Reading** – Cloze Texts - **Writing** – Paragraph Writing

LIST OF SKILLS ASSESSED IN THE LABORATORY

- I. Grammar
- 2. Listening Skills
- 3. Speaking Skills
- 4. Reading Skills
- 5. Writing Skills

TOTAL (L:30 , P:30) = 60 PERIODS

TEXT BOOKS:

1. Shoba K N., Deepa Mary Francis. *English for Engineers and Technologists*. Volume 1, 3rd Edition, Orient BlackSwanPvt.Ltd, Telangana, 2022.

REFERENCES:

- I. Koneru, Aruna. *English Language Skills*. Tata McGraw Hill Education (India) Private Limited, Chennai, 2006.
- 2. Hewings, M. Advanced English Grammar. Cambridge University Press, Chennai, 2000.
- 3. Jack C Richards, Jonathan Hull and Susan Proctor. *Interchange*. Cambridge University Press, New Delhi, 2015 (Reprint 2021).

WEB REFERENCE:

I. <u>https://youtu.be/f0uqUzEf3A8?si=vyzu5KGIfbu35_IQ</u>

				M	lapping	g of CC	Ds with	n POs /	PSOs					
						РС	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	П	12	I	2
I									2	3				
2									2	3				
3									2	3				
4									2	3				
5									2	3				
CO (W.A)									2	3				

		22MYB01-CALCULUS AND ALGEBRA (Common to All Branches)	LINEAR				
		(2000000)		L	т	Ρ	С
				3	Ι	0	4
PRE-R		NIL					
Course	e Objective:	• To understand the mathematical co real time problems.	oncepts of matrices	and an	alytica	geom	etry in
	•	 To formulate differential and integration engineering systems 	al equations to mo	del phy	rsical, b	iologic	al, and
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of C emest nation	ter
COI	Apply the conc complex proble	epts of matrix theory for find solutions to ems efficiently.	Ap		2	0%	
CO2	Analyze the g by using Analyt	eometric configurations and relationships ical geometry.	An		2	0%	
CO3		partial derivatives which involve heat oblems modeled by the heat equation.	Ap		2	0%	
CO4	differential eq	rential and integral techniques to solve the uations and multiple integrals in heat id mechanics and potential theory.	Ap		4	0%	
CO5	Demonstrate t	he importance of matrix theory, analytical integral methods using programming tools.	Ap	Int	ernal A	Assessn	nent

UNITI-MATRICES

Characteristic Equation-Eigen values and Eigen vectors of a matrix- Cayley Hamilton Theorem(excluding proof)and its applications-Quadratic Form-Reduction of a Quadratic form to canonical form by orthogonal transformation.

UNITII-ANALYTICAL GEOMETRY OF THREE DIMENSIONS

Equation of plane–Angle between two planes–Equation of straight lines-Coplanar lines–Equation of sphere –Orthogonal spheres.

UNITIII-GEOMETRICAL APPLICATIONS OF DIFFERENTIAL CALCULUS

Curvature–Curvature in Cartesian co-ordinates-Centre and Radius of curvature-Circle of curvature-Evolutes and Involutes.

UNITIV-FUNCTIONS OF SEVERAL VARIABLES

(9+3)

(9+3)

(9+3)

(9+3)

Partial derivatives-Euler's theorem on homogeneous function-Jacobian-Maxima and Minima of functions of Two variables-Constrained Maxima and Minima by Lagrange's multiplier method.

UNITV-MULTIPLE INTEGRALS

Double integration in Cartesian Co-ordinates-Change of order of integration-Area as double integral-Triple Integration in Cartesian Co-ordinates-Volume as triple integrals.

TOTAL(L:45+T:15) :60PERIODS

LIST OF PROGRAMS USING MATLAB (Assignment/Online Test):

- 1. Introduction to MATLAB
- 2. Matrix operations-Addition, Multiplication, Transpose and Inverse
- 3. Characteristic equation of a Matrix
- 4. Eigen values and Eigen vectors of Higher order Matrices.
- 5. Curve Tracing
- 6. Determining Maxima and Minima of a function of one variable.
- 7. Determining Maxima and Minima of a function of two variables.
- 8. Evaluating double integrals
- 9. Evaluating triple integrals
- 10. Finding area between two curves.

TEXT BOOKS:

- 1. Grewal, B.S., "Higher Engineering Mathematics", Khanna publications, 42nd Edition, 2012.
- 2. ErwinKreyszig, "Advanced Engineering mathematics", JohnWiley&sons, 9th Edition, 2013.
- 3. Veerarajan, T., "Engineering Mathematics of semesterl&II", TataMcGrawHill, 3rd Edition, 2016.

REFERENCES:

- 1. Bali, N.P., ManishGoyal, "A Textbook of Engineering Mathematics-Sem-II", Laxmi Publications, 6th Edition, 2014.
- 2. Kandasamy,P.,Thilagavathy,K.,Gunavathy,K., "Engineering Mathematics for first year",Scand & Co Ltd,9th Revised Edition,2013.
- 3. GlynJames, "Advanced Engineering Mathematics", Wiley India, 7th Edition, 2007.

				M	apping	g of CC) s with	POs /	PSO s					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	Ι	2
Ι	3													
2		2												
3		2												
4	3													
5	3				2				3			2		
CO (W.A)	3	2			2				3			2		

*Approved by Eleventh Academic Council

(9+3)

		22CYB04- ENGINEERING CH (Common to ECE and EEE E					
		,	ŀ	L	Т	Ρ	С
				3	0	0	3
PRE-R	REQUISITE : N						
Course	e Objective:	 To facilitate the students to ach electrochemistry, technical and c storage devices. To make the students conversant water techniques, surface cher techniques. 	commercial aspects with water trea	of er	nergy s ,	ources boiler	feed
	e Outcomes udent will be able	·	Cognitive Level	in	End S	ge of (emes inatio	ter
COI	Predict the potential of an o	nature, oxidation and reduction electrode.	An		2	0%	
CO2	•	renewable energy sources like nuclear, rgy and also on storage devices.	E		2	0%	
CO3		es of hardness in water and its removal er treatment techniques.	Ар		2	0%	
CO4		relationship between various types of ymers and polymer processing.	An		2	0%	
CO5		rinciples, theory of analytical techniques t the nature of chemical compounds.	Ар		2	0%	

UNIT I - ELECTROCHEMISTRY

Electrode potential - Nernst equation - derivation and problems - reference electrodes - standard

hydrogen electrode -calomel electrode - electrochemical series - significance - Types of cell - electrolytic and electrochemical cells - reversible and irreversible cells - potentiometric titrations (redox) - conductometric titrations (acid-base).

UNIT II - ENERGY SOURCES AND STORAGE DEVICES

Nuclear energy - nuclear fission - nuclear fusion - light water nuclear power plants - breeder reactor -

solar energy conversion - solar cells - solar water heater - Recent developments in solar cell materials - wind energy - batteries - types of batteries - lead acid storage battery - lithium-ion battery, Electric vehicles - working principles.

UNIT III - WATER TECHNOLOGY AND NANO MATERIALS

Municipal water treatment - disinfection methods (UV, ozonation, chlorination) - desalination of brackish

water - reverse osmosis - boiler troubles (scale, sludge , priming, foaming and caustic embrittlement) - treatment of boiler feed water - internal treatment (carbonate, phosphate and calgon conditioning) - external treatment - demineralization process. Nanomaterials - synthesis (laser ablation, and chemical vapour deposition method) and applications of nanomaterials.

(9)

(9)

(9)

UNIT IV - SURFACE CHEMISTRY AND POLYMERS

Surface chemistry - Adsorption - types - Differentiate between physical and chemical adsorption -

Freundlich adsorption isotherm - Langmuir adsorption isotherm. Polymers - classification - addition - condensation - copolymerization – plastics - thermoplastics and thermosetting plastics - preparation, properties and uses of PVC and nylon- polymer processing - compression and injection moulding techniques.

UNIT V - ANALYTICAL TECHNIQUES

Colorimetry - principles- estimation of Iron by colorimetry - UV-Visible spectroscopy- principles - instrumentation (block diagram only) - IR spectroscopy - principles - instrumentation (block diagram only)

- Flame Photometry - principles - instrumentation (block diagram only) - estimation of sodium by flame photometry - Atomic absorption spectroscopy - principles - instrumentation (block diagram only) - estimation of nickel by atomic absorption spectroscopy.

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- I. Dr.Ravikrishnan, A," Engineering Chemistry I & Engineering Chemistry II, Sri Krishna Hitech Publishing chem. Co. Pvt Ltd., 13th ed., Chennai, 2020.
- 2. S.S. Dara," A text book of Engineering Chemistry", S.Chand & Co. Ltd. New Delhi, 2019.

REFERENCES:

- 1. P.C.Jain and Monica Jain, "Engineering Chemistry", Vol I &II, Dhanpat Rai Pub, Co, New Delhi I5th ed., 2018.
- 2. B.Sivasankar, "Engineering Chemistry", Tata McGraw- Hill Pub. Co. Ltd., New Delhi, 2018

				M	lapping	g of CC	Ds with	POs /	PSOs					
						PO	s						PSC)s
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I			2				2							
2		2							2					
3	3						2							
4		2	2											
5						2						2		
CO (W.A)	3	2	2			2	2		2			2		

(9)

(9)

22CSC01 - PROBLEM SOLVING AND C PROGRAMMING (Common to All Branches)

		(Common to All	Branches)					
					L	Т	Ρ	С
					3	0	0	3
PRE-	REQUISITE : NIL							
Cour	rse Objectives:	To equip students wit computational problems					ge to	solve
	se Outcomes tudent will be able to		Cognitive Level	Weigh Sem			Os in ninati	
COI	Apply basic syntax language to write clear a	and semantics of C and structured code.	Ар			20%		
CO2		nditional statements and uctures for developing	Ар			20%		
CO3	Apply knowledge of ar computational problem	rays and strings to solve s.	Ар			20%		
CO4	,	lutions that integrate ques to solve complex s.	An			20%		
CO5	Analyze the performa pointers and to m efficiently.	nce implications using nanage file operations	An			20%		

UNIT I -PROBLEM SOLVING AND C PROGRAMMING BASICS

(9)

(9)

(9)

(9)

(9)

General Problem Solving: Algorithms, Flowcharts and Pseudo-codes, implementation of algorithms **Basics of C Programming**: Introduction to C - Structure of C program - Programming Rules – Compilation – Errors - C Declarations: Tokens - keywords - identifiers - constants - data types - variable declaration and initialization - type conversion - constant and volatile variables - operators and expressions.

UNIT II - DECISION CONTROL STATEMENTS

Managing Input and Output operations, Decision Control Statements: Decision control statements, Selection/conditional branching Statements: if, if-else, nested if statements. Basic loop Structures/Iterative statements: while loop, for loop, selecting appropriate loop. Nested loops break and continue statements.

UNIT III - ARRAYS AND STRINGS

Introduction to Array - Definition - Array initialization - Characteristics - One Dimensional Array - Array operations -Two dimensional arrays -Strings and String handling functions.

UNIT IV - FUNCTIONS

Functions: Basics - definition - Elements of User defined Functions - return statement, Function types, Parameter Passing Techniques, Function returning more values - Passing Array to Functions - Recursion - Storage classes.

UNIT V - POINTERS AND FILE MANAGEMENT

Pointer concepts - Pointers & Arrays, Structure concepts - Defining, Declaring, Accessing Member Variables, Structure within Structure - Union - File Management in C- Dynamic Memory Allocation

TOTAL (L:45) :45 PERIODS

TEXT BOOKS:

- I. Ashok N. Kamthane, "Programming in C", 2nd Edition, Pearson Education, 2013.
- 2. Sumitabha Das, "Computer Fundamentals and C Programming", 1st Edition, McGraw Hill, 2018.

REFERENCES:

- R. G. Dromey, "How to Solve it by Computer", Pearson Education India; 1st Edition, ISBN10: 8131705625, ISBN-13: 978-8131705629
- 2. Maureen Spankle, "Problem Solving and Programming Concepts", Pearson; 9th Edition, India, ISBN-10: 9780132492645, ISBN-13: 978- 0132492645
- 3. Yashavant Kanetkar, "Let us C", 16th Edition, BPB Publications, 2018.
- 4. ReemaThareja., "Programming in C", 2nd Edition, Oxford University Press, New Delhi, 2018.
- 5. Balagurusamy E., "Programming in ANSI C", 7th Edition, Mc Graw Hill Education, 2017.

				М	appii	ng of C	COs w	ith P	Os / PS	SOs				
60						F	POs						PS	iOs
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2	3												3	
3	3											3	3	
4		3										3	3	
5		3											3	2
CO (W.A)	3	3										3	3	2

		22MEC01 - ENGINEERING G (Common to AGRI, CIVIL, CHEMICAL		s)					
				Ĺ	Т	Ρ	С		
				2	0	2	3		
PRE-R		Nil							
		To Construct various plane curve	S						
		To Construct the concept of proj	ection of points, lir	nes an	d plane	5			
Course	e Objective:	 To Develop the projection of soli 	ds						
		 To Solve problems in sectioning c 	of solids and develo	ping t	he surf	aces			
		 To Apply the concepts of orthogr 	aphic and isometri						
	e Outcomes dent will be able	e to	Cognitive Level	in	ightaş End S Exami	emes	ter		
COI		wledge of engineering drawing standards Engineering drawings.	Ap		4	0%			
CO2		wledge of engineering drawing standards given 2D problem using first angle of	Ap		2	0%			
CO3		wledge of engineering drawing standards problem using first angle of projection	Ap		2	0%			
CO4	Analyze the giv	ven problem to create 3D drawing	An		2	0%			
CO5		endent study as a member of team and ve oral presentation on engineering	U	Internal Assessme					

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications - use of drafting instruments - BIS conventions and specifications - size, layout and folding of drawing sheets - lettering and dimensioning - scales.

UNIT I - PLANE CURVES

Basic geometrical constructions, curves used in engineering practices - conics - construction of ellipse, parabola and hyperbola by eccentricity method - construction of cycloid - construction of involutes of square and circle - drawing of tangents and normal to the above curves - theory of projection - principle of multiview orthographic projection - profile plane and side views - multiple views - representation of three dimensional objects - layout of views.

UNIT II - PROJECTION OF POINTS, LINES AND PLANES

Principal planes - first angle projection - projection of points - projection of straight lines (only first angle projections) inclined to both the principal planes - determination of true lengths and true inclinations by rotating line method - projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III - PROJECTION OF SOLIDS

Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to anyone of the principal plane and parallel to another by rotating object method.

UNIT IV - SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES

(6+6)

(6+6)

(6+6)

(6+6)

Sectioning of solids (prism, cube, pyramid, cylinder and cone) in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other - obtaining true shape of section - development of lateral surfaces of simple and sectioned solids - prisms, pyramids cylinder and cone.

UNIT V - ISOMETRIC AND ORTHOGRAPHIC PROJECTIONS

Principles of isometric projection - isometric scale - isometric projections of lines, plane figures, simple solids and truncated solids - prisms, pyramids, cylinders, cones – free hand sketching of orthographic views from isometric views of objects.

TOTAL (L:30+P:30) : 60 PERIODS

(6+6)

TEXT BOOKS:

- I. K.Venugopal and V.Prabhu Raja, "Engineering Graphics", New Age International (P) Limited, 2022.
- 2. N.S Parthasarathy and Vela Murali, "Engineering Drawing", Oxford University Press, 2015.

REFERENCES:

- I. N.D.Bhatt and V.M.Panchal, "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2014.
- 2. K.R.Gopalakrishna, "Computer Aided Engineering Drawing" (Vol I and II combined) Subhas Stores, Bangalore, 2017.
- 3. K. V.Natarajan, "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2018.
- 4. Luzzader, Warren.J, and Duff, John M, "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production", Eastern Economy Edition, Prentice Hall of India Pvt Ltd, New Delhi, 2005.
- 5. M.B.Shah and B.C.Rana, "Engineering Drawing", Pearson, 2nd Edition, 2009.

	Mapping of COs with POs / PSOs														
	POs														
COs	I	2	3	4	5	6	7	8	9	10	11	12	Ι	2	
I	3			3								I	3		
2	3			3								I	3		
3	3			3								I	3		
4	3			3								I	3		
5	3			3					2			I	3		
CO (W.A)	3			3					2			I	3		

22GEP01 - ENGINEERING PRACTICES LABORATORY

	(Comm	on to AGRI, BME, CHEM, CIVIL, ECE, EEE and MECH E	Branch	es)						
			L	Т	Ρ	С				
			0	0	4	2				
PRE-R	EQUISITE: N	IL								
Course	e Objective:	 To provide hands on training on various basic engineering To provide hands on training on welding in mechani To provide hands on training on various basic engineering To understand the basic working principle of electrities 	ical engineering gineering practices in ric components							
The Stu	dent will be able	Course Outcomes to	Co	gnitiv	e Levo	el				
соі	Design new lay	youts of civil work for residential and industrial buildings.		А	Ρ					
CO2	Apply the cor components	ncepts of welding in repairing works and making various		А	Ρ					
CO3	Design new o industries	components using machining processes in real life and		A	Ρ					
CO4		s of basic electrical engineering for wiring in different areas arious electrical quantities		А	Ρ					
CO5	Apply electron	ic principles to measure various parameters of a signal.		А	P					

GROUP-A (MECHANICAL AND CIVIL ENGINEERING)

I - CIVIL ENGINEERING PRACTICE

Buildings:

a. Study of plumbing and carpentry components of residential and industrial buildings, Safety aspects

Plumbing:

- a. Study of tools and operations
- b. Hands-on-exercise: External thread cutting and joining of pipes

Carpentry:

- a. Study of tools and operations
- b. Hands-on-exercise: "L" joint and "T" joint

II - MECHANICAL ENGINEERING PRACTICE

Welding:

- a. Study of arc welding, gas welding tools and equipments
- b. Arc welding- Butt joints, Lap joints and Tee joints
- c. Practicing gas welding

(15)

(15)

Basic Machining:	
a. Study of lathe and drilling machine	
b. Facing and turning	
c. Drilling and Tapping	
Sheet Metal Work:	
a. Study of tools and operations	
b. Rectangular tray	
c. Cone	
GROUP - B (ELECTRICAL AND ELECTRONICS)	-
I - ELECTRICAL ENGINEERING PRACTICE	(15)
a. Residential house wiring using Switches ,fuse, indicator, lamp	1
b. Fluorescent lamp wiring	
c. Stair Case Wiring	
d. Measurement of electrical quantities – Voltage, current ,power in R Circuit	
e. Study of Electrical apparatus-Iron box & water heater	
f. Study of Electrical Measuring instruments- Megger	
II - ELECTRONICS ENGINEERING PRACTICE	(15)
a. Study of Electronic components and various use of multi meter.	
b. Measurement of AC signal parameter (peak-peak, RMS period, frequency) using CRO.	
 Study of logic gates AND, OR, XOR and NOT. 	
d. Study of Clock Signal.	
d. Study of Clock Signal.	

TOTAL (P: 60) = 60 PERIODS

	Mapping of COs with POs / PSOs													
	POs													
COs		2	3	4	5	6	7	8	9	10		12	I	2
I	3													
2		3												
3			2											
4	3												I	
5	3												Ι	
CO (W.A)	3	3	2										I	

22CSP01 - PROBLEM SOLVING AND C PROGRAMMING LABORATORY (Common to All Branches)

			<i>anenes</i>							
				L	Т	Ρ	С			
				0	0	4	2			
PRE-F	REQUISITE : N	NIL								
Cours	se Objective:	Dbjective: To develop programs to solve basic problems by understanding basic co C language								
	se Outcomes udent will be ab	le to	Cognitive	Leve	l					
COI		algorithms for simple problems	Ар							
CO2	Apply the co types	ncept of pointers of different	Ap							
CO3	Apply and mar and structures	nipulate data with arrays, strings	Ap	Ар						
CO4	Apply the cor memory alloca	ncept of functions and dynamic tion	f functions and dynamic Ap							
CO5	,	d correct logical errors luring execution	An							

١.	Draw the flowchart for the following using Raptor tool.
	a) Simple interest calculation
	b) Greatest among three numbers
	c) Find the sum of digits of a number
2.	Programs for demonstrating the use of different types of operators like arithmetic, logical
	relational and ternary operators (Sequential and Selection structures)
3.	Programs for demonstrating repetitive control statements like 'for', 'while' and 'do-while'
	(Iterative structures)
4.	Programs for demonstrating one-dimensional and two-dimensional numeric array
5.	Programs to demonstrate modular programming concepts using functions
6.	Programs to implement various character and string operations with and without built-in
	library functions.
7.	Programs to demonstrate the use of pointers
8.	Programs to illustrate the use of user-defined data types
9.	Programs to implement various file management.
10.	Program Using Dynamic memory allocation functions

HARDWARE / SOFTWARE REQUIRED FOR A BATCH OF 30 STUDENTS:

Hardware:

- LAN System with 33 nodes (OR) Standalone PCs 33 Nos.
- Printers 3 Nos.
- Software:
- RAPTOR Tool
- Compiler C

TOTAL (P:60): 60 PERIODS

	Mapping of COs with POs / PSOs														
COs	POs													Os	
	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3												3		
2	3												2		
3	3												2		
4	3												2		
5		3			2							2	3		
CO (W.A)	3	3			2							2	2.4		

	(Commo	22CYP01- CHEMISTRY LABORATORY n to AGRI, BME, CHEM, CIVIL, ECE, EEE and MECH	H Bran	ches)		
	```		L	T	Ρ	С
			0	0	2	Ι
PRE-R	REQUISITE: N	IL				
Course	e Objective:	 To determine the copper in brass in the given soluti of hardness, alkalinity, chloride and dissolved oxyge To perform a potentiometric, conductometric titrat solution of known Normality. 	n in wa	iter.		C
	e Outcomes Ident will be able	to	Co	ognitiv	ve Lev	el
COI	Predict the vari	ous water quality parameters by volumetric analysis.		А	n	
CO2	Evaluate the am	ount of copper in the given solution by titration method.		E	Ξ	
CO3	Analyze the co	nductance and emf of the different solutions.		А	n	
CO4	Analyze and gai	n experimental skill about potential of hydrogen ion.		А	n	
CO5	Examine the pH	l of various acidic, basic and neutral solutions.		А	n	

LIST OF EXPERIMENTS :

- I. Determination of total, temporary & permanent hardness of water by EDTA method.
- 2. Determination of alkalinity in water sample.
- 3. Determination of chloride content of water sample by Argentometric method.
- 4. Determination of DO content of water sample by Winkler's method.
- 5. Estimation of copper in brass by EDTA.
- 6. Conductometric titration of strong acid vs strong base.
- 7. Estimation of iron content of the given solution using potentiometer.
- 8. Determination of strength of given hydrochloric acid using pH meter.

Total (30 P) = 30 periods

*Ratified by Eleventh Academic Council

	Mapping of COs with POs / PSOs														
	POs														
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2	
Ι					3										
2							2								
3							2								
4					3										
5							2								
CO (W.A)					3		2								

*Ratified by Eleventh Academic Council

Approved by Tenth Academic Council

22MAN01 INDUCTION PROGRAMME (For Common To All Branches)

L	Т	Ρ	С
-	-	-	-

PRE-REQUISITE: NIL

This is a mandatory 2 week programme to be conducted as soon as the students enter the institution. Normal classes start only after the induction program is over.

The induction programme has been introduced by AICTE with the following objective:

"Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed."

"One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character. "

Hence, the purpose of this programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.

The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

(i) Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.

(ii) Creative Arts

Every student would choose one skill related to the arts whether visual arts or performing arts. Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it everyday for the duration of the program. These would allow for creative expression. It would develop a sense of aesthetics and also enhance creativity which would, hopefully, grow into engineering design later.

(iii) Universal Human Values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through do's and dont's, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real life activities rather than lecturing.

Discussions would be conducted in small groups of about 20 students with a faculty mentor each. It would

be effective that the faculty mentor assigned is also the faculty advisor for the student for the full duration of the UG programme.

(iv) Literary Activity

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

(v) **Proficiency Modules**

This would address some lacunas that students might have, for example, English, computer familiarity etc.

(vi) Lectures by Eminent People

Motivational lectures by eminent people from all walks of life should be arranged to give the students exposure to people who are socially active or in public life.

(vii) Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged.

(viii) Familiarization to Dept./Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.

(ix) Department Specific Activities

About a week can be spent in introducing activities (games, quizzes, social interactions, small experiments, design thinking etc.) that are relevant to the particular branch of Engineering/Technology/Architecture that can serve as a motivation and kindle interest in building things (become a maker) in that particular field. This can be conducted in the form of a workshop. For example, CSE and IT students may be introduced to activities that kindle computational thinking, and get them to build simple games. ECE students may be introduced to building simple circuits as an extension of their knowledge in Science, and so on. Students may be asked to build stuff using their knowledge of science.

Induction Programme is totally an activity based programme and therefore there shall be no tests / assessments during this programme.

REFERENCES:

I.Guide to Induction program from AICTE

		22MAN03 - YOGA -							
		(For Common To All Bra	nches)						
				L	Т	Р	С		
				0	0		0		
PRE-F	REQUISITE : N	NIL							
Cours	e Objective:	 To make students in understand mental and physical wellness. To provide awareness about the following yoga exercises and prin To develop mental wellbeing thro To strengthen the body through p 	e significance of lea iciples. ugh meditation and	ading	a peac	ceful lit	fe by		
		• To inculcate the knowledge abo benefits	out different type	s of .	Asanas	and	their		
	e Outcomes udent will be able	to	Cognitive Level	in	End S	ge of (Semes inatio	ter		
COI	Understand the mental goodnes	e importance of yoga for physical and ss.	U						
CO2	Perform the yo salutation etc.	ga exercises for hand, leg, eye and sun	Ар	_					
CO3	Learn and pra good mental he	actice meditation techniques for keeping alth	ng Ap Internal Assessn						
CO4	Develop their b	ody by performing yoga exercises.	Ар						
CO5		different types of yoga Asanas for personal fitness.	Ap						

UNIT I – INTRODUCTION TO YOGA

Meaning and Importance of Yoga - Elements of Yoga - Introduction - Asanas, Pranayama, Meditation and Yogic Kriyas - Yoga for concentration & related Asanas (Sukhasana; Tadasana; Padmasana and Shashankasana) - Relaxation Techniques for improving concentration - Yog-nidra.

UNIT II - YOGA AND LIFE STYLE

Asanas as Preventive measures – Hypertension:Tadasana, Vajrasana, Pavan Muktasana, Ardha Chakrasana, Bhujangasana, Sharasana – Obesity: Procedure, Beneits and contraindications for Vajrasana, Hastasana, Trikonasana, Ardh Matsyendrasana – Back Pain: Tadasana, Ardh Matsyendrasana, Vakrasana, Shalabhasana, Bhujangasana - Diabetes: Procedure, Benefits and contraindications for Bhujangasana, Paschimottasana, Pavan Muktasana, Ardh Matsyendrasana – Asthema: Procedure, Benfits and contraindications for Sukhasana, Chakrasana, Gomukhasana, Parvatasana, Bhujangasana, Paschimottasana, Matsyasana.

(3)

(3)

(3)
– Relax meditation.
(3)
(3)
Thirikosana – Thandasana –

I. Light On Yoga by B.K.S. Iyengar.

				M	lapping	g of CC	Ds with	POs /	PSOs					
	POs												PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I								3	2			3		
2								3	2			3		
3								3	2			3		
4								3	2			3		
5								3	2			3		
CO (W.A)								3	2			3		

		22EYA02- PROFESSIONAL COMM (Common to All Branch						
			,	L	Т	Ρ	С	
				2	0	2	3	
PRERE	QUISITE: 2	2EYA01						
Course	Objective:	To enhance the students with nece	essary English lang	uage ski	ills			
Course	Objective.	 To enable students to communicat 	e effectively in an	academ	nic sett	ing		
	e Outcomes dent will be able	e to	Cognitive Level	in	End S	ge of C emest natior	er	
COI	Frame senten with accuracy	ces both in written and spoken forms and fluency.	R	20%			%	
CO2	•	structures to read and understand well- ats encountered in academic or s.	U		2	0%		
CO3		competency to express one's thoughts riting in a meaningful way.	U		2	0%		
CO4		hance competence in the four modes of ing, Speaking, Reading and Writing.	Ap	20%				
CO5		ous tasks, such as role plays, debates, ons apart from the use of correct inctuation.	U		20	0%		

UNIT I - LANGUAGE RUDIMENTS

Grammar – Active and Passive Voice – Impersonal Passive Voice – Numerical Expressions - Listening – Listening for Specific Information and Match / Choose / Fill in the texts - Speaking – Describing a Person -Making Plans -Reading – Intensive Reading -Writing – Job Application with Resume

UNIT II - RHETORIC ENHANCERS

Grammar – Reported Speech – Infinitive and Gerund - Listening – Listening to Iconic Speeches and making notes - Listening news / documentaries - Speaking –Talking over Phone – Narrating Incidents - Reading – Extensive Reading (Motivational Books) - Writing – Recommendation

UNIT III - TECHNICAL CORRESPONDENCE

Grammar – If Conditionals – Blended Words - Listening – Listening to business conversation on audio and video of Short Films, News, Biographies - Speaking – Synchronous communication and Asynchronous communication - Opportunities and threats in using digital platform- Reading - Finding key information in a given text - Writing –Netiquettes- Inviting Dignitaries - Accepting & Declining Invitation

UNIT IV - CORPORATE COMMUNICATION

Grammar – Concord – Compound Words - Listening – Listening to Roles and Responsibilities in

Corporate - Listening to technical videos - Speaking – Introduction to Technical Presentation - Story Telling - Reading – Reading and Understanding Technical Articles - Writing – Report Writing (Accident, Survey and feasibility)

(6+6)

(6+6)

(6+6)

(6+6)

Reading and Interpreting Visual Materials - Writing – Analytical Paragraph Writing

LIST OF SKILLS ASSESSED IN THE LABORATORY

- I. Grammar
- 2. Listening Skills
- 3. Speaking Skills
- 4. Reading Skills
- 5. Writing Skills

TOTAL (L:30 , P:30) = 60 PERIODS

TEXT BOOKS:

2. Sudharshana, N.P and Saveetha.C. *English for Technical Communication*. Cambridge University Press, New Delhi, 2016 (Reprint 2017).

REFERENCES:

1. Rizvi, M Ashraf. *Effective Technical Communication*. Second Edition, McGraw Hill Education India PvtLtd, 2017.

2. Rodney Huddleston, Geoffrey K. Pullum and Brett Reynolds. A Student's Introduction to

English Grammar. Second Edition, Cambridge University Press, New Delhi, 2022.

WEB REFERENCE:

I. <u>http://youtu.be/URtdGiutVew</u>

				M	lapping	g of CC	Ds with	POs /	PSOs						
	POs												PS	PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
Ι									2	3					
2									2	3					
3									2	3					
4									2	3					
5									2	3					
CO (W.A)									2	3					

22MYB03 – STATISTICS AND NUMERICAL METHODS

(Comm		l&DS , CSE,IT,IOT,CS(Cyber security)CIVI			MEC	H Brar	ches)
				L	Т	Ρ	С
				3	I	0	4
PRE-R	EQUISITE : N	NIL					
Course	Objective:	 To understand the concept of test samples and design of experiments. To provide adequate knowledge ordinary differential equations and important role in engineering and test 	in numerical numerical inte	techn gratio	iques	to sc	olving
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of (emestination	ter
COI	Interpret the design to solve	principles and techniques in experimental e the variance	Ap		2	0%	
CO2	various types	damental numerical techniques used to solve of mathematical problems on solution of erpolation and numerical integration.			4	0%	
CO3	Determine th the testing of	e statistics based on the data and related to hypothesis.	An		2	0%	
CO4		world problems using numerical methods for crating their applicability and limitations.	Ap	20%			
CO5		the importance of interpolation and a techniques to solve real-world problems in ines of Engineering using modern tools.	Ар	Internal Assess			

UNIT I - TESTING OF HYPOTHESIS

Sampling Distributions-Tests for single mean, difference of means (Large and Small samples) Using z, t - distribution, F – distribution- Chi-square - Test for independence of attributes and Goodness of fit.

UNIT II - DESIGN OF EXPERIMENTS

Analysis of variance- Completely randomized design - Randomized block design - Latin square design.

UNIT III - SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS

Solution of algebraic and transcendental equations - Fixed point iteration method - Newton Raphson method- Solution of linear system of equations Gauss elimination method – Iterative methods of Gauss Jacobi and Gauss Seidel Methods– Eigenvalues of a matrix by Power method .

(9+3)

(9+3)

(9+3)

UNIT IV - INTERPOLATION AND APPROXIMATION

Lagrange's and Newton's divided difference interpolations - Newton's forward and backward difference interpolation - Numerical single and double integrations using Trapezoidal and Simpson's I/3 rules - Romberg's Methods.

UNITY - NUMERICAL DIFFERENTIATION AND INTEGRATION

Single step methods: Taylor's series method - Euler's method - Modified Euler's method - Fourth order Runge - Kutta method for solving first order differential equations - Multi step methods: Milne's and Adams -Bash forth predictor corrector methods for solving first order differential equations.

TOTAL (L:45+T:15) : 60 PERIODS

TEXT BOOKS:

- Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science", Khanna Publishers, 10th Edition, New Delhi, 2015.
- 2. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015.
- 3. Gupta S.C. and Kapoor V. K., "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 12th Edition, 2020.

REFERENCES:

- I. Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.
- 2. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014.
- 3. Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 7th Edition, 2007.

	Mapping of COs with POs / PSOs													
		POs											PS	Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3													
3		2												
4	3													
5	3				2				3			2		
CO (W.A)	3	2			2				3			2		

*Ratified by Eleventh Academic Council

(9+3)

(9+3)

		22PYB03 - SOLID STATE PH (Common to ECE, EEE & I					
		· · · ·	L.	L	Т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE: N						
Course	e Objective:	 To gain adequate information a properties of nanostructures. To expose the concepts of Photor 					
		engineering materials					
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of (Semes inatio	ter
COI		es of semiconductor physics to the design tion of semiconductor-based biomedical	Ар				
CO2	optimize and	knowledge of dielectric properties to enhance the performance of electronic uch as capacitors and transformer.	Ар		2	.0%	
CO3	are utilized in	magnetic moments and superconductivity the design of biomedical devices like MRI magnetic sensors.			2	.0%	
CO4		impact of fabrication techniques on he performance and efficiency of ors.	An		2	.0%	
CO5		the properties and preparation methods of erials can be utilized to develop innovative aterial science.	Ev		2	.0%	

UNIT I -SEMICONDUCTING MATERIALS

Introduction to semiconducting materials –Elemental and compound semiconductors – Intrinsic semiconductor – carrier concentration derivation – variation of Fermi level with temperature – electrical conductivity – band gap determination – extrinsic semiconductors (qualitative) – Hall effect – determination of Hall coefficient – Applications

UNIT II -DIELECTRIC MATERIALS

Electrical susceptibility – dielectric constant – electronic, ionic, orientation and space charge polarization – frequency and temperature dependence of polarization – internal field – Claussius – Mosotti relation (derivation) – dielectric loss – dielectric breakdown – uses of dielectric materials (capacitor and transformer) – ferro electricity and applications.

UNIT III -MAGNETIC AND SUPERCONDUCTING MATERIALS

(9)

(9)

(9)

Origin of magnetic moment – Bohr Magneton – Types of magnetic materials – Domain theory – Hysteresis – soft and hard magnetic materials – Ferrites – applications – Superconductivity – properties – types of superconductors – BCS theory of superconductivity (qualitative) – High T_c superconductors – Application of superconductors – Magnetic levitation.

Education Private Limited, 2016, Third Edition. 3. Subrahmanyam N, Brijlal, "A Text Book Of Optics" S.Chand& Co. Ltd, New Delhi, 2019.

WEB LINKS:

TEXT BOOKS:

REFERENCES:

2017.

New Delhi, 2019.

- 1. <u>https://bayanbox.ir/view/7764531208313247331/Kleppner-D.-Kolenkow-R.J.-Introduction-to-Mechanics-2014.pdf</u>.
- 2. <u>https://physicaeducator.files.wordpress.com/2017/11/electricity_and_magnetism-by-purcell-3ed-</u>ed.pdf.
- 3. https://rajeshvcet.home.blog/regulation-2021/ph3151-engineering-physics-study-materials/
- 4. https://zenodo.org/record/243407#.ZEgPZXZBzIU
- 5. <u>https://farside.ph.utexas.edu/teaching/qmech/qmech.pdf</u>.
- 6. https://web.pdx.edu/~pmoeck/phy381/workbook%20nanoscience.pdf.

	Mapping of COs with POs / PSOs													
60.	POs									PS	PSO s			
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3	2												
2	3													
3	3													
4	3		3				2						3	
5	3					2	2					2		
CO (W.A)	3	2	2	0	0	2	2	0	0	0	0	2	3	0

(9)

(9)

	PROCESS OF	INTERGATED	CIRCUITS
ADRICATION	FROCE33 OF	INTERGATED	CIRCOITS

Bulk crystal growth – Epitaxial growth – masking and etching-diffusion of impurities-selective diffusion – formation of PN junction – resistors – capacitors – inductors – isolation methods – metal semiconductor contact – Introduction to integrated circuit – monolithic and hybrid circuits – thin film and thick film technology – Definition of LSI, MSI, VLSI circuits.

UNIT V -ADVANCED MATERIALS AND NANO TECHNOLOGY

Metallic glasses: preparation, properties and applications – Shape Memory Alloys (SMA): Characteristics, properties of NiTi alloy, application – Nano materials: Properties, Preparation – Pulsed laser deposition – chemical vapour deposition of nano particles and applications – Carbon nano tubes: fabrication – arc method – structure – properties and application.

1. M.N.Avadhanulu and P.G.Kshirsagar, "A text book of Engineering Physics", S. Chand and Company,

2. A.Marikani, "Materials Science", PHI Learning Private Limited, Eastern Economy Edition, 2017.

I. B.Rogers , J. Adams and S.Pennathur, "Nanotechnology : Understanding Small System" CRC Press,

2. Jacob Millman, Charistos C Halkilas, SatyabrataJit "Electronic Devices & Circuits", Tata McGraw Hill.

3. M.A.Wahab, "Solid State Physics", 3rd edition ,Narosa Publishing House Pvt.Ltd., 2016

TOTAL(L:45) = 45 PERIODS

		22CSC02 –DATA STRUC (Common to 22AIC01, 22CCC01						
				L	Т	Р	С	
				3	0	0	3	
PRE-I	REQUISITE : 22	CSC01						
Cour	se Objective:	 To develop skills to apply To apply abstract data typ sorting, and basic algorithm ana 	es (ADTs), recur					
	se Outcomes tudent will be able	to	Cognitive Level	Weight Semes				
COI	Apply pointer ar	d array concepts in functions.	Ap		20%	0		
CO2	Solve problems linked list.	using various implementations of	Ap	20%				
CO3	Make use of AD solving real worl	Ts like stack and queue for d problems	Ap		20%	0		
CO4	Analyze the tree non-linear data s	traversal algorithms for various structures.	An	20%				
CO5	Analyze appropr computing probl	iate graph algorithms for ems	An	20%				

UNIT I - POINTERS USING ARRAYS AND STRINGS

Pointers : Introduction – Pointers and arrays– passing an array to a function– returning an array from function – NULL pointers –Array of pointers – Pointer-to-pointer – Dangling Pointer. Function pointers: calling a function using function pointer- Using pointer as a function argument

UNIT II - LIST

Abstract Data Types (ADTs) – List ADT – Array-based implementation – Linked list implementation – Singly linked lists – Circularly linked lists – Doubly-linked lists – Applications of lists – Polynomial ADT

UNIT III - STACKS AND QUEUES

Stack ADT – Operations – Applications – Balancing Symbols – Evaluating arithmetic expressionsInfix to Postfix conversion – Function Calls – Queue ADT – Operations – Circular Queue – DeQueue – Applications of Queues

UNIT IV - TREE

Tree ADT – Tree Traversals - Binary Tree ADT – Expression trees – Binary Search Tree ADT – AVL Trees – Priority Queue (Heaps) – Binary Heap.

UNIT V - GRAPHS

Definitions – Representation of Graphs – Types of Graph – Graph Traversal: Depth-First Search (DFS) – Breadth-First Search (BFS) – Topological Sort – Applications of DFS: Bi-connectivity – Euler Circuits – Finding Strongly Connected Components – Applications of BFS: Bipartite Graph.

TOTAL (L:45) : 45 PERIODS

(9)

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. Sumitabha Das, "Computer Fundamentals &C Programming", McGraw Hill Education(India) Private Limited, 1st Edition, 2018.
- 2. Weiss M. A., "Data Structures and Algorithm Analysis in C", 2nd Edition, Pearson Education, 2016.

REFERENCES:

- 1. Yashavant Kanetkar, "Pointers in C", BPP Publications, 4th Edition, 2017.
- 2. PradipDey, Manas Ghosh, "Programming in C", Oxford Higher Education, 2nd Edition, 2016.

					Mappi	ng of C	COs wi	th POs	s / PSC	s					
Cos						F	POs						PS	Os	
COS	Ι	I 2 3 4 5 6 7 8 9 10 11 12													
I	3											3	3		
2	3	3													
3	3											3	3		
4		3										3	3	3	
5		3										3	3	3	
CO (W.A)	3	3										3	3	3	

		22EEC03-ELECTRIC CIRCUI (For EEE Branch only					
		\$		L	Т	Ρ	С
				2	Ι	0	3
PRE-F	REQUISITE : 1	NIL					
Course	e Objective:	 To familiarize the basic laws, so methods of analyzing electrical ci To explain the use of network th To get an insight into analysis of r 	rcuits. eorems and the co	oncept	of res		
	e Outcomes udent will be able	to	Cognitive Level	in	eightag End S Exami	emes	ter
соі		us parameters of electric circuits using dindependent sources.	Ар		4	0%	
CO2	and network t	owledge of KVL, KCL, Graph Theory heorems to the given electrical circuit lesired parameter	Ap		2	0%	
CO3	Analyze given conclusion	electrical circuit to arrive at a suitable	An		I	5%	
CO4	Differentiate condition in th	balanced and unbalanced load ree phase AC circuits	An		2	5%	
CO5	Analyze AC ci	rcuits and resonance	An		ernal A ssignmo Q		

UNIT I - BASIC CIRCUITS ANALYSIS

Introduction-Circuit Elements –Current and Voltage sources- Circuit variables -Ohm's and Kirchhoff's laws – Resistive circuits- Series and parallel reduction –Current division rule and Voltage division rule - Mesh and Nodal analysis for D.C circuits

UNIT II -NETWORK REDUCTION AND NETWORK THEOREMS FOR DC CIRCUITS

(9)

(9)

(9)

Network reduction: Source transformation, Star delta transformation.

Network theorems: Superposition theorem, Thevenin's theorem, Norton's theorem, Maximum power transfer theorem and Reciprocity theorem

UNIT III - AC CIRCUITS

Introduction to alternating quantities - Average and RMS values, Peak and Form Factors – Power, Power factor and energy – AC signals and RLC circuits-Network theorems: Thevenin's, Norton's theorem

UNIT IV - RESONANCE AND COUPLED CIRCUITS Resonance in Electric Circuits-Series and parallel resonance. Variation of imp

Resonance in Electric Circuits-Series and parallel resonance- Variation of impedance with frequency-Bandwidth of RLC circuit- Quality factor - Impedance of RLC circuit near resonance-Selectivity- Coupled Circuits: Self and mutual inductance, Co-efficient of coupling.

UNIT V -THREE PHASE CIRCUITS AND POWER MEASUREMENTS

Three phase voltages and currents-Phase sequence-Line and phase quantities- Phasor diagrams-Balanced and unbalanced loads- Analysis of three phase 3-wire, 4-wire circuits with star and delta connected loads- Power and power factor measurements using single and two wattmeter methods.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- Jr., William H. Hayt, Kemmerly, Jack E.Phillips, Jamie D.Durbin, Steven M. "Engineering Circuits Analysis", 9th edition., Tata McGraw Hill publishers, New Delhi, 2020
- 2. Sudhakar A and Shyam Mohan S Pall, "Circuits and Network Analysis and Synthesis", McGraw Hill Education India pvt.ltd New Delhi, 2015

REFERENCES:

- 1. Van Valkenburg M.E., "Network Analysis", Pearson Education India, Revised 3 rd Edition, 2019
- 2. S.R. Paranjothi, "Electric Circuits Analysis", New Age International Ltd., New Delhi, 4th Edition, 2014
- Charles K. Alexander and Mathew N.O. Sadiku, "Fundamentals of Electric Circuits", 2nd Edition Tata McGraw Hill publishers, 2013.

				M	lapping	g of CC	Os with	POs /	PSOs						
						PC	Ds						PS	Os	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3												2		
2		3													
3		3											2		
4			3										2		
5									I	I		I			
CO (W.A)	3	3	3						I	I		I	2		

(9)

(9)

		22CSP02 – DATA STRUCTURES LABORATO (Common to 22AIP01, 22CCP01, 22CIP01 and 22IT				
			L	Т	Р	С
			0	0	4	2
PRE-R	EQUISITE : 22	CSP01				
Course	e Objective:	To understand the fundamental concepts of data struct lists, stacks, queues, trees, and graphs.	ures, in	cluding	arrays,	linked
	e Outcomes Idents will be able	to		C	ognitiv	e Level
COI	Applying pointe	rs and implement array operations			Ap	D
CO2	Analyze differer	t steps on linked lists.			Ar	า
CO3	Capable of wor	king with stack and queue principles.			Ar	ı
CO4	Cable to creating	ng and modifying a variety of tree operations.			С	
CO5	Possible for exe	cuting numerous graph functions			Ap)

LIST OF EXPERIMENTS:

- I. Pointer using ID, 2D array
- 2. Implementation of singly linked list and its operations
- 3. Implementation of doubly linked list and its operations
- 4. Implementation of circular linked list and its operations
- 5. Implementation of Infix to postfix conversion using stack ADT
- 6. Implement the application for evaluating postfix expressions using array of stack ADT
- 7. Implementation of reversing a queue using stack
- 8. Binary Search Tree
- 9. AVL Tree
- 10. Priority Queues (Heaps)
- 11. Implementation of Graph Traversals(BFS, DFS)

HARDWARE / SOFTWARE REQUIRED FOR A BATCH OF 30 STUDENTS:

Hardware:

LAN System with 33 nodes (OR) Standalone PCs – 33 Nos.

Software:

Compiler – C

TOTAL (P:60) : 60 PERIODS

					Маррі	ng of C	COs wi	th POs	s / PSC	s				
Cos						I	POs						PSOs	
COS	Ι	12	Ι	2										
I	3		3									3		3
2	3	3		3										3
3			3										3	
4		3		3			3					3		
5			3	3					3			3	3	
CO (W.A)	3	3	3	3			3		3			3	3	3

				CS LABORA All Branche						
		•			•		L	Т	Ρ	С
							0	0	2	I
PRE-R	EQUISITE: 2	2CHC09								
Course	e Objective:	correlate • To introde	with the Phy	experiments t						
	e Outcomes Ident will be able	to					Co	ognitiv	ve Lev	el
COI		effects of materia on-uniform bend		-	itions on	the		A	۸n	
CO2		es of light intera laser diffraction t		ermine the p	article siz	e of		A	νp	
CO3		ccuracy of the v s in the literature	•	f different co	lors with	the		E	Īv	
CO4	Measure the characteristics	effectiveness o	f the solar	cell based	on its	V-I		E	Īv	
CO5	,	orinciples underly of the thickness of		•	thod for	the		A	Nn	

LIST OF EXPERIMENTS:

- I. Determination of Young's modulus by non-uniform bending method
- 2. Determination of (a) wavelength and (b) particle size using Laser.
- 3. Determination of thermal conductivity of a bad conductor Lee 's Disc method.
- 4. Determination of wavelength of mercury spectrum spectrometer grating
- 5. Determination of band gap of a semiconductor.
- 6. Determination of thickness of a thin wire Air wedge method.
- 7. Determination of V-I characteristics of solar cell.

TOTAL (P:30) = 30 PERIODS

				Марр	oing o	f COs	with	POs /	PSO	s				
						P	Os						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	Ι	2
I	3	3												
2	3											2		
3	3	3												
4	3											2		
5	3	3												
CO (W.A)	3	3										2		

		22EEP01- ELECTRIC CIRCUITS LABORATORY (For EEE Branch only)				
		, <i>n</i>	L	Т	Ρ	С
			0	0	4	2
PRE-F	REQUISITE::	NIL				
		• To provide fundamentals concepts of electric circuit	ts.			
Cours	e Objective:	 To understand and analyze the basic theorems of C To get an insight into solution of three phase power 				
	e Outcomes udent will be able	to	Co	gnitiv	e Lev	el
соі		and experimental methods to verify the fundamental or the given DC/AC circuit		А	P	
CO2	theorems (Su	and experimental methods to verify the various electrical perposition, Thevenin, Norton and maximum power e given DC/AC circuit		A	n	
CO3	Analyze transie experimental m	nt behavior of the given RLC circuit using simulation and ethods		А	P	
CO4		ncy response of the given series and parallel RLC circuit and experimentation methods		А	n	
CO5	Analyze the per and experiment	formance of the given three-phase circuit using simulation al methods		(2	

LIST OF EXPERIMENTS:

- I. Experimental verification of Ohm's law
- 2. Experimental verification of Kirchhoff's voltage and current laws
- 3. Experimental verification of Superposition t h e o r e m
- 4. Experimental verification of Thevenin's theorem
- 5. Experimental verification of Norton's theorem
- 6. Experimental verification of Reciprocity theorem
- 7. Verification of KVL and KCL by using digital simulation
- 8. Verification of Superposition theorem & Thevenin's theorem by using digital simulation
- 9. Verification of Reciprocity theorem & Maximum power transfer theorem by using digital simulation
- 10. RLC series resonance circuits by using digital simulation

ADDITIONAL EXPERIMENTS:

- I. Study of DSO and measurement of sinusoidal voltage, frequency and power factor
- 2. Experimental determination of power in three phase circuits by two-watt meter method

TOTAL (P:60) = 60 PERIODS

				M	lapping	g of CC	Os with	POs /	PSOs						
						PC	Ds						PS	Os	
COs	I	I 2 3 4 5 6 7 8 9 10 11 12													
I	3												3		
2	3	3													
3		3													
4			3	3									3		
5							3								
CO (W.A)	3	3	3				3						3		

	22MAN02R - SOFT/ANALYTICAL SKILI (Common to All Branches)	_S – I				
			L	Т	Р	С
			I	0	2	0
PRER						
Course	 To analyze wide range of texts, understand a To learn various methods for faster numeric logical reasoning skills 	•		•		lop
		gnitive evel	in	Con	ge of (tinuou ent Te	IS
COI	Respond to diverse texts, enhancing their comprehensive and expressive capabilities.	U		4	0%	
CO2	Apply various techniques for quicker calculations.	Ар		3	0%	
CO3	Solve mathematical problems by applying logical thinking.	An		3	0%	

UNIT I – VERBAL ABILITY

Grammar- Synonyms - Antonyms - Articles - Preposition - Listening - IELTS Listening (Beginners) -Speaking - Presentation - JAM - Reading - Reading Comprehension - Writing - E-mail writing.

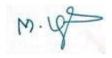
UNIT II – APTITUDE

Square Root - Squaring of Numbers - Cube root -Cube of Numbers - Number Systems - L.C.M & H.C.F -Simplification - Problems on Numbers - Calendars - Clocks.

UNIT III - REASONING

Odd Man Out & Number Series - Letter Series - Coding and Decoding - Analogy - Mirror and Water Images.

TOTAL(L:45) = 45 PERIODS


REFEREN	CES:
١.	Rizvi, M.Ashraf. Effective Technical Communication. Tata McGraw-Hill Education, 2017.
2.	Aggarwal R S. <i>Quantitative</i> Aptitude for Competitive Examinations. S.Chand Publishing Company Ltd(s)., 2022.
3.	Sharma, Arun. How to Prepare for Quantitative Aptitude for the CAT. Tata McGraw – Hill Publishing, 2022.
4.	Praveen R V. Quantitative Aptitude and Reasoning. PHI Learning Pvt. Ltd., 2016.

(5+10)

(5+10)

(5+10)

				M	lapping	g of CC	Ds with	POs /	PSOs					
						Р	Os						PSOs	
COs	Ι	2	3	4	5	6	7	8	9	10	П	12	I	2
I									2	3				
2		2		2										
3		2		2										
CO (W.A)		2		2					2	3				

		22MAN05 - YOGA – (For Common To All Bra							
		(**************************************		L	Т	Ρ	С		
				0	0	Ι	0		
PRE-F	REQUISITE : N								
		• To strengthen the body through pl	hysical exercises.						
_		• To understand the importance of v		hics.					
Cours	e Objective:	 To know the life philosophy of yog To understand the patture laws, say 	•	~ (
		To understand the nature laws, catTo inculcate knowledge about difference			their	penefit	s.		
		G	/1						
	e Outcomes udent will be able	to	Cognitive Level	in	End S	ge of C emest nation	ter		
COI	Perform physimassage and ac	ical exercises like spine exercises, upressure.	Ар						
CO2		an values, ethics, time management and of introspection.	U						
CO3	Analyze various	life philosophies of yogi's and rishi's.	An Internal Assessme						
CO4	Understand life	lessons and nature laws.	U						
CO5	Demonstrate improve their p	different types of yoga Asanas and ersonal fitness.	Ар	-					

UNIT I – PHYSICAL EXCERCISES (PART-II)	(3)						
Breathing Exercises – Kapalapathi – Maharasanam (Spine Exerices) – Massage and Acupressure.							
UNIT II – HUMAN VALUE	(3)						
Divine power – Life force (Bio magnetism) – Importance of Introspection – Time manager Punctuality – self confidence – mind control.	ment –						
UNIT III – PHILOSOPHY OF LIFE	(3)						
Basic needs for life – Hunger and thirst – climatic/weather changes – Body wastes – pressure of ex organs – safety measures – protection from natural disaster – protection from enmity – protectio accidents – ethics – morality – duty – charity – Wisdom of perfection stages – faith – understa realization.	on from						

	(3)
Food transformation into seven minerals – Natural actions – pattern – precision – regularity – Reskills – planned work – awareness – introspection.	equired
UNIT V – ASANAS (PART-II)	(3)
Ustrasana – Vakrasana –Komugasana – Padmasana – Vajrasana – Sukhasana – Yogamudra – mahamud	lra.
TOTAL (P:15) : 15 PERIO	ODS

TEXT BOOKS/REFERENCES:

١.

Light On Yoga by B.K.S. Iyengar.

	Mapping of COs with POs / PSOs														
	POs												PS	PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I								3	2			3			
2								3	2			3			
3								3	2			3			
4								3	2			3			
5								3	2			3			
CO (W.A)								3	2			3			

22GYA01 HERITAGE OF TAMILS (For Common To All Branches)

PRE REQUISITE : NIL

UNIT I - LANGUAGE AND LITERATURE

Language Families in India - Dravidian Languages - Tamil as aClassical Language - Classical Literature in Tamil - Secular Nature of Sangam Literature - Distributive Justice in Sangam Literature - Management Principles in Thirukural - Tamil Epics and Impact of Buddhism & Jainism in Tamil Land - Bakthi Literature Azhwars and Nayanmars - Forms of minor Poetry - Development of Modern literature in Tamil - Contribution of Bharathiyar and Bharathidhasan.

UNIT II - HERITAGE - ROCK ART PAINTINGS TO MODERN ART -**SCULPTURE**

(3)

(3)

(3)

(3)

Hero stone to modern sculpture - Bronze icons - Tribes and their handicrafts - Art of temple car making -Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments - Mridhangam, Parai, Veenai, Yazh and Nadhaswaram - Role of Temples in Social and Economic Life of Tamils.

UNIT III - FOLK AND MARTIAL ARTS

Therukoothu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leatherpuppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

UNIT IV - THINAI CONCEPT OF TAMILS

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age -Export and Import during Sangam Age - Overseas Conquest of Cholas.

UNIT V - CONTRIBUTION OF TAMILS TO INDIAN NATIONAL **MOVEMENT AND INDIAN CULTURE**

(3)

Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India – Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts - Print History of Tamil Books.

TOTAL (L:15): 15 PERIODS

TEXT-CUM-REFERENCE BOOKS

- தமிழக வரலாறு மக்களும் பண்பாடும் –கே.கே.பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் l. மற்றும் கல்வியியல் பணிகள் கடிகம்).
- கணினித் தமிழ் முனைவா் இல.சுந்தரம். (விகடன் பிரசுரம்). 2.
- கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீ(ந) 3.
- பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு) 4.

- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

22GYA0I தமிழா் மரபு (එതെങ്ക് പ്രപ്പിനിപ്പിന്നുക്ക്രഫ്) Ρ С т 0 L L 0 முன் தேவை: இல்லை அலகு 1 மொழி மற்றும் இலக்கியம் (3) இந்திய மொழிக் குடும்பங்கள் – திராவிட மொழிகள் – தமிழ் ஒரு செம்மொழி – தமிழ் செவ்விலக்கியங்கள் – சங்க இலக்கியத்தின் சமயச் சார்பற்ற தன்மை – சங்க இலக்கியத்தில் பகிர்தல் அறம் – திருக்குறளில் மேலாண்மைக் கருத்துக்கள் – தமிழ்க காப்பியங்கள், தமிழகத்தில் சமண பௌத்த சமயங்களின் தாக்கம் – பக்தி இலக்கியம், ஆழ்வார்கள் மற்றும் நாயன்மார்கள் – சிற்றிலக்கியங்கள் – தமிழில் நவீன இலக்கியத்தின் வளர்ச்சி – தமிழ் இலக்கிய வளர்ச்சியில் பாரதியார் மற்றும் பாரதிதாசன் ஆகியோரின் பங்களிப்பு. அலகு 2 மரபு – பாறை ஒவியங்கள் முதல் நவீன ஒவியங்கள் வரை – (3) **ക്ടിന്**പക്കത്കാ: நடுகல் முதல் நவீன சிற்பங்கள் வரை — ஐம்பொன் சிலைகள் — பழங்குடியினா் மற்றும் அவா்கள் தயாரிக்கும் கைவினைப் பொருட்கள், பொம்மைகள் – தோ் செய்யும் கலை – சுடுமண் சிற்பங்கள் – நாட்டுப்புறத் தெய்வங்கள் – குமரிமுனையில் திருவள்ளுவர் சிலை – இசைக் கருவிகள் – மிருதங்கம், பறை, வீணை, யாழ், நாதஸ்வரம் – தமிழர்களின் சமூக பொருளாதார வாழ்வில் കേസ്പിക്കണിൽ പ്രത്കം அலகு 3 நாட்டுப்பறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: (3) ഖിல് ബ്ബപ്പ്പ്പ് விலாட்டாம். கணியான் தெருக்கூத்து கரகாட்டம் கூதது தோல்பாவைக்கூத்து, சிலம்பாட்டம், வளி, புலியாட்டம், தமிழாகளின் விளையாட்டுகள். அலகு 4 தமிழாகளின் திணைக் கோட்பாடுகள்: (3) தமிழகத்தின் தாவரங்களும், விலங்குகளும் – தொல்காப்பியம் மற்றும் சங்க இலக்கியத்தில் அகம் மற்றும் புறக் கோட்பாடுகள் – தமிழாகள் போற்றிய அறக்கோட்பாடு – சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும். கல்வியும் – சங்ககால நகரங்களும் துறை முகங்களும் சங்ககாலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி – கடல்கடந்த நாடுகளின் சோழாகளின் வெற்றி. அலகு 5 இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழாகளின் (3) பங்களிப்பு: இந்திய விடுதலைப்போரில் தமிழாகளின் பங்கு – இந்தியாவின் பிறப்பகுதிகளில் தமிழ்ப் பண்பாட்டின் தாக்கம் – சுயமரியாதை இயக்கம் – இந்திய மருத்துவத்தில் சித்த மருத்துவத்தின் பங்கு, கல்வெட்டுகள், கையெழுத்துப்படிகள் – தமிழ் புத்தக்களின் அச்சு வரலாறு.

TOTAL (L:15): 15 PERIODS

. .

TEXT-CUM-REFERENCE BOOKS

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே.பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவா இல.சுந்தரம். (விகடன் பிரசுரம்).
- கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

22GYA02 TAMILS AND TECHNOLOGY (For Common To All Branches)

L т Ρ С Т

0 0 Т

PRE REQUISITE : NIL

UNIT I - WEAVING AND CERAMIC TECHNOLOGY	(3)
Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potter Graffiti on Potteries.	ries (BRW) –
UNIT II - DESIGN AND CONSTRUCTION TECHNOLOGY	(3)
Designing and Structural construction House & Designs n household materials during Sa - Building materials and Hero stones of Sangam age – Details of Stage Constructions in Silap Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship plac of Nayaka Period - Type study (Madurai Meenakshi Temple)- Thirumalai Nayakar Mahal - Houses, Indo - Saracenic architecture at Madras during British Period.	opathikaram - ces - Temples
UNIT III - MANUFACTURING TECHNOLOGY	(3)
Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and g source of history - Minting of Coins – Beads making-industries Stone beads -Glass beads beads -Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silap	- Terracotta
UNIT IV - AGRICULTURE AND IRRIGATION TECHNOLOGY	(3)
Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husba designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pe diving - Ancient Knowledge of Ocean - Knowledge Specific Society.	
UNIT V - SCIENTIFIC TAMIL & TAMIL COMPUTING	(3)
Development of Scientific Tamil - Tamil computing - Digitalization of Tamil Books - Dev	velopment of

entific Tamil - Tamil computing – Digitalization of Tamil Books – Developme Tamil Software – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionaries – Sorkuvai Project.

TOTAL (L:15) : 15 PERIODS

TEXT-CUM-REFERENCE BOOKS

- தமிழக வரலாறு மக்களும் பண்பாடும் –கே.கே.பிள்ளை (வெளியீடு: தமிழ்நாடு l. பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- கணினித் தமிழ் முனைவர் இல.சுந்தரம். (விகடன் பிரசுரம்). 2.
- கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை 3. ഖെൺഡ്(പ്ര)
- பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு) 4.

- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

22GYA02 தமிழரும் தொழில்நுட்பமும் (அனைத்து பாடப்பிரிவினருக்கும்)

முன் தேவை: இல்லை

	1
அலகு 1 நெசவு மற்றும் பானைத் தொழில்நுட்பம்:	(3)
சங்ககாலத்தில் நெசவுத்தொழில் – பானைத் தொழிலநுட்பம் – கருப்பு சிவப்பு ட	ாண்டங்கள்
– பாண்டங்களில் கீறல் குறியீடுகள்.	
அலகு 2 வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்பம்:	(3)
சங்ககாலத்தில் வடிவமைப்பு மற்றும் கட்டுமானங்கள் மற்றும் சங்ககாலத்தில பொருட்களல் வடிவமைப்பு – சங்ககாலத்தில் கட்டுமான பொருட்களும் நடுக்க சிலப்பதிகாரத்தில் மேடை அமைப்பு பற்றிய விவரங்கள் – மாமல்லபுரச் ச கோவில்களும் – சோழர் காலத்துப் பெருங்கோயில்கள் மற்றும் பிற வழிபாட்டுத் த நாயக்கர் காலக் கோயில்கள் – மாதிரி கட்டமைப்புகள் பற்றி அறிதல், மதுரை அம்மன் ஆலயம் மற்றும் திருமலை நாயக்கர் மஹால் – செட்டிநாட்டு வீடுகள் - காலத்தில் சென்னையில் இந்தோ – சாரோசெனிக் கட்டிடக் கலை.	கல்லும் – ஹ்பங்களும், நலங்கள் – ர மீனாட்சி
அலகு 3 உற்பத்தி தொழில் நுட்படி்:	(3)
கப்பல் கட்டும் கலை — உலோகவியல் – இரும்புத் தொழிற்சாலை – இரும்பை உ எக்கு – வரலாற்றுச் சான்றுகளாக செம்பு மற்றும் தங்க நாணயங்கள் – ப அச்சடித்தல் – மணி உருவாக்கும் தொழிற்சாலைகள் – கல்மணிகள், கண்ணாடி சுடுமண் மணிகள் – சங்கு மணிகள் – எலும்புத் துண்டுகள்– தொல்லியல் சா சிலப்பதிகாரத்தில் மணிகளின் வகைகள்.	நாணயங்கள் மணிகள் –
அலகு 4 வேளாண்மை மற்றும் நீர்பாசனத் தொழில் நுட்பம்:	(3)
அணை, ஏரி, குளங்கள், மதகு—சோழர்காலக் குமுழித் தூம்பின் முக்கியத்துவம் — பராமரிப்பு — கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள் — வேளாண்ச வேளாண்மைச் சார்ந்த செயல்பாடுகள் — கடல்சார் அறிவு — மீன்வளம் — முத முத்துக்குளித்தல் — பெருங்கடல் குறித்த பண்டைய அறிவு — அறிவுசார் சமூகம்.	மை மற்றும்
அலகு 5 அறிவியல் தமிழ் மற்றும் கணித்தமிழ்:	(3)
அறிவியல் தமிழின் வளர்ச்சி — கணித்தமிழ் வளர்ச்சி — தமிழ் நூல்களை மின் பதிப்பு தமிழ் மென்பொருட்கள் உருவாக்கம் — தமிழ் இணையக் கல்விக்கழகம் — தமிழ் ம — இணையத்தில் தமிழ் அகராதிகள்— சொற்குவைத் திட்டம்.	

TOTAL (L:15) : 15 PERIODS

Ρ

0

L

Т 0 С

I

TEXT-CUM-REFERENCE BOOKS

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் —கே.கே.பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவா இல.சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

	22MYB07- PROBABILITY AND COMPLEX FUNCTIONS (For EEE Branch only)												
				L	Т	Ρ	С						
				3	I	0	4						
PRE-R	EQUISITE: N	IIL											
Course	proce d Spe	essing, cial fu	riables, design nctions neering										
	e Outcomes Ident will be able	to	Cognitive Level	Weightage of COs in End Semester Examination									
соі		oncepts of the probability and random distribution functions in the area of n engineering.		An 40%									
CO2	Obtain the con mapping in elec	ncepts of analytic function and conformal ctrical circuits.	l An 20%										
CO3		x integration techniques and contour hniques in circuit theory problems.	r Ap 20%										
CO4	Solve the new electrical theor	v techniques for differential equations in ry problems.	Ap 20%										
CO5		the importance of complex variables, and quations using programming tools in ns.		Int	ernal /	Assessi	nent						

UNIT I - PROBABILITY AND RANDOM VARIABLES

Axioms of probability – Conditional probability – Baye's theorem - Discrete and continuous randomvariables–Moments–Momentgeneratingfunctions–Binomial,Poisson, Uniform and Normal distributions.

UNIT II -TWO-DIMENSIONAL RANDOM VARIABLES

Joint distributions – Marginal and conditional distributions – Covariance – Correlation and linear regression–Transformation of random variables–Central limit theorem (Excluding proof).

(9+3)

(9+3)

UNIT III- ANALYTIC FUNCTIONS

Analytic functions–Necessary and sufficient conditions for analyticity in Cartesian and polar coordinates-Properties–Harmonic conjugates–Construction of analytic function–Conformal mapping – Mapping by functions w = z+c, cz, c/z, Bilinear transformation.

UNIT IV - COMPLEX INTEGRATION

Line integral-Cauchy's integral theorem–Cauchy's integral formula–Taylor's and Laurent's series– Singularities–Residues–Residue theorem–Application of residue theorem for evaluation of real integrals-Evaluation of contour integration over unit circle and semi circle

UNIT V - ORDINARYDIFFERENTIALEQUATIONS

Higher order linear differential equations with constant coefficients-Method of variation of parameters– Homogenous equation of Euler's and Legendre's type–System of simultaneous linear first order differential equations with constant coefficients.

TOTAL (L:45+ T:15) : 60 PERIODS

TEXT BOOKS:

- I. Milton.J.S. and Arnold.J.C., "Introduction to Probability and Statistics", Tata McGraw Hill,4th Edition, 2007.
- 2. Johnson.R.A., Miller.I and Freund.J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 9th Edition, 2016.
- 3. Grewal.B.S., "Higher Engineering Mathematics", Khanna Publishers, NewDelhi,44thEdition, 2018.

REFERENCES:

- 1. Papoulis. A. and Unnikrishna pillai.S., "Probability, Random Variables and Stochastic Processes", McGraw Hill Education India, 4thEdition, New Delhi, 2010.
- 2. Ross.S.M., "Introduction to Probability and Statistics for Engineers and Scientists", 5th Edition, Elsevier, 2014.
- 3. Kreyszig.E, "Advanced Engineering Mathematics", JohnWiley and Sons, 10th Edition, NewDelhi, 2016.

	Mapping of COs with POs / PSOs														
	POs													PSO s	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3														
2		2													
3		2													
4	3														
5	3				2				3			2			
CO (W.A)	3	2			2				3			2			

(9+3)

(9+3)

(9+3)

	22EEC05 - ELECTRO (For I	NIC DEVICES		5			
	· · · · ·			L	Т	Ρ	С
				3	0	0	3
PRE-F	REQUISITE : NIL						
Course	e Objective: applications.		rn about unipolar fiers with its config	-		evices a	and its
						ge of C	COs
	e Outcomes					emes	
The Stu	udent will be able to	Examination					
соі	Apply principles of semiconductor physic predict the behavior of diodes, b transistors (BJTs), and field-effect trans different circuit configurations.	pipolar junction	Ap	20%			
CO2	Analyze the structure and characteri MOSFET	stics BJT, FET,	An	20%			
CO3	Analyze the performance of various of BJT and MOSFET based amplifier in Re n		An		4	0%	
CO4	CO4Design clipper, clamper, half wave and full wave rectifier, regulator circuits using PN junction diodesAn209						
CO5	Implement a mini-project and demons problem using suitable electronic co submit a report with presentation.	С		.	Assessn project		

UNIT I - DIODE CIRCUITS

Diodes - Rectifier circuits - Zener diode circuits - Clipper and Clamper circuits –Schottky diode, PIN diode, tunnel diode, LED and Photodiode.

UNIT II - JUNCTION TRANSISTOR

Operation of NPN and PNP Transistor, Characteristics of BJT in CB, CE and CC configurations- Bipolar transistor biasing-Construction, Operation, Characteristics of JFET and MOSFET-Applications of Junction Transistor

UNIT III - BJT AMPLIFIERS

. Analog signals and linear amplifiers - Basic transistor amplifier configurations-CE amplifiers - CC (Emitter Follower) amplifier - CB amplifier - Comparison of the three basic amplifiers.

UNIT IV - FET AMPLIFIERS

Introduction to FET amplifier - Calculation of voltage Gain, Input Impedance and Output Impedance-Common source amplifier - Source follower amplifier - Common gate configuration - comparison of the three basic amplifiers.

(9)

(9)

(9)

(9)

UNIT V - OSCILLATORS

Condition for oscillations- Hartley, Colpitts and Clapp Oscillators- Phase shift and Wien bridge Oscillator - Crystal oscillators

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- Donald A Neamen, Dhrubes Biswas "Semiconductor Physics and Devices" McGraw Hill Education; 4th edition 2017.
- 2. Albert Malvino , David J. Bates "Electronic Principles" McGraw Hill Education; 7th edition 2017

REFERENCES:

- 1. M.S. Tyagi, Introduction to Semiconductor materials and devices, John Wiley and sons, 2008
- 2. S.M. Sze & K.Ng. Kwok, Physics of semiconductor devices, John Wiley and sons, Third edition 2008

	Mapping of COs with POs / PSOs													
	POs													Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	2												Ι	
2		2											Ι	
3		3											I	
4		2											Ι	
5									3	2	3	3		
CO (W.A)	2	2.3							3	2	3	3	I	

(9)

		22EEC06 -ELECTRICAL MAG (For EEE Branch only)					
			,	L	Т	Ρ	С
				3	0	0	3
PRE-F	REQUISITE : 2	22EEC03					
		To know the constructional details	, operation, charac	teristi	cs, spe	ed con	trol
Cours	o Obiostivo	of DC Generator, DC motor and	transformers.				
Cours	e Objective:	 To analyze the various losses and and transformers 	efficiency taking pl	ace in	DC M	achine	5
	e Outcomes udent will be able	e to	Cognitive Level	in	End S	ge of C emest natior	ter
COI		peration and characteristics of DC ptors and transformers in various rotating	Ар		2	0%	
CO2	generators, mo	behavior and characteristics of the otors, transformers and its performance cate operating conditions.	An		2	0%	
CO3		haracteristics and performance of DC e of various testing of DC machines.	An		4	0%	
CO4	-	velop simple electrical machines system, terials and components.	Ар		2	0%	
CO5	00	dependent and oral presentation on ins related to societal needs.	U	Int	ernal A	ssessn	nent

UNIT I - BASIC CONCEPTS OF ROTATING MACHINES

Basics of magnetic circuit parameters -Principles of electro mechanical energy conversion- Single and multiple excited systems- Concepts of co-energy- Generated voltage- Torque in DC Machines.

UNIT II - DC GENERATORS

Principle of operation-Constructional details- Emf equation- Methods of excitation- Self and separately excited generators- Characteristics of series, shunt and compound generators- Armature reaction and commutation- Parallel operation of DC shunt and compound generators – Applications.

UNIT III - DC MOTORS

Principle of operation- Back emf and torque equation- Characteristics of series, shunt and compound motor-Starter- Starting methods- Speed control of DC shunt motors – Applications.

UNIT IV -TRANSFORMERS

Constructional details of core and shell type transformers- Types of windings- Principle of operation- Emf equation- Transformer on no load- Parameters referred to HV/LV windings- Equivalent circuit-Transformer on load- Regulation- Parallel operation of single phase transformers-Construction and working of Auto transformer- Construction of three phase transformer.

(9)

(9)

(9)

UNIT V - TESTING OF DC MACHINES AND TRANSFORMERS

(9)

Losses and efficiency in DC machines and transformers- Condition for maximum efficiency- Testing of DC machines- Brake test, Swinburne's test, Hopkinson's test- Testing of transformers- Polarity test, Load test, open circuit and short circuit tests- All day efficiency.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. P. S. Bimbhra, "Electric Machinery", Khanna Publishers, 2nd Edition, 2021.
- 2. A. E. Fitzgerald and C. Kingsley, "Electric Machinery", New York, McGraw Hill Education, 6th Edition 2017.

REFERENCES:

- 1. I. J. Nagrath and D. P. Kothari, "Electric Machines", McGraw Hill Education, 5th Edition, 2017.
- 2. H.Cotton, "Advanced Electrical Technology", CBS Publishers and distributors, 1967.

	Mapping of COs with POs / PSOs													
						PC	Ds						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	
2		3											2	
3		3											2	
4			3										2	
5									3	3		2		
CO (W.A)	3	3	3						3	3		2	2	

6.81

		22EEC07 –ELECTROMAGNET (For EEE Branch only								
		(· · · · · · · · · · · · · · · · · ·	/	L	Т	Ρ	С			
				3	0	0	3			
PRE-F	REQUISITE : N	NIL								
Course	e Objective:	 Appreciate the importance of v coordinate systems in Engineering Acquire the knowledge of Coulor electric field boundary condition electric field and potential calculation 	g Problems. mb's law, Gauss' la ons, and electrost ulations, BiotSavar	w, Ma atic p t's and	ixwell's otentia d Amp	s equat al, in pere's	tions, basic			
		magnetic field boundary condition	s and vector magn							
	e Outcomes udent will be able	to	Cognitive Level	in	End S	ge of G emestination	ter			
COI		ts of static and time varying Electric and Maxwell's equations, wave propagation in	Ap		4	0%				
CO2		properties/ laws/theorems of Electric and to obtain the specified parameter	Ap	Ap 20%						
CO3	, .	ven static and time varying Electric and to arrive at a suitable solution	An		I	5%				
CO4	demonstrate s varying Electric	code in any programming language to pecified concept (s) of static and time and Magnetic Fields	An		2	5%				
CO5	to suggested w	ge in independent study through listening ebinars/video lectures offered through the nitiative on the applications/ hazards of c radiation	U		ssignm	Assessr ent, O uiz)				

UNIT I -INTRODUCTION TO ELECTROMAGNETIC FIELDS

Sources and effects of electromagnetic fields – Introduction to vector algebra – Co-ordinate systems – Vector calculus: Gradient, divergence and curl – Divergence theorem – Stoke's theorem.

UNIT II - ELECTROSTATICS

Coulombs law – Electric field intensity –Charge distribution – Electric Field due to straight conductor and circular disc – Electric flux density – Gauss's law and its applications –Electric Potential – Electric dipole – Boundary conditions at the interface of conductor and dielectric – Poisson's and laplace's equation – Capacitors.

UNIT III – MAGNETOSTATICS

Biot-Savart's law – Ampere's circuital law –Magnetic flux and magnetic flux density – Scalar and vector magnetic potentials – Magnetic materials – Magnetic boundary conditions – Self and mutual inductance – Inductance of solenoid and toroid.

(9)

(9)

UNIT IV - ELECTROMAGNETIC FIELDS

Time varying fields: Time Varying Fields – Transformer and Rotational EMF. Maxwell's equation: Maxwell's Equation in Point Form and Integral Form – Comparison of Circuit Theory with Field Theory. Electromagnetic Waves: Electromagnetic wave equation – Wave equation for free space – Poynting theorem – Standing wave ratio – Antenna and its types – Antenna measurements.

UNIT V -ELECTROMAGNETIC INTERFERENCE & COMPATIBILITY

(Qualitative analysis only)

Introduction to Electromagnetic Interference and Electromagnetic Compatibility (EMI & EMC) – Sources and Characteristics of EMI –Control Techniques of EMI – Grounding – Shielding – Filtering.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- Sadiku Matthew N.O., "Principles of Electromagnetics", 6th Edition, Oxford University Press, New Delhi, 2015.
- 2. Hayt Jr W.H., Buck J.A., Jaleel Akhtar M., "Engineering Electromagnetics" 9th Edition McGraw Hill Education, India, 2020.

REFERENCES:

- Gottapu Sasibhushana Rao., "Electromagnetic Field Theory and Transmission Lines", 1st Edition, John Wiley and Sons, India, 2013
- 2. David J Griffith, "Introduction to Electrodynamics", Pearson Education, 4th ed., 2012.
- 3. Ashutosh Pramanik, "Electromagnetism Theory and Applications", Prentice-Hall of India Private Limited, New Delhi, 2006.
- 4. Fawwaz. T.Ulaby, "Electromagnetics for Engineers", Pearson Education, 2005.

	Mapping of COs with POs / PSOs																			
						PC	Ds						PSOs							
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2						
I													3							
2	3	3											3							
3		3	3											3						
4					I								3							
5						I				I										
CO (W.A)	3	3	3		I	Ι				I			3	3						

(9)

	22ITC06 - JAVA PROGRAMMING (Common to 22AIC04, 22CSC07, 22CCC06,22CIC06)	and 2217	FC06))		
	· · · · · · · · · · · · · · · · · · ·		L	Т	Ρ	С
			3	0	0	3
PRE-R						
Course	 To understand object-oriented programming solving problems. To introduce the design of Graphical User In controls. 					
	e Outcomes Cognit Ident will be able to Leve		in	End S	ge of (emes natio	ter
соі	Apply the concepts of classes and objects to solve simple problems using Java)		2	0%	
CO2	Analyse how oops concepts like inheritance, polymorphism improves code organization and Ar enhances flexibility.	1		2	0%	
CO3	Build interactive applications using applets and swing Ar	1		2	0%	
CO4	Conduct practical experiments for demonstrating exception handling, multithreaded applications with Ar synchronization.	1		4	0%	
CO5	Build the Java Project for engineering applications and make an individual study being member of team.Ar	1	Inte	ernal A	ssessr	nent

UNIT I - INTRODUCTION TO OOP AND JAVA FUNDAMENTALS

Object Oriented Programming - Abstraction - objects and classes - Encapsulation- Inheritance -Polymorphism- OOP in Java – Characteristics of Java – The Java Environment - Java Source File -Structure - Compilation. Fundamental Programming Structures in Java - Defining classes in Java - constructors, methods -access specifiers - static members -Comments, Data Types, Variables, Operators, Control Flow, Arrays, Strings, Packages - JavaDoc comments.

UNIT II - INHERITANCE AND INTERFACES

Inheritance - Super classes- sub classes - Protected members - constructors in sub classes- the Object class - abstract classes and methods-Keywords: Static-final-this- final methods and classes - Method overloading-Method overriding-Interfaces - defining an interface, implementing interface, differences between classes and interfaces and extending interfaces

(9)

UNIT III - EXCEPTION HANDLING AND I/O

Exceptions - exception hierarchy - throwing and catching exceptions – built-in exceptions, creating own exceptions, Stack Trace Elements. Input / Output Basics – Streams – Byte streams and Character streams – Reading and Writing Console – Reading and Writing File

UNIT – IV –THREADS

Java Thread Model – Main Thread – Creating a Thread – Creating Multiple Threads — Thread Priorities – Synchronization – Inter thread Communication – Suspending, Resuming, and Stopping Threads – Using Multithreading.

UNIT – V EVENT DRIVEN PROGRAMMING

Graphics programming - Frame – Components Basics of event handling - event handlers - adapter classes - actions - mouse events - AWT event hierarchy - Introduction to Swing – layout management - Swing Components – Text Fields , Text Areas – Buttons- Check Boxes – Radio Buttons – Lists- choices-Scrollbars – Windows – Menus – Dialog Boxes.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- Herbert Schildt, "Java: The Complete Reference", 11th Edition, McGraw Hill Education, New Delhi, 2019 for Units I, II, III, IV.
- 2. Herbert Schildt, "Introducing JavaFX 8 Programming", 1st Edition, McGraw Hill Education, New Delhi, 2015 for Unit V.

REFERENCES:

- 1. Cay. S. Horstmann, Gary Cornell, "Core Java-JAVA Fundamentals", Prentice Hall, 10th ed., 2016.
- 2. Paul Deitel, Harvey Deitel, "Java SE 8 for programmers", 3rd Edition, Pearson, 2015.3. SCJP Sun Certified Programmer for Java 6 Study Guide. 6th edition, McGrawHill.

	Mapping of COs with POs / PSOs																		
						PC	Ds						PSOs						
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2					
I	3												3	3					
2		3												3					
3			3		3								3						
4				3															
5					3				3		2	3		3					
CO (W.A)	3	3	3		3				3		2	3	3	3					

(9)

(9)

		22EEC08 – DIGITAL LOGIC CIRCUITS	5				
				L	Т	Ρ	С
				3	0	0	3
PRE-F	REQUISITE : I	NIL	·				
Cours	e Objective:	 To educate about the fundamentals of Bo To motivate the students to design comb To make the student to understand a circuits To encourage the students to implement 	inational logic bout the con asynchronous	ciro cep	ots of	synchi	ronous
		To motivate the students to know abou	t logic families			<u> </u>	
	e Outcomes udent will be able	e to	Cognitive Level		COs Sen	htage in En nester	d
					Exam	ninatio	n
соі	Apply the kno digital concep	owledge of simplification and optimization of ts.	Ap			20%	
CO2		and analyze digital circuits for given and reach substantiated conclusions.	An			20%	
CO3	Design a dig appropriate co	ital circuits that meet specified needs with onsideration.	Ар			30%	
CO4	Develop the sand sequentia	uitable digital logic circuits for combinational I circuits.	С			10%	
CO5		ents individually/ in a team to demonstrate xperiments and document the same.	Ap			20%	

UNIT I - BOOLEAN ALGEBRA AND LOGIC CIRCUITS	(9)					
Number systems-Binary arithmetic– Logic gates- Binary codes–Boolean algebra and theorems-Boo functions– Canonical and standard forms -Simplifications of Boolean functions using Karnaugh map Quine Mc-Clusky methods. UNIT II - COMBINATIONAL LOGIC CIRCUITS AND ITS APPLICATIONS						
UNIT II - COMBINATIONAL LOGIC CIRCUITS AND ITS APPLICATIONS	(9)					
Introduction- Adder and sub tractor circuits – Code converters (Binary to Gray, Gray to Binary, BCD,BCD to Binary and BCD to Excess 3) - Decoders and encoders -Multiplexers and De-Multiplexers and De-Multip						
UNIT III - SEQUENTIAL LOGIC CIRCUITS	(9)					
Synchronous sequential circuits – Flip flops – Shift registers – Counters - Analysis and design Proce - State reduction and state assignment.	dures					
	(0)					

UNIT IV - ASYNCHRONOUS SEQUENTIAL LOGIC CIRCUITS

(9)

Introduction to asynchronous sequential circuits-Classification of Asynchronous Sequential circuit-Analysis and Design procedure-Reduction of state flow table-Hazards and Fault Detection -Race free statement.

UNIT V - PROGRAMMABLE LOGIC DEVICES AND MEMORIES

Programmable logic devices: PLA, PAL, CPLD and FPGA –Memories: RAM organization, ROM organization, PROM, EPROM, EEPROM- Logic families: RTL, DTL and TTL logic.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

 Morris Mano M., "Digital Design with an Introduction to Verilog HDL, VHDL, and System Verilog", 6th Edition, Pearson, New Delhi,2018

REFERENCES:

- 1. Charles H.Roth Jr , Larry L. Kinney, "Fundamentals of Logic Design" ,7th ed.,Thomson Learning, 2014.
- 2. Charles H. Roth, Jr., Lizy Kurian John, "Digital System Design using VHDL", CL Engineering/Cengage Learning India ,2012.
- 3. Nripendra N Biswas, "Logic Design Theory", PHI Learning, 2010.

				M	lapping	g of CC	Ds with	n POs /	PSOs					
						PC	Ds						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												I	
2		3												I
3	3		3											
4				3										
5									3					
CO (W.A)	3	3	3	3					3				I	I

6.81

	22EEP02	2 - ELECTRONIC DEVICES AND CIRCUITS LABO (For EEE Branch only)	RATO	ORY			
			L	Т	Ρ	С	
			0	0	4	2	
PRE-R		NIL .					
		• To provide fundamentals concepts of unipolar and	bipolar	device	es with	its	
Course	e Objective:	characteristics					
	-	• To understand the concepts and use of regulator.					
	e Outcomes Ident will be able	to	Co	gnitiv	e Lev	el	
соі	Apply differer power applicat	t characteristics of unipolar and bipolar devices in low cions	Ap				
CO2	-	different pin configuration and characteristics of voltage urrent control devices to obtain the expected output for meters.					
CO3	Design the lo clampers by us	w power applications by use of rectifiers, clippers and se of diodes.		A	P		
CO4	-	arious home appliances by use of electron devices and elp of modern tool usage.		А	n		
CO5	Perform indivi and document	dually in a team to demonstrate open ended experiments the same.		C	2		

LIST OF EXPERIMENTS:

- I. Characteristics of PN Junction Diode.
- 2. Characteristics of Zener Diode.
- 3. Verification of Clipper and Clamper Circuits With its Characteristics.
- 4. Verify a Single-Phase Half Wave & Full Wave Rectifiers with and Without Filters.
- 5. Verify a Shunt Voltage Regulator.
- 6. Characteristics of Common Emitter Configuration of transistor.
- 7. Characteristics of Common Base Configuration of transistor.
- 8. Characteristics of Common Collector Configuration of transistor.
- 9. Characteristics of JFET.
- 10. Characteristics of MOSFET.

ADDITIONAL EXPERIMENTS

- I. Characteristics of PN Junction Diode using VLABS.
- 2. Wien bridge oscillator using VLABS.

	Mapping of COs with POs / PSOs													
						PC	Ds						PSOs	
COs	I	2 3 4 5 6 7 8 9 10 11 12											I	2
I	3			3									I	
2		3											Ι	
3	3			3	I								I	
4		3		2	I								Ι	
5									2	2				
CO (W.A)	3	3		2.6	Ι				2	2			Ι	

	2	22EEP03 -ELECTRICAL MACHINES-I LABORATOR (For EEE Branch only)	Y										
			L	Т	Ρ	С							
			0	0	4	2							
PRE-R	REQUISITE : N	41L											
Course	e Objective:	 To get a basic practical knowledge on DC generator To get an insight into working and operation of a tra condition and tests to check the withstanding capacity 	ansfori			ad							
	burse Outcomes le Student will be able to												
соі		iments to measure the characteristics of DC machines, e-speed curves and efficiency measurements.		А	n								
CO2	Verify theoret experimentation	ical concepts through practical implementation and n.		A	P								
CO3	Analyze and parameters and	interpret experimental data to determine machine performance.		A	n								
CO4		evelop simple electrical machines including selection of strol systems.		C	2								
CO5	Effectively work in a team to conduct experiments, analyze data, and solve DC machine-related problems. Adhere to safety protocols												

LIST OF EXPERIMENTS :

- I. Open circuit characteristics of DC separately excited generator.
- 2. Load characteristics of DC compound generators with cumulative and differential connections.
- 3. Load characteristics of DC shunt motors.
- 4. Load characteristics of DC series motors.
- 5. Speed control of DC shunt motors.
- 6. Swinburne's test.
- 7. Load test on single phase transformer.
- 8. Open circuit and short circuit test on single phase transformer.
- 9. Parallel operation of single phase transformer.
- 10. Study of Scott connection of transformer.

ADDITIONAL EXPERIMENTS

- I. Polarity test on single phase transformer.
- 2. Separation of no load losses in a single-phase transformer.

				М	apping	g of CC	Ds with	POs /	PSOs					
	POs												PSOs	
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I				3									2	
2				3									2	
3		3		2									2	
4			3	2									2	
5							3		3		3	3		
CO (W.A)		3	3	2.5			3		3		3	3	2	

22ITP04 JAVA PROGRAMMING LABORATORY

	(Common to 22AIP03, 22CSP06, 22CCP05, 22CIP05 and 22	ITP04)			
		L	Т	Р	С
		3	0	0	3
PRE-R	EQUISITE : NIL				
Course	• Objective: • To learn Java Programming concepts and develop ap	plicatio	ns base	ed on Ja	ava.
	dent will be able to	Co	gnitiv	e Lev	el
COI	Apply the concepts of Java to solve problems		A	Ρ	
CO2	Analyze the efficiency of using appropriate programming constructs.		A	n	
CO3	Demonstrate the usage of different programming structures through example programs		А	Ψ	
CO4	Develop simple applications using swing.		(2	
CO5	Engage in independent study and learn to use Java for real time applications.		А	'n	

LIST OF EXPERIMENTS:

- 1. Write simple Java programs using operators, arrays and control statement
- 2. Programs using Static, final and this keyword.
- 3. Demonstrate the concepts of inheritance
- 4. Programs illustrating overloading and overriding methods in Java
- 5. Programs to use packages and Interfaces in Java.
- 6. Implement exception handling and creation of user defined exception.
- 7. Implement program to demonstrate multithreading and inter thread communication.
- 8. Write a program to perform file operations
- 9. Develop Applications using Swing Layouts.

TOTAL (P:60) = 60 PERIODS

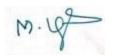
HARDWARE OR SOFTWARE REQUIREMENT:

HARDWARE:

- I. LAN System with 33 nodes (OR) Standalone PCs 33 Nos.
- 2. Printers 3 Nos.

SOFTWARE:

I. Java / Equivalent Compiler


	Mapping of COs with POs / PSOs													
	POs												PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3												3	
2		3											3	
3		3			2									3
4			3		3								3	
5									3			3		
CO (W.A)	3	3	3		3				3			3	3	3

		22MAN04R - SOFT/ANALYTICA (Common to All Brance)						
				L	Т	Ρ	С	
				I	0	2	0	
PRER	EQUISITE : N	lil						
6		To develop comprehensive English	language skills					
Cours	e Objective:	Toenhance logical reasoning skills a	and enhance proble	em-sol	ving ab	ilities		
	e Outcomes udent will be able	to	Cognitive Level	ir	n Con	ge of (tinuou ent T	IS	
соі	spoken languag	grammar, analyze texts, understand e, articulate ideas in speech, and produce written compositions.			0%			
CO2	Analyze quan solutions.	titative aptitude problems and find	Ap	30%				
CO3	Demonstrate logical reasonin	the ability to solve problems through g.	An		3	0%		

UNIT I – VERBAL ABILITY	(5+10)
Grammar - One Word Substitutions - Phrasal Verbs - Listening - IELTS Listening (Interme	ediate) -
Speaking - Group Discussion - Reading - Reading Newspaper / Articles -Writing - Proven	rb Expansion.
UNIT II – APTITUDE	(5+10)
Ratio and Proportion - Allegation and Mixture - Partnership - Average - Problems on Ag Profit and Loss - Height and Distance.	es - Percentage -
UNIT III - REASONING	(5+10)
Blood Relationship - Direction Sense - Paper Cutting and Folding - Logical Arrangements and	d Ranking - Venr
Diagram.	

REFEREN	CES:
Ι.	Rizvi, M.Ashraf. Effective Technical Communication. Tata McGraw-Hill Education, 2017.
2.	Aggarwal R S. <i>Quantitative</i> Aptitude for Competitive Examinations. S.Chand Publishing Company Ltd(s)., 2022.
3.	Sharma, Arun. How to Prepare for Quantitative Aptitude for the CAT. Tata McGraw – Hill Publishing, 2022.

	Mapping of COs with POs / PSOs													
	POs									PS		Os		
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I									2	3				
2		2		2										
3		2		2										
CO (W.A)		2		2					2	3				

	22MAN09 - INDIAN CONSTITUTIO (Common to All Branches)	Ν			
			L	P	С
		I	0	0	0
PRE-R					
Course	 To educate students to learn about the Con To motivate students to understand the role To make students to understand about To understand about District Administration Panchayat. To encourage students to Understand about 	e of Union G State Gove n, Municipal (iovernn rnment Corpor	nent. ation an	d Zila
	e Outcomes Cogn udent will be able to Lev	itive	in End	age of Semes ninatio	ster
COI	Gain Knowledge about the Constitutional Law of India.	J			
CO2	Know the Union Government and role of President and Prime Minister.	R			
CO3	Gain knowledge about State Government and role of Governor, Chief Minister.	J	Interna	l Assess	ment
CO4	Understand the District Administration, Municipal Corporation and Zila Panchayat.	J			
CO5	Understand the role and function of election commission.	J			

UNIT I - THE CONSTITUTION INTRODUCTION

The History of the Making of the Indian Constitution - Preamble and the Basic Structure, and its interpretation - Fundamental Rights and Duties and their interpretation - State Policy Principles.

UNIT II - UNION GOVERNMENT

Structure of the Indian Union - President - Role and Power - Prime Minister and Council of Ministers - Lok Sabha and Rajya Sabha

UNIT III - STATE GOVERNMENT

Governor - Role and Power - Chief Minister and Council of Ministers - State Secretariat

UNIT IV - LOCAL ADMINISTRATION

District Administration - Municipal Corporation - Zila Panchayat

UNIT V - ELECTION COMMISSION

Role and Functioning - Chief Election Commissioner - State Election Commission

TOTAL (L:15) : 15 PERIODS

(3)

(3)

(3)

(3)

(3)

TEXT BOO	KS:
١.	Rajeev Bhargava, "Ethics and Politics of the Indian Constitution", Oxford University Press,
	New Delhi, 2008.
2.	B.L. Fadia, "The Constitution of India", Sahitya Bhawan; New edition (2017).
3.	DD Basu, "Introduction to the Constitution of India", Lexis Nexis; Twenty-Third 2018
	edition.
REFERENC	ES:
١.	Steve Blank and Bob Dorf, "The Startup Owner's Manual: The Step-by-Step Guide for
	Building a Great Company", K & S Ranch ISBN – 978-0984999392
2.	Eric Ries, "The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to
	Create Radically Successful Businesses", Penguin UK ISBN - 978-0670921607
3.	Adrian J. Slywotzky with Karl Weber, "Demand: Creating What People Love Before They
	Know They Want It", Headline Book Publishing ISBN - 978-0755388974
4.	Clayton M. Christensen, "The Innovator's Dilemma: The Revolutionary Book That Will
	Change the Way You Do Business", Harvard business ISBN: 978-142219602.
REFERENC	ES: Web link
١.	https://www.fundable.com/learn/resources/guides/startup
2.	https://corporatefinanceinstitute.com/resources/knowledge/finance/corporate- structure/
3.	https://www.finder.com/small-business-finance-tips
4.	https://www.profitbooks.net/funding-options-to-raise-startup-capital-for-your-business/

				۲	lapping	g of CC) s with	POs /	PSOs					
	POs												PS	Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι						3		3		2		3		
2						3		3		2		3		
3						3		3		2		3		
4						3		3		2		3		
5						3		3		2		3		
CO (W.A)						3		3		2		3		

		22EEC09 -ELECTRICAL MA (For EEE Branch only					
				L	Т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE: 2	2EEC06					
Course	e Objective:	 To impart knowledge on construt – salient type synchronous gener To impart knowledge on Prince synchronous motor. To impart knowledge on comperformance of induction machine To impart knowledge on Start induction motors. To impart knowledge on Comperformance of single phase induction 	rators. ciple of operation nstruction, princip nes. ting and speed c nstruction, princip	n and oble of contro oble o	perfo [:] ope I of t	rmanc ration hree-p ration	e of and bhase
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of (emestination	ter
соі	maintenance	le troubleshooting techniques and practices to ensure the reliable AC electrical machines.	Ap		3	0%	
CO2	machines ar	liscuss the applications of synchronous ad induction machines in power adustrial drives and renewable energy	An		3	0%	
CO3	Analyze the steady state and dynamic performance of						
CO4	appropriate applications requirements	ic design calculations for selecting AC electrical machines for specific considering factors such as load and efficiency.	С		2	0%	
CO5	modern powe	tegration of AC electrical machines with r electronics and digital control systems, ing individual and collaborative skills.	С	Int		Assessr 1 Visit)	

UNIT I – SYNCHRONOUS GENERATOR

Constructional details – Types of rotors – EMF equation – Synchronous reactance – Armature reaction – Voltage regulation – EMF, MMF and ZPF methods – Synchronizing and parallel operation – Synchronizing torque - Capability curves– Salient pole Machine: Two reaction theory – Determination of direct and quadrature axis synchronous reactance using slip test.

UNIT II – SYNCHRONOUS MOTOR	(9)
Principle of operation – Procedure for starting - Starting methods – Different torques - Synchr torque - Effect ofchange in torque - Effect of change in excitation - V and inverted V curves – Pov and power developed equations – Hunting – Applications.	
UNIT III – THREE PHASE INDUCTION MOTOR	(9)
Constructional details – Types of rotors –- Principle of operation – Slip – Equivalent circuit – Torque	e-Slip
characteristics - Condition for maximum torque – Losses and efficiency – Load test - No load and bl	ocked
rotor tests - Circle diagram – Separation of losses – Applications.	
UNIT IV – STARTING AND SPEED CONTROL OF THREE PHASE INDUCTION MOTOR	(9)
Need for starting – Types of starters – DOL, Star delta, Autotransformer and Rotor resistance s Speed control – Voltage control, Frequency control and pole changing – Cascaded Connection-V/f of Slip power recovery Scheme.	
UNIT V – SINGLE PHASE INDUCTION MOTORS AND SPECIAL MACHINES	(9)
Single Phase Induction Motor: Constructional details– Double field revolving theory and ope Equivalent circuit – Starting methods - Capacitor start and capacitor start and run induction motor pole induction motor.	r, Shadeo
Special Machines- Repulsion motor - Servo motor – Switched Reluctance motor – Universal Motor motor.	- BLDC
TOTAL (L:45) = 45 PEI	RIODS
TEXT BOOKS:	
I. A.E. Fitzgerald, Charles Kingsley, Stephen. D. Umans, 'Electric Machinery', Mc C	Graw Hil

- A.E. Fitzgerald, Charles Kingsley, Stephen. D. Umans, 'Electric Machinery', Mc Graw Hill publishing Company Ltd, 6th Education 2017.
- 2. D.P. Kothari and I.J. Nagrath, 'Electric Machines', McGraw Hill Publishing Company Ltd, 5th Edition 2017.

REFERENCES:

- B.R.Gupta, 'Fundamental of Electric Machines' New age International Publishers, 3rd Edition, Reprint 2015.
- 2. Murugesh Kumar, 'Electric Machines', Vikas Publishing House Pvt. Ltd, First edition 2010.

				M	lapping	g of CC) s with	POs /	PSO s					
						P	os						PS	Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	I
2		3												
3		3												
4			3											
5			3						3	I		3		
CO (W.A)	3	3	3						3	I		3	3	Ι

		22EECI0 –ANALOG INTEGRAT (For EEE Branch only					
			-	L	Т	Р	С
				3	0	0	3
PRE-R	EQUISITE : 2	22EEC05					
Course	e Objective:	 To provide in-depth instruction amplifiers with its applications. To understand about the functions and applications ICs. 				-	
	e Outcomes dent will be able	e to	Cognitive Level	in	End S	ge of C emest natior	ter
COI	fundamentals	knowledge of electronic engineering to comprehend linear integrated circuit- with its simple operation.	Ap		4	0%	
CO2	characteristics	interpret the effects of DC and AC i limitations of Operational Amplifiers principles of electronics.	An		2	0%	
CO3		/D and D/A converters for signal olications and analyze the Special ICs.	An		2	5%	
CO4	0 0	integrated circuits for given specifications ous IC applications	Ар		I	5%	
CO5		ni project in a team or independent and rototype with presentation and record	С	Int		Assessn project	

UNIT I - AMPLIFIER CHARACTERISTICS

Introduction-Advantages of negative feedback Amplifier – Voltage / current, series, Shunt feedback –Ideal OP -AMP characteristics -DC Performance - Bias currents, Offset currents, Offset voltage, AC characteristics - Frequency response, Slew rate.

UNIT II - BASIC OPERATIONS USING OP-AMP

Differential amplifier–Inverting and Non-inverting Amplifiers - Voltage to current converter, current to voltage converter, differentiator and integrator, Summing, subtracting, averaging amplifier, Peak detector, Sample and hold circuit.

UNIT III - APPLICATIONS OF OP-AMP

Instrumentation amplifier -Comparators – Multivibrators - Clippers – Clampers - D/A converter (R-2R ladder and weighted resistor types) - A/D converters using op amps.

UNIT IV - SPECIAL ICS

Functional block, characteristics of Astable and Monostable multivibrators using 555 timers and its PWM application - IC566 voltage-controlled oscillator- IC 565 phase locked loop IC.

(9)

(9)

(9)

UNIT V - APPLICATION ICS

AD623 Instrumentation Amplifier and its application (load cell weight measurement)- IC voltage regulators –78XX, 79XX, 317 Adjustable voltage regulators, 723 Precision voltage regulators.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. D. Roy Choudhury, Shail B. Jain, "Linear Integrated Circuits", Fifth Edition New Age International, 2018.
- 2. Ramakant A.Gayakward, "Op-amps and Linear Integrated Circuits", IV edition, Pearson Education, PHI 2021.

REFERENCES:

- I. David A. Bell, 'Op-amp & Linear ICs', Oxford, Third Edition, 2011
- Jacob Millman, Christos C.Halkias, 'Integrated Electronics Analog and Digital circuits system', McGraw Hill, 2nd Edition, 2017.

				M	lapping	g of CC	Os with	POs /	PSOs					
						PC	Os						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3													
2		2											3	
3		3											3	
4	2													
5									3		3	3		
CO (W.A)	2.5	2.5							3		3	3	3	

6.81

	22EEC11 - I	POWER GENERATION, TRANSMIS	SION AND DIS	TRIB	UTIC	N	
				L	Т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE : 2	2EEC03, 22EEC07					
Course	e Objective:	 To know the structure of electriclassifications of power generation To impart knowledge on computation To obtain the equivalent circuition distance and to determine voltage 	on. ation and modeling its for the transm	of var nissior	rious ti n lines	ransmi	ssion
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of (emest ination	ter
соі	system for	nowledge about structure of power different types of power generation istribution systems	Ар		2	0%	
CO2		mathematical models of transmission erent configurations and assess their	An		2	0%	
CO3	Analyze the transmission li	parameter and performance of various ines.	An		4	0%	
CO4	distribution sy various rating		An		2	0%	
CO5		0	U	-	Semina	Assessn ur, Onli uiz,)	

UNIT I – CLASSIFICATIONS OF POWER GENERATION

Structure of power system- Classification of power generation systems- Thermal, hydel, nuclear, wind and solar.

UNIT II - TRANSMISSION LINE PARAMETERS

Parameters of single and three phase transmission lines with single circuits -Resistance, inductance and capacitance of solid, stranded and bundled conductors, Symmetrical and unsymmetrical spacing and transposition - Application of self and mutual GMD- Skin and proximity effects -Typical configurations, conductor types and electrical parameters of EHV lines.

UNIT III – MODELLING AND PERFORMANCE OF TRANSMISSION LINES

(9)

(9)

(9)

Performance of Transmission lines - Short line, medium line and long line - Equivalent circuits, phasor diagram, attenuation constant, phase constant, surge impedance - Transmission efficiency and voltage regulation, real and reactive power flow in lines – Ferranti effect - Formation of Corona.

UNIT IV – DESIGN OF OVERHEAD TRANSMISSION LINES

Design of OH lines – Line Supports –Types of towers – Stress and Sag Calculation – Effects of Wind and Ice Ioading. Insulators- Types, voltage distribution in insulator string, improvement of string efficiency. Comparison between overhead line and underground cables, types of underground cables and its construction.

UNIT V - DISTRIBUTION SYSTEMS AND SUBSTATIONS

Distribution Systems: General Aspects – Kelvin's Law – DC 2-wire distributor – Radial and ring main distribution.

Substations: Types of Substations - Key diagram of 11 kV/415 V substation, Methods of Grounding.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. D. P. Kothari, I. J. Nagrath, Power System Engineering, 2019, 3rd edition, McGraw Hill Education
- 2. CL Wadhwa, Electrical Power Systems, 2017, 7th Edition, New Age publication
- 3. S.N. Singh, 'Electric Power Generation, Transmission and Distribution', Prentice Hall of India Pvt. Ltd, New Delhi, Second Edition, 2011.

REFERENCES:

- 1. Arun Ingole, "power transmission and distribution" Pearson Education, 2017.
- 2. G.Ramamurthy, "Handbook of Electrical power Distribution," Universities Press, 2013.
- 3. V.K.Mehta, Rohit Mehta, 'Principles of power system', S.Chand & Company Ltd, New Delhi, 2013.

				M	lapping	g of CC) s with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												Ι	
2		3											Ι	
3		3	3										Ι	
4	3		3										Ι	
5						3			3	3	3		I	
CO (W.A)	3	3	3			3			3	3	3		I	

(9)

	22	EECI2 – MEASUREMENTS AND IN (For EEE Branch only		ON				
			,	L	Т	Ρ	С	
				2	I	0	3	
PRE-	REQUISITE : 2	2EEC03,22EEC12						
Cours	e Objective:	 To familiarize the basic laws, so methods of analyzing electrical ci To explain the use of network the To get an insight into analysis of r 	rcuits. eorems and the cc	oncept	of res			
	e Outcomes udent will be able		Cognitive Level	We in	eightag End S Exami	emest	ter	
COI	, -	peration and basic principles of various sensors and transducers to measure neters and quantities.	Ар	40%				
CO2	understand th	c principles of electrical engineering to he working of bridges, measuring ransducers and Sensors	Ap		2	0%		
CO3	extension Instransducers	peration and working of bridges, range struments, digital instruments and	An		L	5%		
CO4	measuring inst applications.	stify the choice of suitable bridges, ruments and transducers for various	An		2	5%		
CO5	, , , , ,	ropriate instrument for measurement of al parameters and explain various digital uments	Ар		ernal A ssignme Q			

UNIT I – CHARACTERISTICS AND CONCEPTS OF MEASUREMENT

(9)

(9)

(9)

Instruments- Classification-applications -Elements of a generalized measurement system - Static and dynamic characteristics - Errors in measurement -Statistical evaluation of measurement data- Standards and calibration.

UNIT II - MEASURING INSTRUMENTS

Classification of measuring instruments-Essential requirements of an instrument-Construction, working principle of PMMC, MI type instruments -Electro-dynamometer type Wattmeter-Energy Meter-Determination of B–H curve and measurement of iron loss- Instrument transformers (CT & PT).

UNIT III – DC AND AC BRIDGES

DC Bridges: Wheatstone bridge, Kelvin bridge, Kelvin double bridge and their merits and demerits. AC Bridges: Maxwell bridge, Anderson bridge, Schering Bridge and their Merits and Demerits.

UNIT III – DC AND AC BRIDGES

DC Bridges: Wheatstone bridge, Kelvin bridge, Kelvin double bridge and their merits and demerits. AC Bridges: Maxwell bridge, Anderson bridge, Schering Bridge and their Merits and Demerits.

UNIT V – DIGITAL INSTRUMENTS & INTRODUCTION TO VIRTUAL INSTRUMENTATION

Comparison of analog and digital techniques-Digital voltmeter- Multimeters- Smart meters- Measurement of frequency and phase- A/D converters: types and characteristics-DSO- Introduction to Virtual Instrumentation

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- A.K. Sawhney, Puneet Sawhney 'A Course in Electrical & Electronic Measurements & Instrumentation', Dhanpat Rai and Co, New Delhi, 29th Edition 2021.
- 2. H.S. Kalsi, 'Electronic Instrumentation', Tata McGraw-Hill, New Delhi, 2010

REFERENCES:

- I. David A. Bell, Electronic Instrumentation and Measurements, 2013, Oxford University Press
- 2. Jennings, Richard, and Fabiola De La Cueva. LabVIEW graphical programming, 2020, McGraw-Hill Education
- 3. E. O. Doebelin and D. N. Manik, "Measurement Systems Application and Design", Tata McGraw-Hill, New Delhi, 6th Edition 2017.

				M	lapping	g of CC) s with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2													3	
3		2											3	
4	3													
5									3		3	3		
CO (W.A)	3	2							3		3	3	3	

1.81

(9)

	2	2EEC13-MICROPROCESSOR & MIC	ROCONTROLL	ER			
				L	Т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE : 2	22EEC08					
		 To impart knowledge on funct Microprocessor 				•	
Course	e Objective:	 To understand the concepts of 80 To gain knowledge on microcodevices 					
		• To make the students understand	about PIC and AR	M arc	hitectı	ire	
	e Outcomes dent will be able	e to	Cognitive Level	in	End S	ge of (emestination	ter
COI	8051 Microo troubleshoot	chitecture of 8085 Microprocessor and controller to design, program, and simple microprocessor and er-based systems	Ар		3	0%	
CO2	,	recognize on interfacing the external he controller according to the user	An		2	0%	
CO3	Develop skills	in writing assembly language program.	Ар		3	0%	
CO4		crocontroller and ARM architecture to rogram embedded systems	Ар		2	0%	
CO5	and effective	lividual /team to make simple projects technical presentations on the concept essor and microcontroller.	С	-	(Assig	Assessr nment ninar)	

UNIT I -8085 ARCHITECTURE INSTRUCTION SET AND PROGRAMMING

Functional block diagram-Interrupt Structure-Instruction format and addressing modes-Assembly language format-Data transfer, data manipulation and control instructions-Simple programming with 8085.

UNIT II-8051 INSTRUCTION SET & PROGRAMMING

Functional block diagram-Instruction format and addressing modes-Interrupt Structure-Timer-I/O Port-Serial Communication-Simple programming.

UNIT III - APPLICATIONS OF 8051 MICROCONTROLLER

Interfacing LCD- Stepper motor control-Interfacing A/D converter- D/A Converter-DC Motor interfacing, sensor interfacing.

(9)

(9)

UNIT IV-INTRODUCTION TO PIC MICROCONTROLLER

Introduction to PIC microcontrollers-Overview and features-PIC I6FXX architecture- Memory organization - Register File Structure-Timer module-CCP module – Addressing Modes-Classification of instructions.

UNIT V - ARM ARCHITECTURE AND PROGRAMMING

Introduction to RISC processors-Comparison between CISC and RISC-Overview of I6XX ARM v7-Features-Pin Configuration-Architecture-Register configuration and instruction set.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Muhammad Ali Mazidi & Janice Gilli Mazidi, R.D.Kinely 'The 8051 Micro Controller and Embedded Systems', PHI Pearson Education, 5th Indian reprint, 2003.
- 2. R. S. Gaonkar, ", Microprocessor Architecture: Programming and Applications with the 8085", Penram International Publishing, 1996
- 3. Peatman, J.B., Design with PIC Micro Controllers PearsonEducation, 3rd Edition, 2004
- 4. Jonathan W Valvano Introduction to Am(r) Cortex-M Microcontrollers Create space Independent Publisher 2012

REFERENCES:

- Krishna Kant, "Microprocessor and Microcontrollers", Eastern Company Edition, Prentice Hall of India, New Delhi, 2007.
- 2. Subrata Ghoshal, "8051 Microcontrollers, 2/e: Internals, Instructions, Programming &Interfacing", 2nd Edition, Pearson Education, 2014

				Μ	lapping	g of CC	Os with	POs /	PSOs					
						PC	Os						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												I	
2		2											I	
3	3												2	
4	2												2	2
5			3						2	2			2	2
CO (W.A)	2.67	2	3						2	2			1.6	2

(9)

		306 - ENVIRONMENTAL SCIENCE A nmon to CHEM-2nd, BME-3rd, ECE-5					
	•			L	Т	Ρ	С
				3	0	0	3
PRE-R		NIL					
Course	e Objective:	 To impart knowledge on ecosyst and familiarize about sustainable materials. To make the students conversar renewable resources, causes of th them. 	e development, ca nt with the global	rbon and I	credit ndian	and g	reen o of
	e Outcomes Ident will be able	to	Cognitive Level	in	End S	ge of (emest ination	ter
COI	Illustrate the biodiversity.	values and conservation methods of	Ар		2	0%	
CO2		auses, effects of environmental pollution e the preventive measures to the society.	An		2	0%	
CO3		enewable and non-renewable resources them for future generations.	An		2	0%	
CO4		lifferent goals of sustainable development m for suitable technological advancement evelopment.	Ар		2	0%	
CO5	Execute the materials and	sustainability practices, identify green energy cycles.	E		2	0%	

UNIT I - ENVIRONMENT AND BIODIVERSITY

Environment - scope and importance - Eco-system- Structure and function of an ecosystem - types of biodiversity- genetic - species and ecosystem diversity- Values of biodiversity - India as a mega-diversity nation - Hot-spots of biodiversity - Threats to biodiversity - habitat loss - poaching of wildlife - man-wildlife conflicts - endangered and endemic species of India - Conservation of biodiversity - In-situ and exsitu.

UNIT II - ENVIRONMENTAL POLLUTION

Pollution – Causes - Effects and Preventive measures of Water – Soil - Air - Noise Pollution - Solid waste management - methods of disposal of solid waste – various steps of Hazardous waste management - E-Waste management - Environmental protection – Air acts – water acts.

UNIT III - RENEWABLE SOURCES OF ENERGY

Energy management and conservation -New Energy Sources - Different types new energy sources – Hydrogen energy – Geothermal energy - Solar energy – wind energy – biomass energy - Applications of Hydrogen energy - Ocean energy resources -Tidal energy conversion.

(9)

(9)

UNIT IV – SUSTAINABILITY AND MANAGEMENT

Development – Factors affecting development – advantages – disadvantages – GDP - Sustainability- needs – concept - from unsustainability to sustainability - millennium development goal - Sustainable Development goals - Climate change – Concept of carbon credit – carbon footprint - Environmental management.

UNIT V - SUSTAINABILITY PRACTICES

Zero waste and R concept - ISO 14000 Series - Environmental Impact Assessment - Sustainable habitat - Green buildings - Green materials- Sustainable energy - Non-conventional Sources - Energy Cycles-carbon cycle and carbon emission - Green Engineering - Sustainable urbanization.

TOTAL (L:45): 45 PERIODS

TEXT BOOKS:

I. Dr. A.Ravikrishan, Envrionmental Science and Engineering., Sri Krishna Hitech Publishing Co. Pvt.Ltd., Chennai, I 5thEdition, 2023.

2. Anubha Kaushik and C. P. Kaushik's "Perspectives in Environmental Studies", 6th Edition, New Age International Publishers , 2018.

REFERENCES:

I. Rajagopalan, R, 'Environmental Studies-From Crisis to Cure', Oxford University Press, Third Edition, 2015.

2. Erach Bharucha "Textbook of Environmental Studies for Undergraduate Courses" Orient Blackswan Pvt. Ltd. 2013.

WEB LINK:

- I. http://www.jnkvv.org/PDF/08042020215128Amit1.pdf
- 2. https://www.conserve-energy-future.com/types-of-renewable-sources-of-energy.php
- 3. <u>https://ugreen.io/sustainability-engineering-addressing-environmental-social-and-economic-</u> issues/

				M	lapping	g of CC) s with	POs /	PSO s					
						PC	Ds						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I		2												
2			2				3							
3	2		2					2						
4							3							
5						3						2		
CO (W.A)	2	2	2			3	3	2				2		

(9)

	2	22EEP04 -ELECTRICAL MACHINES-II LABORATO (For EEE Branch only)	RY			
		(<u></u>	L	Т	Ρ	С
			0	0	4	2
PRE-R	EQUISITE: 2	2EEP08				
Course	e Objective:	 To expose the students to the operation of synch salient pole type and give them experimental skill. To expose the students to the operation of synch pole type and give them experimental skill. To expose the students to the operation of synch them experimental skill. To expose the students to the operation of thee and gives them experimental skill. To expose the students to the operation of single and gives them experimental skill. 	ronous nronou phase	gener s moto induct	ator sa or and ion mo	lient give otors
	e Outcomes Ident will be able	to	Co	gnitiv	e Leve	el
COI	given specific (voltmeters, a	rate, and test various AC electrical machines according to ations and requirements, and use measurement tools mmeters and wattcmeters) to collect and interpret data, achine performance and ensuring safe and efficient		A	۰P	
CO2	parameters su	ormance tests on AC electrical machines to determine key ch as voltage regulation, power factor, torque, slip, output ficiency under various operating conditions.		A	'n	
CO3		implement modifications to enhance the efficiency and of electrical machines based on experimental data and owledge.		(C	
CO4		imental data, compare it with theoretical values/virtual lab erpret the results to draw meaningful conclusions about rmance.		A	'n	
CO5	analyze data, ensuring a saf and staying cu	ffectively in a team to design and conduct experiments, and solve problems related to AC electrical machines, e working environment by adhering to safety protocols, rrent with the latest technological advancements through ng and professional development.		(C	

LIST OF EXPERIMENTS :

- I. Regulation of Alternator by EMF and MMF Methods.
- 2. Regulation of Alternator by ZPF Method.
- 3. Regulation of Salient Pole Alternator.
- 4. Load Test on three phase alternator.
- 5. V and inverted V curve of three phase synchronous motor.
- 6. Load Test on three phase induction motor.

- 7. Performance evaluation of three phase induction motor from circle diagram.
- 8. Separation of no load losses of three phase induction motor.
- 9. Load Test on single phase induction motors.
- 10. No load and blocked rotor test on single-phase induction motor.

ADDITIONAL EXPERIMENTS

- I. Synchronization of alternators by using dark and bright lamp method.
- 2. Study of Induction Motor Starters.

	Mapping of COs with POs / PSOs													
	Pos													
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	2
2		3												
3		3												
4			3											
5				Ι		I			3			3		
CO (W.A)	3	3	3	I		I			3			3	3	2

G. Fi

	22EEP05- AN	ALOG AND DIGITAL INTEGRATED CIRCUITS L (For EEE Branch only)	ABOI	RATC	RY		
		· · · · · ·	L	Т	Ρ	С	
			0	0	4	2	
PRE-R	REQUISITE : 2	2EEP02					
Course	e Objective:	 To implement the basic circuits using operational applications. To verify the Combinational and sequential circulations. 	•				
	e Outcomes Ident will be able	to	Co	ognitiv	ve Lev	el	
COI	Conduct and applications	investigate an OP-AMP for linear and nonlinear	An				
CO2	Construct and	implement the OP-AMP for various timer circuits	An				
CO3	Design and ve	rify Combinational Logic circuits using logic gates	Ap				
CO4	Design and ve	Ар					
CO5	Perform indivi and document	dually in a team to demonstrate open ended experiments the same.	С				

LIST OF EXPERIMENTS :

- 1. Implementation of Inverting and Non-Inverting amplifier using OP-AMP.
- 2. Implementation of Differentiator and integrator using OP-AMP.
- 3. Implementation of Monostable multivibrator using 555 IC.
- 4. Implementation of Astable multivibrator using 555 IC.
- 5. Verification of logic gates.
- 6. Verification of Half subtractor and Half adder.
- 7. Verification of binary to gray code and gray to binary code converter.
- 8. Verification of Multiplexer and Demultiplexer.
- 9. Verification of encoder and decoder.
- 10. Verification of Parity checker and Parity generator.

ADDITIONAL EXPERIMENTS

- 1. Design and implementation of precision rectifier using op-amp
- 2. Design and implementation of triangular wave generator using op-amp

	Mapping of COs with POs / PSOs													
COs	POs													
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I				3									I	
2		3											I	
3	3		3										I	
4	3		3										I	
5									3	3			I	
CO (W.A)	3	3	3	3					3	3			I	

G. 81

22EEP06- MICROPROCESSORS AND MICROCONTROLLERS LABORATORY													
			L	т	Ρ	С							
			0	0	4	2							
PRE-R		IIL .											
Course	e Objective:	 To understand the basic programming of microcontroller. To Improve problem-solving abilities by performi operations and data manipulation tasks. To provide solid foundation on interfacing the e processor according to the user requirements To familiarize and develop programs using ARM and I 	ing co externa	•	arithr								
	e Outcomes Ident will be able	to	Co	gnitiv	ve Lev	el							
COI	Develop asse microcontrolle	mbly language programming for microprocessor and er	Ap										
CO2	Set up progra program on th	Ар											
CO3	Analyze and scenarios.	troubleshoot hardware interfacing issues in real-world		A	Nn								
CO4	Design the interfacing circuits for various applications using C												
CO5	Execute tasks experiments.	individually within a team to demonstrate open-ended	Ар										

LIST OF EXPERIMENTS :

- I. Simple arithmetic operations: multiplication, division using 8085.
- 2. Traffic Light Controller using 8085.
- 3. Displaying a moving/rolling message in the trainer kit's output using 8085.
- 4. Simple arithmetic operations: multiplication and division using 8051.
- 5. Interfacing of Stepper Motor using 8051.
- 6. Flashing of LED using ARM.
- 7. Simple arithmetic operations: Addition/Subtraction using PIC and ARM
- 8. Analog to Digital conversion using PIC Microcontroller.

ADDITIONAL EXPERIMENTS

- I. Interfacing of keypad and LCD using PIC 16FXX for Security System.
- 2. Interfacing of LCD using PIC 16FXX

	Mapping of COs with POs / PSOs													
COs	POs													
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	
2	3													
3		3												3
4			3		3								3	2
5	2								2				2	2
CO (W.A)	2.7	3	3		3				2				2.3	2.3

G. 81

		22MAN07R - SOFT/ANALYTICA (Common to All Brance)					
				nd critical thi Weightag in Cont Assessmo 4(3(Ρ	С	
				I	I 0 ssional reaso d critical thin Weightag in Cont Assessme 40	2	0
PRER	EQUISITE : N	il					
Course	e Objective:	 To improve language proficiency fo To enhance students' mathematica 	• •				skills
	e Outcomes udent will be able	to	Cognitive Level	ir	n Con	tinuou	IS
соі		ffective communication skills by listening ng clearly, reading critically, and writing pontexts.	U		4	0%	
CO2	of time, spee	iency in applying mathematical concepts ed, distance, and financial calculations e and compound interest.	Ар		3	0%	
CO3	Analyse logical statements.	reasoning skills through various forms of	An		3	0%	

UNIT I – VERBAL ABILITY

Grammar - Concord - Relative Clause - **Listening** - IELTS Listening (Advanced) and Gap Filling - **Speaking** - Introducing Others - Formal Conversations - **Reading** - Reading Comprehension - **Writing** - Hints Development.

UNIT II – APTITUDE

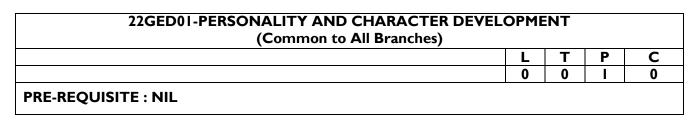
Simple and Compound Interest - Time, Speed and Distance - Problems on Trains - Boats and Streams - Chain Rule - Time and Work - Pipe and Cisterns.

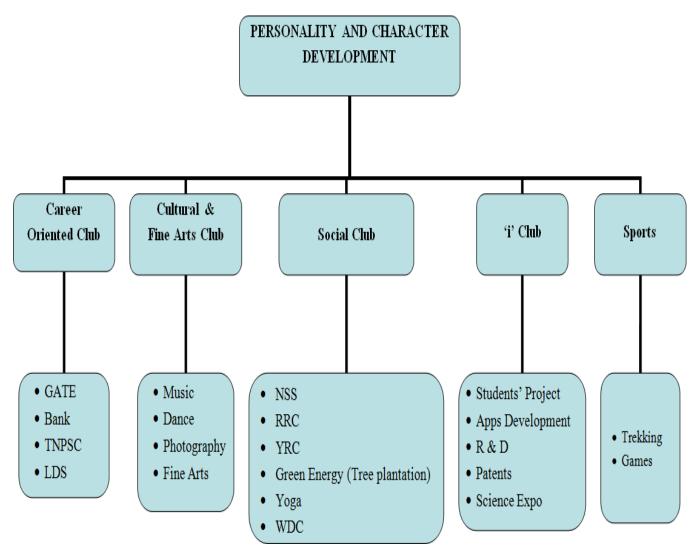
UNIT III - REASONING

Seating Arrangements - Syllogism - Statement and Conclusion - Statement and Assumption - Statement and Course of Action.

TOTAL(L:45) = 45 PERIODS

(5+10)


(5+10)


(5+10)

REFEREN	CES:
١.	Rizvi, M.Ashraf. Effective Technical Communication. Tata McGraw-Hill Education, 2017.
2.	Aggarwal R S. <i>Quantitative</i> Aptitude for Competitive Examinations. S.Chand Publishing Company Ltd(s)., 2022.
3.	Sharma, Arun. How to Prepare for Quantitative Aptitude for the CAT. Tata McGraw – Hill Publishing, 2022.
4.	Praveen R V. Quantitative Aptitude and Reasoning. PHI Learning Pvt. Ltd., 2016.

				M	lapping	g of CC	Ds with	POs /	PSOs					
	POs											PS	Os	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I									2	3				
2		2		2										
3		2		2										
CO (W.A)		2		2					2	3				

*LDS - Leadership Development Skills

Career Oriented Club	Cultural & Fine Arts Club	Social Club	ʻi' club	Sports
for identifying specific careerfield of interests and career path To provide support for preparing for competitive exams	•To develop and enhance the performance of students by participating in various events	awareness and develop a sense of social and civic responsibility •To inculcate socially and environmentally sound practices and be aware of the	 To inculcate the basic concepts of innovation To foster the networking between students, build teams, exchange ideas, doprojects and discuss entrepreneurial opportunities To enrich the academic experience, build competencies and relationships beyond the classroom 	 To provide the opportunities to excel at sports To promote ar understanding o physical and menta well-being through ar appreciation of stress rest and relaxation. To develop an ability to observe, analyze and judge the performance of self and peers ir sporting activities. To develop the leadership skills and nurture the team building qualities Trekking: To provide the opportunities to explore nature and educating about the purityof nature To improve physical and mental health.

 OUTCOMES : At the er Find a better career of their interest. Make use of their 	 Take part in various events Develop team spirit, leadership and managerial 	 Develop socially responsive qualities by applying acquired knowledge 	• Apply the acquired knowledge in creating better solutions that Meet new requirements andmarket needs	 Demonstrate positive leadership skills that contribute to the organizational effectiveness
knowledge during competitive examsandinterviews	qualities	 Buildcharacter,social consciousness, commitment and discipline 	 Develop skills on transforming new knowledgeor new Technology into viable productsand services on commercial markets as a team 	 Take part an active role in their personal wellness (emotional, physical, and spiritual) that supports a healthy lifestyle Create inclination towards outdoor activity like Nature study and Adventure.

		22EEC14 - POWER SYSTEM	ANALYSIS				
				L	т	Ρ	С
				3	Ι	0	4
PRE-R	REQUISITE : 2	2EECII	·			I	
Course	e Objective:	 Impact knowledge on need for analysis to obtain reactance diagra To understand and apply iterative To model of carry out short c symmetrical fault. To model of carry out short c unsymmetrical faults To study about the various method 	am techniques for pov ircuit studies for ircuit studies for	ver flo powe powe	ow ana er syst er syst	lysis. tem di tem di	uring uring
	e Outcomes Ident will be able	to	Cognitive Level	in	End S	ge of (emest natior	ter
COI		natical techniques to find per unit diagram ent in power system.	Ap		2	0%	
CO2	,	power flow and stability using complex cransformations in power system.	An		3	0%	
CO3	Estimate the Thevenin's the	fault currents in power system using corem.	An		2	0%	
CO4		er flow algorithms, swing equation and power system.	Ap		3	0%	

CO5 Engage in industrial visit to develop communication skills, teamwork, and professionalism through interactions with industry professionals and observing workplace dynamics and make an oral presentation and report on the visit.

UNIT I – INTRODUCTION

Need for system planning and operational studies – Structure of a power system - Power system components, Representation-Single line diagram – Per unit analysis: P.U. impedance diagram, P.U. reactance diagram, Network graph Theory - Construction of Y-bus matrix using inspection method-Formation of Z - bus matrix.

UNIT II - POWER FLOW ANALYSIS

Classification of buses – Development of power flow model in complex variable form – Solution of power flow equation using Gauss-Seidel method –Introduction to Newton Raphson method and Fast decoupled method.

(12)

(12)

UNIT III - FAULT ANALYSIS – SYMMETRICAL FAULT ANALYSIS

(12)

Importance of short circuit study –IEEE standards for short circuit studies-Assumptions in fault analysis – Analysis using Thevenin's theorem – Computation of short circuit parameters – Symmetrical fault analysis through bus impedance matrix.

UNIT IV - FAULT ANALYSIS – UNSYMMETRICAL FAULT ANALYSIS (12)

Introduction to symmetrical components – Sequence impedances – Sequence circuits of synchronous machine, transformer and transmission lines – Sequence networks- Analysis of single line to ground, line to line and double line to ground faults using Thevenin's theorem.

UNIT V-STABILITY ANALYSIS

(12)

Importance of stability analysis in power system planning and operation –Classification of power system stability –Voltage stability –Swing equation – Equal area criterion – Determination of critical clearing angle and time-solution of swing equation by modified Euler method and Runge-Kutta method.

TOTAL (L:45,T:15) = 60 PERIODS

TEXT BOOKS:

- I. Nagrath I.J. and Kothari D.P., "Modern Power System Analysis", Tata McGraw-Hill, 5th ed., 2022.
- 2. John J. Grainger and W.D. Stevenson Jr., "Power System Analysis", Tata McGraw-Hill, 2017.

REFERENCES:

- 1. Hadi Saadat, "Power System Analysis", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2015.
- 2. C.L.Wadhwa, "Electrical Power Systems", New Age International (P) Ltd., 2010.
- 3. Olle. I. Elgerd, "Electric Energy Systems Theory An Introduction, Tata McGraw Hill Publishing Company Limited, New Delhi, Second Edition, 2017.

				M	lapping	g of CC	Os with	POs /	PSOs					
		POs											PSC	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3												2	
2		3											3	
3		3											3	
4			3										2	I
5									2	2		2		
CO (W.A)	3	3	3						2	2		2	2.5	I

		22EEC15 - CONTROL SY	STEMS				
				L	Т	Р	С
				3	I	0	4
PRE-R	REQUISITE: 2	2EEC06 & 22EEC09					
Course	e Objectives:	 To equip students with the know concepts for deriving transfer for linear time-invariant systems in between the bound of the b	unctions and analyz oth time and freque design stable linea ret system response d effective commun	zing t ency d r con es usir ication	he per omains trol sy ng moo n skills	formar s. /stems lern to by exp	using ols. oloring
	e Outcomes Ident will be able	to	Cognitive Level	in	End S	ge of (Semes inatio	ter
соі		owledge of mathematical concepts to function of various systems.	Ар		4	5%	
CO2	,	performance of linear time invariant / frequency response.	An	25%			
CO3	Design stab compensators	, 0	С		I	0%	
CO4	Interpret the r tools.	response of a linear system using modern	An		2	.0%	
CO5		ological advances and applications of ms through independent learning and ntation.	U			Assessr ar, Qu	

UNIT I – SYSTEMS AND REPRESENTATION

Basic elements of Control Systems: Open and Closed-loop Control Systems – Transfer functions of Mechanical Translation and Rotational Systems – Electric Analogy of Mechanical Systems – Block Diagram Reduction Techniques – Signal Flow Graphs.

UNIT II - TIME DOMAIN ANALYSIS

Typical Test Signals – Time Response of First Order and Second Order Systems for Unit Step Test Signals – Time Domain Specifications – Steady State Response – Static Error and Error Constants – Concept of stability – Root Locus.

UNIT III - FREQUENCY DOMAIN ANALYSIS AND DESIGN

(12)

(12)

(12)

Frequency Domain Specifications – Bode Plot – Polar Plot – Nyquist Stability Criterion – Correlation between Frequency Domain and Time Domain Specifications.

UNIT IV - STABILITY AND COMPENSATOR DESIGN

Stability of Linear Control Systems – Stability and Location of the Roots of the Characteristic Equation – Routh-Hurwitz Criterion – Design of Lag, Lead, Lag-lead, and Lead-Lag Compensator Design using Bode Plots Construction – Effects of P, PI, PID modes of Feedback Control.

UNIT V - STATE SPACE ANALYSIS

Concept of State Variables – State Models for Linear and Time-Invariant Systems – Solution of State and Output Equation in Controllable Canonical Form – Concepts of Controllability and Observability – State space to Transfer Function.

TOTAL (L:45)(T:15) = 60 PERIODS

TEXT BOOKS:

- I. Nagrath I J and Gopal M, "Control System Engineering", 7th ed, New Age International, New Delhi, 2021.
- 2. Farid Golnaraghi and Benjamin C Kuo, "Automatic Control Systems", 10th ed, McGraw-Hill, New Delhi, 2017.

REFERENCES:

- 1. Ogata K, "Modern Control Engineering", Prentice Hall of India, New Delhi, 2012.
- 2. Norman S Nise, "Control System Engineering", John Wiley & Sons, 6th ed, New Delhi, 2012.
- 3. Gopal M, "Control Systems Principles and Design", 4th ed, Tata McGraw-Hill, New Delhi, 2012.

				Μ	apping	g of CC	Os with	POs /	PSOs					
	POs												PSOs	
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2		3											3	
3			3										3	
4			3		2									
5					2				3	3				2
CO (W.A)	3	3	3		2				3	3			3	2

(12)

(12)

		22EEC16- POWER ELECTE	RONICS				
				L	Т	Ρ	С
				3	0	0	3
PRE-R	REQUISITE : 2	2EEC05					
Course	e Objective:	 To understand the characteristics To understand the operation of AG To understand the operation of DG To understand the operation of DG To understand the operation of AG 	C-DC power conve C-DC power conv C-AC power conve	erters erters erters	device	5	
	e Outcomes Ident will be able	·	Cognitive Level	We in	ightag End So Exami	emest	er
COI		wledge of various power semiconductor er conversions and controls based on their	Ар		3()%	
CO2		erations and performance parameters of of power converters.	An		4(0%	
CO3		velop power electronic circuits including d rectifiers, DC-DC converters, inverters iverters.	С		10	0%	
CO4		ues for controlling power flow and ency in power electronic systems.	Ар		20	0%	
CO5		i project in a team or independent and otype with presentation and record them.	С	Int	ernal A (Mini F		

UNIT I- POWER SEMICONDUCTOR DEVICES

Steady state operation and static V-I characteristics of SCR, TRIAC and IGBT- Switching characteristics of SCR, TRIAC, GTO, BJT, MOSFET and IGBT – Design of gate drive and snubber circuits – Wide band gap (SiC and GaN) power devices.

UNIT II – AC-DC CONTROLLED CONVERTERS

Single phase half and fully controlled converters with R, RL (with and without Freewheeling diode), RLE loads -Three phase half and fully controlled converters – Performance parameters – Effect of source inductance – Dual converters – Principle of operation of PWM rectifier – Applications: Renewable energy systems.

UNIT III – DC-DC CONVERTERS

Step-down and step-up chopper-control strategy– Types of choppers – Four quadrant operation - Switched mode regulators- Buck, Boost, Buck- Boost regulator - Applications: Battery operated vehicles.

UNIT IV – DC-AC CONVERTERS

Single phase bridge inverters- Three phase voltage source inverters (both120 degree mode and180 degree mode) – Voltage control using PWM techniques: Single PWM, Multiple PWM, Sinusoidal PWM and Modified sinusoidal PWM - Introduction to space vector modulation - Single phase current source inverter -Applications: Induction heating and UPS.

(9)

(9)

(9)

UNIT V – AC-AC CONVERTERS

Principle operation of AC voltage controller (phase control) – Control Strategy (Integral cycle control) – Single Phase AC Voltage Controllers – Introduction to Matrix converter – Applications: Welding.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. "Power Electronics" by Dr.P.S. Bimbhra, 7th Edition, Khanna Publishing, 1st January 2022.
- 2. "Power Electronics: Circuits Devices and Applications" by Muhammad H. Rashid, 4th Edition, Pearson Education, 28th November 2017.

REFERENCES:

- "Power Electronics" by M.D Singh and K Khanchandani, 2nd Edition, McGraw-Hill Education, 1st July 2017.
- 'Power Electronics: Converters, Applications and Design' by Robbins Mohan, Undeland, 3rd Edition, Wiley Publisher, 1st Jan 2007.

				M	lapping	g of CC	Ds with	POs /	PSOs					
	POs												PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2		3												2
3			3											
4	3		3											2
5									3	3		3		
CO (W.A)	3	3	3						3	3		3	3	2

119 | Page

	22EEP	07 - CONTROL AND INSTRUMENTATION LABOR		RY		
			L	т	Ρ	С
			0	0	4	2
PRE-R	EQUISITE: N	IIL				
Course	e Objective:	 To provide knowledge on analysis and design of conbasics of instrumentation. To conduct experiments for determining the tranelectromechanical systems. To provide practical knowledge on the application bridges. To provide knowledge on the linear variable different. To study the procedure of transducers, calibration. 	nsfer fu on of	inctior variou	n mod Is type	el of
	e Outcomes Ident will be able		Co	gnitiv	ve Lev	el
COI		dge of mathematics and physics to obtain the results of I systems and controllers.		A	νp	
CO2	Analyze the tir	ne response of linear invariant systems.		A	n	
CO3		eriments to demonstrate concepts related to control the engineering tool like Matlab/ Simulink		A	νP	
CO4	Conduct inves	tigations and analyze the performance of different bridges.		A	n	
CO5	Perform indivi and document	dually in a team to demonstrate open ended experiments the same.		(C	

LIST OF EXPERIMENTS:

- I. Design and verify the performance of an open and closed loop control system using Simulink.
- 2. Analyze the response of given first and second order system with step and impulse inputs.
- 3. Design and verify the performance of P, PI and PID controllers using MATLAB.
- 4. Effect of Addition of Poles and Zeros on System Stability using MATLAB.
- 5. Determination of the transfer function of an armature-controlled D.C. motor.
- 6. Measurement of Medium resistance using Wheatstone bridge.
- 7. Measurement of Low resistance using Kelvin's double bridge.
- 8. Measurement of inductance using Anderson bridge.
- 9. Measurement of capacitance using Schering bridge.
- 10. Measurement of displacement using LVDT.

ADDITIONAL EXPERIMENTS:

- I. Logic Implementation for traffic control Application.
- 2. Measurement of the self-inductance using Maxwell's bridge in a virtual lab.

TOTAL (P:60) = 60 PERIODS

				M	apping	g of CC) s with	POs /	PSOs						
	POs														
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3												3		
2		3											3		
3		3	3		3								3		
4		3			I									2	
5									3	3				2	
CO (W.A)	3	3	3		2.3				3	3			3	2	

G. 8 1

		22EEP08 - POWER ELECTRONICS LABORATOR	Y			
			L	Т	Ρ	С
			0	0	4	2
PRE-R	REQUISITE : 2					
		 To understand the static V-I characteristics of SCI IGBT. To understand the switching characteristics of SCR a 		,	OSFET	and
Course	e Objective:	 To provide hands on experience with power electro and AC-AC) and testing. 			rs (AC	C-DC
		 To provide hands on experience with power electro and DC-AC) and testing. 	nics co	nverte	rs (DC	C-DC
		 To simulate the single and three phase power e various loads. 	electror	nics ciu	cuits	using
	e Outcomes Ident will be able	to	Co	gnitiv	e Lev	el
COI	Implement star electronic circui	dard laboratory procedures to build and test power ts.	Ap			
CO2	Interpret data c and performanc	ollected from experiments to understand circuit behavior e.		A	'n	
CO3	, ,	act of circuit parameters such as output voltage, switching duty cycle on the performance of power electronic		Д	'n	
CO4	Design and test	the power electronics circuits and interpret the data.		(2	
CO5	Troubleshoot a modern tools.	nd debug power electronic circuits and systems by use of		I	E	

LIST OF EXPERIMENTS :

- I. Experimental determination of VI characteristics of SCR & TRIAC.
- 2. Experimental determination of VI characteristics of MOSFET & IGBT.
- 3. Experimental determination of switching characteristics of SCR and MOSFET.
- 4. Experiment on Single-phase half and fully controlled Rectifiers with R and RL load.
- 5. Experimental verification on buck and boost converter circuit using power MOSFET.
- 6. Experiment on Single phase IGBT based PWM Inverter.
- 7. Experiment on Single phase AC voltage controllers.
- 8. Simulation of single phase and three phase AC-DC converters with R and RL loads in MATLAB.
- 9. Simulation of three phase Inverter in 180 degree conduction mode with R load in MATLAB.
- 10. Design of gate drive circuit for DC- DC converter.

ADDITIONAL EXPERIMENTS:

- I. Experiment on Three phase half and fully controlled bridge converter.
- 2. Experimental study of Series Resonant DC to DC converter.

TOTAL (P:60) = 60 PERIODS

				M	lapping	g of CC	Ds with	POs /	PSOs						
	POs														
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3														
2		3	3												
3													2		
4				3										I	
5					3				3			3			
CO (W.A)	3	3	3	3	3				3			3	2	I	

		22MAN08R - SOFT/ANALYTICA (Common to All Brancl					
				L	Т	Ρ	С
				Ι	0	2	0
PRER	EQUISITE : N	il					
Course	e Objective:	 To enhance the ability to commacross contexts To develop quantitative aptitude ar 				tively	
	e Outcomes Ident will be able	to	Cognitive Level	ir	n Con	ge of (tinuou ient Te	IS
соі		ency to communicate accurately, fluently, ely in various academic, professional and	U		4	0%	
CO2	Solve quantita confidence.	itive aptitude problems with more	Ар		3	0%	
CO3	Draw valid co problems.	onclusions, identify patterns, and solve	An		3	0%	

UNIT I – VERBAL ABILITY	(15)
Grammar - Sentence Completion – Sentence Improvement - Error Spotting - Listenin Practice Tests - Speaking – Interview Skills - Reading - GRE Reading Passages - Writin Writing.	0 0
UNIT II – APTITUDE	(15)
Probability - Permutations and Combinations - Data Interpretation on Multiple Charts - Shapes, Perimeter - Races and Games.	Mensuration - Area
UNIT III - REASONING	(15)
Data Sufficiency - Mathematical Operations - Pattern Completion - Cubes - Embedded Im	nages.
TOTAL(L:45	5) = 45 PERIODS

REFEREN	CES:
١.	Rizvi, M.Ashraf. Effective Technical Communication. Tata McGraw-Hill Education, 2017.
2.	Aggarwal R S. <i>Quantitative</i> Aptitude for Competitive Examinations. S.Chand Publishing Company Ltd(s)., 2022.
3.	Sharma, Arun. How to Prepare for Quantitative Aptitude for the CAT. Tata McGraw – Hill Publishing, 2022.
4.	Praveen R V. Quantitative Aptitude and Reasoning. PHI Learning Pvt. Ltd., 2016.

				M	lapping	g of CC	Ds with	POs /	PSOs						
	POs														
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I									2	3					
2		2		2											
3		2		2											
CO (W.A)		2		2					2	3					

	22EEC17 POWER	SYSTEM PROTECTION (For EEE Branch only		HGEA	R		
		(**************************************		L	Т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE: 22EECI I						
Course	e Objective: and Tr • To de	pact knowledge about the r ctive relays used for the pr ransformers. escribe the various types of system.	rotection of Gene	rators,	Tran	smissic	on line
	e Outcomes dent will be able to		Cognitive Level	in	End S	ge of C emest natior	ter
COI	Apply the protective scher transformer and transmissio	•	Ap		4	0%	
CO2	Describe the types and a including circuit breakers, fu		An	20%			
CO3	Analyze the phenomenon restriking voltages.	of arc, interruption and	An		I	5%	
CO4	Select and specify appr protection devices for variou	ropriate switchgear and 1s power system.	An		2	5%	
CO5	Compare the different ty breakers performances in presentation with relevant a	a team and give an oral		_	signm	Assessn ent, Oi uiz)	

UNIT I- INTRODUCTION (9) Protection Schemes : Need for Protection – Zones of Protection – Power System Earthing – Types of Earthing – Relays : Classification of Relays, Electromagnetic Relays, Over Current Relays – Distance Relay: Impedance, Reactance, Mho Relay – Differential Relays – Negative Phase Sequence Relay **UNIT II – EQUIPMENTS PROTECTION** (9) Transformer protection: Differential protection and Buchholz's relay - Alternator protection: Differential protection, Earth fault protection and Negative sequence protection. Bus bars protection: Frame leakage protection and Differential circulating current protection. Transmission line protection: Distance and Differential protection, Carrier protection **UNIT III – THEORY OF CIRCUIT INTERRUPTION** (9) Physics of arc Phenomena and arc Interruption - Methods of arc Extinction - Theories of arc Interruption -Arc Voltage – Restriking Voltage and Recovery Voltage – Expression for Restriking Voltage and Rate of Rise of Restriking Voltage - Current Chopping - Interruption of Capacitive Currents - Resistance Switching **UNIT IV – FUSES AND CIRCUIT BREAKER** (9) Fuses: Types - HRC Fuses - Characteristics and Applications. Circuit Breakers - Types - Air, oil, SF6 and Vacuum circuit breakers- Comparative Merits of Different Circuit Breakers-Rating of circuit Brakers

UNIT V – STATIC RELAYS AND NUMERICAL PROTECTION

(9)

Static Relays – Phase, Amplitude Comparators – Synthesis of Various Relays using Static Comparators – Block Diagram of Numerical Relay – Numerical Over Current Protection – Numerical Transformer Differential Protection – Numerical Distance Protection of Transmission Line – Arc Flash Relays – Shielded Solid Insulation Switchgear – Green Switchgear.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- Badri Ram & Vishwakarma D.N, "Power System Protection and Switchgear", 2nd Edition, Tata McGraw Hill, New Delhi, 2017.
- 2. Gupta J.B, "A Course in Power Systems", 11th Edition, S.K.Kataria & Sons, New Delhi, 2021.

REFERENCES:

- 1. Uppal, "Electrical Power" Khanna Publisher, 13th Edition., 2008.
- 2. Y.G Paithankar and S.R Bhide, "Fundamentals of power system protection", Prentice Hall of India, 2nd ed., Learning private limited, 2010.

	Mapping of COs with POs / PSOs														
	POs													Os	
COs	I	1 2 3 4 5 6 7 8 9 10 11 12													
I	3														
2	3												3		
3		2											3		
4	3														
5									3		3	3			
CO (W.A)	3	2							3		3	3	3		

1. Ris

		22EEC18 - ELECTRIC DRIVES A								
				L	Т	Ρ	С			
				3	0	0	3			
PRE-F	REQUISITE : 2	2EEC06, 22EEC09								
Course	e Objective:	 various electrical drive systems to To Apply power electronic conve To give exposure to understand converter topologies for inductio To acquire knowledge on digitation 	nic converters to control the speed of DC mot derstand the various speed control technique induction motor drives. on digital control and the selection of driv							
	e Outcomes Ident will be able	to	Cognitive Level	in	End S	ge of C emest nation	ter			
соі	predict the sp different power	ntial concept of electric drives to load and eed of DC and induction motor with electronic converters.	Ар							
CO2	motor drive w	peed control of DC and induction ith different converter topologies used to speed and torque characteristics.			2	0%				
CO3	control techniq control the techniques.		Ap							
CO4	motor / loa equation for m such as inertia,	velop the transfer function for DC ad, current, speed controllers and otor load dynamics considering factors damping, and friction.	Ap	20%						
CO5	Perform in independent or team and make an oral presentation on selection drive for industrial application Inter CO5 based on technical, economic, and operational criteria, U Assessmen demonstrating analytical skills and decision-making On Line ability.									

UNIT I- INTRODUCTION TO DRIVES

Electrical drives: Basic Elements, Types, Factors influencing the choice of electrical drives- Multiquadrant operation -Equations governing motor load dynamics - Components of load torque – Nature and classification of load torque – Modes of operation -Classes of motor duty – Determination of motor rating- Braking.

UNIT II - UNIT II - CONVENTIONAL AND SOLID STATE SPEED CONTROL OF D.C. DRIVES

Speed control of DC series and shunt motors – Armature and field control- Ward-Leonard control system – Steady state analysis of the single and three phase converter fed separately excited DC motor drive –4 quadrant operations of converter / chopper fed drive.

(9) adra

UNIT III – CONVENTIONAL AND SOLID STATE SPEED CONTROL OF A.C. DRIVES

Speed control of three phase induction motor – Voltage control- voltage / frequency control – Constant airgap flux – Field weakening mode –AC voltage Regulator- Voltage / current fed inverter – Rotor control – Rotor resistance control and slip power recovery schemes- vector control of induction motor drives.

UNIT IV – DIGITAL CONTROL TECHNIQUES IN SPEED CONTROL OF DRIVES AND SELECTION OF DRIVES

(9)

(9)

Digital techniques in speed control - Advantages and limitations - Microcontroller based control of drives – Microprocessor based control of drives-PLC Based drives. Selection of drives for textile mills, cement mills, steel rolling mills and paper mills-Case study.

UNIT V – DESIGN OF CONTROLLERS FOR DRIVES

(9)

Transfer function for DC motor / load and converter – Closed loop control with Current and speed feedback-Design of controllers; current controller and speed controller- converter selection and characteristics.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Dubey G.K., "Fundamentals of Electrical Drives", Second Edition, Narosa Publishing House, New Delhi, 2015
- 2. Bose, B.K., —Modern Power Electronics and AC Drives", Pearson Education (Singapore) Pvt.. Ltd, New Delhi, 2016.

REFERENCES:

- 1. Vedam Subramanyam, Electric Drives: Concepts and Applications, Second Edition, Tata McGraw hill Pvt. Ltd, New Delhi, 2011.
- 2. Krishnan R, Electric Motor Drives: Modeling, Analysis and Control, Prentice Hall of India, Pvt. Ltd, New Delhi,2015.
- 3. S.K.Pillai, "A First Course on Electrical Drives", Third Edition, New Age International Publishers, 2013.

				M	lapping	g of CC) s with	POs /	PSO s						
CO		POs													
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3												2	Ι	
2	3	3											2	I	
3	3												2	I	
4			3												
5						3			2	2		2	2		
CO (W.A)	3	3	3			3			2	2		2	2	I	

181

22EEP09 - POWER SYSTEM SIMULATION LABOR	TORY				
	L	Т	Ρ	C	
	0	0	4	2	
PRE-REQUISITE : 22EEC11, 22EEC14					
 To acquire the capability to develop prograformation of bus admittance and impedance system. To develop proficiency in programming techni parameters and stability of the power systems. 	matrice	es in compt	the p	ower line	
 To gain the ability of computational programs for the Gauss-Seidel, Newton-Raphson, and fast 					
Course Outcomes The Student will be able to	Co	ognitiv	ve Lev	el	
COI Apply the mathematical approach for the solution of bus and impedance matrices.		A	Ρ		
CO2 Analyze and provide the solution for symmetrical and unsymmetrical faults.		A	n		
CO3 Analyze and solve the sudden disturbance for power system stability.	An				
Analyze and solve the problem by using load flow analysis iterative CO4 methods.		A	n		
Implement the programming skill in industry-standard simulation cO5 software.		C	2		
LIST OF EXPERIMENTS :					
 Formation of bus admittance Matrices and solution of networks. Computation of parameters and modeling of transmission lines. Formation of Bus Impedance Matrices and Solution of Networks. Transient stability analysis of single-machine infinite bus system. Transient stability analysis of multi-machine power systems. Electromagnetic transients in power systems. Fault analysis – symmetrical short circuit analysis. Fault analysis – unsymmetrical short circuit analysis. Solution of load flow problems using Gauss-Seidel method. Solution of load flow related problems using Newton-Raphson and fast-de 	ecoupled	metho	ods.		
I. Development of IIKV/433 V substation automation scheme using progr	ammahle	e logic	contro	oller	
for normal load operation. 2. Relay coordination using Arduino.	AL (P:60	-			
		, - 00		505	

				M	lapping	g of CC	Ds with	POs /	PSOs					
						PC	Os						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I				3	3								2	
2				3	3								2	
3			3	3	3								2	
4			3	3	3								2	
5				3	3							3	2	
CO (W.A)			3	3	3							3	2	

G. 8 1

		22GEA01 UNIVERSAL HUMA (For Common To All Bra							
		· · · · · · · · · · · · · · · · · · ·	,	L	Т	Р	С		
				2	0	0	2		
PRE-R	REQUISITE : N	NIL							
Course	e Objective:	 To help the students appreciate 'VALUES' and 'SKILLS' to ensure s To facilitate the development o towards life and profession. To highlight plausible implications o human conduct. To understand the nature and exist To understand human contact and 	sustained happiness f a holistic persp of holistic understa stence.	s and p pective anding	prospei amoi	rity. ng stud	dents		
	e Outcomes Ident will be able		Cognitive Level	We in	End S	ge of (Semes inatio	ter		
соі		ignificance of value inputs in formal start applying them in their life and	E						
CO2	accumulation	ween values and skills, happiness and of physical facilities, the Self and the and Competence of an individual.	Ар						
CO3		ue of harmonious relationship based on ct in their life and profession.	n Internal Assessm An						
CO4	Examine the ro in society and n	le of a human being in ensuring harmony ature.	ony Ap						
CO5		nderstanding of ethical conduct to strategy for ethicallife and profession.	Ap						

UNIT I: Introduction-Basic Human Aspiration, its fulfillment through Allencompassing Resolution

(6)

(6)

The basic human aspirations and their fulfillment through Right understanding and Resolution, Right understanding and Resolution as the activities of the Self, Self being central to Human Existence; Allencompassing Resolution for a Human Being, its details and solution of problems in the light of Resolution

UNIT II: Right Understanding (Knowing)- Knower, Known & the Process

The domain of right understanding starting from understanding the human being (the knower, the experiencer and the doer) and extending up to understanding nature/existence – its interconnectedness and co-existence; and finally understanding the role of human being in existence (human conduct).

12. B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Lucknow. Reprinted 2008.

UNIT III: Understanding Human Being

Understanding the human being comprehensively as the first step and the core theme of this course; human being as co-existence of the self and the body; the activities and potentialities of the self; Basis for harmony/contradiction in the self

UNIT IV: Understanding Nature and Existence

A comprehensive understanding (knowledge) about the existence, Nature being included; the need and process of inner evolution (through self-exploration, self- awareness and self-evaluation), particularly awakening to activities of the Self: Realization, Understanding and Contemplation in the Self (Realization of Co-Existence, Understanding of Harmony in Nature and Contemplation of Participation of Human in this harmony/ order leading to comprehensive knowledge about the existence).

UNIT V: Understanding Human Conduct, All-encompassing Resolution and Holistic Way of Living

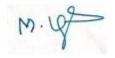
Understanding Human Conduct, different aspects of All-encompassing Resolution (understanding, wisdom, science etc.), Holistic way of living for Human Being with All- encompassing Resolution covering all four dimensions of human endeavor viz., realization, thought, behavior and work (participation in the larger order) leading to harmony at all levels from Self to Nature and entire Existence

TOTAL (L:30) : 30 PERIODS

TEXT BOOKS

I. R R Gaur, R Asthana, G P Bagaria, 2019 (2nd Revised Edition), A Foundation Course inHuman Values and Professional Ethics, ISBN 978-93-87034-47-1, Excel Books, New Delhi

REFERENCES:


- 1. Ivan Illich, 1974, Energy & Equity, The Trinity Press, Worcester, and Harper Collins, USA
- 2. E.F. Schumacher, 1973, Small is Beautiful: a study of economics as if people mattered, Blond & Briggs, Britain.
- 3. Sussan George, 1976, How the Other Half Dies, Penguin Press. Reprinted 1986, 1991
- 4. Donella H. Meadows, Dennis L. Meadows, Jorgen Randers, William W. Behrens III, 1972, Limits to Growth - Club of Rome's report, Universe Books.
- 5. A Nagraj, 1998, Jeevan Vidya EkParichay, Divya Path Sansthan, Amarkantak.
- 6. P L Dhar, RR Gaur, 1990, Science and Humanism, Commonwealth Publishers.
- 7. A N Tripathy, 2003, Human Values, New Age International Publishers
- 8. E G Seebauer& Robert L. Berry, 2000, Fundamentals of Ethics for Scientists&Engineers, Oxford **University Press**
- 9. M Govindrajran, S Natrajan& V.S. Senthil Kumar, Engineering Ethics (including Human Values), Eastern Economy Edition, Prentice Hall of India Ltd.
- 10. Subhas Palekar, 2000, How to practice Natural Farming, Pracheen (Vaidik) Krishi Tantra Shodh, Amravati
- 11. B P Banerjee, 2005, Foundations of Ethics and Management, Excel Books

(6)

(6)

(6)

				۲	lapping	g of CC	Ds with	POs /	PSOs					
						PC	Os						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I						2	2	3	2	2		3		
2						2	2	3	2	2		3		
3						2	2	3	2	2		3		
4						2	2	3	2	2		3		
5						2	2	3	2	2		3		
CO (W.A)						2	2	3	2	2		3		

	2	22GED02	2 – INTE	RNSHI	P / IN	DUST	RIAL	TRAIN	ING	;			
										L	Т	Ρ	С
										0	0	0	2
PRE-R	EQUISITE :	NIL											
Cours	e Objective:		o obtain a o gain kn			•		emerging	g tecł	nnolo	ogies ir	n Indus	stry
The Stu	dent will be able		ourse Oi	utcomes	S					Co	gnitiv	e Lev	el
соі	Engage in Ind	ustrial act	ivity whic	ch is a coi	mmunit	ty servi	ce.				ι	J	
CO2	Prepare the p work.	oroject rej	oort, thre	e minute	e video	and the	e poste	r of the	2		А	·Ρ	
CO3	Identify and s comfortable.	specify an	engineer	ring prod	luct tha	at can i	make t	heir life	1		А	n	
CO4	D4Prepare a business plan for a commercial venture of the proposed product, together with complying to relevant norms.Ap												
CO5	Identify the co	ommunity	that shal	ll benefit	from t	he proo	duct.				E	•	

During semester breaks, students are encouraged to engage in industrial training or undergo internship in an industry related to the field of study. The duration of the activity shall be of 4 to 6 weeks. The work carried out in the semester break is assessed through an oral seminar accompanied by a written report. It is expected that this association will motivate the student to develop simple Electronic (or other) products to make their life comfortable and convert new ideas into projects.

Every student is required to complete 12 to 16 weeks of internship (with about 40 hours per week), during the Summer/Winter semester breaks. The Internships are evaluated through Internship Reports and Seminars during the VI and VIII semesters. The internships can be taken up in an industry, a government organization, a research organization or an academic institution, either in the country or outside the country, that include activities like:

- Successful completion of Internships/ Value Added Programs/Training
- Programs/ workshops organized by academic Institutions and Industries
- Soft skill training by the Placement Cell of the college
- Active association with incubation/ innovation /entrepreneurship cell of the
- institute;
- Participation in Inter-Institute innovation related competitions like Hackathons
- Working for consultancy/ research project within the institutes

- Participation in activities of Institute's Innovation Council, IPR cell, Leadership
- Talks, Idea/ Design/ Innovation contests
- Internship with industry/ NGO's/ Government organizations/ Micro/ Small/
- Medium enterprises
- Development of a new product/ business plan/ registration of a start-up

				M	apping	of CC	Ds with	n POs	/ PSO	S				
						PC	Ds						PS	Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I						2								
2										3				
3		Ι												
4							2	3			2			
5						2								
CO (W.A)		Ι				2	2	3		3	2			

G. 81

	22EED01- Project Work	- I				
			L	Т	Ρ	С
			0	0	20	10
PRE-R		C	We	ighta	ge of (COs
The Stu	Course Outcomes dent will be able to	Cognitive Level			emes inatio	
COI	Engage in independent study to research literature in the identified area and consolidate the literature search to identify and formulate the engineering problem.	Ар	20		rst Rev ernal)	view
CO2	Prepare the Gantt Chart for scheduling the project , engage in budget analysis, and designate responsibility for every member in the team and identify the community that shall benefit through the solution to the identified research work and also demonstrate concern for environment	Ар, Е	20 5		cond Re ernal)	eview
CO3	Identify, apply the mathematical concepts, science concepts, and engineering concepts necessary to implement the identified engineering problem, select the engineering tools /components required to reproduce the identified project, design, implement, analyze and interpret results of the implemented project	Ap, An, C	20		nird Re ernal)	view
CO4	Engage in effective written communication through the project report, the one-page poster presentation, and preparation of the video about the project and the four page IEEE format of the work and effective oral communication through presentation of the project work and demonstration of the project.	E	20		nird Re ernal)	view
CO5	Perform in the team, contribute to the team and mentor/lead the team, demonstrate compliance to the prescribed standards/ safety norms and abide by the norms of professional ethics and clearly specify the outcome of the project work (leading to start-up/ product/ research paper/ patent)	Ap, An	20		nird Re ernal)	view

DESCRIPTION

Project work may be allotted to a single student or to a group of students not exceeding 3 per group. The title of project work is approved by head of the department under the guidance of a faculty member and student(s) shall prepare a comprehensive project report after completing the work to the satisfaction of the guide. The Head of the department shall constitute a review committee for project work. There shall be three reviews during the semester by the committee to review the progress. Student(s) shall make presentation on the progress made by him / her / them before the committee and evaluation is done as per Rules and Regulations

TOTAL (P: 120) = 120PERIODS

				Μ	apping	of CC) s with	POs /	PSOs					
	POs													Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I		3										3	3	3
2						3	3				3		3	3
3	3	3	3	3	3								3	3
4								3		3			3	3
5									3		3	3	3	3
CO (W.A)	3	3	3	3	3	3	3	3	3	3	3	3	3	3

G. 81)

		22EEX01- POWER SWITCHING	CONVERTERS						
				L	Т	Ρ	С		
				3	0	0	3		
PRE-R	REQUISITE: N	IIL							
Course	e Objectives:	 To equip students with the know performance of converters and in To develop students' ability to performance parameters of modes. To enable students to apply converters and inverters effective 	verters in power s analyze DC-DC odern inverters of concepts of single	witchi conve under	ng app rters vario	licatior and ca us op	ns. alculate erating		
	e Outcomes Ident will be able	to	Cognitive Level	in	End S	ge of (emes natio	ter		
соі		eration and performance of converters in power switching applications.	Ap	30%					
CO2		DC-DC converters and calculate parameters of modern inverters under ing modes.	An	25%					
CO3	Apply the c converters and	concept of single and three phase d inverters.	Ap		2	5%			
CO4	Design and sin	nulate the power converters.	An		2	0%			
CO5	an authentic a	independent learner in a team to build pplication of power converter paradigm discrete components and make an presentation.	U	Int		Assessr ninar)	nent		

UNIT I - SINGLE PHASE & THREE PHASE CONVERTERS	(9)
Principle of phase-controlled converter operation – Single-phase full converter and semi-converter (RL, RLE
load) – Single phase dual converter – Three phase operation full converter and semi converter (R, load) – Power factor improvement techniques – PWM rectifiers.	RL, RLE
UNIT II - DC-DC CONVERTERS	(9)
Limitations of linear power supplies – Switched mode power conversion – Non-isolated DC- DC con Operation and analysis of Buck, Boost, Buck-Boost, Cuk and SEPIC – Under continuous and discor operation – Isolated converters: Basic operation of Flyback, Forward and Push pull topologies.	
UNIT III - DESIGN OF POWER CONVERTER COMPONENTS	(9)
Introduction to magnetic materials- Hard and soft magnetic materials – Design of transformer –I design equations – Examples of inductor design for buck/flyback converter-selection of output capacitors – Selection of ratings for devices – Input filter design.	

UNIT IV - THREE PHASE INVERTERS

180-degree and 120-degree Conduction Mode Inverters with Star and Delta-Connected Loads – Voltage Control of Three-phase Inverters: Single, Multi-pulse, Sinusoidal, and Space Vector Modulation Techniques – AC Drive System – Current Source Inverters.

UNIT V - MODERN INVERTERS

Multilevel Concept and Types; Diode Clamped, Flying Capacitor, and Cascaded - Comparison of Multilevel Inverters - Application of Multilevel Inverters – PWM Techniques for MLI – Single-phase & Three-phase Impedance Source Inverters – Filters.

TOTAL (L:45)= 45 PERIODS

TEXT BOOKS:

- 1. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Pearson, Fourth Edition, 10th Impression 2021.
- 2. Philip T. Krein, "Elements of Power Electronics" Indian edition Oxford University Press-2017.

REFERENCES:

- 1. Jai P. Agrawal, "Power Electronics System Theory and Design", Pearson Education, First Edition, 2015.
- Ned Mohan, T.M. Undeland and W.P. Robbins, "Power Electronics: Converters, Application and Design", 3rd edition Wiley, 2007.
- 3. P.C. Sen, "Modern Power Electronics", S. Chand Publishing 2005.

				M	lapping	g of CC	Os with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I 2 3 4 5 6 7 8 9 10 11 12												I	2
I	2												I	
2	3												I	
3		3											I	
4			3										I	
5									3	3		3		
CO (W.A)	2.5	3	3						3	3		3	I	

(9)

		22EEX02- SPECIAL ELECTRICA	L MACHINES					
				L	т	Ρ	С	
				3	0	0	3	
PRE-R		NIL						
Course	e Objective:	 To understand the control torque prediction of synchron switched reluctance motor, performed synchronous motor with application. To analyze the movement of motopower controllers. 	manent magnet bri ions.	notor, ushles	stepp s DC	per m motor	otor, • and	
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of (emes natio	ter	
COI	with different	que prediction theory in various motors features, phasor diagram, driver circuits s of special electrical machines.	Ар	40%				
CO2	Apply the vari real time appli	ous types of special electrical machines in cations.	Ap	0%				
CO3		e ideas about the performance of various special electrical machines and losed loop operation.	An	15%				
CO4	•	ower controller circuit for a given evaluate the characteristics.	Ар		2	5%		
CO5	authentic app	independent learner in a team to build an lications of special electrical machines el using different controllers and make an presentation.	C	Int		Assessr ninar)	nent	

UNIT I - SYNCHRONOUS RELUCTANCE MOTORS

(9)

(9)

(9)

Constructional features – Types: Axial and Radial flux motors – Operating principles – Variable Reluctance and Hybrid motors – Voltage and Torque equations – Phasor diagram – Characteristics – Applications.

UNIT II - STEPPING MOTORS

Constructional features – Principle of operation – Types – Theory of torque predictions – Modes of excitations – Characteristics – Drive circuits – Microprocessor control of stepping motors – Closed-loop control – Applications.

UNIT III - SWITCHED RELUCTANCE MOTORS

Constructional features – Principle of operation – Torque prediction – Power converters and their controllers – Methods of rotor position sensing – Closed-loop control of SRM – Characteristics – Applications.

UNIT IV - PERMANENT MAGNET BRUSHLESS D.C. MOTORS

Permanent Magnet materials and it's characteristics – Principle of operation – Types – EMF and Torque equations – Electronic commutator – Power controllers – Motor characteristics and control – Applications.

UNIT V - PERMANENT MAGNET SYNCHRONOUS MOTORS

(9)

Principle of operation – EMF and Torque equations – Sine wave motor with practical windings – Phasor diagram – Torque/Speed characteristics – Power controllers – Converter Volt-Ampere requirements – Applications.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Bilgin, Berker Emadi, Ali Jiang, James Weisheng Switched reluctance motor drives: fundamentals to applications- CRC 2019.
- 2. R. Krishnan Switched Reluctance Motor Drives Modeling, Simulation, Analysis, Design, and Applications CRC Press 2017.

REFERENCES:

- I. E.G. Janardanan, "Special Electrical Machines," PHI learning Private Limited, Delhi, 2014.
- 2. R. Krishnan, "Switched Reluctance Motor Drives Modeling, Simulation, Analysis, Design and Application," CRC Press, New York, 2014.
- 3. T. Kenjo, "Stepping Motors and Their Microprocessor Controls," 3rd Edition, Oxford University Press, New Delhi, 2009.

				M	lapping	g of CC	Os with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	2												3	
3		2											3	
4	3													
5									3		3	3		
CO (W.A)	2.6	2							3		3	3	3	

		22EEX03- DESIGN OF ELECTRIC	AL MACHINES									
				L	Т	Ρ	С					
				3	0	0	3					
PRE-R	EQUISITE : N	IIL										
		 To study Design considerations, Electrical engineering materials and rating of various electrical machines. To realize the design procedures of armature and field systems for DC 										
Course Objective:		 To understand the design procedures of yoke, core and windings, tank and cooling systems of transformers. To grasp the design procedures of stator and rotor of induction motors. To comprehend the design procedures of stator and rotor of synchronous machines. 										
Course Outcomes The Student will be able to		Cognitive Level	Weightage of COs in End Semester Examination			ter						
COI	design of elec	neral concepts and constraints in the ctrical DC and AC machines including ects considerations.	Ар	20%								
CO2	electrical engir	wledge of fundamental principles, factors, neering materials and use of existing tools of electrical machines.	Ap	20%								
CO3	,	ffect of dimensions of the different parts trical machines on the output and losses.	An	20%								
CO4	•	nensions of different parts and details of ctrical DC and AC machines.	С	40%								
CO5	engineering to	with team members and learn to create solutions using effective ols and develop mini projects that meet of real-world Electrical machine design	С	Internal Assessment (Industry Person)								

UNIT I- FUNDAMENTAL ASPECTS OF ELECTRICAL MACHINE DESIGN	(9)
Major considerations in Electrical Machine Design – Electrical Engineering Materials – Space factor –C	hoice of
Specific Electrical and Magnetic loadings - Thermal considerations - Heat flow - Temperature rise-R	lating of
machines – Standard specifications – Introduction to Computer Aided Design.	
UNIT II – DC MACHINES	(9)
Output Equations – Main Dimensions - Magnetic circuit calculations – Carter's Coefficient –Net Le	ength of
Iron – Real & Apparent flux densities – Selection of number of poles - Design of Armature - De	esign of
Commutator and brushes - Design of Field.	

UNIT III – TRANSFORMERS

Output Equations – Main Dimensions – KVA output for single and three phase transformers–Window space factor – Design of yoke, core and winding for core and shell type transformer – Estimation of No load current – Temperature rise in Transformers–Design of Tank and cooling tubes.

UNIT IV – THREE PHASE INDUCTION MOTORS

Output equation of Induction motor – Main dimensions – Design of Stator – Length of Air gap – Design of squirrel cage rotor and wound rotor – Operating Characteristics: Magnetizing current and Short circuit current.

UNIT V – THREE PHASE SYNCHRONOUS MACHINES

Output equations – choice of loadings – Design of salient pole machines – Runaway speed - Short circuit ratio –shape of pole face – Armature design – Estimation of Air gap length – Design of rotor –Design of damper winding – Determination of full load field MMF – Design of field windings – Design of Turbo alternators.

TOTAL = 45 PERIODS

TEXT BOOKS:

- "A Course in Electrical Machine Design" by A.K. SAWHNEY, Dhanpat Rai & Co. (P) LTD, 6th Edition, Educational and Technical Publishers, Reprint: 2019.
- 2. "Design of Electrical Machines" by K.G.Upadhaya, New Age International Publishers, New Delhi 2017.

REFERENCES:

- 1. "Electrical Machine Design" by R.K.Agarwal, S.Kataria & Sons, 5th Edition, New Delhi Reprint, 2014.
- 2. "Design of Electrical Machines" by Mittle V N, Mittle A, Standard Publishers Distributors, 5th Edition, New Delhi, 2013.
- 3. "Principles of Electrical machine Design" by S.K.Sen, 3rd Edition, Oxford & IBH publishing Co. Pvt. Ltd., 13th September 2014.

COs	Pos												PSOs	
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	2													
2	3				2									
3		3												
4			3										3	2
5					2				2			2		2
CO (W.A)	2.5	3	3		2				2			2	3	2

(9)

(9)

		22EEX04-ANALYSIS OF IN	VERTERS					
				L	Т	Ρ	С	
				3	0	0	3	
PRE-R		NIL						
		 To understand the various operati power converters To impart knowledge on voltage s 			Ū	rations	of	
Course	e Objective:	 To Understand the topology of Z systems. 						
		To explore different resonant pulsTo impart knowledge on multileve					าร	
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of (emes natio	ter	
COI	Analyze the c sketch their ch	oncept of various types of inverters and naracteristics.	An 30%					
CO2	related to Z- evaluate the	n- solving skills in addressing challenges source inverter design and operation and performance and efficiency of resonant s in various operating conditions						
CO3		operation of single-phase circuit and he inverter circuits.	An		3	0%		
CO4	Design the ir loads	werters for generic loads and machine	С		2	0%		
CO5	an authentic a	independent learner in a team to build application of inverters paradigm model components and make an effective oral	С			Assessr ent/Sen		

UNIT I- SINGLE PHASE INVERTERS

Introduction – principle of operation – performance parameters – single phase half bridge inverters – single phase full bridge inverter – single phase series inverter – single phase parallel inverter - modified McMurray inverter– McMurray bedford half bridge and full inverter-voltage control of single phase inverters

UNIT II – THREE PHASE VOLTAGE SOURCE AND CURRENT SOURCE INVERTER

(9)

(9)

Three phase bridge inverter with 180° and 120° mode of operation – voltage control of three phase inverters - analysis of single phase and three phase auto sequential current source inverter - current source bridge inverter-harmonic elimination techniques

UNIT III - Z-SOURCEINVERTERS

Comparison with VSI and CSI-principle of operation, equivalent circuit and analysis. Introduction to Quasi Z- source inverter-basic topology-Extended boost quasi Z- source inverter topologies

UNIT IV - RESONANT PULSE INVERTERS

Introduction - series resonant inverters with unidirectional and bidirectional switches - parallel resonant inverters- class e resonant inverter - zero current switching resonant converter - zero voltage switching resonant converter - two quadrant ZVS resonant converter - resonant dc link inverter

UNIT V – MULTILEVEL INVERTERS

Multilevel concept – types – diode clamped – flying capacitor – cascade h bridge multilevel inverters- 3 level- 5 level - comparison of multi-level inverters - applications of multilevel inverters

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- Ι. Rashid M.H, "Power Electronics - Circuits, Devices & Applications", 4th edition, Pearson Education. 2017.
- P.S.Bimbra, "Power Electronics", Khanna Publishers, 7th Edition, 2022. 2.

REFERENCES:

- 1. Fang Lin luo, Hong Ye, "Advanced DC/AC Inverters: Applications in Renewable Energy" CRC press, Taylor and Francis Group, 2013.
- 2. Mohan .N, Undeland & Robbins, "Power Electronics Converters, Application & Design", John Wiley & Sons, Inc, 3rd Edition, Newyork, 2002.
- 3. P.C Sen, "Modern Power Electronics", S.Chand Ltd., 2nd Edition, 2005.
- 4. M.D. Singh & K.B. Khanchandani, "Power Electronics", Tata Mc Graw Hill Publishing Company Limited, 2nd edition, 2017.

				M	lapping	g of CC	Ds with	n POs /	PSO s					
						PC	Ds						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I		3											2	2
2	2			2									3	
3		3											2	3
4			2										3	2
5				2					2	2		I		
CO (W.A)	2	3	2	2					2	2		I	2.5	2.3

(9)

(9)

		22EEX05- WIND AND SOLAR EN	ERGY SYSTEMS	5					
				L	Т	Ρ	С		
				3	0	0	3		
PRE-R									
		 To study the concepts of wind en 							
		 To understand the new developm 			em				
Course	e Objective:	 To motivate the students to design 							
		 To provide students with a solid engineering fundamentals requ problems 							
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of (emestination	ter		
COI		ature, occurrence, and characteristics of r energy system	An	30%					
CO2		zation techniques such as Maximum Tracking (MPPT) in PV system design	Ap	30%					
CO3	<i>,</i> , ,	erformance of PV models and equivalent different environmental conditions	An		2	0%			
CO4	•	c photovoltaic systems for power cluding power conditioning and storage.	С		2	0%			
CO5	photovoltaic s the developm work collabo	I tools to simulate the performance of systems, adhere to ethical standards in nent and deployment of PV systems, ratively to address technical issues and performance of hybrid wind and PV	Ap	-		Assessr nent/Q			

UNIT I – WIND ENERGY CONVERSION

Wind resources – Nature and occurrence of wind – Power in the wind – Wind characteristics – Principles of wind energy conversions – Components of wind energy conversion system (WECS) – Classification of WECS – Advantages and disadvantages of WECS.

UNIT II – WIND ELECTRIC GENERATORS

Characteristics of Induction generators – Permanent magnet generators – Single phase operation of induction generators – Doubly fed generators – Grid connected and standalone systems – Controllers for wind driven self-excited systems and capacitor excited isolated systems – Synchronized operation with grid supply – Real and reactive power control.

UNIT III - PHOTO VOLTAIC MODELS

Solar cells and panels – Structure of PV cells – Semiconductor materials for PV cells – I-V characteristics of PV systems – PV models and equivalent circuits- Effects of irradiance and temperature on PV characteristics.

(9)

(9)

UNIT IV - PHOTO VOLTAIC ENERGY CONVERSION SYSTEM

Introduction to PIC microcontrollers-Overview and features-PIC I6FXX architecture- Memory organization - Register File Structure-Timer module-CCP module – Addressing Modes-Classification of instructions.

UNIT V – RECENT ADVANCEMENTS IN WIND AND PV SYSTEMS

(9)

(9)

Wind farms and grid connections – Grid related problems on absorption of wind – Grid interfacing arrangement – Operation, control and technical issues of wind generated electrical energy – Interconnected operation – Hybrid systems.

Recent Advances in PV Applications: Building Integrated PV systems, Grid Connected PV systems, Hybrid systems, Solar cars, Solar energy storage system and their economic aspects.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Ashish Chandra and Taru Chandra, Non-conventional Energy Resources, 2nd Edn., Khanna Publishers, 2021.
- 2. B.H. Khan, "Non-conventional Energy Resources", Tata McGraw Hill Education India Pvt. Ltd., Third Edition, 2017.

REFERENCES:

- G.N. Tiwari, "Solar Energy: Fundamentals, Design, Modeling & Application", Narosa Publishing House, 2013.
- D.S.Chauhan, S.K. Srivastava, "Non Conventional Energy Resources", 3rd Ed., New Age Publishers, 2012.
- 3. D.P.Kothari and K.C.Singhal,"RenewableEnergy Sources and Emerging Technologies", P.H.I. 2nd Ed., 2011.

	Mapping of COs with POs / PSOs														
						PC	Ds						PSOs		
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2	
I		3													
2	3												I	2	
3		2											I	2	
4			2										I	2	
5	3				2			I	I				I	3	
CO (W.A)	3	2.5		I	2.4										

		22EEX06- IoT FOR SMART S	SYSTEMS				
				L	Т	Ρ	С
				3	0	0	3
PRE-R		NIL					
Course	e Objective:	 To familiarize the activation techniques of Internet of Things for To provide insight about the ember Internet of Things. 	•	nd ser		nmunic require	
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of (emest inatior	ter
COI		architecture, different protocols and n technologies used in IoT in smart	Ар		3	0%	
CO2		t platforms, protocols and technologies T in smart grids.	Ар		3	0%	
CO3	Analyze the c	oncepts of IoT and the big data analytic ing of IoT	An		2	0%	
CO4		arious wireless technologies, architecture s in IoT with case study.	Ар		2	0%	
CO5	Implement IoT a presentation	solutions for smart applications and give in a team.	U	_		Assessn ar, Qui	

UNIT I - INTRODUCTION TO INTERNET OF THINGS

Introduction - Hardware and software requirements for IOT - Sensor and actuators - Technology drivers - Business drivers - Typical IoT applications - Trends and implications.

UNIT II - IOT ARCHITECTURE

IoT reference model and architecture: Node Structure, Sensing, Processing, Communication, Powering, Networking – Topologies - Layer/Stack architecture - IoT standards - Cloud computing for IoT – Bluetooth: Bluetooth Low Energy beacons.

UNIT III - PROTOCOLS AND WIRELESS TECHNOLOGIES FOR IOT

PROTOCOLS: NFC, SCADA and RFID, Zigbee MIPI, M-PHY, UniPro, SPMI, SPI, M-PCIe GSM, CDMA, LTE, GPRS, small cell.

Wireless technologies for IoT: WiFi (IEEE 802.11), Bluetooth/Bluetooth Smart, ZigBee/ZigBee Smart, UWB (IEEE 802.15.4), 6LoWPAN.

(9)

(9)

UNIT IV - IOT PROCESSORS

Services/ Attributes: Big data Analytics for IoT, Dependability, Interoperability, Security, Maintainability. **Embedded Processor for IoT:** Introduction to python programming – Building IoT with RASPERRY PI and Ardunio

UNIT V - CASE STUDIES

Industrial IoT, Home Automation, Smart cities, Smart Grid.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. Oliver Hersent, David Boswarthick and Omar Elloumi "The Internet of Things", Wiley, 2016.
- 2. Lingyang Song/DusitNiyato/ Zhu Han/ Ekram Hossain," Wireless Device-to-Device Communications and Networks, CAMBRIDGE UNIVERSITY PRESS,2015.
- 3. Samuel Greengard, "The Internet of Things", The MIT press, 2015.

REFERENCES:

- 1. ArshdeepBahga and VijaiMadisetti : A Hands-on Approach "Internet of Things", Universities Press 2015.
- 2. Vijay Madisetti , ArshdeepBahga, "Internet of Things (A Hands on-Approach)", 2014.
- 3. Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", John Wiley and sons, 2014.
- 4. Lars T.Berger and Krzysztof Iniewski, "Smart Grid applications, communications and security", Wiley, 2015.
- 5. UpenaDalal,"Wireless Communications & Networks,Oxford,2015.

	Mapping of COs with POs / PSOs													
						PC	Ds						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2	3												3	
3		2											3	
4	2												3	
5									3			3		
CO (W.A)	2.6	2							3			3	3	

(9)

	22E	EX07 - MODERN POWER ELECTRO		ΓERS			
				L	Т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE : N	NIL					
Course	e Objective:	 To impart knowledge about Sw design of converter To acquire knowledge on AC – design examples To understand the multilevel inversion To impart knowledge about matrix To gain knowledge on soft switcher 	DC converters Pe rter and its classific c converter and its	erform	ance i	ndices	with
	e Outcomes dent will be able	to	Cognitive Level	in	ightaş End S Exami	emes	ter
соі	Examine the d time applicatio	ifferent converters concept related to real ns.	Ap		2	0%	
CO2	electronics to	ledge of mathematics, physics and o obtain Switched mode DC power n and AC-DC converters Performance xamples	AP	0%			
СОЗ		different multilevel inverter and matrix I its modulation techniques and arrive at usions	An		3	0%	
CO4	meet given	verter using soft switching techniques to specification using suitable power nponents/ Engineering Tool	Ар		2	0%	
CO5		ependent study as a member of a team n effective oral presentation on the e	U	Int	,	Assessr ninar, nment)	

UNIT I - UNIT I- SWITCHED MODE POWER SUPPLIES (SMPS)

DC Power supplies and Classification - Switched mode dc power supplies: with and without isolation, single and multiple outputs - Closed loop control and regulation - Design examples on converter and closed loop performance.

UNIT II - AC-DC CONVERTERS

Switched mode AC-DC converters - synchronous rectification - single and three phase topologies – switching techniques - high input power factor - reduced input current harmonic distortion - improved efficiency-with and without input-output isolation - Performance indices design examples.

(9)

UNIT III - DC-AC CONVERTERS	(9)
Multi-level Inversion - concept, classification of multilevel inverters, Principle of operation, main f	eatures
and analysis of Diode clamped, Flying capacitor and cascaded multilevel inverters; Modulation schem	les.

UNIT IV - AC-AC CONVERTERS WITH AND WITHOUT DC LINK

Matrix converters. Basic topology of matrix converter; Commutation – current path; Modulation techniques - scalar modulation, indirect modulation; Matrix converter as only AC-DC converter; AC-AC converter with DC link - topologies and operation - with and without resonance link - converter with dc link converter, Performance comparison with matrix converter with DC link converters.

UNIT V – SOFT-SWITCHING POWER CONVERTERS

(9)

(9)

Soft switching techniques: ZVS, ZCS, quasi resonance operation - Performance comparison hard switched and soft switched converters - AC-DC converter - DC-DC converter - DC-AC converter - Resonant DC power supplies.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. M.H.Rashid, "Power Electronics Handbook", Academic press, New york, 2000.
- 2. Fang Lin Luo and Fang Lin Luo, "Advanced DC/DC Converters", CRC Press, NewYork, 2nd Edition, 2017.
- 3. Marian P.Kazmierkowski, R.Krishnan and Frede Blaabjerg, "Control in Power Electronics- Selected Problem", Academic Press (Elsevier Science), 2002.

REFERENCES:

- 1. Issa Batarseh, "Power Electronic Circuits", John Wiley and Sons, Inc.2014.
- 2. Frede Blaabjerg and Zhe Chen, "Power Electronics for Modern Wind Turbines" Morgan & Claypool Publishers series, United States of America, 2006.

	Mapping of COs with POs / PSOs														
						PC	Ds						PS	Os	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	2														
2	3												I	Ι	
3		3											2	Ι	
4			3										2	Ι	
5						Ι				I		I	I	Ι	
CO (W.A)	2.5	3	3			Ι				I		Ι	1.4	I	

6.81

		22EEX11 - HIGH VOLTAGE EN	IGINEERING				
				L	Т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE : N	NIL					
Course	Objective:	 To motivate students to la mechanisms To Understand about the Ger and high current 			-		kdown voltage
	Outcomes dent will be able	to		in	End S	ge of (emest natior	ter
СОІ	ldentify the v voltage and h	rarious measurement techniques of high nigh currents.	Ар		2	0%	
CO2	,	owledge to comprehend high voltage and ble dielectrics in various HV applications.	An		2	0%	
CO3		breakdown phenomenon and factors AC and HVDC measurements.	An		4	0%	
CO4	•	specify the suitable testing methods for power system equipment.	An		2	0%	
CO5	presentation	dependent study to make an effective on real time applications of HVE power systems domain.		-		Assessn Online	

UNIT I- OVER VOLTAGES IN ELECTRICAL POWER SYSTEM

(9)

(9)

Causes of over voltages and its effects on power system –Corona and its effects -Lightning Surges. Switching over voltages-Protection against over voltages, protection gaps, surge arresters

UNIT II - DIELECTRIC BREAKDOWN

Gaseous breakdown in uniform and non-uniform fields – Corona discharges – Vacuum breakdown – Conduction and breakdown in pure and commercial liquids-Maintenance of oil Quality– Breakdown mechanisms in solid and composite dielectrics.

UNIT III - GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS (9)

Generation of high AC voltages - Cascaded transformers -resonant transformer and tesla coil - Generation of high DC voltages -Rectifier - Cockroft Walton voltage multiplier circuit - Van de Graff Generator - Generation of impulse and switching surges – Marx circuit-generation of high impulse current - Tripping and control of impulse generators.

UNIT IV - MEASUREMENT OF HIGH VOLTAGES AND HIGH CURRENTS

(9)

High Resistance with series ammeter – Dividers, Resistance, Capacitance and Mixed dividers – Peak Voltmeter, Generating Voltmeters - Capacitance Voltage Transformers-Electrostatic Voltmeters – Sphere Gaps - High current shunts- High voltage measurement using CRO

UNIT V – HIGH VOLTAGE TESTING & INSULATION COORDINATION (9)

High voltage testing of electrical power apparatus as per Indian standards – Power frequency, impulse voltage, Partial discharge and DC testing of Insulators-Circuit breakers –Bushing-Isolators and Transformers-Insulation Coordination

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. S.Naidu and V. Kamaraju, —High Voltage Engineering, Tata McGraw Hill, 6th ed., 2020
- 2. E. Kuffel and W.S. Zaengl, J.Kuffel, —High voltage Engineering fundamentals, Newnes 2nd ed., Elsevier, New Delhi, 2008.

REFERENCES:

- I. L.L. Alston, High Voltage Technology, Oxford University Press, First Indian Edition, 2011.
- 2. C.L. Wadhwa, High voltage engineering, New Age International Publishers, 3rd ed., 2012.

				M	lapping	g of CC	Os with	POs /	PSOs					
		POs												
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	2													
2		2											Ι	
3		3											Ι	
4		2											Ι	
5									3			3	Ι	
CO (W.A)	2	2.3							3			3	I	

G. Fi

		22EEX12 - HVDC TRANSMISSI	ON SYSTEMS				
				L	Т	Ρ	С
				3	0	0	3
PRE-R							
Course	e Objective:	 To introduce students with the To familiarize the students with system To expose the students to the ha and their prevention To learn the components used a regulating the voltage angle interconnection To enhance their learning doma HVDC system over HVAC system 	the HVDC conve rmonics and faults nd role of power and frequency ain by distinguishi	erters occur electro for p	and th in the onics in power	system nvolved flow	ntrol d for and
	e Outcomes dent will be able		Cognitive Level	in	End S	ge of C emest inatior	ter
соі	Identify the fa	ault and protection schemes in HVDC	Ap		2	0%	
CO2		owledge of transmission technology for asmission over conventional AC	U		2	0%	
CO3	operation of strategies of H	ectifier and inverter control methods for conversion and obtain the control IVDC converter and its in systems.	An		4	0%	
CO4	Implement th transmission s		U			0%	
CO5	Engage in self an effective converters.	learning and work well as a team, giving presentation related to HVDC	U		Semina	Assessn ur, Onli uiz,)	

UNIT I - INTRODUCTION

Introduction of DC power transmission technology - comparison of AC and DC transmission- limitation of HVDC transmission, reliability of HVDC systems - application of DC transmission - description of DC transmission system - planning for HVDC transmission - modern trends in DC transmission.

UNIT II - ANALYSIS OF HDVC CONVERTERS

Three-phase AC–DC Conversion, six pulse converter operation - Effect of Delaying the Firing Instant -The Commutation Process - Analysis of the Commutation Circuit - Analysis neglecting commutation overlap, Rectifier Operation - Inverter Operation - Power Factor and Reactive Power - Characteristic Harmonics, DC Side Harmonics - AC Side Harmonics - Twelve Pulse Converters operation - AC/DC side voltage and current waveforms - Expressions for average dc voltage.

(9)

UNIT III - CONTROL OF HVDC CONVERTER & SYSTEMS

HVDC system control, necessity of control in HVDC link - power reversal, Basic controllers - constant current and constant extinction - power control, high level controllers - Firing angle control- Individual phase control and equidistant firing angle control - Summary of converter control.

UNIT IV - FAULT AND PROTECTION SCHEMES IN HVDC SYSTEMS

Nature and types of faults - faults on AC side of the converter stations - converter faults, fault on DC side of the systems - protection against over currents and over voltages - protection of filter units.

UNIT V - MULTITERMINAL HVDC SYSTEMS

Types of multiterminal (MTDC) systems - parallel operation aspect of MTDC - Control of power in MTDC - Multilevel DC systems - Power upgrading and conversion of AC lines into DC lines - Parallel AC/DC systems - FACTS and FACTS converters.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. Padiyar, K.R., 'HVDC transmission systems', New Age International Publisher , New Delhi, 4th edition 2023.
- 2. Kamakshaiah, S and Kamaraju, V, 'HVDC Transmission', 2nd Edition, McGraw Hill Education (India), New delhi 2020.

REFERENCES:

- Arrilaga, J., 'High Voltage Direct Current Transmission', 2nd Edition, Institution of Engineering and Technology, London, 1998.
- 2. Vijay K. Sood, 'HVDC and FACTS Controllers', Kluwer Academic Publishers, New York, 2004.

				M	lapping	g of CC) s with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I		2											I	
2	3												I	
3		3											I	
4			3										I	
5						I			I			I		
CO (W.A)	3	2.5	3			I			I			I	I	

(9)

(9)

		22EEX13 - POWER QUA	LITY				
				L	Т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE : N	NIL					
Course	e Objective:	 To provide knowledge on analysis in electric power systems To study various methods of Harmonics 	,			•	
	e Outcomes dent will be able	e to		in	End S	ge of C emest natior	ter
соі	concerns of	knowledge to comprehend issues and power quality, classify, sketch and identify er quality phenomena normal as well as	An		2	0%	
CO2	presented th	wer quality issues and interpret data nrough case studies for power quality ggest suitable remedial measures.			2	0%	
CO3	Identify the I mitigate harn	narmonic problems and design circuits to nonic issues	An		4	0%	
CO4		ng specialized equipment and collate data cause power quality problem	An		2	0%	
CO5		independent study to make effective and submit report on power quality		-		Assessn Online	

UNIT I-INTRODUCTION

Power quality-Voltage quality- Overloading - Under voltage - Sustained interruption - Sags and swells -Waveform distortion - Total Harmonic Distortion (THD) - Computer Business Equipment Manufacturers Associations (CBEMA) curve- ITI curves.

UNIT II - VOLTAGE SAGS AND INTERRUPTIONS

Sources of sags and interruptions - Estimating voltage sag performance - Motor starting sags - Estimating the sag severity - Mitigation of voltage sags - Active series compensators - Static transfer switches and fast transfer switches.

UNIT III - OVERVOLTAGES

Sources of Transient Over voltages - Principles of Over voltage Protection - Capacitor switching -Lightning- Ferro resonance - Mitigation of voltage swells - Surge arresters - Low pass filters - Power conditioners – Lightning protection – Shielding - Line arresters - Protection of transformers and cables.

UNIT IV - HARMONICS

Introduction –harmonics indices, inter harmonics, notching – voltage Vs current distortion – harmonics Vs transients – sources and effects of harmonic distortion – mitigation and control techniques– passive and active filters for harmonic reduction

(9)

(9)

(9)

UNIT V – POWER QUALITY MONITORING

Monitoring considerations – Applications of expert systems for power quality monitoring - Assessment of power quality measurement data and power conditioning equipment's – Harmonic / Spectrum analyzer, Flicker meters and Disturbance analyzer.

TOTAL = 45 PERIODS

TEXT BOOKS:

- Roger C. Dugan, Mark F. McGranaghan, H. Wayne Beaty, "Electrical Power Systems Quality", 3rd Edition, McGraw-Hill, New York, Reprint 2017.
- 2. Sankaran.C, "Power Quality", 1st Edition CRC Press, Washington, D.C., 2017.

REFERENCES:

1. J. Arrillaga, N.R. Watson, S. Chen, "Power System Quality Assessment", New York: Wiley, 2014.

2. M.H.J Bollen, "Understanding Power Quality Problems: Voltage Sags and Interruptions", New York: IEEE Press, 2011.

				۲	lapping	g of CC	Os with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	2												I	
2		2											Ι	
3		3												
4		2											Ι	
5									3	3		3		
CO (W.A)	3	2.3							3	3		3	I	

6.80

	22E	EX14 - POWER SYSTEM OPERATIO	ON AND CONT	ROL					
				L	Т	Ρ	С		
				3	0	0	3		
PRE-R	EQUISITE : 1	NIL							
		• To apply the tools like load curv estimate the future demand and					or to		
Course	e Objective:	 To explain the hardware compon voltage control, economic load system monitoring and control. 	•	•		'			
	e Outcomes dent will be able	e to	Cognitive Level	ge of G emest ination	ter				
соі		s strategies of frequency and voltage les to control real & reactive power.	Ар		2	0%			
CO2	implemented	analyze the control actions that are to meet the minute-to minute variation power demand.	An	20%					
CO3		operation and model static & dynamic s of LFC and AVR of power system.	An	An 40%					
CO4		ontrol area schemes to find the efficient batch problem for smooth operation of							
CO5	system contro	lating the technical knowledge of power of using modern tools & deliver the skills whenever and wherever necessary to pocietal needs.	U			Assessn Assignr			

UNIT I - INTRODUCTION

Power scenario in Indian grid, Need for voltage and frequency regulation in power system, System load characteristics, load curves, Load-duration curve, load factor and diversity factor – Reserve requirements – Overview of power system operation: Load forecasting, unit commitment and load dispatching – Overview of power system control – Plant level and System level controls (block diagram approach only).

UNIT II – REAL POWER – FREQUENCY CONTROL

Basics of speed governing mechanism and modeling – Speed-load characteristics – Load sharing in parallel operation – Control area concept – LFC control of a single-area system – Static and dynamic analysis of uncontrolled and controlled cases.

(9)

UNIT III - REACTIVE POWER-VOLTAGE CONTROL

Generation and absorption of reactive power – Automatic Voltage Regulator (AVR): brushless AC excitation system - Block diagram representation of AVR loop – Static and dynamic analysis - Methods of voltage control: tap changing transformer, SVC (TCR + TSC).

UNIT IV - UNIT COMMITMENT AND ECONOMIC DISPATCH

Statement of unit commitment problem – Constraints – Priority-list method – Forward dynamic programming, Formulation of economic dispatch problem – Input and output characteristics of thermal plant - Incremental cost curve – Coordination equations without and with loss (No derivation of loss coefficients) – Solution by direct method and λ -iteration method.

UNIT V – COMPUTER CONTROL OF POWER SYSTEMS

(9)

Need for computer control of power systems – Concept of energy control centre – Functions – System monitoring – Data acquisition and control – System hardware configuration – SCADA and EMS functions – Various operating states – State transition diagram.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. V.Ramanathan, P.S.Manoharan, 'Power System Operation and Control' Third Edition, 2015, Charulatha Publications, Chennai.
- Allen J Wood, Bruce F Wollenberg, Gerald B Sheble, "Power Generation Operation and Control", 2014, 3rd Edition, John Wiley Publication.

REFERENCES:

- 1. Olle. I. Elgerd, "Electric Energy Systems Theory An Introduction", 2nd Edition, 46th reprint, McGraw- Hill Education, 2017
- 2. John J. Grainger, William D. Stevenson, Gary W. Chang, "Power System Analysis", 2016, McGraw-Hill Education.
- 3. Kundur, Prabha S, "Power System Stability and Control", 3rd edition, CRC Press, 2017

	Mapping of COs with POs / PSOs														
						РС	Ds						PS	Os	
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2	
Ι	3	2													
2		Ι											I		
3	Ι	3	I	2									3	3	
4	2		3	2									3	3	
5					2	Ι			2			2		2	
CO (W.A)	2	2	2	2	2	I			2			2	2.3	2.6	

(9)

	22EEX I	5- FUNDAMENTALS OF ELECTRIC	POWER UTILI	ZAT	ION				
				L	Т	Ρ	С		
				3	0	0	3		
PRE-R	EQUISITE : I	NIL							
Course	e Objective:	 To familiarize the students with and welding. To enhance their learning dom performance 							
	e Outcomes Ident will be able	eto	Cognitive Level	in	End S	ge of (emest inatior	ter		
соі	Apply the kn different tract	owledge of electric drives concept in ion effort.	Ар						
CO2	Analyze the ill	umination system for energy saving.	An	20%					
CO3		processes, types, applications and s of electric power utilization.	An	20%					
CO4	heating and w efficient dome	the utilization of electrical energy for relding purposes and Develop an energy estic appliance like fans and pumps for a hold application.	Ар	40%					
CO5	utilization usi	ising the technical knowledge power ng modern tools & deliver the skills to rogress the societal needs.	Internal Assessme				nent		

UNIT I – ELECTRIC HEATING

Electric Heating – Advantages- Modes of heat transfer -Methods of Electric heating – Resistance heating – requirement of a heating element – design of heating element – Arc furnaces – Induction heating- Core type Induction Furnace and Coreless Induction furnace – Eddy current Heating

UNIT II – ILLUMINATION

Introduction – Definition and meaning of terms used in illumination engineering – Laws of illumination, lighting calculations -Classification of light sources – Incandescent lamps, mercury vapour lamps, fluorescent lamps – Design of illumination systems – Indoor lighting schemes – Factory lighting halls – Outdoor lighting schemes – Flood lighting – Street lighting – Energy saving lamps, LED.

UNIT III – WELDING

Welding – Welding processes – Types – Resistance welding – Arc welding – Power supply for arc welding - Electrodes for metal arc welding – Arc Welding machines – VI characteristics – DC welding machine with motor-generator set – AC Welding Machines, Types of Welding – TIG, MIG, MAG, resistance Welding, Spot Welding, Butt Welding, Projection Welding and Electron Beam Welding

(9)

(9)

U	νιτ ιν	' – ELE	CTRI	C TRAC	N				(9)
Ŧ			<u> </u>	· · ·		c ·			0

Traction system – Speed– Time characteristics – Series and parallel control of D.C motors – Open circuited, shunt and bridge transitions – Traction effort calculation – Electric braking – Tramways and trolley bus – A.C traction and its recent trends.

UNIT V – FANS AND PUMPS

Fans – Types, Characteristics and Typical applications, Fan curves – Fan Laws – Flow Control Strategies – Energy Saving Opportunities in fans – Pumps: Types, System Characteristics, Pump curves – Flow control strategies – Energy Conservation opportunities in Pumps

TOTAL (L:45) = 45 PERIODS

(9)

TEXT BOOKS:

- 1. J.B.Gupta, "Utilisation Electric power and Electric Traction", S.K.Kataria and Sons, Newdelhi 10th edition, 2019.
- 2. "Energy Efficiency in Electrical Utilities", Guide Book for National Certification Examination for energy managers and Auditors, 4th Edition, Bureau of Energy Efficiency,2015.

REFERENCES:

- 1. Taylor E. Openshaw, "Utilization of Electrical Energy", Universities Press, Hyderabad, 2012.
- 2. Partab.H, "Art and Science of Utilisation of Electrical Energy", Dhanpat Rai and Co, New Delhi, 2017.

				Μ	apping	g of CC) s with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	2												I	
2		2											I	
3		2											I	
4	3												I	
5					3	3			3			3		
CO (W.A)	2.5	2			3	3			3			3	I	

6.80

	22EEX16	ENERGY AUDITING CONSERVAT		AGEN	1ENT			
				L	Т	Ρ	С	
				3	0	0	3	
PRE-R	EQUISITE : N	NIL						
Course	e Objective:	 To Understand the fundamenta systems To equip students with the know performance of electric motors To provide the students with a contechnologies involved in the mana To gain a thorough knowledge of the students with a contechnologies involved in the mana 	vledge and skills new mprehensive unde ugement of energy in	cessar erstan n light of ene	y to o ding ing sys rgy au	ptimize of tems dit	e the	
	e Outcomes dent will be able	e to	Cognitive Level	in	End S	ge of C emest inatior	ter	
соі		ndamental energy scenario and energy n electric motors, lighting system	Ap	30%				
CO2	Apply and im electrical syste	plement energy-efficient technologies in ems	ⁿ Ap 30%					
CO3	electric motor of electric mo	quantify energy consumption patterns in r systems and optimize the performance tors and drives	An	20%				
CO4	audits, metho performance c		An 20%					
CO5	implementatio	learning, uphold ethical standards in the n of energy-efficient technologies and rainable solutions to address energy	and Internal Assessme					

UNIT I- ENERGY SCENARIO

Introduction – primary and secondary energy – commercial and non-commercial Energy – renewable and non- renewable Energy – world renewable energy scenario, renewable energy scenario in India, energy needs of growing economy, energy and environment, energy conservation act 2001 and its importance, energy security, BEE star ratings-introduction to energy trading- electrical load analysis

UNIT II - ENERGY MANAGEMENT IN ELECTRIC MOTORS

Introduction - losses in electric motors – motor efficiency – factors affecting motor performance – rewinding and motor replacement issues – energy saving opportunities with energy efficient motors – motor efficiency management.

(9)

UNIT III - ENERGY MANAGEMENT IN LIGHTING

Light source, choice of lighting – luminance requirements – energy conservation methods – lighting energy management – day lighting – energy efficiency in lighting

UNIT IV - ENERGY EFFICIENT TECHNOLOGIES IN ELECTRICAL SYSTEMS

Maximum demand controllers – automatic power factor controllers – energy efficient motors – soft starters with energy saver – variable speed drives – energy efficient transformers – electronic ballast – occupancy sensors, energy efficient lighting controls. energy saving potential of each technology- hybrid energy systems

UNIT V – ENERGY AUDIT

Energy audit – necessity of energy audit – types of energy audit, methodology of energy audit - energy costs – benchmarking – energy performance and maximizing system efficiency, energy audit instruments – energy monitoring and targeting.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- Stephen A. Roosa, Steve Doty, Wayne C. Turner, Energy Management Handbook, River Publisher, 9th Edition 2018.
- 2. Sonal Desai, Handbook of Energy Audit, McGraw-Hill Education, 2017.

REFERENCES:

- 1. Barney L. Capehart, Wayne C. Turner, and William J. Kennedy, "Guide to Energy Management", 8th Edition, River Publishers, Inc., 2016.
- 2. Amit K. Tyagi, "Handbook on Energy Audits and Management", The Energy and Resources Institute, 2003.
- 3. Larry C. Witte, Philip S. Schmidt & David R. Brown, "Industrial Energy Management & Utilization", Hemisphere Pub. Corp., 1988.

				M	apping	g of CC) s with	POs /	PSO s					
						PC)s						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3												I	Ι
3		2											2	2
4		2											2	2
5						2	2	I				2		
CO (W.A)	3	2				2	2	I				2	1.7	1.7

(9)

(9)

		22EEX17 - RESTRUCTURED PO	WER SYSTEM						
				L	Т	Ρ	С		
				3	0	0	3		
PRE-R	EQUISITE : I								
		 To understand the behavior of de 	•	•	ver sys	stem.			
		 To acquire knowledge the technica deregulated power industry. 	al and non- technica	al is:	sues	in			
Course	e Objective:	 To identify the methods of Local and the function of financial trans 	•	culatio	on in t	ransmi	ssion		
		 To Analyze the energy and anci power industry 	llary services mana	ageme	nt in o	deregu	lated		
		• To Discriminate the restructuring	g framework US and	d India	an pow	er sec	tors		
	e Outcomes dent will be able	e to	Cognitive Level	in	ightag End S Exami	emes	ter		
соі		rious restructured power markets in nanagement and financial transmission	Ap		3	0%			
CO2		requirement for deregulation of the rket and the principles of market models ems.	Ар	Ap 20%					
CO3	deregulated p pricing and fi	nethods of congestion management in power system and the locational marginal nancial transmission rights and also the ces management	An		3	0%			
CO4	Propose the repower sectors	estructuring framework of US and Indian	Ap		2	0%			
CO5	and make a	ependent study as a member of a team n effective oral presentation on the f Restructured Power System concepts	U	Int	•	Assessr ninar, nment)			

UNIT I- INTRODUCTION

Reasons for restructuring - Understanding the restructuring process - objectives of deregulation of various power systems across the world - Consumer behavior - Supplier behavior - Market equilibrium - Short-run and Long-run costs - Various costs of production. The Philosophy of Market Models: Market models based on contractual arrangements - Market architecture.

UNIT II - TRANSMISSION CONGESTION MANAGEMENT

Importance of congestion management in deregulated environment - Classification of congestion management methods - Calculation of ATC - Non-market methods - Market based methods - Nodal pricing - Inter-zonal Intra-zonal congestion management - Price area congestion management - Capacity alleviation method.

(9)

UNIT III - LOCATIONAL MARGINAL PRICES AND (9) FINANCIAL TRANSMISSION RIGHTS

Fundamentals of locational marginal pricing - Lossless DCOPF model for LMP calculation - Loss compensated DCOPF model for LMP calculation - ACOPF model for LMP calculation - Risk Hedging Functionality of financial Transmission Rights - FTR issuance process - Treatment of revenue shortfall - Secondary trading of FTRs - Flow Gate rights - FTR and market power.

UNIT IV- ANCILLARY SERVICE MANAGEMENT AND PRICING OF TRANSMISSION NETWORK

Types of ancillary services -Load-generation balancing related services - Voltage control and reactive power support services - Black start capability service - Mandatory provision of ancillary services - Markets for ancillary services - Co-optimization of energy and reserve services - International comparison. Pricing of transmission network: wheeling - principles of transmission pricing - transmission pricing methods - Marginal transmission pricing paradigm - Composite pricing paradigm - loss allocation methods.

UNIT V – MARKET EVOLUTION

US markets: PJM market - The Nordic power market - Reforms in Indian power sector: Framework of Indian power sector - Reform initiatives - availability based tariff (ABT) - The Electricity Act 2012 - Open Access issues - Power exchange.

TOTAL (L:45) = 45 PERIODS

(9)

(9)

TEXT BOOKS:

- Mohammad Shahidehpour, Muwaffaq Alomoush,, "Restructured electrical power systems: operation, trading and volatility", Marcel Dekker Pub., 2001, 1st Edition.
- 2. Kankar Bhattacharya, MathH.J.Boolen, and Jaap E.Daadler, "Operation of restructured power systems", Kluwer Academic Pub., 2001, 1st Edition.

REFERENCES:

- 1. Paranjothi, S.R., "Modern Power Systems The Economics of Restructuring", New Age International Publishers, First Edition: 2017.
- 2. Sally Hunt, "Making competition work In electricity", John Willey and Sons Inc. 2002.

				M	apping	of CO	s with	POs /	PSO s					
	POs													Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	Ι	2
I	2												2	I
2	3												2	I
3		3											2	I
4			3										2	I
5						I				I		I	I	I
CO (W.A)	2.5	3	3			I				I		I	2	I

1.81

22	EEX18- FUNDAMENTALS OF FIBRE OPTICS AND	D LASER INST	RUM	ENT/		N
			L	Т	Ρ	С
			3	0	0	3
PRE-R						
Course	 To equip students with the knowled optical fibres, analyze their properties industrial applications. To develop students' ability to analy optics, evaluate fibre characteristics. Interferometry. To demonstrate the application of ensuring students understand the prime. To foster independent learning and effective presentations and submit deta fibre optics, laser instrumentation, ar systems. 	s, and understand yze the theory a s, and apply m laser instrumen ciples and safety teamwork, enco ailed reports on a	l laser ind cl nethoo ts in consid uragir assign	funda assifica ds of media deration ng stua ed top	amenta ation o Holo cal sur ons inve dents vics rela	ls with of fibre graphic rgeries, olved. to give ated to
	e Outcomes Ident will be able to	Cognitive Level	in	End S	ge of (emes inatio	ter
СОІ	Apply the concepts of optical fibres with the properties and analyze about the laser fundamentals with industrial applications.	Ар		3	5%	
CO2	Analyze the theory and classification of fiber optics and fibre characteristics with methods of Holographic interferometry.	An		2	5%	
CO3	Demonstrate the application of laser instruments in medical surgeries.	Ap		2	0%	
CO4	Describe the lighting systems, lighting design and appraise the energy saving opportunities in them.	An		2	0%	
CO5	Engage in self-directed learning and work well as a team, giving an effective presentation and submitting a report on an assigned topic related to fibre optics and laser instrumentation.	U	Int		Assessr ninar)	nent

UNIT I - OPTICAL FIBRES AND THEIR PROPERTIES (9) Theory and classification of fiber optics: Principles of light propagation through a fibre - Different types of fibres and their properties, fibre characteristics – Absorption losses – Scattering losses – Dispersion – Connectors and splicers – Optical sources – Optical detectors UNIT II - INDUSTRIAL APPLICATION OF OPTICAL FIBRES (9) Fibre optic sensors — Different types of modulators - fibre optic communication set up- Interferometric method of measurement of length – Moire fringes – Measurement of pressure, temperature, voltage, liquid level and strain.

UNIT III - LASER FUNDAMENTALS	(9)
Fundamental characteristics of lasers – Three level and four level lasers – Properties of laser –	Laser modes ·
Resonator configuration – Q-switching and mode locking – Cavity damping – Types of lasers –	Gas lasers,
solid lasers, liquid lasers, semiconductor lasers.	
UNIT IV - INDUSTRIAL APPLICATION OF LASERS	(9)
Laser for measurement of velocity and Atmospheric effect – Material processing – Laser heatin	ng – Welding -
Melting and trimming of material – Removal and vaporization.	
UNIT V - HOLOGRAM AND MEDICAL APPLICATIONS	(9)

Holography – Basic principle - Methods – Holographic Interferometry and application, Holography for nondestructive testing – Holographic components – Medical applications of lasers - Laser and tissue interactive – Laser instruments for surgery, removal of tumors of vocal cards, brain surgery, plastic surgery, gynaecology and oncology.

TOTAL (L:45)= 45 PERIODS

TEXT BOOKS:

- 1. R.P.Khare, Fiber Optics and Optoelectronics, Oxford university press, 2008.
- 2. J. Wilson and J.F.B. Hawkes, Introduction to Opto Electronics, Prentice Hall of India, 2001.

REFERENCES:

- 1. Asu Ram Jha, Fiber Optic Technology Applications to commercial, Industrial, Military and Space Optical systems, PHI learning Private limited, 2009.
- 2. M. Arumugam, Optical Fibre Communication and Sensors, Anuradha Agencies, 2002.
- 3. John F. Read, Industrial Applications of Lasers, Academic Press, 1978.

				Μ	lapping	g of CC) s with	POs /	PSOs					
						РС	Ds						PSOs	
COs I	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	2	2												
2	3												I	
3		3												
4			3											
5						I			I			I		
CO (W.A)	2.5	2.5	3			I			I			I	I	

168 | Page

	2	2EEX21- FUNDAMENTALS OF ELE	CTRIC VEHICI	LES						
				L	Т	Р	С			
				3	0	0	3			
PRE-R	REQUISITE : N	NIL								
Course	e Objective:	 To familiarize the students with the To expose the students to acquivehicles To enhance their learning doma performance 	ire knowledge or	n the f	undam	nentals				
	e Outcomes Ident will be able	to	Cognitive Level	in l	End S	e of C emest natior	er			
соі		heir learning domain by electric traction neir performance	Ар	40%						
CO2	Apply the distir electric vehicles	nct attributes of different motor drives in S.	An		20	0%				
CO3	Analyze the in EVs.	mportance of energy storage systems in	An		1!	5%				
CO4	Design an elec	tric vehicle based on the requirement	An 25%							
CO5		team to share the skills to develop a red for the upliftment of society using pols	Ар		signme	ssessm ent, Or uiz)				

UNIT I - INTRODUCTION TO ELECTRIC VEHICLES

Importance of Different Transportation Development Strategies to Future Oil Supply – History of EVs-Components of Electric Vehicle- General Layout of EV-EV classification- Comparison with Internal combustion Engine: Technology, Advantages & Disadvantages of EV. Performance of EVs: Traction Motor Characteristics - Tractive Effort and Transmission Requirement - Vehicle Performance - Tractive Effort in Normal Driving - Energy Consumption.

UNIT II – HYBRID ELECTRIC VEHICLES

Introduction to HEV- History-Concept of Hybrid Electric Drive Trains - Architectures of Hybrid Electric Drive Trains: Series Hybrid Electric Drive Trains (Electrical Coupling) - Parallel Hybrid Electric Drive Trains (Mechanical Coupling) - Hybrid Drive Trains with Both Torque and Speed Coupling

UNIT III – POWER SOURCES AND ENERGY STORAGES

Electrochemical Batteries: Electrochemical Reactions - Thermodynamic Voltage - Specific Energy - Specific Power - Energy Efficiency - Battery Technologies - Lead-Acid Battery - Nickel-Based Batteries - Lithium-Based Batteries – Ultracapacitors - Ultra-High-Speed Flywheels - Hybridization of Energy Storage. (9)

UNIT IV – ELECTRIC PROPULSION SYSTEMS

Induction Motor Drives: Basic Operation Principles of Induction Motors - Power Electronic Control - Field Orientation Control - Voltage Source Inverter for FOC - Permanent Magnetic BLDC Motor Drives: Basic Principles of BLDC Motor Drives - BLDC Machine Construction and Classification - SRM Drives: Basic Magnetic Structure - Modes of Operation - Sensorless Control.

(9)

(9)

UNIT V – DESIGN CONSIDERATION FOR ELECTRIC VEHICLE

Aerodynamic Considerations-Consideration of Rolling Resistance-Transmission Consideration of Vehicle Mass- Electric Vehicle Chassis and Body Design (9) Efficiency-

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- Iqbal Hussain., "Electric and Hybrid Vehicles: Design Fundamentals", 3rd Edition, CRC press, Taylor & Francis Group, Florida, United States, 2021.
- 2. MehrdadEhsani, YimiGao, Sebastian E. Gay, Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", 3rd Edition, CRC Press, 2018.

REFERENCES:

- 1. James Larminie, John Lowry, "Electric Vehicle Technology Explained", 2nd Edition, Wiley, 2012.
- 2. L.Ashok Kumar, and S.Albert Alexander, "Power Converters for Electric Vehicles", First Edition, CRC Press, 2020.

	Mapping of COs with POs / PSOs													
	POs													Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I														
2	3												3	
3		2											3	
4	3													
5									3		3	3		
CO (W.A)	3	2							3		3	3	3	

G.Ri

22	EEX22 - BAT	TERY PACK MODELING AND CHA	RGING OF ELE	CTR	IC VE	HICLI	E		
				L	Т	Ρ	С		
				3	0	0	3		
PRE-R	EQUISITE : N	NIL							
Course	e Objective:	 To introduce the fundamental p chemistry, components, and typ To familiarize the functions, companagement Systems. To analyze and optimize battery p 	pes commonly use omponents, and a	ed in f rchite	EVs. cture		-		
	e Outcomes dent will be able	e to	Cognitive Level	in	End S	ge of (emest nation	ter		
соі		technologies in charging infrastructure, ficiency and optimization in electric	Ap		2	0%			
CO2	the difference	ectors influencing charging efficiency and es between series, parallel, and hybrid configurations and their applications in es.	U		2	0%			
CO3	Analyze the d battery pack.	ifferent technologies in the modeling of	An		4	0%			
CO4		knowledge of different battery used in electric vehicles and their vantages and limitations.							
CO5	the topic re	am and make effective presentation on elated to real world challenges and in battery pack modeling and charging es.	U	-	Semina	Assessr ur, Onli uiz,)			

UNIT I – INTRODUCTION TO ELECTRIC VEHICLES AND BATTERY TECHNOLOGY

(9)

Overview of electric vehicles: history, types, and applications - Basics of battery technology: chemistry, components, and types - Comparison of battery chemistries used in EVs - Introduction to battery pack architecture and design considerations.

UNIT II - BATTERY PACK CONFIGURATION AND MANAGEMENT

(9)

Battery pack configuration: series, parallel, and hybrid configurations - Battery Management System (BMS): functions, components, and architecture - Cell balancing techniques and algorithms - State-of-Charge (SOC) and State-of-Health (SOH) estimation methods.

UNIT III – CHARGING INFRASTRUCTURE AND PROTOCOLS

Overview of charging infrastructure: residential, public, and fast-charging networks - AC charging: principles, standards, and charging rates - DC fast charging: principles, standards (CHAdeMO, CCS), and high-power charging - Wireless charging technologies and standards.

UNIT IV – CHARGING EFFICIENCY AND OPTIMIZATION

Charging efficiency: factors affecting charging efficiency and losses - Impact of charging on battery life: charge rate, temperature, and depth of discharge - Charging optimization techniques: peak/off-peak charging, smart charging algorithms - Vehicle-to-Grid (V2G) and Vehicle-to-Home (V2H) integration for energy management.

UNIT V - BATTERY PACK MODELING AND ADVANCES IN BATTERY TECHNOLOGY

Mathematical modeling of battery cells and packs: equivalent circuit models, thermal models – Predictive modeling for charging time estimation and battery performance optimization - Emerging battery technologies: solid-state batteries, lithium-sulfur batteries - Battery pack design for specific applications of electric buses, commercial vehicles, drones - Future trends and developments in EV battery technology.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- Christopher D. Rahn and Dan M. Ionel, "Battery Systems Engineering", Wiley-IEEE Press, 1st edition, 2013.
- 2. Sandeep Dhameja, "Electric Vehicle Battery Systems", CRC Press, 1st edition, 2015.

REFERENCES:

- H.J. Bergveld, P.H.L. Notten, and P.H.L. Notten, "Battery Management Systems for Large Lithium-Ion Battery Packs", Artech House, 2010.
- 2. H.A. Kiehne, "Battery Technology Handbook", CRC Press, 2nd edition, 2018.

				M	lapping	g of CC	Ds with	POs /	PSOs					
						PC	Os						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												I	3
2	I	2											I	I
3		3											I	
4			3										I	
5									I	I		I		
CO (W.A)	2	2.5	3						I	I		I	I	2

6.81

(9)

(9)

		22EEX23 - HYBRID ELECTRIC	VEHICLES				
				L	т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE : N	NIL					
Course	e Objective:	 To provide an understanding of surhistory, interdisciplinary nature, or electric vehicles (HEVs). To provide a comprehensive under conventional components, propurof Electric Vehicles (EVs), Hybrin Vehicles (FCV). To understand Plug-in Hybrid Elect Electric Vehicles (EREVs) includie economy, power management, support, vehicle-to-grid technology To understand rectifiers, convert chargers utilized in Hybrid Elect concepts like voltage ripples and pumped hydroelectric Energy Strategies. 	hallenges and key to erstanding of vehicle ilsion loads, drive of id Electric Vehicles ctric Vehicles (PHEV ing their architectu end-of-life batter gy and PHEV batter erters, regenerative ric Vehicles (HEVs) power management meters and various tors, flywheels, mag	echnol e funda cycles s (HE vs) and res, e ry ut y char e bra), alon c. s tech gnetic air er	logies of imenta and th vs) and d Exte lectric ilization ging. king a ig with nologio Storag nergy s	of hyb Ils, inclu ne con d Fuel nded R range n for and ba n assoc es inclu ge Syst	rid uding cepts Cell ange fuel grid ttery iated uding cems, e and
	e Outcomes and of the cours	e, the students will be able to	Cognitive Level	in	End S	emes inatio	ter
COI	development	ncepts of hybrid electric vehicle in the of sustainable transportation Solutions.	Ар		2	.0%	
CO2		types of hybrid electric vehicle in towards transportation and energy	An		4	0%	

UNIT I - INTRODUCTION TO HYBRID ELECTRIC VEHICLES

Interpret different power converter topologies used

Design the energy storage solution using power electronics in hybrid electric vehicle for diverse

application in the development of sustainable energy

Perform in team and make effective presentation on

the topic related to real world challenges and

requirements in hybrid electric vehicles.

for electric vehicle application

(9)

20%

20%

Internal Assessment

(Seminar)

Sustainable transportation-History of hybrid vehicles-Inter disciplinary nature of HEVs -Challenges and key technology of HEVs -Architecture of HEVs-Series and parallel HEVs-Complex HEVs.

CO3

CO4

CO5

system

An

С

U

6.80

UNIT II - HYBRIDIZATION OF AUTOMOBILE

Fundamentals of vehicle-Components of conventional vehicle and propulsion load-Drive cycles and drive terrain- Concept of Electric vehicle and Hybrid Electric vehicle - Comparison of EV and HEV-Fuel Cell vehicles and its constituents.

UNIT III - PLUG-IN HYBRID ELECTRIC VEHICLE

PHEVs and EREVs blended PHEVs- PHEV Architecture-Equivalent electric range of blended PHEVs- Fuel economy of PHEVs- Power management of PHEVs- End-of-life battery for electric power grid support-Vehicle to grid technology-PHEV battery charging.

UNIT IV - POWER ELECTRONICS IN HEVS

Rectifiers used in HEVs- Voltage ripples- Buck converter used in HEVs- Non-isolated bidirectional DC-DC converter-Regenerative braking-Voltage source inverter-Current source inverter- Isolated bidirectional DC- DC converter-PWM rectifier in HEVs- EV and PHEV battery chargers.

UNIT V - BATTERY AND STORAGE SYSTEMS

Energy Storage Parameters-Lead Acid Batteries- Ultra capacitors-Flywheels - Magnetic Storage System-Pumped Hydroelectric Energy Storage-Compressed Air Energy Storage – Heat Storage.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. Teresa Donateo, "Hybrid Electric Vehicles", Published by ExLi4EvA, 2017
- 2. NoshirwanK.medora, "Electric and Hybrid Vehicles Power Sources, Models, Sustainability, Infrastructure and the Market "Gianfranco Pistoia Consultant, Rome, Italy, Elsevier Publications, 2017.
- 3. Jack Erjavec and Jeff Arias, "Hybrid, Electric and Fuel Cell Vehicles", Cengage Learning, 2012.

REFERENCES:

- Wei Liu , "Hybrid Electric Vehicle System Modeling and Control ", USA, John Wiley & Sons, Inc., 2017.
- 2. Ali Emadi, "Advanced Electric Drive Vehicles", CRC Press, 2014.
- 3. Iqbal Hussein, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2003
- 4. H. Partab, "Modern Electric Traction", DhanpatRai & Co, 2007.

				M	lapping	g of CC	D s with	POs /	PSO s					
_		-	-	_	_	PC		_	_	-	-	-	PS	Os
COs	Т	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3												I	
2		3											I	
3		I	I	I									I	
4			3										I	
5									I	I		I		
CO (W.A)	3	2	2	I					I	I		I	I	

(9)

(9)

(9)

	22	EEX24 - TESTING AND ELECTRIC	VEHICLES POL	ICY			
				L	Т	Ρ	С
				3	0	0	3
PRE-R	REQUISITE : N	۱IL					
		• To Gain knowledge in the field of	FE-vehicle certificat	ion.			
Cour	se Objective:	• To familiarize the students with t	he concept of static	testir	ng of E	-vehicl	е
Cour	se Objective.	• To Gain the insight of charging st	ation and policy for	Elect	ric Veł	nicle.	
				We	ightag	ge of C	COs
		Course Outcomes	Cognitive Level	in	End S	emest	ter
	The	Student will be able to	5	E	Exami	natior	า
COI		students to acquire knowledge on the	Ap		4	0%	
001	fundamentals of	dynamic testing of E-vehicle.	, 'P		•	•/•	
	Analyze the safe	ety cycle and need for functions safety for					
CO2	EVs		An		2	0%	
	Analyze the imp	portance of dynamic testing of E-vehicle.					
CO3		of tance of dynamic testing of L-venicle.	An		I	5%	
CO4	Design the con	cept of E-vehicle component testing.	An		2	5%	
004							
		m to share the skills to develop a product				ssessn	
CO5	required for th tools	e upliftment of society using the modern	Ар	(As	· ·	ent, Or uiz)	nline

UNIT I - INTRODUCTION

Specification & Classification of Vehicles (including M, N and O layout) - Homologation & its types, Regulations overview (EEC, ECE, FMVSS, AIS, CMVR) - Type approval Scheme - Homologation for export -Conformity of Production - various Parameters - Instruments and Types of test tracks - Hardware in The Loop (HIL) concepts for EV/HEVs.

UNIT II – STATIC TESTING OF VEHICLE

Photographs - CMVR physical verification - Tyre Tread Depth Test - Vehicle Weightment - Horn installation - Rear view mirror installation - Tell Tales - External Projection - Wheel Guard, Arrangement of Foot Controls for MI Vehicle - Angle & Dimensions Measurement of Vehicle - The requirement of temporary cabin for drive- away - Chassis, electric vehicle - Safety norms - Energy consumption and power test.

UNIT III – DYNAMICS TESTING OF VEHICLE

Hood Latch - Gradeability - Pass-by Noise, Interior Noise - Turning Circle Diameter & Turning Clearance Circle Diameter -Steering Effort - Constant Speed Fuel Consumption - Cooling Performance - Speedometer Calibration - Range Test - Maximum Speed - Acceleration Test - Coast-down test - Brakes Performance ABS Test - Broad band / Narrow band EMI Test, Electric vehicle – Range Test.

UNIT IV – VEHICLE COMPONENT TESTING

Horn Testing, Safety Glasses Test: Windscreen laminated and toughened safety glass - Rear View Mirror Test - Hydraulic Brakes Hoses Fuel Tank Test: Metallic & Plastic - Hinges and Latches Test - Tyre & Wheel Rim Test - Bumper Impact Test, Side Door Intrusion - Crash test with dummies - Demist test, Defrost Test - Interior Fittings - Steering Impact test (GVW<1500 kg) - Body block test - Head form test - Driver Field of vision - Safety belt assemblies - Safety belt anchorages, Seat anchorages & head restraints test - Airbag Test - Accelerator Control System - Motor power - Safety Requirements of Traction Batteries - EMI-EMC (CI, BCI, RE,RI and CTE).

(9)

(9)

(9)

UNIT V – GOVERNMENT RULES, POLICY & OPPORTUNITY

Technology Scenario - Market Scenario - Policies and Regulations - Payback and commercial model - Polices in India – opportunities-Safety provisions of all A.C. charging stations in accordance with IEC 61851-1, IEC 61851-21, IEC 61851-22 and IEC 61851-24 standards.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

Michael Plint & Anthony Martyr, "Engine Testing & Practice", Butterworth Heinmenn, 3rd ed, 2007
 "Vehicle Inspection Handbook", American Association of Motor Vehicle Administrators

REFERENCES:

- Proceedings- Automotive Testing & Certification held on 20th to 24th July 2010 at ARAI, PUNE, Bosch Automotive Handbook, Robert Bosch, 7th Edition, 2007
- 2. James Larminie, John Lowry, "Electric Vehicle Technology Explained", 2nd Edition, Wiley, 2012
- 3. L.Ashok Kumar, and S.Albert Alexander,"Power Converters for Electric Vehicles", First Edition, CRC Press, 2020

	Mapping of COs with POs / PSOs													
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2													3	
3		2											3	
4	3													
5									3		3	3		
CO (W.A)	3	2							3		3	3	3	

681

176 | Page

	22EEX25- EV INTELLIGEN	T SYSTEM				
			L	Т	Ρ	С
			3	0	0	3
PRE-R	REQUISITE : NIL					
	To learn mathematical model of	a BLDC motor and	its cha	aracter	istics.	
	 To study the different speed cont 	rol for Electric drive	es.			
Course	e Objective: • To learn the fundamentals of fuzz	y logic Control.				
	 To study the essentials of FPGA 8 	k VHDL.				
	 To execute fuzzy logic control of 	BLDC motor in rea	l time.			
	e Outcomes	Cognitive		ightas End S	-	
The Stu	udent will be able to	Level	I	Exami	natio	1
соі	Apply the knowledge of appropriate electric motor, and diverse speed control methods to realize the intelligen systems in electric vehicles.		0%			
CO2	Analyze the various control techniques with thei characteristics used in EV.	An		3	0%	
CO3	Implement of fuzzy logic control scheme for BLDC motor using FPGA in real time.	Ар		3	0%	
CO4	Design the electric vehicle for a given intelligen technique.	C		Ι	0%	
CO5	Engage in an independent study, to perform in a team effectively use an engineering tool and present a technica report on intelligent systems of electric vehicle.		Int	ernal A (Ser	Assessn ninar)	nent

UNIT I- MATHEMATICAL MODEL AND CHARACTERISTICS ANALYSIS OF BLDC MOTOR

Structure and Drive Modes - Basic Structure - General Design Method-Drive Modes. Mathematical Model-Differential Equations -Transfer Functions - State-Space Equations - Characteristics Analysis-Starting Characteristics-Steady-State Operation- Dynamic Characteristics- Load Matching Commutation Transients.

UNIT II – SPEED CONTROL FOR ELECTRIC DRIVES

Introduction -PID Control Principle- Anti windup Controller-Intelligent Controller- Vector Control-Control applied to BLDC motor.

UNIT III – FUZZY LOGIC CONTROL

Membership functions: features, fuzzification and methods of membership value assignments, Defuzzification: lambda cuts - methods - fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - extension principle -fuzzy integrals - fuzzy rule base and approximate reasoning: truth values and tables- fuzzy propositions, formation of rules decomposition of rules- aggregation of fuzzy rules-fuzzy reasoning-fuzzy inference systems- overview of fuzzy expert system-fuzzy decision making.

UNIT IV – FPGA AND VHDL BASICS

Introduction – FPGA Architecture-Advantages-Review of FPGA family processors- Spartan 3, Spartan 6 and Spartan 7. VHDL Basics- Fundamentals-Instruction set-data type-conditional statements- programs like arithmetic, sorting, PWM generation, Speed detection.

(9)

(9)

(9)

UNIT V – REAL TIME IMPLEMENTATION

Inverter design- identifying rotor position via hall effect sensors-open loop and fuzzy logic control of 48 V BLDC motor uses FPGA.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Electric Power train Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles, John G. Hayes, G. Abas Goodarzi, Wiley 1st Edition 2018.
- 2. VHDL Primer, A (3rd Edition), Jayaram Bhasker, Prentice Hall, 1st Edition 2015.
- 3. Iqbal Hussain, "Electric and Hybrid Vehicles: Design Fundamentals, Third Edition" CRC Press, Taylor & Francis Group, 1st Edition, 2021.

REFERENCES:

- 1. Chang-liang, Permanent Magnet Brushless DC Motor Drives and Controls, Xia Wiley, 1st Edition, 2012.
- 2. M.N. Cirstea, A. Dinu, J.G. Khor, M. McCormick, Neural and Fuzzy Logic Control of Drives and Power Systems, Newnes publications, 1st Edition, 2002.
- 3. Wei Liu, Hybrid Electric Vehicle System Modeling and Control, 2nd Edition, Wiley 2017.
- 4. Electric and Plug-in Hybrid Vehicle Networks Optimization and Control, Emanuele Crisostomi, Robert Shorten, Sonja Stüdli, Fabian Wirth, CRC Press, 1st Edition. 2018.

	Mapping of COs with POs / PSOs														
COs	Pos													PSOs	
	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3												2		
2		2													
3		2		I	I										
4			I												
5					I				I	I	I	I			
CO (W.A)	3	2	I	I	I				I	I	I	I	2		

6.8i

22EEX26 - ELECTRIC VEHICLES IN SMART GRID												
				L	Т	Ρ	С					
				3	0	0	3					
PRE-R	REQUISITE : N	NIL										
Course	e Objective:	 To learn the impact of charging strategies and smart charging technologies To know the influence of EVs on power system To acquire knowledge on frequency control reserves & voltage support from EVs To learn about smart grid and ICT solutions to support EV deployment To acquire knowledge on centralized charging, decentralized charging schemes and energy storage integration into microgrid 										
	e Outcomes Ident will be able		Cognitive Level	Weightage of COs in End Semester Examination								
соі		e electrification and impact of charging influence of EVs on power system	Ap	30%								
CO2	Demonstrate t renewable ener	the impact of EV on smart grid and gy system	Ap	20%								
CO3		ncy control reserves & voltage support CT solutions to support EV deployment	An	30%								
CO4		alized charging, decentralized charging hergy storage integration into microgrid	Ap	20%								
CO5		dependent study and make an oral a the applications	U	Internal Assessment (Seminar, Online Quiz)								

UNIT I- INTRODUCTION

Basics of EV- Impact of charging strategies- EV charging options and infrastructure - Energy, economics and environmental considerations- Impact of EV charging on power grid- Effect of EV charging on generation and load profile - Smart charging technologies- Impact on investment.

UNIT II – INFLUENCE OF EVs ON POWER SYSTEM

Identification of EV demand - EV penetration level for different scenarios- Classification based on penetration level - EV impacts on system demand- Charging: dumb, multiple tariff and smart charging- Case studies.

UNIT III – FREQUENCY CONTROL RESERVES & VOLTAGE SUPPORT FROM EVs

Introduction- Power system ancillary services -Electric vehicles to support wind power integration- Electric vehicle as frequency control reserves and tertiary reserves - Voltage support and electric vehicle integration - Properties of frequency regulation reserves - Control strategies for EVs to support frequency regulation.

(9)

(9)

6.800

UNIT IV - ICT SOLUTIONS TO SUPPORT EV DEPLOYMENT

Architecture model for smart grid & EV - ICT players in smart grid - Smart metering, information & communication models- Functional and logical models - Technology and solution for smart grid: interoperability, communication technologies.

UNIT V – EV CHARGING FACILITY PLANNING

Energy generation scheduling, - Different power sources, fluctuant electricity- Centralized charging schemes-Decentralized charging schemes - Energy storage integration into microgrid - Design of V2G Aggregator.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- Canbing Li, Yijia Cao, YonghongKuang and Bin Zhou, "Influences of Electric Vehicles on Power Ι. System and Key Technologies of Vehicle-to-Grid", Springer-Verlag Berlin Heidelberg, 2016.
- 2. Qiuwei Wu, "Grid Integration of Electric Vehicles in Open Electricity Markets", John Wiley & Sons, Ltd, 2013.

REFERENCES:

1. Harald Naunheimer, Bernd Bertsche, Joachim Ryborz, Wolfgang Novak "Automotive Transmission: Fundamentals, Selection, Design and Application", 2nd Edition, Springer, 2011.

Mapping of COs with POs / PSOs															
COs	POs													PSOs	
	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3												2	2	
2	2												2		
3		3											2	2	
4			3										2	2	
5						I				I		I	Ι		
CO (W.A)	2.5	3	3			I				I		I	2	2	

(9)

22EE	EX27- DESIGN	OF MOTOR AND POWER CONVE	RTERS FOR EL	ECTF		HICL	ES		
				L	Т	Ρ	С		
				3	0	0	3		
PRE-R		NIL							
Course	e Objective:	 To analyze and design the variou electric vehicles. To understand the motor transfe systems and DC-DC converters. 		•					
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of (emest natior	ter		
соі	application a	riate electric motors for electric vehicles nd compute a power stage transfer DC-DC converters	Ар	30%					
CO2	transfer functi differential, fir (both numerat	ynamics of Electric Vehicles and compute on with factors such as constant, integral, st order factor and second order factor cors & denominators)	An		3	0%			
СОЗ	speed contro modelling.	vanced motors for electric vehicles with I and simulate converter based PWM	Ар		2	0%			
CO4	the transfer control system								
CO5	the topics r	team and make effective presentation on elated to real world challenges and in power converters for electric vehicles.	U			Assessn ar, Qui			

UNIT I - ELECTRIC VEHICLE DYNAMICS

Standard drive cycles-Dynamics of Electric Vehicles-Tractive Force-Maximum Speed-Torque-Power-Energy requirements of EVs

UNIT II - ADVANCED MOTORS FOR ELECTRIC VEHICLES

Speed and Torque control of above and below rated speed - Speed control of EV in the constant power region of electric motors. Switched Reluctance Motors (SRMs) - Synchronous Reluctance Machines - Choice of Electric Machines for EVs.

UNIT III - CONTROL SYSTEMS SIMULATION

Transfer Function: Poles & zeros- bode plot : Bode Plots for Multiplication Factors, Constant, Single and Double Integration Functions, Single and Double Differentiation Functions, Single Pole and Single Zero Functions -Transfer function of state space Model.

(9)

(9)

UNIT IV - MODELLING OF DC-DC CONVERTERS	(9)
Overview of PWM Converter Modelling -Power Stage Modelling - PWM Block Modelling - Feedback Circuit and Small-Signal Model of PWM Converter - Averaging Power Stage Dynamics - Models for buck/boost Converter - Frequency Response of Converter	
UNIT V - POWER STAGE TRANSFER FUNCTIONS OF DC -DC CONVERTERS	(9)
Power Stage Transfer Functions of buck-boost Converter in CCM Operation, Input-to-Output Function, Duty Ratio-to-Output Transfer Function and Load Current-to-Output Transfer Function.	

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Emerging Power Converters for Renewable Energy and Electric Vehicles Modeling, Design, and Control, Md. Rabiul Islam, Md. Rakibuzzaman Shah, Mohd. Hasan Ali, CRC Press, 2021, 1st Edition.
- 2. Electrical Machine Fundamentals with Numerical Simulation using MATLAB/SIMULINK, Atif Iqbal, Shaikh Moinoddin, Bhimireddy Prathap Reddy, Wiley, 2021, 1st Edition.

REFERENCES:

- 1. Iqbal Hussain, "Electric and Hybrid Vehicles: Design Fundamentals, Second Edition" CRC Press, Taylor & Francis Group, Third Edition 2021.
- 2. Power Electronic Converters, Teuvo Suntio, Tuomas Messo, Joonas Puukko, First Edition 2017.
- 3. Fundamentals of Power Electronics with MATLAB, Randall Shaffer, 2nd Edition, 2013, Lakshmi publications.

	Mapping of COs with POs / PSOs													
	POs													Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2		3											3	
3	2												3	
4	2												3	
5									3	3		3		
CO (W.A)	2.3	3							3	3		3	3	

6.8 is

		22EEX28 - ELECTRIC VEHICLE A	RCHITECTURE						
				L	т	Ρ	С		
				3	0	0	3		
PRE-R		NIL							
		• To learn the structure of Electric	Vehicle, Hybrid Ele	ectric '	Vehicle	9			
		• To study about the EV conversior	n components						
Course	e Objective:	• To know about the details and spe	ecifications for Elec	tric V	ehicles	5			
		To understand the concepts of Pla	ug-in Hybrid Electri	ic Veh	icle				
		 To model and simulate all types or 	f DC motors						
	e Outcomes end of the cours	e, the students will be able to	Cognitive Level	in	End S	ge of C emest natior	ter		
соі		oncepts related in the Plug-In Hybrid es and control strategies.	Ap		2	0%			
CO2	Analyze the det developed.	ails and Specifications for the various EVs	An		2	0%			
CO3	Analyse the c EVs developed	letails and Specifications for the various I.	An		4	0%			
CO4	Design the var	rious EV components and brakes.	С		2	0%			
CO5		tive oral & technical presentation relevant vehicle architecture.	rant U Internal Assessm (Seminar, Assignm						

UNIT I - VEHICLE ARCHITECTURE AND SIZING

Electric Vehicle History, and Evolution of Electric Vehicles. Series, Parallel and Series parallel Architecture, Micro and Mild architectures. Mountain Bike - Motorcycle- Electric Cars and Heavy Duty EVs. -Details and Specifications.

UNIT II - VEHICLE MECHANICS

Vehicle mechanics- Roadway fundamentals, Laws of motion, Vehicle Kinetics, Dynamics of vehicle motion, propulsion power, velocity and acceleration, Tire –Road mechanics, Propulsion System Design.

UNIT III - POWER COMPONENTS AND BRAKES

Power train Component sizing- Gears, Clutches, Differential, Transmission and Vehicle Brakes. EV power train sizing, HEV Powertrain sizing, Example.

UNIT IV - HYBRID VEHICLE CONTROL STRATEGY

Vehicle supervisory controller, Mode selection strategy, Modal Control strategies.

(9)

(9)

(9)

UNIT V - PLUG-IN HYBRID ELECTRIC VEHICLE

Introduction-History-Comparison with electrical and hybrid electrical vehicle-Construction and working of PHEV-Block diagram and components-Charging mechanisms-Advantages of PHEVs.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- Heavy-duty Electric Vehicles from Concept to Reality, Shashank Arora, Alireza Tashakori Abkenar, Shantha Gamini Jayasinghe, Kari Tammi, Elsevier Science, 2021
- 2. Electric Vehicles Modern Technologies and Trends, Nil Patel, Akash Kumar Bhoi, Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen Springer, 2020

REFERENCES:

- Mehrdad Ehsani, YiminGao, Sebastian E. Gay, Ali Emadi, 'Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design', CRC Press, 2004.
- 2. Build Your Own Electric Vehicle, Seth Leitman, Bob Brant, McGraw Hill, 3rd Edition 2013.
- 3. Advanced Electric Drive Vehicles, Ali Emadi, CRC Press, 1st edition 2017.

	Mapping of COs with POs / PSOs													
COs						PC	Ds						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												I	
2	2		2					I						
3		3											I	
4			3											
5									I	I		I		
CO (W.A)	2.5	3	2.5					I	I	I		I	I	

6.81

		22EEX31- EMBEDDED SYSTE	MS DESIGN						
				L	т	Ρ	С		
				3	0	0	3		
PRE-F	REQUISITE : 1	NIL							
Course	e Objective:	 To introduce the Building Block Tools. To emphasize the role of Input/ou Protocol and embedded system ap To illustrate the ISR and schedulin the basics of a Real-time operating 	tput interfacing with oplication and develong for the multitask	n Bus opmer	Comm nt.	nunicati	on		
	e Outcomes udent will be able	e to	Cognitive Level	in	End S	ge of (emestination	ter		
соі		ioning and features of processors, O system in developing Embedded	Ap 30%						
CO2	Apply the applicapproaches	cations based on embedded design	Ap		3	0%			
CO3	,	bedded OS functionality and device nultitasking embedded applications.	An		2	0%			
CO4		led applications using given specifications f communication protocols and modules.	Ap	0%					
CO5		ependent technical presentation using em design tools.	U	Int		Assessr ninar)	nent		

UNIT I - INTRODUCTION TO EMBEDDED SYSTEMS

Embedded Systems: Structural units in Embedded processor- Selection of processor & memory devices-DMA- Memory management methods -Timer and Counting Devices-Real Time Clock- In-circuit Emulator-Hardware Debugging.

UNIT II - EMBEDDED NETWORKING

Introduction-I/O Device-Ports-Buses– Serial Bus communication protocols:RS232 standard, RS485, CAN Bus, Serial Peripheral Interface (SPI)& Inter Integrated Circuits (I2C)-Standard single purpose processor's peripherals interfacing: Timers, Stepper motor controller, PWM, LCD, ADC and RTC-Interfacing.

UNIT III - INTERRUPT SERVICE MECHANISM AND DEVICE DRIVER

Programmed I/O bus-Wait approach without interrupt service mechanism-ISR concept-Interrupt sources – Multiple interrupts – Context and context switching - Interrupt latency deadline – Introduction to Device Driver.

(9)

(9)

UNIT IV - RTOS BASED EMBEDDED SYSTEM DESIGN

Introduction to RTOS-Task, Process & threads, interrupt routines in RTOS, Multiprocessing and Multitasking- Preemptive and non-preemptive scheduling-Task communication-Shared memory, message passing- Interprocess Communication- Introduction to process synchronization using semaphores.

UNIT V - EMBEDDED SYSTEM APPLICATION DEVELOPMENT

Objective- Need-different Phases & Modelling of the EDLC-choice of Target Architectures for Embedded Application Development for Control Dominated & Data Dominated Systems-Case studies on Digital Camera- Adaptive Cruise control in a Car- Mobile Phone software for key inputs.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Rajkamal, 'Embedded system-Architecture, Programming, Design, McGraw-Hill Edu, 3rd edition 2017.
- 2. Peckol, "Embedded system Design", John Wiley & Sons, 2010.

REFERENCES:

- 1. Shibu. K.V, "Introduction to Embedded Systems", TataMcgraw Hill, 2nd edition 2017
- 2. Parag H.Dave,Himanshu B.Dave," Embedded Systems-Concepts ,Design and Programming, Pearson Education, 2015, 1st edition.
- 3. Lyla B Das, "Embedded Systems-An Integrated Approach", Pearson 2013.

	Mapping of COs with POs / PSOs													
						PC	Ds						PSOs	
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	2
2	2												Ι	I
3		3											3	
4			3											
5					2				I	2		Ι		2
CO (W.A)	2.5	3	3		2				I	2		I	2.3	1.7

6.81

186 | Page

		22EEX32 - SIGNALS AND S	YSTEMS					
				L	Т	Ρ	С	
				3	0	0	3	
PRE-R		NIL						
Course	e Objective:	 To acquire knowledge on the fun- using Fourier and Laplace Transfe To analyze the design Consideration transform and DTFT 	orms					
	e Outcomes dent will be able	e to	Cognitive Level	in	End S	ge of C emest inatior	ter	
соі		transformation techniques in signals & veal its functionality behaviors.	Ар	20%				
CO2	Apply the var DTFT systems	ious standard digital signals in LTI and s.	Ap	20%				
CO3		nportance of continuous & discrete time tems used in real time applications.	An		4	0%		
CO4	e ,	tem that accepts all periodic & non Is to perform a realistic operations	Ар		2	0%		
CO5		team to share the skills to develop a red for the upliftment of society using pols	U	Inte		Assessn ninar)	nent	

UNIT I - CLASSIFICATION OF SIGNALS AND SYSTEMS

Standard signals- Step, Ramp, Pulse, Impulse, Real and complex exponentials and Sinusoids- Classification of signals – Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals - Classification of systems- CT systems and DT systems- – Linear & Nonlinear, Time-variant & Time-invariant, Causal & Non-causal, Stable & Unstable.

UNIT II – ANALYSIS OF CONTINUOUS TIME SIGNALS

Fourier series for periodic signals - Fourier Transform - Inverse Fourier Transform - properties.

UNIT III – LINEAR TIME INVARIANT- CONTINUOUS TIME SYSTEMS

Fourier and Laplace transforms in Analysis of CT systems - Systems connected in series / parallel.

UNIT IV - ANALYSIS OF DISCRETE TIME SIGNALS

(9)

(9)

(9)

(9)

Sampling Theorem-Reconstruction of a signal from its samples-Aliasing- Fourier Series representation of Discrete Time Periodic Signals- Properties-Discrete Time Fourier Transform-Properties.

UNIT V – LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS

Convolution sum- Difference equations -Discrete Fourier Transform and Z Transform Analysis of Recursive & Non-Recursive systems-DT systems connected in series and parallel.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

1. Oppenheim, Willsky and Hamid, Signals and Systems, 2nd Edition, Pearson Education, New Delhi, 2015.

2. Simon Haykin, Barry Van Veen, Signals and Systems, 2nd Edition, Wiley, 2007

REFERENCES:

- I. B. P. Lathi, "Principles of Linear Systems and Signals", 2nd Edition, Oxford, 2009.
- 2. M. J. Roberts, "Signals and Systems Analysis using Transform methods and MATLAB", McGraw- Hill Education, 2018.

	Mapping of COs with POs / PSOs													
	POs													Os
COs	I	2	2 3 4 5 6 7 8 9 10 11 12											2
I	3													2
2	3													2
3		3											3	2
4			3										2	
5						I				I		I		
CO (W.A)	3	3	3			I				I		I	2.5	2

3. John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 2007

6.81

		22EEX33 - EMBEDDED CONTR	OL SYSTEMS				
				L	Т	Ρ	С
				3	0	0	3
PRE-R		NIL					
Course	e Objective:	 To learn the basics of sensors and To know the interfacing tech developments of embedded syste To learn various software to applications. 	niques using com em	imunio	cation	Buses	and based
	e Outcomes dent will be able	e to	Cognitive Level	in	End S	ge of (emes inatio	ter
COI		sic tools and concepts to interface with Il-time applications.	Ap	0%			
CO2		us interfaces, protocols embedded with and techniques.	An		3	0%	
CO3		velop a complete application system ware and software components.	С		2	0%	
CO4		software tools and protocols for analysis control systems.	An		2	0%	
CO5	Implement and an embedded	d test a specific protocol or algorithm on platform.	AP	Int		Assessr gnment	

UNIT I – INTRODUCTION

Embedded control systems - Interfacing a microprocessor to the analog world-Position and Velocity measurements - The world of sensors-Actuators-Motor control - Feedback systems - Haptic interfaces and Virtual environments Applications of embedded control systems.

UNIT II - EMBEDDED SYSTEM ORGANIZATION

Embedded computing – Characteristics of embedded computing & applications–Embedded system design challenges - Build process of real-time embedded system – Selection of processor – Memory - I/O devices -RS 485 - MODEM-Bus communication system using I2C- CAN- USB -ISA- EISA.

UNIT III - INTERFACE WITH COMMUNICATION PROTOCOLS

(9)

(9)

(9)

Design methodologies and tools – Design flow – Designing hardware and software interface – System integration – SPI - High speed data acquisition and interface - SPI read/write protocol - RTC interfacing and programming.

UNIT IV - DESIGN OF SOFTWARE MACHINE EMBEDDED CONTROL SYSTEM

Software abstraction using Mealy - Moore FSM controller - Layered software development - Basic concepts of developing device driver – SCI – Interfacing & porting using Embedded C - Functional and performance debugging with benchmarking- Real-time software – Survey on basics of contemporary RTOS – VXWorks - UC/OS-II

UNIT V - CASE STUDIES WITH EMBEDDED CONTROLLER

(9)

(9)

Programmable interface with A/D & D/A Converter, Digital voltmeter- Control of Robot system- PWM motor speed controller-Serial communication interface.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. Embedded Systems- Architecture, Programming and Design, 3rd Edition, 2017
- 2. Chattopadhyay, "Embedded System Design", PHI Learning, 2011.
- 3. Steven F. Barrett, Daniel J. Pack, "Embedded Systems Design and Applications with the 68HC 12 and HCS12", Pearson Education, 2008.

REFERENCES:

1. Marian Andrzej Adamski, Andrei Karatkevich and Marek Wegrzyn, "Design of Embedded control systems" Springer Science + Busciness Media, 2005.

	Mapping of COs with POs / PSOs														
						PC	Ds						PSOs		
COs	I	2	2 3 4 5 6 7 8 9 10 11 12												
I	3												3	2	
2		3													
3			2										2		
4		2			2										
5									2	Ι	2	Ι		2	
CO (W.A)	3	2.5	I	2	1.7										

G. Fi

		22EEX34 - SIGNAL PROC	ESSING						
				L	Т	Ρ	С		
				3	0	0	3		
PRE-R	REQUISITE : I	NIL							
Course	e Objective:	• To analyze various types of Four Finite & Infinite Impulse Respons		chnique	s AN	D desi	gn of		
		• To gain the knowledge about the	digital signal proce	essors					
	e Outcomes Ident will be able	e to	Cognitive Level	in	End S	ge of Q emest natior	ter		
соі	,	te Fourier transform for frequency s to enhance the quality of signals	Ap	Ap 20%					
CO2	,	rent kinds of FIR and IIR filters to eal-time signals.	An	20%					
CO3		al FIR filter using window techniques and ferent architecture processors.	An		4	0%			
CO4	window tech	us filters by using approximations and niques to change the dimension of the ne help of signal processors.	An		2	0%			
CO5	employed in p and sharing th	ating the knowledge on new techniques processing of signals with modern tools he knowledge to others through which a plication is developed.	U	Inte	(Onlir	Assessn ne Test nment)	τ,		

UNIT I - INTRODUCTION TO SIGNALS AND SYSTEMS

Energy and power signals- Continuous and discrete time signal-Continuous and discrete amplitude signals-System properties: linearity: additivity and homogeneity, shift-invariance, causality, stability, reliability-Effects of sampling and quantization in discrete domain.

UNIT II – DISCRETE FOURIER TRANSFORM

DTFT - frequency domain sampling-DFT: properties, frequency analysis, Radix-2 FFT algorithms, applications, Realization of filter structures: Direct forms I and II, cascades.

UNIT III – DESIGN OF IIR FILTERS

Design techniques for analog low pass filter - Butterworth and Chebyshev approximations - frequency transformation - approximation of derivatives - Bilinear transformation and impulse invariant technique.

(9)

(9)

UNIT IV - DESIGN OF FIR FILTERS

FIR Filter Design: Phase and group delay, design characteristics of FIR filters with linear phase, frequency response -FIR filters using window functions: Rectangular, Hamming.

UNIT V – DIGITAL SIGNAL PROCESSORS

Digital signal processor architectures: TMS320C series - General purpose processors: fixed point and floating point, MAC, pipelining, addressing modes.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. John G. Proakis, D. G. Manolakis, Digital Signal Processing Principles, Algorithms and Applications, 4th edition, Pearson Education, 2016
- 2. Oppenheim V.A.V and Schaffer R.W, Discrete time Signal Processing, 3rd Edition, Pearson, 2014

REFERENCES:

- I. Lawrence R Rabiner and Bernard Gold, Theory and Application of Digital Signal. Processing Pearson Education, 2016
- 2. Steven W Smith, Digital Signal Processing: A Practical Guide for Engineers and Scientists, Newnes, 2014
- 3. Sanjit K. Mitra, Digital Signal Processing, 2013, 4th edition, Tata McGraw Hill.

				M	lapping	g of CC	Os with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3	I										I	3
3			2		I								I	I
4	Ι	2	3										3	I
5					2				2	I	I			I
CO (W.A)	2	2.5	2		1.5				2	I	I		1.6	1.5

		22EEX35 - EMBEDDED	loT				
				L	Т	Ρ	C
				3	0	0	3
PRE-R	EQUISITE : N						
Course	e Objective:	 To understand IOT architecture actuators, embedded computation and Arduino processors. To acquire the knowledge in frienduding IP addresses, MAC addinto the IEEE 802 family of proto To gain the knowledge in recent various domains, including health smart cities, and smart grids To understand the array of conenabling IOT applications incluzingBee, Z-Wave, LoRa, HTTP, W To learn cloud architecture fur deployments, including securit specialized IoT-related services 	on units, com undamentals of in Iresses, TCP and L cols and Ether CA trends and societa neare, smart transp mmunication techn iding RFID, NFC, Veb Socket, MQTT ndamentals and th	nmunio Iterne JDP, a Il bene portati nologi BLE, F, and neir a	cation t com llong v efits of ion, sn es and LiFi, CoAP pplicat	inter munica vith ins f IoT a nart ho d prot 6Low c tion in	faces ation sights cross omes ocols PAN
	e Outcomes and of the cours	e, the students will be able to	Cognitive Level	in	End S	ge of (Semes inatio	ter
COI		nowledge in configuring the network n, selecting the appropriate protocols oplications.	Ap		2	20%	
CO2	benefits using	cent trends in IoT related to societal internet communication and security of embedded system.			2	20%	_
CO3	-	IOT technologies and communication face the future societal challenges and	An		4	10%	
CO4	-	ud Infrastructure with security model to of various real time systems.	С		2	20%	
CO5		eam and make an effective presentation related to embedded system IoT.	U		ernal / ninar,	Assessi Online	

UNIT I - INTRODUCTION TO IoT

Architecture-Functional Characteristics and Requirements-Components of IoT-Sensors- Actuator-Embedded Computation Units - Communication Interfaces - Software Development-Introduction to arduino processor.

UNIT II - COMMUNICATION PRINCIPLES

Introduction-Internet Communication: IP Addresses, MAC Addresses - TCP and UDP - IEEE 802 Family of Protocols-Introduction to Ether CAT.

UNIT III - APPLICATIONS OF IoT

Recent Trends in IoT - Societal Benefits of IoT- Health Care -Smart Transportation- Smart Home -Smart Cities- Smart Grid.

UNIT IV - COMMUNICATION INTERFACE WITH IOT

IoT Enabling Technologies: Communications, RFID, NFC (Near- Field Communication), Bluetooth Low Energy (BLE), LiFi, 6LowPAN, ZigBee, Z-Wave, LoRa, HTTP, Web Socket, MQTT and CoAP Protocols. (9)

UNIT V - CLOUD SYSTEMS AND SECURITY

Introduction-Fundamentals of Cloud architecture-Types of Cloud-IOT Cloud Security Architecture-Cloud services-Service related to IOT-Cloud IOT Security Controls.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", John Wiley and Sons Ltd, UK, 2014.
- 2. Olivier Hersent, David Boswarthick and Omar Elloumi,"The Internet of Things: Key Applications and Protocols", John Wiley and Sons Ltd., UK 2012.
- 3. Dieter Uckelmann, Mark Harrison, Florian Michahelles, "Architecting the Internet of Things", Springer, New York, 2011.

REFERENCES:

- 1. Johnny Cache, Joshua Wright and Vincent Liu," Hacking Exposed Wireless: Wireless Security Secrets and Solutions", Tata McGraw Hill, New Delhi, 2010
- Vijay Madisetti, Arshdeep Bahga, "Internet of Things (A Hands-on Approach)", Universities Press, 2. 2015.
- 3. Tim Mather, Subra Kumaraswamy, ShahedLatif, "Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance" O'Reilly Media; I edition [ISBN: 0596802765], 2009.

				M	lapping	g of CC) s with	POs /	PSO s					
	POs												PS	Os
COs	Ι	2	3	4	5	6	7	8	9	10	П	12	I	2
I	3												I	I
2	2					2	I						I	I
3		3											I	I
4			3										I	I
5									Ι	I		I	I	I
CO (W.A)	3	3	3			2	I		I	I		I	I	I

(9)

(9)

		22EEX36 - EMBEDDED NET	WORKING				
				L	Т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE : I	NIL					
Course	e Objective:	 To understand the principles of set for digital system implementation To learn the USB and CAN b mechanism in programming and To understand network design ch Ethernet controllers and Interne To learn UDP and TCP message e integration with FTP and networ To understand and apply advance including network topology, lo efficient MAC protocols, routi applications. 	n. us protocols alon implementation. noices, assess netw t Protocol. exchange, dynamic k security for emb ed concepts in wir calization, time sy	vork s web p beddec reless	n com peed, t age se d syste sensor nizatic	focusin rving, e ms. netwo	ation ng on email orks, ergy-
	e Outcomes and of the cours	se, the students will be able to	Cognitive Level	in	End S	ge of C emest natior	ter
COI		ropriate protocols and CAN bus system gital system design.	Ap		2	0%	
CO2		distinguish the various communication ethernet of embedded system.	Ap		2	0%	
CO3		wireless network elements, ethernet n used in embedded applications.	An		4	0%	
CO4		mbedded application by exchange of UDP.TCP, email integration using FTP control.	С		2	0%	
CO5	Perform in a in the topics	team and make a effective presentation related to real world challenges and n wireless embedded network.	U	-		Assessn Assignr	

UNIT I - EMBEDDED COMMUNICATION PROTOCOLS

requirement in wireless embedded network.

Introduction – Serial/Parallel Communication – Serial communication protocols: RS232 standard, RS485. Synchronous serial protocols, Serial Peripheral Interface (SPI) and Inter Integrated Circuits (I2C) – Parallel communication protocols: ISA/PCI Bus protocols and Firewire.

UNIT II - USB AND CAN BUS

USB bus: Speed Identification, USB States and USB bus Communication (Packets, Data flow types, Enumeration and Descriptors) –PIC18 Microcontroller USB Interface – C Programs - CAN Bus : Frames, Bit stuffing, Types of errors, Nominal bit timing – application of CAN.

(9)

(9)

(9)

(9)

UNIT III - ETHERNET BASICS

Elements of a network-network building: Design Choices, Selecting Components, Connections and network speed -Ethernet Controllers – Ethernet Communication - Internet Protocol.

UNIT IV - EMBEDDED ETHERNET

Exchanging messages using UDP and TCP – Serving web pages with dynamic Data – Email for embedded Systems Using FTP – network security.

UNIT V - WIRELESS EMBEDDED NETWORKING

Introduction -Network topology - Localization -Time synchronization- Energy efficient MAC Protocols – SMAC-Energy efficient and robust routing -Data centric routing-Application

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- Jan Axelson, "Parallel Port Complete, Programming, Interfacing and Using the PC's Parallel Printer Port", Jan Axelson Series, 2012
- 2. Dogan Ibrahim, "Advanced PIC microcontroller projects in C", Elsevier 2011.

REFERENCES:

I. Jan Axelson, "Embedded Ethernet and Internet Complete: Designing and Programming Small Devices for Networking" Jan Axelson Series, 2007.

				Μ	apping	g of CC	Os with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	2
2		2			I								2	2
3		3											2	2
4			3										2	
5									Ι	I		I		
CO (W.A)	3	2.5	3		I				I	I		I	2	2

6.800

	22EEX3	- EMBEDDED SYSTEM FOR AUTO	MOTIVE APPLIC	CATI	ONS		
				L	т	Ρ	С
				3	0	0	3
PRE-R		NIL					
Course	e Objective:	 To expose the students to the function of the control systems. To discuss on programmable control of the the embedded system for automotive applications 	rollers for vehicles	manag	ement	systen	ns.
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of C emest natior	er
соі		damental ideas and core components of nbedded system.	Ар		2	0%	
CO2	Analyze the management diagnostics.	Embedded concepts for vehicle and control systems using various	An		2	0%	
CO3		d, selection of sensors and actuators to hembedded applications.	Ар		3	0%	
CO4		implement in-vehicle communication ed capabilities and capacities as electronic tems.	С		3	0%	
CO5		deliver a clear concise presentation on nd advancements in automotive systems.	An	Int	••••••	Assessn ninar)	nent

UNIT I - BASICS OF ELECTRONIC ENGINE CONTROL SYSTEMS

Overview of Automotive systems- fuel economy- air-fuel ratio, emission limits and vehicle performance-Automotive microcontrollers- Electronic control Unit- Hardware & software selection and requirements for Automotive applications - Introduction to Society SAE- Functional safety ISO 26262.

UNIT II - SENSORS AND ACTUATORS FOR AUTOMOTIVES

Review of sensors- sensors interface to the ECU, conventional sensors and actuators-Modern sensor and actuators - LIDAR sensor- smart sensors- MEMS/NEMS sensors and actuators for automotive applications.

UNIT III - VEHICLE MANAGEMENT SYSTEM

Electronic Engine Control :Engine mapping, fuel control and electronic ignition - Adaptive cruise control - speed control-Antilocking braking system-Electronic suspension - Electronic steering, Automatic wiper control- body control system - Vehicle system schematic for interfacing with EMS&ECU - Electrically assisted power steering system Adaptive lighting system - Safety and Collision Avoidance.

(9)

(9)

UNIT IV - ONBOARD DIAGONSTICS AND TELEMATICS	(9)
On board diagnosis of vehicles - Vehicle communication protocols Bluetooth, CAN, LIN, Fl MOST and KWP2000 and recent trends in vehicle communication-Navigation-Tracking-Security communication- Dashboard display and Virtual Instrumentation - Role of IOT in Automotive syste	for data
UNIT V - AUTOMOTIVE APPLICATIONS IN EMBEEDED SYSTEM	(9)

Navigation- Autonomous car- Role of IoT in Automotive systems. Case Study: Embedded Rain-Sensing System. Automotive Night Vision System. Airbag Control Unit.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. William B. Ribbens," Understanding Automotive Electronics", Elseiver, 2017.
- 2. Automotive Electricals / Electronics System and Components, Tom Denton, 5th Edition, 2017.

REFERENCES:

- 1. Automotive Electricals / Electronics System and Components, Tom Denton, 5th Edition, 2017.
- 2. Automotive Electricals Electronics System and Components, Robert Bosch Gmbh, 5th Edition, 2014.
- 3. Automotive Hand Book, Robert Bosch, Bently Publishers, 10th Edition, 2018.

				M	lapping	g of CC) s with	POs /	PSO s					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	2
2		2											I	I
3	3												2	I
4			3											
5									2	2	I	I		
CO (W.A)	3	2	3						2	2	I	I	2	1.4

		22EEX38- MEMS AND N	NEMS				
				L	Т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE : 1	NIL					
Course	e Objective:	 To introduce the diverse tech MEMS/NEMS and applications. To provide an insight of micro a applications of MEMS and NEMS To emphasise the need for microstructures and fabrication n 	ind nano sensors, a technology NEMS technology	actuat	ors an	d real	time
	e Outcomes dent will be able	e to	Cognitive Level	in	End S	ge of (emes inatio	ter
соі		ncepts of MEMS and NEMS to models, rocess the sensors and actuators.	Ap		3	0%	
CO2		aterial properties and the significance of MS for industrial automation.	An		2	0%	
CO3	Apply the fabr actuators	ication mechanism for MEMS sensor and	Ap		2	0%	
CO4	,	peration of micro devices, nano devices d their applications.	An		3	0%	
CO5	Evaluate the a solve problem	bility to apply concepts and principles to s.	E	Int		Assessr Quiz)	nent

UNIT-I INTRODUCTION TO MEMS and NEMS

Overview of Micro electro mechanical systems and Nano Electro mechanical systems-Devices and technologies- Laws of scaling- Survey of materials- Smart Sensors - Applications of MEMS and NEMS.

UNIT-II MICRO-MACHINING AND MICROFABRICATION TECHNIQUES

Photolithography- Film deposition, Etching Processes- wafer bonding- Bulk micro machining, silicon surface micro machining- LIGA process.

UNIT-III MICRO SENSORS AND MICRO ACTUATORS

Transduction mechanisms in different energy domain-Micromachined capacitive, Piezoelectric, piezoresistive and Electromechanical and thermal sensors/actuators and applications.

UNIT-IV NEMS TECHNOLOGY

(9)

(9)

(9)

(9)

Atomic scale precision engineering- Nano Fabrication techniques - NEMS in measurement, sensing, actuation and systems design.

UNIT-V MEMS and NEMS APPLICATION

Introduction to Micro/Nano Fluids and applications- Bio MEMS- Optical NEMS- Micro and Nano motors-Recent trends in MEMS and NEMS.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. Chang Liu, "Foundations of MEMS", Pearson International Edition, 2006.
- 2. Marc F madou" Fundamentals of micro fabrication" CRC Press 2002 2nd Edition Marc Madou.
- 3. M.H.Bao "Micromechanical transducers :Pressure sensors, accelerometers and gyroscopes", Elsevier, Newyork, 2000.

REFERENCES:

I.Maluf, Nadim "An introduction to Micro Electro-mechanical Systems Engineering "AR Tech house, Boston 2000.

2.Tai-.Ran Hsu, "MEMS and Microsystems: design , manufacture, and Nanoscale"- 2nd Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2008.

				۲	lapping	g of CC	Ds with	n POs /	PSOs					
		POs												
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	I
2		2											I	
3	2												2	
4		3												
5									2	I		I		
CO (W.A)	2.5	2.5							2	I		I	2	I

6.81

200 | Page

		22GEA02- PRINCIPLES OF MANAGE	MENT				
				L	Т	Р	С
				3	0	0	3
PRE-	REQUISITE: NI	L					
Cours	se Objective:	 To provide with a foundational understapractices. To equip students with the knowledge an organizations effectively, understanding practical applications in management. To learn about various planning tools and organizational success. To gain insights into human resource mana To study effective communication strate technology on communication and how erproductivity and organizational performance 	d skills neces both theor decision-mal agement func egies and the ffective contr	ssary retic king tions e im	y to ma al frai proces s. ipact o	anage newc sses c of inf	and leac orks and rucial for ormatior
	se Outcomes udent will be able t	:0	Cognitive Level			s in E nest	ind er
COI		agement theories and practices to real-world os, demonstrating the ability to implement tions.	Ap			20%	
CO2	recruitment, tra	resource management practices, evaluating how ining, performance appraisal, and employee te to organizational success.	An			30%	
CO3	performance, the use of informatic communication w	c decisions and their impacts on organizational effectiveness of communication strategies and the on technology in facilitating efficient and effective ithin organizations.				30%	
CO4	and design contro productivity and c	ensive strategic plans and organizational policies ol systems to ensure continuous improvement in organizational performance.				20%	
CO5	higher-order thi	ndent study as a member of a team and develop inking skills that are crucial for effective leadership in complex organizational settings with se studies.		I	nterna	Asse	essment

UNIT I - INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS

(9)

Definition of Management - Science or Art - Manager Vs Entrepreneur - types of managers -managerial roles and skills - Evolution of Management - Scientific, human relations, system and contingency approaches - Types of Business organization- Organization culture and Environment - Current trends and issues in Management.

UNIT II - PLANNING	(9)
Nature and purpose of planning - planning process - types of planning - objectives - setting object Planning premises - Strategic Management - Planning Tools and Techniques - Decision making steps ar	
UNIT III - ORGANISING	(9)
Nature and purpose - Formal and informal organization - organization chart - organization structur and staff authority - departmentalization -delegation of authority - centralization and decentralization Human Resource Management - HR Planning, Recruitment, selection, Training and Developmer Management, Career planning and management	on -Job Design -
UNIT IV - DIRECTING	(9)
Foundations of individual and group behaviour - motivation -motivation theories - motivational t satisfaction - job enrichment - leadership - types and theories of leadership -communication communication - barrier in communication - effective communication -communication and IT.	• •
UNIT V - CONTROLLING	(9)
System and process of controlling - budgetary and non-budgetary control techniques - use of com Management control - Productivity problems and management - control and performance -direct control -reporting.	
TOTAL (L:45)	· 45 PERIODS

TEXT BOOKS:

- 1. Harold Koontz, Heinz Weihrich and Mark V. Cannice "Essentials of Management: An International, Innovation, and Leadership Perspective", 11th Edition, Tata McGraw-Hill Education, 2021.
- 2. J.A.F. Stoner, R.E. Freeman, and Daniel R. Gilbert "Management", 6th Edition, Pearson Education, 2018.

REFERENCES:

- I. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.
- 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
- 3. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management", 7th Edition, Pearson Education, 2011.
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999.

	Mapping of COs with POs / PSOs													
	POs												PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3										3			
2		3									3			
3										3				
4			3							3				
5											3	3		
CO (W.A)	3	3	3							3	3	3		

		22GEA03- TOTAL QUALITY MA	ANAGEMENT						
				L	Т	Ρ	С		
				3	0	0	3		
PRE-R		NIL							
Course	e Objective:	 To Recognize the importance of c TQM. To Explore the elements and histo To Foster employee involvement teamwork, and recognition. To Implement continuous process PDSA Cycle, 5S, and Kaizen. To Conduct quality audits and une standards like ISO 14000, IATF 16 20000, ISO 22000, and ISO 21001 	orical development through motivation s improvement men derstand the introc 5949, TL 9000, IEC	t of TC n, emp thods ductior	QM. owerr like Ju	ment, ran's T :her IS0	rilogy, D		
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of C emest inatior	ter		
COI	Management (T		Ар	30%					
CO2		us process improvement methodologies Trilogy, PDSA Cycle, 5S, and Kaizen.	Ар	20%					
CO3		quality tools and techniques in both and service industry.	Ар		2	20%			
CO4		g supplier partnerships and understand on, rating and relationship development.	d An 20%						
CO5		riate quality standards and implement pective industry App.	E 10%						

UNIT – I QUALITY CONCEPTS AND PRINCIPLES

Definition of Quality - Dimensions of Quality - Quality Planning - Quality Assurance and Control - Quality Costs with Case Studies - Elements / Principles of TQM - Historical Review – Leadership – Qualities / Habits - Quality Council - Quality Statements, Strategic Planning – Importance - Case Studies - Deming Philosophy -Barriers to TQM Implementation – Cases with TQM Success and Failures.

UNIT – II TQM-PRINCIPLES AND STRATEGIES

Customer Satisfaction - Customer Perception of Quality - Customer Complaints - Customer Retention, Employee Involvement – Motivation - Empowerment - Teams - Recognition and Reward - Performance Appraisal, Continuous Process Improvement - Juran's Trilogy - PDSA Cycle - 5S - Kaizen, Supplier Partnership - Partnering - Sourcing - Supplier Selection - Supplier Rating - Relationship Development, Performance Measures – Purpose – Methods - Cases.

UNIT – III CONTROL CHARTS FOR PROCESS CONTROL

Basic Seven Tools of Quality and its Role in Quality Control, Statistical Fundamentals - Measures of Central Tendency and Dispersion, Population and Sample - Normal Curve - Control Charts for Variables and Attributes - Process Capability - Case Study- Introduction to Six Sigma.

(9)

(9)

UNIT – IV TQM-MODERN TOOLS

New Seven Tools of Quality, Benchmarking - Need - Types and Process, Quality Function Deployment -House of Quality (HOQ) Construction - Case Studies, Introduction to Taguchi's Robust Design - Quality Loss Function - Design of Experiments (DOE), Total Productive Maintenance (TPM) - Uptime Enhancement, Failure Mode and Effect Analysis (FMEA) - Risk Priority Number (RPN) – Process - Case Studies.

UNIT – V QUALITY SYSTEMS

Need for ISO 9000 and Other Quality Systems - ISO 9000: 2015 Quality System – Elements -Implementation of Quality System - Documentation - Quality Auditing, Introduction to ISO 14000 - IATF 16949 - TL 9000-IEC 17025 - ISO 18000 - ISO20000 - ISO 22000 - ISO21001. Process of Implementing ISO -Barriers in ISO Implementation.

TOTAL (L:45) = 45 PERIODS

TEXT BOOK:

 Besterfield Dale H., Besterfield Carol, Besterfield Glen H., Besterfield Mary, Urdhwareshe Hemant, UrdhwaresheRashmi "Total Quality Management", 5th Edition, Pearson Education, Noida, 2018.

REFERENCES:

- 1. Subburaj Ramasamy, "Total Quality Management", McGraw Hill Education, New Delhi, 2017.
- 2. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, Cengage Learning, 2012.
- 3. David Goetsch & Stanley Davis, "Quality Management for Organizational Excellence: Introduction to Total Quality", 8th Edition, Pearson, 2017.

	Mapping of COs with POs / PSOs													
	POs													
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3													
3	3													
4		3												
5	3				2									
CO (W.A)	3	3			2									

(9)

		22GEA04- PROFESSIONAL	ETHICS				
				L	Т	Ρ	С
				3	0	0	3
PRE-F	REQUISITE : N	NIL					
Course	e Objective:	 To develop students' ability to id in engineering contexts, fos responsibility, integrity, and ethica To provide engineering student ethical principles and practices in To Familiarize students with key that guide ethical decision-making To Foster the ability to comn effectively with diverse stakehol public. To Encourage students to upho their professional activities, foster 	tering a commi al decision-making. s with a compre- the engineering pro- ethical theories, pro- in professional pra- nunicate ethical co- ders, including co- old integrity, hones	tment ofessic rinciple ctice. oncerr lleague	to e undo on. es, and es, and es, clie nd acc	profe erstance d frame d colla ents, a ountab	ssional ling of eworks borate nd the
	e Outcomes udent will be able	to	Cognitive Level	in	End S	ge of (emest ination	ter
COI	Apply ethical r issues.	reasoning to evaluate and resolve these	Ар		3	0%	
CO2		principles and reasoning to analyze real- lies in engineering.	l- Ap 30%				
CO3	Analyze the practice.	importance of ethics in professional	An		2	0%	
CO4		ability to make informed and ethical gineering practice.	An		I	0%	
CO5	Recognize the	importance of continuous learning and development in maintaining ethical			I	0%	

UNIT I: INTRODUCTION TO PROFESSIONAL ETHICS

Definition and Importance of Ethics, Ethical Theories and Principles, Ethics vs. Morals vs. Values, Role of Ethics in Engineering.

UNIT II: PROFESSIONAL RESPONSIBILITY AND CODES OF CONDUCT

Professional Responsibility and Accountability, Codes of Conduct in Engineering (e.g., IEEE, NSPE), Conflicts of Interest and Whistleblowing, Case Studies.

UNIT III: ETHICAL DECISION-MAKING AND PROBLEM-SOLVING

Ethical Decision-Making Models, Tools and Frameworks for Ethical Analysis, Resolving Ethical Dilemmas, Case Studies

UNIT IV: LEGAL AND REGULATORY ASPECTS

(9)

(9)

Legal Frameworks Governing Engineering Practice, Intellectual Property Rights, Health, Safety, and Environmental Regulations, Case Studies.

UNIT V: SOCIAL AND ENVIRONMENTAL RESPONSIBILITY

Social Responsibility of Engineers, Sustainable Engineering Practices, Impact of Engineering on Society and Environment, Case Studies.

TOTAL (L:45) = 45 PERIODS

(9)

TEXT BOOKS:

- Charles E. Harris Jr., Michael S. Pritchard, and Michael J. Rabins, "Engineering Ethics: Concepts and Cases" 6th edition, 2018.
- 2. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering" 5th Edition 2010.
- 3. by M. Govindarajan, S. Natarajan, and V. S. Senthil Kumar,"Professional Ethics and Human Values", Ist Edition 2006.

REFERENCES:

- I. Stephen H. Unger, "Engineering Ethics: Real-World Case Studies"
- 2. Online Ethics Center for Engineering and Science <u>www.onlineethics.org</u>
- 3. National Society of Professional Engineers (NSPE) www.nspe.org

	Mapping of COs with POs / PSOs														
	POs													PSO s	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
Ι	3														
2	3														
3		3													
4		3													
5								3							
CO (W.A)	3	3						3							

G. Fi