NANDHA ENGINEERING COLLEGE

(AUTONOMOUS) (Affiliated to Anna University, Approved by AICTE, Accredited by NAAC (A+ Grade) ERODE – 638052 TAMILNADU

1.1.2 Details of Courses where syllabus revision was carried out

B.Tech.- Artificial Intelligence and Data Science

R-22 Curriculum

Course Code	Course Name	% of change
22AIC12	Computer Networks	60%
22AIC13	Deep Learning	100%
22AIC14	Internet of Things and its Applications	100%
22AIP09	Deep Learning Laboratory	100%
22AIP10	Internet of Things and its Applications	1000/
	Laboratory	100%
22AIC15	Full Stack Development	80%
22AIC16	Big Data Analytics	100%
22AIP11	Big Data Analytics Laboratory	100%
22AIX01	Knowledge Engineering	100%
22AIX02	Recommender Systems	100%
22AIX03	Soft Computing	100%
22AIX04	Optimization Techniques	100%
22AIX05	Computer vision	100%
22AIX06	Ethics of AI	100%
22AIX07	Business Intelligence	100%
22AIX08	Robotic Process Automation	100%
22AIX11	Pattern Recognition	100%
22AIX12	Text and Speech Analytics	100%
22AIX13	Time Series Analysis and Forecasting	100%
22AIX14	Health care Analytics	100%
22AIX15	Predictive Analytics	100%
22AIX16	Image and Video Analytics	100%
22AIX17	Natural Language Processing	100%
22AIX18	Augmented Reality and Virtual Reality	70%
1	Average	73%

M.PARVATHI M.E., Associate Prefessor & Head Department of Artificial Intelligence and Data Science Nandha Engineering College (Autonomous) Erode - 638 052.

	SEMESTER: V												
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с				
THEOR	Y												
Ι	22AIC12	Computer Networks	PCC	-	3	3	0	0	3				
2	22AIC13	Deep Learning	PCC	-	3	3	0	0	3				
3	22AIC14	Internet of Things and its Applications	ESC	-	3	3	0	0	3				
4	EI	Elective (PEC)	PEC	-	3	3	0	0	3				
5	E2	Elective (PEC)	PEC	-	3	3	0	0	3				
6	E3	Elective (OEC/PEC)	PEC	-	3	3	0	0	3				
PRACT	ICAL	· · · · ·											
7	22AIP09	Deep Learning Laboratory	PCC	-	4	0	0	4	2				
8	22AIP10	Internet of Things and its Applications Laboratory	ESC	-	4	0	0	4	2				
Mandate	ory Non-C	redit Courses											
9	22MANIOR	Communication and Quantitative Reasoning**	MC	-	3	Ι	0	2	0				
				TOTAL	29	19	0	10	22				

** Ratified by Twelfth Academic Council

		SI	EMESTER: VI						
S. NO.	COURSE CODE	COURSE TITLE	CATEGOR Y	PRE- REQUISITE	CONTACT PERIODS	L	т	P	с
THEOF	THEORY								
I	22AIC15	Full Stack Development**	PCC	-	3	3	0	0	3
2	22AIC16	3	3	0	0	3			
3	E4	Elective (PEC)	PEC	-	3	3	0	0	3
4	E5	Elective (OEC)	OEC	-	3	3	0	0	3
5	E6	Elective (OEC/PEC)	PEC/OEC	-	3	3	0	0	3
6	E7	Elective (PEC)	PEC	-	3	3	0	0	3
PRACT	ICAL								
7	22AIPI I	Big Data Analytics Laboratory	PCC	-	4	0	0	4	2
		TOTAL	22	18	0	4	20		

** Ratified by Twelfth Academic Council

	SEMESTER: VII											
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с			
THEOF	THEORY											
I	22GEA01	Universal Human Values	HSMC	-	2	2	0	0	2			
2	EMI	Elective - Management	HSMC	-	3	3	0	0	3			
3	E8	Elective (PEC)	PEC	-	3	3	0	0	3			
4	E9	Elective (OEC)	OEC	-	3	3	0	0	3			
5	E10	Elective (OEC)	OEC	-	3	3	0	0	3			
PRACTI	CAL											
6	22GED02	Internship/Industrial Training	EEC	-	0	0	0	0	2			
				TOTAL	14	14	0	0	16			

	SEMESTER: VIII											
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с			
PRACT	PRACTICAL											
I	22AID01	Project Work	EEC	-	20	0	0	20	10			
				TOTAL	20	0	0	20	10			

(C) Programme Elective Courses (PEC)

Vertical I : Machine Intelligence

S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	Т	Ρ	С
I	22AIX01	Knowledge Engineering	PEC		3	3	0	0	3
2	22AIX02	Recommender Systems	PEC		3	3	0	0	3
3	22AIX03	Soft Computing	PEC		3	3	0	0	3
4	22AIX04	Optimization Techniques	PEC		3	3	0	0	3
5	22AIX05	Computer vision	PEC		3	3	0	0	3
6	22AIX06	Ethics of Al	PEC		3	3	0	0	3
7	22AIX07	Business Intelligence	PEC		3	3	0	0	3
8	22AIX08	Robotic Process Automation	PEC		3	3	0	0	3

Vertical II : Data Analytics

S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	Т	Ρ	С
I	22AIX11	Pattern Recognition	PEC		3	3	0	0	3
2	22AIX12	Text and Speech Analytics	PEC		3	3	0	0	3
3	22AIX13	Time Series Analysis and Forecasting	PEC		3	3	0	0	3
4	22AIX14	Health care Analytics	PEC		3	3	0	0	3
5	22AIX15	Predictive Analytics	PEC		3	3	0	0	3
6	22AIX16	Image and Video Analytics	PEC		3	3	0	0	3
7	22AIX17	Natural Language Processing	PEC		3	3	0	0	3
8	22AIX18	Augmented Reality and Virtual Reality	PEC		3	3	0	0	3

Vertical III : Cyber Security

S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	С
I	22AIX21	Social Network Security	PEC		3	3	0	0	3
2	22AIX22	Biometric Security	PEC		3	3	0	0	3
3	22AIX23	Cloud Security	PEC		3	3	0	0	3
4	22AIX24	Data Privacy and Protection	PEC		3	3	0	0	3
5	22AIX25	Cyber Physical Systems	PEC		3	3	0	0	3
6	22AIX26	Mobile Device Security	PEC		3	3	0	0	3
7	22AIX27	Malware Analysis	PEC		3	3	0	0	3
8	22AIX28	Digital Forensics	PEC		3	3	0	0	3

Vertic	/ertical IV : IoT											
S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	С			
I	22AIX31	Industrial and Medical IoT	PEC		3	3	0	0	3			
2	22AIX32	Blockchain Technology	PEC		3	3	0	0	3			
3	22AIX33	Beyond 5G and IoT Technologies	PEC		3	3	0	0	3			
4	22AIX34	Programming for IoT Boards	PEC		3	3	0	0	3			
5	22AIX35	Privacy and Security in IoT	PEC		3	3	0	0	3			
6	22AIX36	Wearable Computing	PEC		3	3	0	0	3			
7	22AIX37	Fog and Edge computing	PEC		3	3	0	0	3			
8	22AIX38	Mobile Application Development for IoT	PEC		3	3	0	0	3			

Vertical V : Web Development

S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	С
I	22AIX41	Cloud Computing	PEC		3	3	0	0	3
2	22AIX42	UI and UX design	PEC		3	3	0	0	3
3	22AIX43	DevOps	PEC		3	3	0	0	3
4	22AIX44	Principles of Programming Languages	PEC		3	3	0	0	3
5	22AIX45	MEAN Stack Development	PEC		3	3	0	0	3
6	22AIX46	Social and Information Networks	PEC		3	3	0	0	3
7	22AIX47	Web Mining	PEC		3	3	0	0	3
8	22AIX48	Multimedia Data Compression and Storage	PEC		3	3	0	0	3

Vertical VI : Software Development Engineering

S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	С
I	22AIX51	Agile Methodologies	PEC		3	3	0	0	3
2	22AIX52	Software Defined Networks	PEC		3	3	0	0	3
3	22AIX53	Software Project Management	PEC		3	3	0	0	3
4	22AIX54	Software Testing Tools and Techniques	PEC		3	3	0	0	3
5	22AIX55	IT Operations	PEC		3	3	0	0	3
6	22AIX56	Software Quality Assurance	PEC		3	3	0	0	3
7	22AIX57	Service Oriented Architecture	PEC		3	3	0	0	3
8	22AIX58	Product Life cycle Management	PEC		3	3	0	0	3

(D)	Manageme	ent Electives Courses (HS	SMC)						
S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	Т	Ρ	С
I	22GEA02	Principles of Management	HSMC	-	3	3	0	0	3
2	22GEA03	Total Quality Management	HSMC	-	3	3	0	0	3
3	22GEA04	Professional Ethics	HSMC	-	3	3	0	0	3
(E)	Employabi	lity Enhancement Course	es (EEC)						
S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	Т	Р	С
Ι	22GED02	Internship/Industrial Training	EEC	-	0	0	0	0	2
2	22AID01	Project Work	EEC	-	20	0	0	20	10

(F)	Open Elec	ctives Courses (OEC)							
S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	С
I	22AIZ01	Fundamentals of Artificial Intelligence and Machine Learning	OEC	-	3	3	0	0	3
2	22AIZ02	Introduction to Business Analytics	OEC	-	3	3	0	0	3
3	22AIZ03	Fundamentals of Neural Networks	OEC	-	3	3	0	0	3
4	22AIZ04	Introduction to Robotics	OEC	-	3	3	0	0	3

(G)	Minor deg	gree courses							
S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	Т	Ρ	С
I	22AIM01	Introduction to Artificial Intelligence	PEC	-	3	3	0	0	3
2	22AIM02	Fundamentals of Machine Learning	PEC	-	3	3	0	0	3
3	22AIM03	Knowledge Representation and Reasoning	PEC	-	3	3	0	0	3
4	22AIM04	Neural Networks and Deep learning	PEC	-	3	3	0	0	3
5	22AIM05	Computer Vision Models	PEC	-	3	3	0	0	3
6	22AIM06	Industrial robotic technology	PEC	-	3	3	0	0	3
7	22AIM07	Virtual Reality Technology	PEC	-	3	3	0	0	3
8	22AIM08	Ethics and Social implication of AI	PEC	-	3	3	0	0	3

Γ

Semester/ Category	нѕмс	BSC	РСС	ESC	EEC	PEC	OEC	Total
I	4	8		10				22
II	4	7		12				23
		4	19					23
IV		7	18					25
V			8	5		9		22
VI			8			9	3	20
VII	5				2	3	6	16
VIII					10			10
Total	13	28	53	25	12	21	9	161
%	8.1	17.4	32.9	15.5	7.5	13.0	5.6	
AICTE Credits Recommended	16	23	59	29	15	12	9	163
AICTE MODEL CURRI %	10%	14%	36%	18%	9 %	7%	6%	

TOTAL CREDITS (22+23+23+25+22+20+16+10) = 161 CREDITS

		22AIC12 - COMPUTER (Common to 22CSC06, 22CCC05,	NETWORKS 22CIC09 and 22ITC	07)						
				L	Т	Р	С			
				3	0	0	3			
PRE-R	EQUISITE : NI	L								
Course	e Objective:	Develop expertise in network mechanisms, and network	orking fundamentals, p management for effect	oroto tive o	cols, seo peratio	curity nal effic	ciency.			
Course The stu	e Outcomes udents will be able	e to	Cognitive Level	v	eighta/ End Exa	age of Semes minati	COs in ster on			
соі	Apply the communication	fundamental concepts of in networking technologies.	Ар		30%					
CO2	Analyze netw optimize netwo	ork performance metrics and ork configurations.	An							
CO3	Develop solution	ons for network routing algorithms agement strategies.	Ар			30%				
CO4	Manage netwo their effectiv resources.	rk security protocols and evaluate eness in protecting network	An	20%						
CO5	Collaborate t infrastructures	o design and deploy network and services	С		Interna	l Asses	sment			

UNIT I - INTERNET AND DATA COMMUNICATIONS

Internet – Network Edge – Network of Networks – Data communication Components – Data representation and Data flow –Networks – Protocols and Standards – OSI model – TCP/IP protocol suite – Physical Layer: Multiplexing – Transmission Media.

UNIT II - DATA LINK LAYER

Framing – Error Control: Introduction – Block coding – Linear block codes – Cyclic codes – Checksum – Media Access Control: Random Access – CSMA/CD, CDMA/CA – Controlled Access – Wired LANs – Wireless LANs.

UNIT III - NETWORK LAYER

IPV4 – IPV6 – ICMP – Transition from IPV4 to IPV6 – Routing Algorithm: Distance-Vector Routing, Link-State Routing, Path-Vector Routing – Unicast Routing protocols – Multicast Routing protocols.

UNIT IV - TRANSPORT LAYER

Process to Process Communication – User Datagram Protocol – Transmission Control Protocol – SCTP – Congestion Control – Quality of Service.

UNIT V - APPLICATION LAYER

Domain Name System – Standard Application: WWW and HTTP, FTP, Electronic Mail, TELNET – Firewalls – Network Management System – SNMP.

TOTAL (L:45) : 45 PERIODS

(9)

(9)

(9)

(9)

TEXT BOOK:

I. Behrouz A. Forouzan, "Data communication and Networking with TCP/IP Protocol Suite", 6th Edition, McGraw–Hill, 2022.

REFERENCES:

- 1. William Stallings, "Data and Computer Communication", 8th Edition, Pearson Education, 2017.
- 2. James F. Kurose, Keith W. Ross, "Computer Networking: A Top-Down Approach", 8th Edition, Pearson Education, 2020.

Mapping of COs with POs / PSOs														
Cos		POs												Os
I 2 3 4 5 6 7 8 9 10 11 12												I	2	
I	3												3	
2		3											3	
3			3										3	
4		3	3							3				3
5			3		3									
CO (W.A)	3	3	3		3									

22AIC13 - DEEP LEARNING (Common to 22CSX01,22ITX01,22CIX13)

		L	Т	Р	С		
			3	0	0	3	
PRE-RE							
Course	Objective: • To understand and apply deep learning applications.	ng techniques to su	ipport	t real-t	ime		
Course The Stuc	Outcomes lent will be able to	Cognitive Level	V I	Veigh COs i Sem Exami	tage o n End ester inatio	of I n	
COI	Apply the concepts of neural networks and deep learning.	Ap		2	0%		
CO2	Categorize the types of autoencoders in frameworks.	An		2	0%		
CO3	Demonstrate the hardware support and frameworks (Keras - PyTorch) in Boltzmann machines model.	Ар		2	0%		
CO4	Apply the concepts of CNN and RNN.	An		4	0%		
CO5	Build the Recurrent Neural Network to model the sequence data.	С	Internal Assessme				
UNIT	-NEURAL NETWORKS					(9)	
Introduc Backpro Commo Models.	ction – Basic Architecture of Neural Networks pagation – Practical Issues in Neural Network Train on Neural Architectures – Neural Architectures : B Introduction to Deep Learning	s – Training N ing - Power of Fu inary Classificatior	eural nctior า Mod	Netw n Com dels –	vork positie Multi	with on – class	
UNIT	I -AUTOENCODER AND FRAMEWORKS					(9)	
Introdu – Multil Convolu Tensorf	ction to Autoencoder – Features of Autoencoder - Typ ayer Autoencoder – Stacked Autoencoder – Deep A utional Autoencoder – Regularization in Autoencode How – Keras - PyTorch	es of Auto Encode utoencoder – De r – Open Source	r: Var noisin Fram	nilla Au g Auto nework	itoenco oencoc cs: Sci	oder Jer - Py —	
υνιτ ΙΙ	I – BOLTZMANN MACHINES AND HARDWAI	RE SUPPORT				(9)	
Boltzma Distribu for Dee	nn Machine: Relation to Hopfield Networks. RBM Ar tion – Gibbs Sampler – Contrastive Divergence – Exam p Learning.	chitecture: Energy 1ple – Types of RB	Base M – H	d Mod Iardwa	el – C re sup	aibbs port	
UNIT	V – CONVOLUTION NEURAL NETWORKS					(9)	
Convolu Exponer Applicat	ution Network – Components of CNN Architectur ntial Linear Unit (ELU or SELU) - Unique Propertie ion of CNN – Case studies: Image Classification using	e - Rectified Line d of CNN - Arc CNN - Visual Spe	ar U hitect eech I	nit(Rel :ures c Recogr	LU)La of CN	ayer- IN – using	

3D-CNN

UNIT V – RECURRENT NEURAL NETWORKS

RNN versus CNN – Feedforward Neural Network versus RNN. - Simple Recurrent Neural Network : training an RNN – Backpropagation Through time (BPTT) – RNN Topology – Challenges with Vanishing Gradients – Bidirectional and Stateful RNNs – Long Short term memory(LSTM) – LSTM Implementation – Gated Recurrent Unit (GRU) – Deep Recurrent Neural Network.- Case studies: Stock Market Prediction Using RNN – Next Word Prediction Using RNN-LSTM.- Tamil Handwritten Character Optical Recognition Using CRNN

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Aggarwal, Charu C, "Neural Networks and Deep learning", 2ndEdition, Springer Cham, 2023.
- 2. Lovelyn, S., Rose, L. Ashok kumar, D. KarthikaRenuka, Deep Learning using Python, Wiley India Pvt. Ltd., First Edition, 2019.

REFERENCES:

- 1. Ian Goodfellow, Yoshua Bengio, and Aaron Courvill, "Deep Learning", 1 st Edition, MIT Press, USA, 2018.
- 2. Josh Patterson and Adam Gibson, "Deep Learning–A Practitioner"s Approach", 1st Edition, O"ReillySeries, August 2017.

	Mapping of COs with POs / PSOs													
						Ρ	os						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2		3			3									3
3	3		3		3									
4	3												3	
5					3				3	3				
CO (W.A) 3<												3	3	

22AIC14 – INTERNET OF THINGS AND ITS APPLICATIONS (Common to 22CIC05, 22ITC16,22CSC17)

		L	Т	Ρ	С				
		3	0	0	3				
PRE-R									
Cours	 To provide an understanding of the technologies and Internet of Things. To review about IoT protocols and arduino processo technologies, limitations, and challenges. 	the stan r with u	idards r nderlyii	elatin ng	g to the				
Course The Stu	e Outcomes Cognitive Ident will be able to Level	Weig Ei E	htage nd Sen xamin	of Coneste atior	Os in r				
COI	Identify various characteristics and deployment levels of Ap IoT.		40	%					
CO2	Analyze the concepts of M2M and IoT architecture. An		20	%					
CO3	Implement Various IoT communication protocols like MQTT,CoAP, and HTTP in developing IoT applications.		20	%					
CO4	Analyze the functioning ofarduinoboards and various communications technologies to use with it.		20	%					
CO5Perform in a team to build automation, agriculture and various real time applications using arduino.ApInternal Asse									
UNI Char Netv	IT I - INTRODUCTION TO INTERNET OF THINGS racteristics of IoT - Physical and Logical Design of IoT - IoT Enabling Tec works - Cloud Computing - Big Data Analytics - Communication Proto	hnologi cols -	es - W Embedo	/ireles	(9) s Sensor ystems -				

Networks - Cloud Computing - Big Data Analytics - Communication Protocols - Embedded Systems -Functional Blocks - Communication Models and APIs - IoT Levels and Deployment Templates - Overview of Microcontroller, Basics of Sensors and Actuators - Examples and Working Principles of Sensors and Actuators.

UNIT II - M2M AND IOT ARCHITECTURE

Building Architecture - An IoT Architecture Outline - M2M and IoT Technology Fundamentals: Devices and Gateways - Local and Wide Area Networking - Data management, Everything as a Service, M2M and IoT Analytics - Knowledge Management - IoT Reference Model.

UNIT III - IOT PROTOCOLS

PHY/MAC Layer: 3GPP MTC, IEEE 802.15 - WirelessHART- Z-Wave, BLE- Zigbee - DASH7 - Network Layer: 6LoWPAN - 6TiSCH - RPL - CORPL - CARP - Transport Layer: TCP - MPTCP - UDP- DCCP- Session Layer: HTTP- CoAP- XMPP- AMQP- MQTT.

UNIT IV - PROGRAMMING USING ARDUINO

Introduction to Arduino processor- General Block diagram- Working of Analog and Digital I/O pins- Serial (UART), I2C Communications and SPI communication - Arduino Boards: Mega, Due, Zero and I01 - Prototyping basics - Technical description - Setting Up Arduino IDE- Introduction to Arduino programming - Case Studies.

UNIT V - APPLICATIONS OF IOT

Various Real time applications of IoT- Home Automation - Smart Parking - Environment: Weather monitoring system - Agriculture: Smart irrigation – Domain Specific applications - Case Studies.

TOTAL (L:45) : 45 PERIODS

(9)

- (9)
- (9)

TEXT BOOKS:

- 1. Internet of Things, RMD SundaramShriram K Vasudevan, Abhishek S Nagarajan, John Wiley and Sons, Second Edition, 2019.
- 2. ArshdeepBahga, Vijay Madisetti, "Internet of Things-A hands-on approach", Universities Press, 2015.
- 3. Veneri, Giacomo and Antonio capasso "Hands on Industrial Internet of things:create a powerful industrial IoT infrastructure using Industry 4.0, 1st edition, Packet Publishing, Ltd, 2018.

REFERENCES:

1. Jan Holler, VlasiosTsiatsis, Catherine Mulligan, Stefan Avesand, StamatisKarnouskos, David Boyle, From Machine-to-Machine to the Internet of Things: Introduction to a New Age of Intelligence, 1st Edition, Academic Press, 2014.

Mapping of COs with POs / PSOs														
Pos													PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3													
3			3										3	
4					3									3
5									I		I	I		
CO (W.A)	3		I	3	3									

22AIP09 - DEEP LEARNING LABORATORY												
			L	Т	Р	С						
			0	0	4	2						
PRE-RE	EQUISITE :	NIL										
Course	Course Objective: • To build strong practical applications using deep learning, successification, natural language processing, and reinforcement											
Course The Stud	Outcomes lent will be ab	le to	Cog	nitive	Leve	I						
соі	Apply the learning.	MNIST dataset and its significance in the field of deep	Ар									
CO2	Make use o	f autoencoders for dimensionality reductions.		А	n							
CO3	Demonstra problems.	te the concepts Boltzmann machines to solve real world		А	'n							
CO4	Exemplify 1 computer v	the concepts of CNN models and apply it for solving vision related problems.		A	n							
CO5	Apply the opposite of the oppo	concepts of RNN models for solving sequential modeling		А	n							

LIST OF EXPERIMENTS:

I. Create a multi-layer neural network and apply it to MNIST dataset.

- 2. Develop an application for outlier detection using Autoencoder.
- 3. Perform hyper parameter tuning and regularization to improve the performance of a classifier.
- 4. Implement a movie recommender system using RBM.
- 5. Solving XOR problem using Multilayer perceptron
- 6. Implement Speech Recognition using NLP
- 7. Implement Recurrent neural networks to generate new text.
- 8. Develop a hand written character recognition application using CNN.
- 9. Perform Sentiment Analysis in network graph using RNN
- 10. Implement Convolutional neural networks and use them to classify images

HARDWARE/SOFTWARE REQUIREMENTS

- I. Understanding on Working of Colab and Transfer Learning Networks
- 2. High end GPU Systems (Huge Computation)

	Mapping of COs with POs / PSOs													
CO 2		Pos											PSOs	
COs	I	2	12	Ι	2									
I	3												3	
2	3	3											3	
3		3	3											3
4	3			3									3	
5		3					3							
CO (W.A)	3	3	3	3			3						3	3

22AIP10-INTERNET OF THINGS AND ITS APPLICATIONSLABORATORY (Common to 22CIP04, 22ITP09,22CSP11)

			2111 07,22 001 11)						
				L	Т	Ρ	С		
				0	0	4	2		
PRE-R	EQUISITE : NIL								
Course	e Objective:	 To equip students with co in designing and developin 	mprehensive knowledge a gloT systems and applicat	nd han ions.	ids on	experie	ence		
Course The Stu	e Outcomes dent will be able to		Co	gnitiv	e Lev	el			
соі	Apply the knowled	e of controlling sensors using	arduino.		A	Ψ			
CO2	Analyze the given A	luino program to build practio	cal IoT solutions.	An					
CO3	Apply arduino pr actuators.	gramming techniques to us	e various sesnors and		А	Ψ			
CO4	DesignIoT based sy	pecifications.	An						
CO5	Implement a min suitable sensors wi	project to demonstrate the Arduino development board	e given problem using	^{lg} C					

LIST OF EXPERIMENTS :

- 1. Implement a program to Blink LED using Arduino.
- 2. Implement a program to control intensity light using Arduino.
- 3. Implement a program for LCD Display using Arduino.
- 4. Implement a program for Buzzer Indication using Arduino.
- 5. Implement a program for LDR using Arduino.
- 6. Implement a program for LM35 Sensor using Arduino.
- 7. Implement a program for Key Input with LED using Arduino.
- 8. Implement a program for Servo Motor Control using Arduino.
- 9. Implement a program for blinking LED using NODEMCU with Blynk.
- 10. Implement a program for Sensor value logging in Cloud.

TOTAL (P:60) = 60 PERIODS

	Mapping of COs with POs / PSOs														
POs													PSOs		
COs	I 2 3 4 5 6 7 8 9 IO II I2													2	
I	3												3		
2			2	2											
3														2	
4					3									2	
5		2			3				I				3		
CO (W.A)	3	3 2 2 2 3 I												2	

22AIC15- FULL STACK DEVELOPMENT (Common to 22ITC17, 22CIC15,22CSC15)

L	Т	Ρ	С
3	0	0	3

PRE-R	EQUISITE :	NIL		
Cours	se Objective:	To provide students with a solid found development fundamentals, integrate with best practices in web development	lation in the front h databases and ext	-end and back-end web ernal services, and apply
Course The Stud	e Outcomes dent will be able	to	Cognitive Level	Weightage of COs in End Semester Examination
COI	Apply fundam application de	ental concepts of MERN stack for Web velopment.	Ap	20%
CO2	Analyze and d node and l environmenta	evelop web applications using bootstrap, Express JS focused on social and I issues	An	40%
CO3	Integrate fro effectively wit	ont-end and back-end components h databases and external services.	An	20%
CO4	Implement F framework.	ull stack application through React	An	20%
CO5	Demonstrate	teamwork and problem-solving skills in	С	Internal Assessment

UNIT I -BASICS OF MERN STACK

project development.

MERN Introduction-MERN Components - Need for MERN - Server-Less Hello World - Server Setup - nvm - Node.js npm.

UNIT II -BOOTSTRAP AND NODE JS BASICS

Introduction to Bootstrap - Bootstrap Basics - Bootstrap Grids - Bootstrap Themes - Bootstrap CSS -Bootstrap JS. Node.js basics - Local and Export Modules - Node Package Manager - Node.js web server -Node.js File system - Node Inspector - Node.js Event Emitter.

UNIT III -NODE JS EXPRESS

Node.js Data Access - Express REST APIs - REST - Resource Based - HTTP Methods as Actions - JSON-Express - Routing - Handler Function – Middleware-Rest API.

UNIT IV -MONGODB

MongoDB - MongoDB Basics - Documents -Collections - Query Language - Installation - The Mongo Shell - Schema Initialization - MongoDB Node.js Driver - Reading from MongoDB - Writing to MongoDB.

UNIT V -REACT

React Introduction –State - Lifecycle methods - Hooks – useState, useEffect, useContext - Event handling - Forms – controlled components, submission, validation.

TOTAL(L:45) = 45 PERIODS

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. Pro MERN Stack, Full Stack Web App Development with Mongo, Express, React, and Node, Vasan Subramanian, A Press Publisher, 2019.
- 2. Bradshaw, S., Brazil, E., & Chodorow, K. (2019). MongoDB: the definitive guide: powerful and scalable data storage. O'Reilly Media.
- 3. Mardan, A. (2014). Express. js Guide: The Comprehensive Book on Express. js. Azat Mardan.
- 4. Kogent Learning Solutions Inc. "HTML5 Black Book: Covers CSS3, JavaScript, XML, XHTML, AJAX, PHP and JQUERY", Wiley India Pvt. Limited, 2011.
- 5. Deitel and Deitel and Nieto, "Internet and World Wide Web How to Program", Prentice Hall, 5th Edition, 2011.
- 6. Zammetti, F. (2020). Modern Full-Stack Development: Using TypeScript, React, Node. js, Webpack, and Docker. Apress.

REFERENCES:

- 1. Silvio Moreto, Matt Lambert, Benjamin Jakobus, Jason Marah, "Bootstrap 4–Responsive Web Design" Packt Publishing (6 July 2017)
- 2. Thomas Powell, "Web Design: The Complete Reference", Osborne / McGraw-Hill
- 3. https://www.w3schools.com/

	Mapping of COs with POs / PSOs														
			PSOs												
COs	I 2 3 4 5 6 7 8 9 10 11 12													2	
I	3				3								3		
2		3	3		3	3	3						3		
3			3		3									3	
4				3	3								3		
5					3			3	3	3	3			3	
CO (W.A)	3	3	3	3	3	3	3	3	3	3	3		3	3	

	22AIC16 - BIG DATA ANALYTIC (Common to 22CSX13,22ITX13,22CSX25,2	: S 2CIX12)									
		,	L	Т	Р	С					
			3	0	0	3					
PRE-RI	EQUISITE : NIL										
Course	 Acquire a deep understanding of big dat Develop expertise in map reduce analyt tools Explore the Hadoop related tools for E 	ta and NoS tics using H Big Data An	QL. adoop alytic	o and r s.	elated						
Course The Stuc	Outcomes Cogn dent will be able to Level	litive I	Wo CC Sei Exa	eighta Ds in E meste amina	ge of ind r tion						
COI	Real-world datasets can be analyzed using various big data analytics tools and approaches.	An			20%						
CO2	Analyze the effectiveness of numerous NoSQL databases under different loads.	An 20%									
CO3	Analyze Hadoop's architecture, notably HDFS, and use this information to develop a distributed computing environment	An		2	0%						
CO4	To address certain data processing issues, use customized mappers and reducers.	Ap	20%								
CO5	O5 Analyze data processing jobs and determine a suitable tool (Pig or Hive) based on the task An 20% criteria.										

UNIT I – UNDERSTANDING BIG DATA

Introduction To Big Data – Sudden Hype Around Big Data Analytics - Classification Of Analytics – Top Challenges Facing Big Data –Importance of Big Data Analytics - Challenges Posed By Big Data -Terminologies Used In Big Data Environments – Basically Available Soft State Eventual Consistency(BASE) – Few Top Analytics Tools

UNIT II – NOSQL DATA MANAGEMENT

Introduction To Nosql – Types Of Nosql Database – Use Of Nosql In Industry – Nosql Vendors – SQL Vs Nosql – Newsql – Comparison Of SQL,Nosql And Newsql - Introduction To Cassandra - Features Of Cassandra – CQL Data Types – CQLSH – CRUD – Collections – Time To Live(TTL) – Alter Commands – Import And Export – Querying System Tables

UNIT III – BASICS OF HADOOP

Hadoop – Features Of Hadoop - Versions Of Hadoop – Hadoop Distributions – Hadoop Vs SQL –Cloud Based Hadoop Solution - Hadoop Introduction – RDBMS Vs Hadoop - Hadoop Overview – Use Case Of Hadoop – Hadoop Distributions – Processing Data With Hadoop – Interacting With Hadoop Ecosystem

UNIT IV – MAP REDUCE APPLICATIONS

Introduction To Map Reduce –The Configuration API – Setting Up The Development Environment – Writing A Unit Test With MRUnit – Running On A Cluster- – Map Reduce Workflows–How Map Reduce Works Anatomy Of Map Reduce Job Run – Failures – Shuffle And Sort – Task Execution– Map Reduce Types And Formats - Input And Output Format – Map Reduce Features

9

9

9

9

UNIT V – HADOOP RELATED TOOLS

Pig – Installing And Running Pig – Comparison With Databases – Pig Latin – User Defined Functions – Data Processing Operators – Hive – HiveQL – Tables – Querying Data – User-Defined Functions –Data Analytics – Multimedia - Streaming of data - Case Study: Analyzing Social Media Data

TOTAL (L:45):45 PERIODS

9

TEXT BOOKS

- I. Seema Acharya and Subhashini Chellappan, "Big Data and Analytics", 2nd Edition, Wiley, 2019. (Unit 1-4).
- 2. Tom White, Hadoop: The Definitive Guide, O'Reilly Media, Inc., Fourth Edition, 2015. (Unit 5).

REFERENCES

- 1. EMC Education Services,"Data science and Big data Analytics: Discovering, Analyzing, Visualizing and Presenting Data", John Wiley and Sons, 2015.
- 2. Alan Gates, Programming Pig Dataflow Scripting with Hadoop, O'Reilly Media, Inc, 2011.

	Mapping of COs with POs / PSOs													
						Р	os						PS	Os
COs	I 2 3 4 5 6 7 8 9 10 11 12												I	2
I	3	3	3		3								3	
2	3	3			3									3
3			3	3									3	
4		3		3									3	
5				3	3									3
CO (W.A)	3	3	3		3								3	3

	22AIP11 - BIG DATA ANALYTICS LABORATORY	,					
		L	Т	Р	С		
		0	0	4	2		
PRE-R	EQUISITE : NIL						
Course	• Gain experience in processing and transforming big da Spark, MapReduce, and Apache Hive processes.	ata using	tools l	ike Apa	ache		
Course The Stud	Outcomes lent will be able to	Cogr	nitive	Level			
COI	Apply techniques to store, retrieve, and manage large volumes of data.	Ар					
CO2	Apply MongoDB to perform CRUD operations on a NoSQL database, effectively managing documents within collections.	Ар					
CO3	Analyze MapReduce programs to process and real-world datasets, gaining practical experience with large-scale data processing		A	n			
CO4	Analyze the roles of the Mapper, Reducer and the way they interact to process data in a distributed manner.	An					
CO5	Create and configure components of the Hadoop ecosystem, such as HDFS, MapReduce, and various tools like Hive, Pig, and HBase, to build a complete big data processing environment		C	2			

LIST OF EXPERIMENTS:

1. Install, configure and run Hadoop and HDFS.

2. Hadoop Implementation of file management tasks, such as Adding files and directories, retrieving files and

Deleting files

3. Implement NoSQL Database Operations: CRUD operations, Arrays using MongoDB.

4. Implement a MapReduce program that processes a dataset.

5. Write a MapReduce program to count the occurrences of similar words across files.

6. Word count in Hadoop and Spark

7. Installation of Hive along with practice examples.

8. Installing and Configuring Apache PIG and HIVE

9. Installation of HBase, Installing thrift along with Practice examples

TOTAL (P:60) = 60 PERIODS

	Mapping of COs with POs / PSOs														
			PSOs												
COs	I	I 2 3 4 5 6 7 8 9 10 11 12												2	
I	3												3		
2	3	3		3											
3		3	3											3	
4				3									3		
5				3					3				3	3	
CO (W.A)	3	3	3						3				3	3	

	22AIX01 - KNOWLEDGE EN (Common to 22CSX02,22ITX02,	GINEERING				
		· · · · · · · · · · · · · · · · · · ·	L	Т	Ρ	С
			3	0	0	3
PRE-R	EQUISITE : NIL					
Course	• To implement various techniques fo representation.	r knowledge acqu	isition	and		
Course The Stu	e Outcomes dent will be able to	Cognitive Level	We in l E	ightag End S Exami	e of C emest natior	COs :er 1
соі	Apply knowledge representation with production rules.	Ap		20	0%	
CO2	Implement SLD derivations with horn clauses.	An		20	0%	
CO3	Apply reasoning with inheritance network and default logic.	Ap		20	0%	
CO4	Apply subjective probability with actions and planning.	Ap		2	0%	
CO5	Perform object oriented representation using frames	Ap		20	0%	
UNIT						(9)

Knowledge Representation and Reasoning – Syntax, Semantics, Pragmatics, Explicit and Implicit Belief -Expressing Knowledge – Resolution: Propositional Case-Handling Variables and Quantifiers-Dealing with Computational Intractability

UNIT II – HORN CLAUSES

Horn Clauses-SLD Resolution-g SLD Derivations-Procedural Control of Reasoning - Rules in Production Systems: Production Rules- Conflict Resolution- Applications and Advantages

UNIT III – OBJECT-ORIENTED REPRESENTATION

Objects and Frames-Frame Formalism-Frames to Plan a Trip-Beyond the Basics-Structured Descriptions-A Description Language-Meaning and Entailment-Computing Entailments-Taxonomies and Classification

UNIT IV – INHERITANCE AND DEFAULTS

Inheritance Networks-Strategies for Defeasible Inheritance-A Formal Account of Inheritance Networks-Defaults: Introduction-Closed-World Reasoning-Circumscription-Default Logic-Autoepistemic Logic

UNIT V – VAGUENESS, UNCERTAINTY AND DEGREES OF BELIEF

Noncategorical Reasoning-Objective Probability-Subjective Probability-Vagueness-Diagnosis-Explanation-Actions-Planning- Tradeoff between Expressiveness and Tractability.

TOTAL (L:45) = 45 PERIODS

(9)

(9)

(9)

TEXT BOOKS:

- 1. Ronald J. Brachman, Hector J. Levesque: Knowledge Representation and Reasoning, MorganKaufmann, 2004.
- 2. Gheorghe Tecuci, Dorin Marcu, Mihai Boicu, David A. Schum, Knowledge Engineering Building Cognitive Assistants for Evidence-based Reasoning, Cambridge University Press, First Edition, 2016.

REFERENCES:

- 1. John F. Sowa: Knowledge Representation: Logical, Philosophical, and Computational Foundations, Brooks/Cole, Thomson Learning, 2000
- 2. Ela Kumar, Knowledge Engineering, I K International Publisher House, 2018.

				Μ	apping	g of CC)s wit h	POs /	PSO s					
						Po	DS						PSOs	
COs	I 2 3 4 5 6 7 8 9 10 11 11													2
I	3	3											3	
2		3	3											
3	3												3	
4	3												3	
5	3													
CO (W.A)	3	3	3										3	

		22AIX02 - RECOMMENDER S (Common to 22CSX03.22ITX03	SYSTEMS				
			, ,	L	Т	Ρ	С
				3	0	0	3
PRE-R		NIL					
Course	e Objective:	ns for I	Recom	mende	r		
Course The Stu	e Outcomes dent will be able	e to	Cognitive Level	We in	ightaş End S Exami	ge of C emest natior	COs :er
соі	Apply the cor systems.	ncepts and applications of recommender	Ap	0%			
CO2	Analyze vario	ous collaborative filtering models in recommendation.	An	0%			
CO3	Conduct in recommender	vestigation about the issues in system and experimental setup.	Ар		2	0%	
CO4	Apply Recom	mendation system properties in IPVT.	Ар		2	0%	
CO5	Implement recommendat	the knowledge sources and ion types.	Ap		2	0%	

UNIT I – INTRODUCTION

Introduction - Recommender Systems Function - Data and Knowledge Sources - Recommendation Techniques - Application and Evaluation - Applications of recommendation systems - Issues with recommender system.

UNIT II – CONTENT-BASED RECOMMENDATION

High level architecture of content-based systems - Advantages and drawbacks of content based filtering-Item Representation - Learning User Profiles and Filtering - Trends and Future Research - Neighborhoodbased Recommendation - Components of Neighborhood Methods.

UNIT III – COLLABORATIVE FILTERING

Preliminaries: Baseline predictors - The Netflix data - Implicit feedback - Matrix factorization models - Neighborhood models - Enriching neighborhood models - Between neighborhood and factorization - Constraint-based Recommenders.

UNIT IV – CONTEXT-AWARE RECOMMENDER SYSTEMS

Context in Recommender Systems - Paradigms for Incorporating Context in Recommender Systems - Combining Multiple Approaches – Case Studies - Additional Issues in Context-Aware Recommender Systems- Evaluating Recommender Systems: Experimental Settings - Recommendation System Properties.

(9)

(9)

(9)

UNIT V – IPVT, MATCHING RECOMMENDATION TECHNOLOGIES

(9)

IPTV Architecture - Recommender System Architecture- Recommender Algorithms- Recommender Services – System Evaluation - Knowledge Sources – Domain - Knowledge Sources - Mapping Domains to Technologies.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Francesco Ricci , Lior Rokach , Bracha Shapira , "Recommender Sytems Handbook", 1st ed, Springer (2011)
- 2. Charu C. Aggarwal, "Recommender Systems: The Textbook", First Ed., Springer, 2016.

REFERENCES:

- 1. Manouselis N., Drachsler H., Verbert K., Duval E., "Recommender Systems for Learning", Springer, 1st Edition, 2013.
- 2. Dietmar Jannach , Markus Zanker , Alexander Felfernig and Gerhard Friedrich, "Recommender Systems: An Introduction", Cambridge University Press (2011), 1st ed.

			Μ	apping	g of CC	Ds with	POs /	PSO s				
					Po	DS					PSO	
COs	I	12	I	2								
I	3										3	
2		3										
3	3		3									
4	3										3	
5	3	3										3
CO (W.A)	3	3	3								3	3

		,	L	Т	Ρ	С
			3	0	0	3
PRE-F	REQUISITE : NIL		I		I	1
Cours	• To learn and understand soft compu	iting concepts and	l Fuzz	y infer	ence s	ystems.
Cours The Stu	e Outcomes udent will be able to	Cognitive Level	i V	leight n End Exai	tage o Semo ninat	of COs ester ion
COI	Make use of the soft computing concepts along with its architecture	Ар			20%	
CO2	Apply the techniques of back propagation network along with its parameter tuning.	Ар			20%	
CO3	Interpret the fuzzy logics to solve the neural network problems	Ар			20%	
CO4	Utilize the genetic algorithm techniques to obtain the optimized solution	Ар			20%	
CO5	Illustrate the working of hybrid soft computing and to solve real world problems	An			20%	
UNIT I ntroduc ntellige of neura	I –INTRODUCTION ction to Soft computing-Soft Computing Constituents-From nce- Artificial neural network: Introduction, characteristics al networks - basic models - important technologies – appli	n Conventional A - learning method cations.	l to C Is – ta	Compu Ixonor	9 tationa ny – Ev	ll volution
	II -NEURAL AND BACKPROPAGATION NETWO	ORK			9	
Back pro Multilay /ector (paramet	opagation Neural Networks -single layer artificial neural ne rer perceptron-Back propagation learning- Neural Network Quantization -Hamming Neural Network - Hopfield Neura ters of Backpropagation neural network- Unsupervised Lea	etwork- Back prop ks- Kohonen Neur Il Network -Appli Irning Neural Net	oagatio ral Ne catior work:	on lear etwork ns-Effe s.	ning m -Lean ct of tu	nodel fo ning uning
	III-FUZZY LOGIC				9	
- uzzy se	et theory- Introduction to Fuzzy Logic- Fuzzy Sets - Classic risp set: operations on Crisp sets-Properties of Crisp sets- zzy set operations-properties of fuzzy sets-Crisp relations:	al Relations and F partition and cov Cartesian produc	uzzy l ering- t-oth	Relatio memb er crisi	ns- Fu ership o relati	zzyversi functio ions.
crisp-ci basic fuz	zzy set operations-properties of luzzy sets-crisp relations.	•				

UNIT V – HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS

9 - Hybrid systems-Neural networks ,fuzzy logic and genetic algorithms hybrids-GA Based Weight Determination Fuzzy backpropagation networks-Simplified fuzzy ARTMAP-Fuzzy associative memories-Soft computing tools-Fuzzy constrains-Fuzzy logic controller.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS

- 1. S. Rajasekharan& G. A. VijayalakshmiPai, "Neural Networks, Fuzzy Systems and Evolutionary algorithms: synthesis and applications", 2nd Edition, Prentice Hall of India, New Delhi, 2018.
- 2. J.S.R.Jang, C.T. Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI / Pearson Education 2004.
- 3. 2. S.N.Sivanandam and S.N.Deepa, "Principles of Soft Computing", Wiley India Pvt Ltd, 2019.

REFERENCES

I. George J. Klir, Ute St. Clair, Bo Yuan, "Fuzzy Set Theory: Foundations and Applications" Prentice Hall, 1997.

	Mapping of COs with POs / PSOs														
CO 2							POs						PS	Os	
COs	I	2	3	4	5	6	7	8	9	10	11	12	Ι	2	
Ι	3	3	3		3								3		
2	3	3			3									3	
3			3	3									3		
4		3		3									3		
5				3	3									3	
CO (W.A)	3	3	3		3								3	3	

	22AIX04 - OPTIMIZATION TECHNIQUES (Common to 22CIX15,22CCX22)										
		L	Т	Р	С						
		3	0	0	3						
PRE-R	EQUISITE : NIL										
Course	• Objective: • To apply transportation algorithms in engineering proproblems of Project Management using CPM and PER	oblems RT	and to	handl	e the						
Course The Stu	e Outcomes Cognitive dent will be able to Level	We in	ighta; End S Exami	ge of (emes inatio	COs ter n						
COI	Able to apply and solve linear programming Ap problems		2	.0%							
CO2	Evaluate transportation algorithms in engineering An problems.		2	.0%							
CO3	Analyze game theory concepts in practical An situations.		2	.0%							
CO4	Understand the problems of Project Management using CPM and PERT		2	.0%							
CO5 Analyze various types of Non-linear Programming An 20%											
UNIT I	- LINEAR PROGRAMMING			9							

ntroduction – Formulation of Linear Programming Problem – Advantages of Linear Programming methods – Limitations of Linear Programming models – Standard form of LPP – Graphical Method – Simplex Method – Artificial variable techniques – Big M Method. Understanding convex sets, functions, and optimization problems-Non-Convex Optimization: Techniques for dealing with local minima, saddle points, and global optimization in 10n-convex landscapes.

UNIT II – TRANSPORTATION PROBLEM

Mathematical Formulation of Transportation Problem – Initial basic feasible solution – North West Corner Method – Least Cost Method – Vogel's approximation method – Optimal solution – MODI Method – Degeneracy – Unbalanced transportation problem – Maximization transportation problem

JNIT III – ASSIGNMENT PROBLEM AND THEORY OF GAMES

Assignment Problem: Mathematical model of Assignment problem – Hungarian Method – Unbalanced assignment problem. Theory of Games: Two-person zero-sum game – Pure strategies - Game with mixed strategies – Rules of Dominance – Solution methods: Algebraic method – Matrix method – Graphical method

UNIT IV – PROJECT MANAGEMENT

Basic Concept of network Scheduling – Construction of network diagram – Critical path method – Programme evaluation and review technique – Project crashing – Time-cost trade-off procedure.

9

9

9

UNIT V – NON-LINEAR PROGRAMMING

Formulation of non-linear programming problem – Constrained optimization with equality constraints - Kuhn-Tucker conditions – Constrained optimization with inequality constraints.

TOTAL= 45 PERIODS

TEXT BOOKS

 Kanti Swarup, Gupta P.K. & Man Mohan, "Operation Research", 14th Edition, Sultan Chand & Sons, New Delhi, 2014.

REFERENCES

- I. Sharma J.K., "Operations Research Theory and Applications", 4th Edition, Macmillan Publishers India Ltd., New Delhi, 2009.
- **2.** 2. Gupta P.K. & Hira D.S., "Operations Research: An Introduction", 6th Edition, S.Chand and Co. Ltd, New Delhi, 2008.

	Mapping of COs with POs / PSOs														
						Po	os						PS	Os	
COs	I	I 2 3 4 5 6 7 8 9 10 11 12													
Ι	3				2								3		
2			3										3		
3					3								3		
4	3		3										3		
5	3	3 3													
CO (W.A)	3		3		3								3		

147 | Page

		22AIX05 - COMPUTER V (Common to 22CSX05,22ITX05,22C	ISION IX16,22CCX23)										
				L	Т	Ρ	С						
				3	0	0	3						
PRE-R	EQUISITE : N	AIL .											
Course Objective: • To impart knowledge and understanding about the application of algorithms and techniques used to interpret and analyze visual data from the world.													
Course Outcomes The Student will be able toCognitive LevelWeightage of COs in End Semester Examination													
COIImplement image processing techniques for feature extraction and enhancement in computer vision applications.Ap30%													
CO2	Analyze objecturing various t	ct detection and recognition systems techniques.	An		2	0%							
CO3	Make use of alignment and	the optimization technique for image geometric transformations.	Ар		3	0%							
CO4Apply deep learning models to synthesize images for advanced photography techniques.An20%													
CO5	Build an innov techniques in v	vative solution for immersive rendering virtual reality.	С	Inte	ernal A	ssessr	nent						
1	1			1									

UNIT I -INTRODUCTION

Introduction-Image Formation: Geometric primitives and transformations-Photometric image formation-The digital camera-Image processing: Point operators-Linear filtering -Fourier transforms -Geometric transformations.

UNIT II – RECOGNITION & FEATURE DETECTION AND MATCHING

Instance Recognition-Image Classification-Object detection-Semantic segmentation-Points and patches-Edges and contours-Contour tracking-Lines and vanishing points-Segmentation.

UNIT III – IMAGE ALIGNMENT AND STITCHING & STRUCTURE FROM MOTION

Pairwise alignment-Image stitching-Geometric Intrinsic calibration-pose estimation-Two-frame structure from motion-Multi-frame structure from motion-Simultaneous localization and mapping(SLAM):"Enhancing Autonomous Navigation: A Case Study on SLAM Implementation"

UNIT IV - COMPUTATIONAL PHOTOGRAPHY & DEPTH ESTIMATION

9

9

9

9

Photometric calibration-High dynamic range imaging-Super-resolution:"Advancing Image Clarity: A Case Study on Super-Resolution Techniques"-denoising-blur removal-Image matting and compositing-Epipolar geometry-Sparse correspondence-Dense correspondence-Local methods-Global optimization-Multi-view stereo

UNIT V – 3D RECONSTRUCTION & IMAGE-BASED RENDERING

9

Shape from X-3D Scanning-Surface representation-Point-based representation-Volumetric representation-GAN:Generative Adversarial Networks-Vision Transformation-Light fields and Lumigraphs:"Case study on Immersive Rendering in VR"-Video-based rendering:"Case study on Dynamic Scene Reconstruction Techniques".

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS

- 1. Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer- Texts in Computer Science, Second Edition, 2022.
- 2. E. R. Davies, "Computer Vision: Principles, Algorithms, Applications, Learning", Cambridge University Press, recent edition, 2022.

REFERENCES

- Simon J.D. Prince, "Computer Vision: Models, Learning, and Inference" ,2nd edition, Cambridge University Press.2012.
- 2. David A. Forsyth and Jean Ponce, "Computer Vision: A Modern Approach", published by Prentice Hall, recent edition 2022.

					Ma	apping	of CC	Ds with	n POs	/ PSO	5			
CO 2	POs COs													SOs
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I		3												
2					3									
3			3											
4				3										
5							3	3	3		3			3
CO (W.A)		3	3	3	3		3	3	3		3			3

		22AIX06 - ETHICS OF (Common to 22CSX06,22ITX00	= AI 6,22CIX17)				
				L	Т	Ρ	С
				3	0	0	3
PRE-F	REQUISITE :	NIL					
Course	e Objective:	 To Learn about the Ethical initiative reach AI standards and Regulations 	s in the field of ar	tificial ii	ntellige	nce ar	nd
Cours The Stu	e Outcomes udent will be able	e to	Cognitive Level	We in l E	ightag End S Exami	ge of (emes natio	COs ter n
соі	Apply about m	orality and ethics in Al	Ap		20	0%	
CO2	Evaluate the ethics, issues ar	knowledge of real time application nd its challenges.	Ар		20	0%	
CO3	Analysis the et	nical harms and ethical initiatives in Al	An		20	0%	
CO4	Apply AI stand Safe Design of Systems	dards and Regulations like AI Agent, Autonomous and Semi-Autonomous	Ар		20	0%	
CO5	Apply the soc International St	ietal issues in AI with National and trategies on AI	Ар		20	0%	
	1						

UNIT I-INTRODUCTION

Definition of morality and ethics in Al-Impact on society-Impact on human psychology-Impact on the legal system-Impact on the environment and the planet-Impact on trust.

UNIT II -ETHICAL INITIATIVES IN AI

International ethical initiatives-Ethical harms and concerns-Case study: healthcare robots, Autonomous Vehicles, Warfare and weaponization.

JNIT III – AI STANDARDS AND REGULATION

Model Process for Addressing Ethical Concerns During System Design - Transparency of Autonomous Systems-Data Privacy Process- Algorithmic Bias Considerations - Ontological Standard for Ethically Driven Robotics and Automation Systems

UNIT IV – ROBOETHICS: SOCIAL AND ETHICAL IMPLICATION OF ROBOTICS

Robot-Roboethics- Ethics and Morality- Moral Theories-Ethics in Science and Technology - Ethical Issues in an ICT Society- Harmonization of Principles- Ethics and Professional Responsibility Roboethics Taxonomy.

9

9

9

9

UNIT V – AI AND ETHICS- CHALLENGES AND OPPORTUNITIES

Challenges - Opportunities- ethical issues in artificial intelligence- Societal Issues Concerning the Application of Artificial Intelligence in Medicine- decision-making role in industries-National and International Strategies on AI. Chat gpt basics, prompt engineering.

TOTAL= 45 PERIODS

TEXT BOOKS

- Y. Eleanor Bird, Jasmin Fox-Skelly, Nicola Jenner, Ruth Larbey, Emma Weitkamp and Alan Winfield ,"The ethics of artificial intelligence: Issues and initiatives", EPRS | European Parliamentary Research Service Scientific Foresight Unit (STOA) PE 634.452 – March 2020
- 2. Patrick Lin, Keith Abney, George A Bekey," Robot Ethics: The Ethical and Social Implications of Robotics", The MIT Press- January 2014.

REFERENCES

- 1. Towards a Code of Ethics for Artificial Intelligence (Artificial Intelligence: Foundations, Theory, and Algorithms) by Paula Boddington, November 2017
- 2. Mark Coeckelbergh," AI Ethics", The MIT Press Essential Knowledge series, April 2020

Mapping of COs with POs / PSOs														
	Pos													
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I								3						3
2	2						2	3						3
3							2	3						3
4	3					2		3						3
5								3						3
CO (W.A)	2.5					2	2	3						3

9

	22AIX07 - BUSINESS INTEL (Common to 22CSX07,22ITX07	LIGENCE (,22CCX28)												
	·		L	Т	Ρ	С								
			3	0	0	3								
PRE-F	REQUISITE : NIL													
Course	Course Objective: • To understand the effect of Business Intelligence (BI) on an organization													
Course Outcomes The Student will be able toCognitive LevelWeightage of COs in End Semester Examination														
COI Use of the knowledge of Business Intelligence in U 20%														
CO2	Apply the concepts of Data visualization and Visual analytics.	Ap		2	0%									
CO3	Able to apply data mining tools.	Ap		2	0%									
CO4Demonstrate the text analytics, text mining and sentiment analysis.An20%														
CO5	CO5 Develop web mining. C 20%													
UNIT	UNIT I –BUSINESS INTELLIGENCE – INTRODUCTION 9													

A Frame work for Business Intelligence (BI)- The Architecture of BI - Benefits of business intelligence-Business intelligence VS competitive intelligence and knowledge management. Data Warehousing-Characteristics of Data Warehousing- Data Marts- Data warehousing process- Data warehousing Architectures – Data Integration and the Extraction, Transformation and Load (ETL) Process OLAP Versus OLTP- Data warehousing implementation issues – Real time data warehousing.

UNIT II – BUSINESS REPORTING, VISUAL ANALYTICS AND BUSINESS PERFORMANCE MANAGEMENT

9

9

Data and Information Visualization – Different types of Charts and Graphs- Emergence of Data visualization and Visual analytics - Performance Dashboard - Balance Score Cards – Dashboards Versus Scorecards - Six Sigma as a performance measurement system.

UNIT III – DATA MINING – SUPERVISED LEARNING, AND UNSUPERVISED LEARNING

Data mining concepts and applications – Data mining process – Data mining methods – Classification techniques – Decision trees, Case studies. Cluster Analysis – Partition and Hierarchical methods, Association rule mining –Data mining software Tools - Case studies.

UNIT IV - TEXT ANALYTICS, TEXT MINING AND SENTIMENT ANALYSIS

9

Text analytics and Text mining concepts and definition – Text Mining Applications - Text mining process – Text mining tools – Sentiment analysis overview – Sentiment analysis applications – Sentiment analysis process, Sentiment Analysis and Speech Analytics.

UNIT V – WEB MINING

Web mining overview – Web content and Web structure mining – Search Engines - Search Engine Optimization – Web usage mining – Web analytics maturity model and web analytics tools – Social analytics and social network analysis- Social Media Definitions and Concepts- Social Media Analytics.

TOTAL = 45 PERIODS

TEXT BOOKS

I. Ramesh Sharda, Dursun Delen, Efraim Turban, Business Intelligence and Analytics, Pearson 10th edition, 2018

REFERENCES

- Ramesh Sharda, Dursun Delen, Efraim Turban, Business Intelligence, Analytics, and Data Science: A Managerial Perspective, 4th Edition, Pearson, 2017
- 2. David Loshin Morgan, Kaufman, —Business Intelligence: The Savvy Manager[®]s Guidell, Second Edition, 2012.

	Mapping of COs with POs / PSOs														
						Po	DS						PS	Os	
COs	I	I 2 3 4 5 6 7 8 9 10 11 1													
Ι	3												3		
2	2				3								3		
3			2		3								3		
4			3		2								3		
5			3		2								3		
CO (W.A)	3		3		3								3		

9

	22AIX08 - ROBOTICS PROCESS AUTOMATION (Common to 22CSX08,22ITX08,22CIX18,22CCX38) L T P C												
		L	Т	Ρ	С								
		3	0	0	3								
PRE-R													
Course	• To implement the fundamental concepts of Al in r paradigms for achieving it.	obotic	s and 1	he ma	jor								
Course The Stu	e Outcomes Cognitive Ident will be able to Level	E	Veigh COs i Sem xami	tage o n End ester natio	of I n								
соі	Interpret features of an Industrial robot with end effectors AP		2	0%									
CO2	Identify the characteristics of Autonomy robot and use Hierarchical Paradigm for organizing AP intelligence in Robots.		2	0%									
CO3	Apply reactive paradigm for AI Robots AP	AP 20											
CO4	The students able to know the various potential areas of automation and material handling	¹ U 20											
CO5	Design sensor and vision system for robots An		2	0%									

UNIT I – FUNDAMENTALS OF ROBOTICS

(9)

Automation and Robotics, A brief history of Robotics, The robotics market and the future prospects, Robot anatomy, Robot drive systems, Precision of Movement, Robotic sensors, Robot programming and work cell control, Robot applications

UNIT II – ROBOT TECHNOLOGY

Basic control systems concepts and models, Controllers, Control system analysis, Robot sensors and actuators, Velocity sensors, Actuators, Power transmissions systems, Modeling and control of a single joint robot, Robot motion analysis and control.

UNIT III - ROBOT END EFFECTORS AND SENSORS

(9)

(9)

Types of end effectors, Mechanical grippers, other types of gripper, Tools as end effectors, The robot/end effectors interface, Considerations in gripper selection and design, Transducers and sensors, Sensors in robotics, Tactile sensors, Proximity and range sensors

UNIT IV - MACHINE VISION AND ARTIFICIAL INTELLIGENCE

(9)

Introduction to machine vision, The sensing and digitizing functions in machine vision, Image processing analysis, Training the vision system, Robotic applications, Introduction to AI, Goals of AI research, AI techniques, AI and Robotics

(9)

Material transfer and machine loading/unloading, Processing operations – spot welding, continuous arc welding, spray coating, other processing operations using robots, Assembly and Robotic assembly automation, Designing for robotic assembly, Inspection automation

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

1. M.P.Groover et al, McGrawhill "Industrial robotic technology-programming and application" 2008

REFERENCES:

- Richared D.Klafter, Thomas Achmielewski and Mickael Negin," Robotic Engineering an Integrated approach" prentice hall India- newdelhi-2001
- 2. S.R. Deb, Dr Sankha Deb "Robotics technology and flexible automation" Tata McGraw-Hill Education ,2009
- 3. <u>https://www.robots.com/applications</u>

					Мар	ping o	of CC	s with	n POs	/ PSO	S			
CO -							POs						PS	SOs
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I														
2		3												
3	3					3								3
4					3						3			
5			3						3				3	
CO (W.A)	3	3	3		3	3			3		3		3	3

	(22AIXII - PATTERN RECO Common to 22CSXII,22ITXII,22C	GNITION IX21,22CCX24)							
			_	L	Т	Ρ	С			
				3	0	0	3			
PRE-R	EQUISITE : NIL									
Course	• Objective: •	To impart knowledge for solving rea computer vision, speech recognition To enrich the proficiency of the stud appropriate pattern recognition mod domain-specific requirements.	al-world problems n, and bioinformati dents in evaluating dels based on perf	in fiel cs. and so orman	ds such electing ice me	as g trics ar	nd			
Course The Stu	e Outcomes dent will be able to		Cognitive Level	We in I	eightag End S Exami	ge of (emest nation	COs ter 1			
соі	Apply advanced theory concepts t	probabilistic models and decision optimize inference.	Ap		3	0%				
CO2	Apply supervised problems.	learning algorithms for solving	An		2	0%				
CO3	Interpret unsup clustering data.	ervised learning techniques for	Ap		3	0%				
Apply graphical models and sequential data techniquesCO4to solve complex problems such as plant diseasediagnosis.										
CO5	Evaluate proficie optimizing neural	ency in designing, training, and networks	E	Int	ernal A	ssessr	nent			

UNIT I – INTRODUCTION

Probability Theory:Probability densities-Bayesian probabilities-The Gaussian distribution-Bayesian curve fitting-Model Selection-The Curse of Dimensionality-Decision Theory: Minimizing the misclassification rate-Minimizing the expected loss-The reject option-Inference and decision-Loss functions for regression-Information Theory.

UNIT II -PROBABILITY DISTRIBUTION AND LINEAR MODELS FOR REGRESSION

Binary Variables-Multinomial Variables-The Gaussian Distribution-Linear Basis Function Models-Bayesian Linear Regression:Parameter distribution-Predictive distribution-Bayesian Model Comparison-The Evidence Approximation:Evaluation of the evidence function-Maximizing the evidence function-Effective number of parameters-Limitations of Fixed Basis Functions.

UNIT III -LINEAR MODELS FOR CLASSIFICATION

Discriminant Functions-Probabilistic Generative Models-Probabilistic Discriminative Models:Logistic regression-Multiclass logistic regression-Probit regression-The Laplace Approximation-Bayesian Logistic Regression:Laplace approximation-Predictive distribution

9

9

9

UNIT IV-NEURAL NETWORKS AND KERNEL METHODS	9
Feed-forward Network Functions-Network Training-Error Backpropagation-The Hess Regularization in Neural Networks-Mixture Density Networks-Bayesian Neural Networks- Kernels-Radial Basis Function Networks:Nadaraya-Watson model-Gaussian Processes	sian Matrix- Constructing
UNIT V-GRAPHICAL MODELS AND SEQUENTIAL DATA	9
Bayesian Networks-Conditional Independence-Markov Random Fields-Inference in Graph Markov Models-Hidden Markov Models-Case study on Plant Disease Diagnosis in Rand Conditional Mixture Models.	ical Models- om Forest -
TOTAL (L:45) = 45 PE	RIODS

TEXT BOOKS

- 1. Christopher M. Bishop "Pattern Recognition and Machine Learning", Springer, Second edition 2021.
- 2. David G.Stork, PeterE.Hart, and Richard O.Duda" Pattern Classification", published by Wiley in recent edition in 2022.

REFERENCES

- I.Sergios Theodoridis and Konstantinos Koutroumbas"Machine Learning: A Bayesian and Optimization Perspective"AcademicPress, recent edition 2022.
- 2.David J.C. MacKay"Information Theory, Inference, and Learning Algorithms" Cambridge University Press, 2003.
- 3. David Barber "Bayesian Reasoning and Machine Learning", Cambridge University Press, 2012.
- 4. Ian Goodfellow, Yoshua Bengio, and Aaron Courville" DeepLearning", MIT Press, 2016.

					Ma	pping	of CC	Ds witl	n POs	/ PSOs	5			
CO 2							POs						PSOs	
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I					3									
2		3											3	
3				3									2	
4					3									2
5							2	3	3	2	2			3
CO (W.A)		3		3	3		2	3	3	2	2		2.5	2.5

	22AIX12 - TEXT AND SPEECH (Common to 22CSX12,22ITX12	ANALYTICS 2,22CIX22)										
	· · · · · · · · · · · · · · · · · · ·		L	Τ	P	С						
			3	0	0	3						
PRE-R												
Course	 To understand natural language pro To apply classification algorithms to dialogue systems to develop a speed synthesizer. 	cessing basics. text documents, q h recognition syste	uestio em & s	n-ansv peech	vering	and						
Course The Stu	e Outcomes dent will be able to	Cognitive Level	We in l E	ightag End S Exami	ge of C emest natior	COs ter 1						
СОІ	Examine the foundations of natural language processing and speech analysis	An		20)%							
CO2	Apply classification algorithms to text documents	Ар		20)%							
CO3	Analysis question-answering and dialogue systems	An		20)%							
CO4	Apply deep learning models for building speech recognition and text-to-speech systems	Ар		20)%							
CO5	Evaluate coreference and coherence for text processing	An		20)%							
UNITI					(9)							
oundatic Nranglinរ្ Fext repr	ons of natural language processing – Language Syntax g – Text tokenization – Stemming – Lemmatization – Rer resentation – Bag of Words model- Bag of N-Grams mode	< and Structure- noving stopwords - el – TF-IDF mode	Text – Feat	Prepro ure En	ocessir gineer	ng and ing for						
UNIT I	I-TEXT CLASSIFICATION				(9)							
Vector S – Deep summari	Semantics and Embeddings -Word Embeddings - Word2V Learning models for text classification– Recurrent Neur zation and Topic Models	/ec model – Glove al Networks (RNN	mode V) – T	el – Fas Transfo	stText ormers	model –Text						
JNIT III	QUESTION ANSWERING AND DIALOGUE SYSTEMS (9)											
Informat models f	tion retrieval – IR-based question answering – knowledge-based question answering – language for QA – classic QA models – chatbots – Design of dialogue systems – evaluating dialogue systems											
	V – TEXT-TO-SPEECH SYNTHESIS				(9)						
Robot-R an ICT S	- TEXT-TO-SPEECH SYNTHESIS (9) oethics- Ethics and Morality- Moral Theories-Ethics in Science and Technology - Ethical Issues in iety- Harmonization of Principles- Ethics and Professional Responsibility Roboethics Taxonomy.											

UNIT V – AUTOMATIC SPEECH RECOGNITION

Named Entity Recognition (NER)-Coreference resolution-Text coherence and cohesion-Advanced sentiment analysis-Speech recognition: Acoustic modelling – Feature Extraction - HMM, HMM-DNN systems

TOTAL= 45 PERIODS

TEXT BOOKS

I. Daniel Jurafsky and James H. Martin, "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition", Third Edition, 2022.

REFERENCES

I. Dipanjan Sarkar, "Text Analytics with Python: A Practical Real-World approach to Gaining Actionable insights from your data", APress, 2018.

2. Tanveer Siddiqui, Tiwary U S, "Natural Language Processing and Information Retrieval", Oxford University Press, 2008.

3. Lawrence Rabiner, Biing-Hwang Juang, B. Yegnanarayana, "Fundamentals of Speech Recognition" 1st Edition, Pearson, 2009.

4. Steven Bird, Ewan Klein, and Edward Loper, "Natural language processing with Python", O'REILLY

				Μ	apping	g of CC) s with	POs /	PSO s					
						Po	DS						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I		3											3	
2	3												3	
3		3												3
4	3				3								3	
5		3			3									3
CO (W.A)	3	3			3								3	3

	22 A	IX13 - TIME SERIES ANALYSIS A (Common to 22CIX2	ND FORECAST 3)	ΓING	i		
				L	Т	Ρ	С
				3	0	0	3
PRE-F	REQUISITE :	NIL					
Course	e Objective:	 Understanding the fundamental forecasting Developing forecasting models 	concepts of time and evaluating the	series ir per	analy: forma	sis and nce.	
Cours The Stu	e Outcomes udent will be ab	le to	Cognitive Level	E	Veigh COs i Seme xami	tage o n End ester natior	vf n
соі	Ability to ide trends	entify time series data patterns and	AP		2	0%	
CO2	Make use of series data an	various smoothing methods for time alysis	AP		2	0%	
CO3	Skill in applyir	ng appropriate time series models	AP		2	0%	
CO4	Understand series analysis	and apply frequency domain time	U		2	0%	
CO5	Make use of v time series ar	variance transformation techniques for nalysis and forecasting	AP		2	0%	

UNIT I – EXPLORATORY ANALYSIS

Graphical displays–Numerical description of Time Series Data–Use of Data transformations and Adjustments–General Approach to Time Series Modeling and Forecasting – Evaluating and Monitoring Forecasting Model Performance-Statistical Inference in Linear regression-Model Adequacy Checking

UNIT II – SMOOTHING METHODS:

First-Order Exponential Smoothing–Modeling Time Series data–Second-Order Exponential Smoothing–Higher-Order Exponential Smoothing–Forecasting–Exponential Smoothing for Seasonal Data–Exponential Smoothing of Bio surveillance data – Exponential Smoothers and ARIMA models

UNIT III – ARIMA MODELS

Linear Models for Stationary Time Series–Finite Order Moving Average Processes–Finite Order Auto regressive Processes–Mixed Autoregressive-Moving Average Processes – Non stationary Processes – Time Series Model building – Forecasting ARIMA Processes – Seasonal Processes – ARIMA Modeling of Bio surveillance data

UNIT IV – TRANSFER FUNCTIONS AND INTERVENTION MODELS

Transfer Function Models – Transfer Function – Noise Models – Cross – Correlation Function– Model Specification – Forecasting with Transfer Function-Noise Models–Intervention Analysis

(9)

(9)

(9)

UNIT V- OTHER FORECASTING METHODS

(9)

Multivariate Time Series Models and Forecasting–State Space Models–Archand Garch models– Direct Forecasting of Percentiles–Combining Forecasts to improve Prediction Performance– Aggregation and Disaggregation of Forecasts–Neural Networks and Forecasting–Spectral Analysis– Bayesian Methods in Forecasting

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

1. Douglas C. Montgomery, Cheryl L. Jennings, Murat Kulahci, "Introduction to Time Series Analysis and Forecasting", 2nd Edition, Wiley, 2016.

REFERENCES:

1. George E.P.Box, Gwilym M.Jenkins, Gregory C. Reinsel, Greta M. Ljung, "Time Series Analysis: Forecasting and Control", 5thEdition, Wiley, 2016.

					Ma	pping	of CC)s with	n POs	/ PSO	5			
CO 2							Pos						PSOs	
COS	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I		3	3											3
2					3									
3	3					3							3	
4													3	
5				3								3		
CO (W.A)	3	3	3	3	3	3						3	3	3

		22AIX14 - HEALTH CARE AN (Common to 22CSX14,22ITX14,22C	NALYTICS IX24,22CCX26)						
				L	Т	Ρ	С		
				3	0	0	3		
PRE-R	EQUISITE : I	NIL							
Course	e Objective:	• To impart knowledge on health car concepts.	re analytics using m	nachin	e learn	ing			
Course The Stu	e Outcomes dent will be able	e to	Cognitive Level	We in E	ightag End S Exami	ge of C emest nation	COs :er		
соі	Apply machin care analysis.	e learning and deep learning in health	Ap	40%					
CO2	Identify the ap selection to tr	propriate selection of data using feature ain a model.	Ap	20%					
CO3	Develop a dat data using No	abase for clinical support and retrieving SQL database	An		2	0%			
CO4	Visualize prep	rocessing data using smart sensors.	An		20	0%			
CO5	Prepare a mir analysis.	i project to predict healthcare and data	С	Int	ernal A	ssessm	nent		

UNIT I – INTRODUCTION TO HEALTHCARE ANALYSIS

Overview - History of Healthcare Analysis Parameters on medical care systems- Health care policy-Standardized code sets – Data Formats – Machine Learning Foundations: Tree Like reasoning, Probabilistic reasoning and Bayes Theorem, weighted sum approach.

UNIT II – ANALYTICS ON MACHINE LEARNING

Machine Learning Pipeline – Pre-processing –Visualization – Feature Selection – Training model parameter – Evaluation model : Sensitivity, Specificity, PPV, NPV, FPR, Accuracy, ROC, Precision Recall Curves – Python: Variables and types, Data Structures and containers, Pandas Data Frame :Operations – Scikit – Learn : Preprocessing, Feature Selection.

UNIT III – HEALTH CARE MANAGEMENT

IOT- Smart Sensors – Migration of Healthcare Relational database to NoSQL Cloud Database – Decision Support System – Matrix block Cipher System – Semantic Framework Analysis – Histogram bin Shifting and Rc6 Encryption – Clinical Prediction Models – Visual Analytics for Healthcare.

UNIT IV - HEALTHCARE AND DEEP LEARNING

Introduction on Deep Learning – DFF network CNN- RNN for Sequences – Biomedical Image and Signal Analysis – Natural Language Processing and Data Mining for Clinical Data – Mobile Imaging and Analytics – Clinical Decision Support System.

(9)

(9)

(9)

UNIT V - CASE STUDIES

Predicting Mortality for cardiology Practice –Smart Ambulance System using IOT –Hospital Acquired Conditions (HAC) program- Healthcare and Emerging Technologies – ECG Data Analysis.

TOTAL (L:45) = 45 PERIODS

(9)

TEXT BOOKS:

- I. Chandan K.Reddy, Charu C. Aggarwal, "Health Care data Analysis", First edition, CRC, 2015.
- 2. Vikas Kumar, "Health Care Analysis Made Simple", Packt Publishing, 2018.

REFERENCES:

- 1. Nilanjan Dey, Amira Ashour, Simon James Fong, Chintan Bhatl, "Health Care Data Analysis and Management, First Edition, Academic Press, 2018.
- 2. Hui Jang, Eva K.Lee, "HealthCare Analysis : From Data to Knowledge to Healthcare Improvement", First Edition, Wiley, 2016.
- 3. Kulkarni , Siarry, Singh , Abraham, Zhang, Zomaya , Baki, "Big Data Analytics in HealthCare", Springer, 2020.

				М	apping	g of CC) s with	POs /	PSO s					
						Po	DS						PS	Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2	3	3			3									3
3	3		3											
4		3	3		3								3	
5	3				3				3	3				
CO (W.A)	3	3	3		3					3			3	3

		22AIX15 - PREDICTIVE AN (Common to 22CSX15,22ITX1)	ALYTICS 5,22CIX25)				
				L	Τ	Ρ	С
				3	0	0	3
PRE-R	EQUISITE : N						
Course	e Objective:	Proficient in different predictive m	odeling approaches	s, suc	h as re	gressio	on
	•	analysis, classification, and clusterin	ig.		• • •		
Course The Stu	e Outcomes dent will be able	e to	Cognitive Level	in	Eighta End S Exam	ige of Semes ninatio	cos ster on
соі	Analyze the p appropriate n of these metri	erformance of predictive analytics using netrics and understand the implications cs.	An			20%	
CO2	Apply data analytics to int	preparation and rules in predictive terpret the results in meaningful ways.	Ap			20%	
CO3	Analyze and models to gen	interpret the outputs of predictive erate actionable insights	An			20%	
CO4	Analyze differ most suitable performance r	ent predictive models to determine the model for a given problem based on metrics	An			20%	
CO5	Apply technic sources of tex	ues to collect text data from various at mining	Ар			20%	
UNIT I	-INTRODUC	TION TO PREDICTIVE ANALYTIC	CS			(9))
Overvie Data Vis it all tog	w of Predictive sualization in Or ether into a Dat	Analytics-Setting Up the Problem-Data ne Dimension, Two or Higher Dimension ta Audit	Understanding-Sin s-The Value of Sta	gle V tistic	'ariable al Sign	e Sumr ificance	naries - e-Pulling
	I –DATA PRE	PARATION AND ASSOCIATION F	RULES			(9))
Data Pre settings- Associat	eparation-Variat How the data i ion rules-Buildir	ble Cleaning-Feature creation-Item sets an s organized-Measures of Interesting rules ng Classification rules from Association ru	nd Association rule -Deploying Associa les	s-Ter ation	minol rules-	ogy-Pai Problei	rameter ns with
UNIT I	II – MODELIN	1G				((9)
Descript Compor interpre	tive Modeling- nent analysis-C tation	Data Preparation issues with Descr Clustering algorithms-Interpreting Desc	iptive modeling-M criptive models-S	1odel tanda	Sele ard c	ction-F luster	Principal model
UNIT I	V – PREDICT	IVE MODELLING				(9)
Decisior Models-	n Trees-Logistic Linear Regressi	Regression-Neural Network Model-K-N on-Building Neural Networks using XLM	learest Neighbors 1iner-Other Regres	-Naiv sion	e Baye Algori	es -Reg thms	gression

UNIT V – TEXT MINING

(9)

Motivation for Text Mining-A Predictive modeling approach to Text Mining-Structured vs. Unstructured data-Why Text mining is hard-Data Preparation steps-Text mining features-Modeling with Text mining features-Regular Expressions - Web mining - Text Mining vs. Web Mining - Case studies:-Survey Analysis

TOTAL (L:45): 45 PERIODS

TEXT BOOKS

- 1. Dean Abbott, "Applied Predictive Analytics-Principles and Techniques for the Professional Data Analyst", Wiley, 2014.(Unit 1-5)
- 2. Jiawei Han and Micheline Kamber, "Data Mining Concepts and Techniques", 3rd Edition, Elsevier, 2012

REFERENCES

- I. Conrad Carlberg, "Predictive Analytics: Microsoft Excel", 1st Edition, Que Publishing, 2012.
- 2. Alberto Cordoba, "Understanding the Predictive Analytics Lifecycle", Wiley, 2014
- 3. Anasse Bari, Mohamed Chaouchi, Tommy Jung, Predictive Analytics for Dummies, 2nd Edition, Wiley, 2017.

				М	apping	g of CC) s with	POs /	PSO s					
						Po	DS						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3	3												
2		3	3											3
3		3	3	3									3	
4		3	3	3									3	
5	3								3					
CO (W.A)	3	3	3		3					3			3	3

		22AIX16 - IMAGE AND VIDEO (Common to 22CSX16,22ITX16.22C	ANALYTICS							
				L	Т	Ρ	С			
				3	0	0	3			
PRE-R	REQUISITE : I	NIL								
Course	e Objective:	• To provide a broad view on proce	ssing and analyzing	g image	s and v	rideos.				
Course The Stu	e Outcomes udent will be able	e to	Cognitive Level	We in I E	ightag End S Exami	e of C emest natior	Os er			
COI	Apply the im and video anal	age processing techniques for image ysis.	Ар	20%						
CO2	Use image p detection.	re-processing techniques for object	Ap		20	0%				
CO3	Apply the v interpret the r	arious levels of segmentation and results for object detection.	Ар		20	0%				
CO4	Apply recognit	tion and machine learning techniques.	Ар		20	0%				
CO5	Make use of v	ideo analysis for real time case studies.	An		20	0%				

UNIT I - INTRODUCTION

Computer Vision – Image representation and image analysis tasks - Image representations – Digitization-Digital image properties- color images- Linear integral transforms- Images as stochastic processes- Data structures for Image Analysis - Levels of image data representation - Traditional and Hierarchical image data structures.

UNIT II - IMAGE PRE-PROCESSING

Pixel brightness transformations – Geometric transformations-Local pre-processing - Image smoothing -Edge detectors - Zero-crossings of the second derivative - Scale in image processing - Canny edge detection - Parametric edge models - Edges in multi-spectral images - Local pre-processing in the frequency domain - Line detection by local pre-processing operators - Image restoration.

UNIT III - OBJECT DETECTION USING MACHINE LEARNING

Object detection– Object detection methods – Deep Learning framework for Object detection– Bounding box approach-Intersection over Union (IoU) –Deep Learning Architectures-Fast R-CNN-Faster R-CNN-You Only Look Once(YOLO)-Single Shot MultiBox Detector(SSD)-Transfer Learning-Python Implementation.

(9)

(9)

UNIT IV - FACE RECOGNITION AND GESTURE RECOGNITION

Face Recognition- Applications of Face Recognition-Process of Face Recognition-Deep Face solution by Face book- FaceNet for Face Recognition- Python Implementation using FaceNet-Python Solution for Gesture Recognition.

UNIT V - VIDEO ANALYTICS

(9)

(9)

Video Processing – use cases of video analytics-Vanishing Gradient and exploding gradient problem-ResNet architecture- ResNet and skip connections-Inception Network- GoogLENet architecture-Improvement in Inception v2-Video analytics-Python Solution using ResNet and Inception v3.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis, and Machine Vision", 4th edition, Thomson Learning, 2013. (UNIT-I and II)
- 2. Vaibhav Verdhan, (2021, Computer Vision Using Deep Learning Neural Network Architectures with Python and Keras, Apress 2021 (UNIT-III, IV and V)

REFERENCES:

- 1. Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer Verlag London Limited, 2011.
- 2. Caifeng Shan, FatihPorikli, Tao Xiang, Shaogang Gong, "Video Analytics for Business Intelligence", Springer, 2012.
- 3. D. A. Forsyth, J. Ponce, "Computer Vision: A Modern Approach", Pearson Education, 2003.
- 4. E. R. Davies, (2012), "Computer & Machine Vision", Fourth Edition, Academic Press.

	Mapping of COs with POs / PSOs														
COs	Pos													PSOs	
	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3												3		
2	3				3								3		
3	3												3		
4	3													3	
5		3	3		3									3	
CO (W.A)	3	3	3		3								3	3	

22AIX17 - NATURAL LANGUAGE PROCESSING (Common to 22CSX17 22ITX17 22CIX27)												
		L	Т	Ρ	С							
		3	0	0	3							
PRE-REQUISITE : NIL												
Cours		and semantic eler	nents	of NLP	and							
Cours	e Objective:	knowledge representation and inte	rface.									
			Cognitive	W	/eight	age of	CO s					
Cours	e Outcomes		Level	in End Semester								
	Summarize th	e concepts in speech and language			EXai	iiiiati	UII					
COI	processing and	I utilize regular expressions and other	Ар 20%									
	statistical meth	ods to create Language Models.										
600	Apply Vector	Embedding to words and build Neural	Ap	20%								
CO2	Language mod	20%										
CO3	Solve sequer	nce labeling problems (Named Entity OS tagging) using RNN and LSTM	An	20%								
CO4	Apply the M	lachine translation model to dialogue	Ap		20%							
CO5	Illustrate th		20%									
	recognition ar	nd information retrieval.	F									

UNIT I –FUNDAMENTALS OF NATURAL LANGUAGE PROCESSING

(9)

Regular Expressions, Text normalization, Edit Distance-.N-gram language models:N-grams-Evaluating language models: training and test sets-perplexity-Sampling sentences from a language model-Generalization and Zeros-Smoothing-Native bayes, text classification and sentiment-Logistic regression

UNIT II -VECTOR SEMANTICS AND NEURAL NETWORK MODELS

(9) Lexical Semantics – Vector Semantics – Words and Vectors – Cosine for measuring similarity – TF-IDF: weighing terms in vectors – pointwise Mutual Information (PMI) – Applications of TF-IDF and PPMI – Visualizing embeddings-Neural Network Language Models – Units – XOR problem – Feed Forward Neural Networks – Training Neural Nets – Neural Language Models.

UNIT III – SEQUENCE LABELING AND DEEP LEARNING ARCHITECTURES

(9)

(9)

English word classes –Part-of-Speech (PoS) Tagging – Named Entities and Named Entities Tagging – HMM PoS – Conditional Random Fields – Evaluation of Named Entity Recognition-RNN and LSTMs-. Transformers and large language models-Fine tuning and masked language models.

UNIT IV - MACHINE TRANSLATION (MT) AND DIALOGUE SYSTEMS

Language divergences and Typology – Machine translation using Encoder-Decoder model –Encoder-Decoder– Beam search-Translating in low resource situations- MT evaluation – Bias and ethical issues-properties of human conversations-Frame based dialogue systems-Dialogue acts and dialogue state.

UNIT V-AUTOMATIC SPEECH RECOGNITION AND INFORMATION RETRIEVAL

The Automatic Speech Recognition Task -Feature Extraction for ASR: Log Mel Spectrum -Speech Recognition Architecture-CTC and TTS -Information Retrieval -Information Retrieval with Dense Vector-Evaluating Retrieval-based Question Answering-Context free grammars and constituency parsing-Dependency parsing-Information extractions-Semantic role labeling.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS

I. Daniel Jurafsky and James H.Martin, "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition" (Prentice Hall Series in Artificial Intelligence), 2020

2. "Foundations of Statistical Natural Language Processing" by Christopher D. Manning and Hinrich Schuetze, MIT Press, 2018

REFERENCES

I. Jacob Eisenstein. "Natural Language Processing ", MIT Press, 2019

2. Samuel Burns "Natural Language Processing: A Quick Introduction to NLP with Python and NLTK, 2019

Mapping of COs with POs / PSOs																
COs	POs													PSOs		
	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2		
I	3												3			
2	3	3			3									3		
3	3		3													
4		3	3		3								3	3		
5	3		3		3				3	3						
CO (W.A)	3	3	3		3					3			3	3		

	22AI	X18 - AUGUMENTED REALITY AN (Common to 22CSX18,22ITX18	D VIRTUAL RE 3,22CIX28)	ALIT	Y				
		•		L	LIIT L T 3 0 velopment, echnologies Weightag in End So Exami 30 20	Ρ	С		
				3	0	0	3		
PRE-	REQUISITE :N	IL							
Cours	e Objective:	• To impart the knowledge of Expl applications of augmented reality	loring the design, d and virtual reality	evelop techno	oment, ologies	and			
Cours The Stu	e Outcomes udent will be able	to	Cognitive Level	We in l E	ightag End S Exami	ge of C emest natior	COs er		
соі	Apply principle technologies.	s of virtual reality and commercial VR	Ap	30%					
CO2	Analyze the cla hands-on exper	ssic components of a VR system through imentation and simulation.	An	20%					
CO3	Make use of o world sensor d	liverse modeling techniques with real- ata.	Ap	30%					
CO4	Evaluate the so and safety in div	olution to enhance VR user experience verse fields.	Е	20%					
CO5	Create VR ap tools.	plications by utilizing VR programming	С	Internal Assessment					

UNIT I - INTRODUCTION

The three I's of virtual reality, commercial VR technology and the five classic components of a VR system, Augmented Reality and Tele presence.

UNIT II -INPUT AND OUTPUT DEVICES

Input Devices : Trackers, Navigation, and Gesture Interfaces): Three-dimensional position trackers, navigation and manipulation, interfaces and gesture interfaces. Output Devices: Graphics displays, sound displays& haptic feedback.

UNIT III -MODELING

Geometric modelling, kinematics modelling, physical modelling, behaviour modelling, model management and Modelling real-life from sensors.

UNIT IV - HUMAN FACTORS

Methodology and terminology, user performance studies, VR health and safety issues. Applications: Medical applications, military applications, robotics applications, Virtual product design (CAD display, process simulation, virtual prototyping). Enhancing Training and Skill Development in Healthcare Using AR and VR: A Case Study on Simulation-Based Learning

(9)

(9)

(9)

UNIT V - VR PROGRAMMING

VR Programming-I: Introducing Unity 3D, Project panel, Scene hierarchy, Simple game object, Scene editor: A case study on Developing and Evaluation of a Simple Game Object and Scene Editor for Indie Game Developers VR Programming-II: Middle VR, device management, graphics card limitation, 3D user interactions, deployment, VR software: A case study on the Impact of Unreal Engine in Architectural Visualization: A Case Study of VR Integration in Real Estate Marketing.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOK:

1. "Virtual Reality Technology", Gregory C. Burdea& Philippe Coiffet, John Wiley & Sons, Inc., Second Edition, 2006

REFERENCES:

- 1. "Virtual Reality Technology" Grigore C. Burdea and Philippe Coiffet, recentedition, January 2022.
- 2. "Virtual Reality Technology and Applications" Harry F. Shneider , FirstEdition, 2018.
- 3. "Virtual Reality: Concepts and Technologies" Philippe Fuchs, Pascal Guitton, and Guillaume Moreau, First Edition, 2011.

4. "Human Factors in Augmented Reality Environments" Philippe Fuchs, Patrick Reignier, and Fabien Lotte, First Edition, 2020.

5. "Unreal Engine Virtual Reality Quick Start Guide: Design and Develop immersive virtual reality experiences with Unreal Engine 4" Jessica Plowman, , First Edition, 2019

Mapping of COs with POs / PSOs															
COs		POs											PS	PSOs	
	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3													3	
2		3											3		
3			3		3								3		
4			3										3		
5					3		3		3	2		3		3	
CO (W.A)	3	3	3		3		3		3	2		3	3	3	

