

NANDHA ENGINEERING COLLEGE (Autonomous)

Affiliated to Anna University Chennal + Approved by AICTE + Accredited by NBA - New Delhi Pitchandampalayam (P.O), Vaikkalmedu, Erode - Perundural Road, Erode - 638 052 Phone : 04294 - 225585, 223711, 223722, 226393 Mobile : 73737 23722 Fax : 04294 - 224787 E.mail : info@nandhaengg.org

Website : www.nandhaengg.org

1.1.2 Details of Courses where syllabus revision was carried out

B.E. - Biomedical Engineering

R-22 Curriculum

Course Code	Course Name	% of Change
22BMC08	Microprocessors and Microcontrollers Interfacing	40
22BMC00	Radiology Equipment	100
22BMC09	Diagnostic and Therapeutic Equipment	5
22BMP05	Microprocessors and Microcontrollers Interfacing Laboratory	20
22BMC11	Fundamentals of Healthcare Analytics	100
22BMC12	Medical Image Processing	80
22BMP07	Medical Image Processing Laboratory	100
22BMX01	Cell Biology	100
22BMX01 22BMX02	Genetic Engineering	100
22BMX03	Genomics	100
22BMX04	Cancer Biology	100
22BMX05	Principles of Tissue Engineering	100
22BMX06	Neuroscience	100
22BMI100	Nuclear Medicine	100
22BMI107	Radiotherapy and Its Application	100
22BMX00	Medical Textiles	100
22BMX17 22BMX18	Virtual Reality	100
22BMX10	Soft Computing	100
22BMX21 22BMX22	Pattern Recognition Techniques and Its Applications	100
22BMX22 22BMX23	Machine Learning for Healthcare	100
22BMX23 22BMX24	Artificial Intelligence in Healthcare	100

NANDHA ENGINEERING COLLEGE

(Autonomous)

Affiliated to Anna University Chennal + Approved by AICTE + Accredited by NBA - New Delhi Pitchandampalayam (P.O), Vaikkalmedu, Erode - Perundurai Road, Erode - 638 052 Phone: 04294 - 225585, 223711, 223722, 226393 Mobile: 73737 23722 Fax: 04294 - 224787 E.mail: info@nandhaengg.org

Website : www.nandhaengg.org

22BMX25	Deep Learning Techniques	100
22BMX26	Machine Vision	100
22BMX27	Biometric System	100
22BMX28	Brain Computer Interface and Applications	100
22BMX31	Biomechanics	100
22BMX32	Ergonomics	100
22BMX33	Finite Element Analysis	100
22BMX35	Cardiovascular Engineering	100
22BMX36	Rehabilitation Engineering	100
22BMX37	Prosthetic and Orthotic Devices	100
22BMX38	Haptics	100
22BMX47	Patient Safety and Standards	100
22BMX48	Medical Device Regulations	100
22BMX51	Bio-MEMS Technology	100
22BMX52	Nanotechnology in Medicine	100
22BMX53	Robotics in Healthcare	100
22BMX54	Advanced Healthcare System Design	100
22BMX55	Critical Care Equipment	100
22BMX56	Human Assist Devices	100
22BMX57	Ambulatory Services	100
22BMX58	Home Medicare Technology	100
	Average	93.93

& that HEAD DEPARTMENT OF BME, NANDHA ENGINEERING COLLEGE (Autonomous), ERODE-52.

	22BMC08 - M	ICROPROCESSORS AND MICROC	ONTROLLERS I	NTE	RFAC	ING	
				L	т	Р	С
				3	0	0	3
PRE-R	EQUISITE: 22	BMC01					
Cours	e Objectives:	 To make the students to Under architectures, and functionalities of their associated peripherals. To make the students to Develop a language programs to solve real-weed debugging including those involving biology. 	microprocessors, and implement ass world problems,	micro embly	ocontr [,] and	ollers, higher-	and level
The Stu	C dent will be able	Course Outcomes to	Cognitive Level	in	End S	ge of C emest natior	ter
COI	Microcontroll	knowledge of Microprocessor and ers architectures and their instruction op assembly programs.	Ар		4	0%	
CO2		functioning of Microprocessor and er systems, including interrupt handling l interfacing.	An		4	0%	
CO3	Analyze the Microcontroll	performance and efficiency of different er.	An		I	5%	
CO4	Develop skil debug using №	ls to program Microcontrollers and IPLAB X IDE.	An		ļ	5%	
CO5	Apply knowl using biosense	edge to design and develop projects ors.	С	Int	ernal A	Assessn	nent

UNIT I – 8085 MICROPROCESSOR	(9)
Introduction – Pin Configuration – Architecture of 8085 – Interrupts - Addressing Modes – Instruc Timing diagram of 8085.	ction Set
UNIT II – 8051 MICROCONTROLLER	(9)
Architecture of 8051 – Signals – Memory Organization - Interrupts – Counters and Timers communication.	- Seria
UNIT III – 8051 PROGRAMMING	(9)
8051 Addressing mode – Instruction Set – Timer Programming – Serial Port programming – Programming.	Interrup
UNIT IV – PIC MICROCONTROLLER	(9)
PIC 16F877 Microcontroller Architecture - Memory organization - Interrupts - Timer/Co Compare/Capture/PWM modules (CCP) - Master Synchronous Serial Port module (MSSP) - MPLAB	
Dean Approved by Twelfth Academic Co	unail

UNIT V – PIC EXTERNAL INTERFACING

LCD & Keyboard Interfacing - ADC, DAC & LM35 Temperature Sensor Interfacing - External Memory Interface · Servo Motor Interfacing. Interfacing Protocols - SPI, I2C, Biosensors interfacing.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Senthilkumar, Saravanan, Jeevanantham, Shan "Microprocessor & Interfacing", Oxford University Press, 2012.
- 2. John B Peatman, "Design with PIC Microcontrollers", 23rd Impression, Pearson Education Asia, 2013.

REFERENCES:

- 1. Ramesh S. Gaonkar, 'Microprocessor Architecture Programming and Application', 6th Edition, Penram International (P) Ltd., Mumbai, 2013.
- 2. Mohamed Ali Mazidi, Janice Gillispie Mazidi, Rolin McKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", 2nd Edition, Pearson Education, 2011.

WEB LINK:

I. https://onlinecourses.nptel.ac.in/noc20_ee42/preview

				M	lapping	g of CC) s with	POs /	PSOs						
	POs													PSO s	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3														
2		3													
3				3											
4					3									3	
5									3		2		3		
CO (W.A)	3	3		3	3				3		2		3	3	

	22BMC09 – RADIOLOGY EQUIPM	1ENT				
			L	Т	Ρ	C
			3	0	0	3
PRE-R	REQUISITE: NIL					
	• To understand the generation of X-ray and	its uses in Me	edical	imagin	g	
	To describe the principle of Computed Tor	nography.				
Cours	se Objectives: • To know the techniques used for visualizing	g various secti	ons o	f the b	ody.	
	• To learn the principles of different radio dia	agnostic equip	ment	in Imag	ging.	
	To discuss the radiation therapy techniques	and radiation	n safet	у.		
The Stu		ognitive Level	in	End S	ge of C emest nation	er
COI	Apply the knowledge of the fundamental principles of various imaging techniques for efficient healthcare.	Ap		30	0%	
CO2	Analyze the need for different medical imaging modalities.	An		3()%	
CO3	Correlate the most suitable diagnostic technique for a given clinical case.	An		20	0%	
CO4	Assess the biological effects of medical imaging modalities related to human safety.	E		20	0%	
CO5	Examine the published reports and observations from hospital visits for the chosen imaging modality, and record and share the information with the engineering community.	An	Inte	ernal A	ssessn	nent

UNIT I – X RAYS

Nature of X-Rays- X-Ray Absorption – Tissue Contrast. X- Ray Equipment (Block Diagram) – X-Ray Tube, The Collimator, Bucky Grid, Power Supply, Digital Radiography - Discrete Digital Detectors, Storage Phosphor And Film Scanning, X-Ray Image Intensifier Tubes – Fluoroscopy – Digital Fluoroscopy. Angiography, Cine Angiography. Digital Subtraction Angiography. Mammography. X-Ray types.

UNIT II - COMPUTED TOMOGRAPHY

(9)

(9)

(9)

Principles of Tomography, CT Generations, X- Ray Sources- Collimation- X- Ray Detectors – Viewing Systems – Spiral CT Scanning – Ultra Fast CT Scanners – CT Scan slices. Image Reconstruction Techniques – Back Projection And Iterative Method.

UNIT III – MAGNETIC RESONANCE IMAGING

Fundamentals of Magnetic Resonance- Properties of Electromagnetic Waves : Speed , Amplitude, Phase, Orientation And Waves In Matter - Interaction of Nuclei With Static Magnetic Field And Radio Frequency Wave- Rotation And Precession – Induction of Magnetic Resonance Signals – Bulk Magnetization – Relaxation Processes TI And T2. Block Diagram Approach of MRI System – System Magnet (Permanent, Electromagnet And Superconductors), Generations of Gradient Magnetic Fields, Radio Frequency Coils (Sending And Receiving), Shim Coils, Electronic Components, fMRI. Radioisotopes- Alpha, Beta, And Gamma Radiations. Radio Pharmaceuticals. Radiation Detectors – Gas Filled, Ionization Chambers, Proportional Counter, GM Counter And Scintillation Detectors, Gamma Camera – Principle of Operation, Collimator, Photomultiplier Tube, X-Y Positioning Circuit, Pulse Height Analyzer. Principles of SPECT and PET

UNIT V – RADIATION THERAPY AND RADIATION SAFETY

(9)

(9)

Radiation Therapy – Linear Accelerator, Telegamma Machine. SRS – SRT – Recent Techniques In Radiation Therapy – 3D CRT – IMRT – IGRT and Cyber Knife – Radiation Measuring Instruments Dosimeter, Film Badges, Thermo Luminescent Dosimeters – Electronic Dosimeter – Radiation Protection In Medicine – Radiation Protection Principles

TOTAL (L:45): 45 PERIODS

TEXT BOOKS:

- 1. Isaac Bankman, I. N. Bankman, "Handbook of Medical Imaging: Processing and Analysis (Biomedical Engineering)", Academic Press, 2008.
- 2. Fitzpatrick J, Michael and Sonka, Milan, "Handbook of Medical Imaging, Volume 2. Medical Image Processing and Analysis", SPIE Press 2009.
- 3. Khin Wee Lai and Dyah Ekashanti Octorina Dewi, "Medical Imaging Technology: Reviews and Computational Applications", Springer Singapore, 2016.

- 1. Khandpur R.S, "Handbook of Biomedical Instrumentation", Tata McGraw Hill, New Delhi, 2014.
- 2. Dougherty, Geoff (Editor), "Medical Image Processing Techniques and Applications", Springer-Verlag New York, 2011.

				Μ	lapping	g of CC) s with	POs /	PSOs					
	POs													Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	
2		2	3										2	
3				3									2	
4			3					2						
5									3	3				
CO (W.A)	3	2	3	3				2	3	3			2	

	22BN	1CI0 - DIAGNOSTIC AND THERA	PEUTIC EQUIPI	MEN	Г		
				L	Т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE: 22	BMC04					
Cours	e Objectives:	 To understand the devices for n cardiology. To illustrate the recording and measu To demonstrate EMG recording unit : To explain diagnostic and thera parameters. To understand the various sensory m 	rement of EEG. and its uses. peutic devices re	elated	to	respira	itory
The Stu	C dent will be able	Course Outcomes to	Cognitive Level	in	End S	ge of (Semestination	ter
соі		ciples and operational characteristics of nostic equipment used in medical	Ар		4	0%	
CO2	Analyze and in equipment t conditions.	nterpret data obtained from biomedical o diagnose and monitor medical	An		4	0%	
CO3	•	mplex problems related to biomedical d propose effective solutions based on lata.	An		I	5%	
CO4	Assess solutio biomedical equ	ns for maintaining and troubleshooting iipment.	E			5%	
CO5		-on experience with various biomedical cross different medical specialties and ong learning.	E	Int	ernal /	Assessr	nent

UNIT I – CARDIAC EQUIPMENT

Electrocardiograph, Normal and Abnormal Waves, Heart Rate Monitor, Holter Monitor, Phonocardiography, ECG Machine Maintenance and Troubleshooting, Cardiac Pacemaker - Internal and External Pacemaker– Batteries, AC and DC Defibrillator- Internal and External, Defibrillator Protection Circuit, Cardiac Ablation Catheter.

UNIT	II –	NEU	JROL	OGI	CAL	EOL	JIPME	ΤI
• • • • •								

Clinical Significance of EEG, Multi-Channel EEG Recording System, Epilepsy, Evoked Potential– Visual, Auditory And Somatosensory, MEG (Magneto Encephalo Graph). EEG Bio Feedback Instrumentation. EEG System Maintenance And Troubleshooting.

UNIT III – MUSCULAR AND BIOMECHANICAL EQUIPMENT

(9)

(9)

(9)

Recording and Analysis of EMG Waveforms, Fatigue Characteristics, Muscle Stimulators, Nerve Stimulators, Nerve Conduction Velocity Measurement, EMG Bio Feedback Instrumentation. Static Measurement – Load Cell, Pedobarograph. Dynamic Measurement – Velocity, Acceleration, GAIT, Limb

Position.

UNIT IV – RESPIRATORY MEASUREMENT AND ASSIST SYSTEM

Instrumentation for Measuring The Mechanics of Breathing - Spirometer - Lung Volume and Vital Capacity, Measurements Of Residual Volume, Pneumotachometer – Airway Resistance Measurement, Whole Body Plethysmograph, Intra-Alveolar and Thoracic Pressure Measurements, Apnoea Monitor. Types Of Ventilators - Pressure, Volume, and Time Controlled. Flow, Patient Cycle Ventilators, Humidifiers, Nebulizers. Inhalators.

UNIT V – SENSORY DIAGNOSTIC EQUIPMENT

Psychophysiological Measurements - Polygraph, Basal Skin Resistance (BSR), Galvanic Skin Resistance (GSR), Sensory Responses – Audiometer – Pure Tone, Speech, Eye Tonometer, Applanation Tonometer, Slit Lamp, Auto Refractometer.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. John G. Webster, "Medical Instrumentation: Application and Design", 5th Edition, Wiley India PvtLtd,New Delhi, 2021.
- 2. Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", 4th Edition, Pearson Education, 2000.

REFERENCES:

- 1. L. A Geddes and L. E. Baker, "Principles of Applied Biomedical Instrumentation", 3rd Edition, 2008.
- 2. Khandpur. R.S., "Handbook of Biomedical Instrumentation". Second Edition. Tata McGrawHill Pub. Co.,Ltd. 2003.
- 3. Antony Y. K. Chan, "Biomedical Device Technology, Principles and Design", 3rd Edition, Charles Thomas Publisher Ltd., Illinois, USA, 2023.
- 4. Leslie Cromwell, "Biomedical Instrumentation and Measurement", 2nd Edition, Pearson Education, New Delhi, 2015.

				M	apping	g of CC) s with	POs /	PSOs					
	POs													Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	
2				2									2	
3		2		2									2	
4			2										2	
5						2						3		
CO (W.A)	3	2	2	2		2						3	2	

(9)

22BMP05 - MICROPROCESSORS AND MICROCONTROLLERS INTERFACING LABORATORY С L т Ρ 0 0 4 3 **PRE-REQUISITE: NIL** • To make the students to understand and apply the principles and techniques of coding, interfacing, and system design using various microcontrollers and development platforms to solve real-world problems. **Course Objectives:** • To make the students to develop and enhance problem-solving, debugging, and collaboration skills to create efficient and effective solutions independently and as part of a team. **Course Outcomes** Cognitive Level The Student will be able to Examine the different interface modules using 8051 Microcontroller. COI An Develop and make a code to perform arithmetic and logical operations С CO2 using 8085 and 8051/PIC. Design and develop solutions for real time problems using CO3 С Arduino/Raspberry pi. Implement high-level language programs for peripheral interfacing and CO4 С data processing using modern tools. Develop an ability to work independently and collaboratively to CO5 An provide valid solutions to real time problems.

LIST OF EXPERIMENTS

Assembly Language Programming:

I. Assembly language programming for 8/16 bit Arithmetic operators Using 8085.

2. Assembly language programming with control instructions Using 8085 (Increment / Decrement, Ascending / Descending order, Maximum / Minimum of numbers).

3. Assembly language programming for arithmetic and logical operations using 8051.

4. Interfacing and Programming of DC Motor Speed control using 8051.

5. Interfacing and Programming of Stepper Motor control using 8051.

High Level Language Programming:

The following programs have to be tested on 8051/PIC Development board or equivalent Embedded C Language on KEIL IDE or Equivalent.

6. Program to toggle all the bits of Port PI continuously with delay.

7. Program to toggle PI.5 continuously with delay. Use Timer in mode 0, mode 1, mode 2 and mode 3 to create delay.

8. Program to interface 7 segment display to display a message on it .

9. Program to interface keypad. Whenever a key is pressed, it should be displayed on LCD.

10. Program to get analog input from Temperature sensor and display the temperature Value on LCD using ADC.

Sensor Interfacing:

II. To interface LED/Buzzer with platform/ Arduino /Raspberry Pi.

12. To interface Biosensors with platform/ Arduino /Raspberry Pi.

TOTAL (60 P) = 60 Periods

				M	lapping	g of CC) s with	POs /	PSOs					
	POs													Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I		3												
2	3													
3			3										3	
4					3									3
5									3					
CO (W.A)	3	3	3		3				3				3	3

				L	Т	Ρ	C
				3	0	0	3
PRE-R	EQUISITE: N	IL	······				
Cours	e Objectives:	 To understand the statistical methods To comprehend the fundamental of application of Healthcare. To apply the regression and correlation To understand the Meta analysis and with the meta analysis and with the results of the investignal statemeta and the meta analysis and with the	mathematical and a on analyze in the he variance analysis.	statist	ical th	eory i	
The Stu	C dent will be able	Course Outcomes	Cognitive Level	in	ighta End S Exami	emes	ter
COI		mental statistical concepts and their biomedical data analysis.	Ap		3	0%	
CO2	Analyze biom statistical soft	nedical data and interpret findings using ware tools.	An		3	0%	
CO3	Interpret sta biomedical hy	tistical results to support or reject potheses.	An		2	.0%	
CO4	techniques to biomedical da		An		2	.0%	
CO5		ugh expert talks on societal implications onsiderations of biomedical research and	С	Int	ernal A	Assessi	nent

Introduction, Computers and Bio Statistical Analysis, Introduction to Probability, Likelihood & Odds, Distribution Variability. Finding the Statistical Distribution using Appropriate Software Tool like R/ Python.

UNIT II - STATISTICAL PARAMETERS

Statistical Parameters P-Values, Computation, Level Chi Square Test, Distribution and Hypothesis Testing -Single Population Proportion, Difference Between two Population Proportions, Single Population Variance, Tests of Homogeneity. Testing of Statistical Parameters using appropriate Software R / Python.

UNIT III – REGRESSION AND CORRELATION ANALYSIS

Regression Model, Evaluating the Regression Equation, Correlation Model, Correlation Coefficient. Finding Regression, Correlation for the data using appropriate software like R / Python.

UNIT IV – ANALYSIS OF VARIANCE

(9)

(9)

(9)

META analysis for research activities, purpose and reading of META analysis, kind of data used for META analysis, completely randomized design, randomized complete block design, repeated measures design,

factorial experiment. Testing the variance using appropriate software tool like R / Python.

UNIT V – CASE STUDIES

(9)

Epidemical reading and interpreting of epidemical studies, application in community health, Case study on Medical Imaging like MRI, CT. Case study on respiratory data, Case study on ECG data.

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- 1. Wayne W. Daniel, "Biostatistics-A Foundation for Analysis in the Health Sciences", John Wiley & Sons Publication, 10th Edition, 2013.
- 2. Peter Armotage, Geoffrey Berry and J. N. S.Mathews, "Statistical methods in Medical Research", Wiley-Blackwell, 4th Edition, 2001.
- 3. Bernard Rosner, "Fundamentals of biostatistics", Nelson Education, 8th Edition 2015 ISBN: 978- 1-305-26892-0.

- 1. Marcello Pagano and Kimberlee Gauvreu, Principles of Biostatistics, Chapman and Hall/CRC, 2nd Edition, 2018.
- 2. Ronald N Forthofer and EunSul Lee, Introduction to Biostatistics, Academic Press, 1st Edition, 2014.
- 3. Animesh K. Dutta, Basic Biostatistics and its Applications, New Central Book Agency, 1st Edition, 2006.

				Μ	apping	g of CC) s with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													2
2		3												2
3				2										2
4					2									2
5						3		3				3		
CO (W.A)	3	3		2	2	3		3				3		2

NO

		22BMC12 – MEDICAL IMAGE P	ROCESSING				
				L	Т	Ρ	С
				3	0	0	3
PRE-R		IL					
		• To learn the fundamental concepts of	medical Image Pro	cessin	g tech	niques	
		• To understand the concepts of var	rious image intens	ity tra	ansfor	mation	and
		filtering operations.					
Cours	e Objectives:	• To be familiar in the techniques of images.	segmentation and	resto	ration	of me	dical
		• To gain knowledge in medical image r	egistration and visu	Ializati	on.		
		• To be familiar with the application of	medical image analy	ysis.			
The Stu	C dent will be able	Course Outcomes to	Cognitive Level	in	End S	ge of (emes	ter
		having composite of divital image			-xam	inatio	<u>ו</u>
COI	Apply the representation image analysis	basic concepts of digital image n and the objectives of biomedical	Ар		3	0%	
CO2		mage processing algorithms for medical ement, restoration and segmentation	Ар		3	0%	
CO3		medical image compression standards AD techniques.	Ар		2	0%	
CO4		ious registration and visualization medical images.	An		2	0%	
CO5	member to o	lf-study as an individual and a team- design and implement an open-ended r medical image segmentation.	С	Int	ernal A	Assessr	nent

UNIT I – FUNDAMENTALS OF MEDICAL IMAGE PROCESSING AND TRANSFORMS

(9)

Overview of Image Processing system and human Visual system - Image representation – Pixel and Voxels, Gray scale and color models - Medical image file formats- DICOM- Discrete sampling model and Quantization Relationship between the pixels, Arithmetic and logical operations- Image quality and Signal to Noise ratio- Image Transforms- 2D DFT, DCT, KLT.

UNIT II - ENHANCEMENT TECHNIQUES

(9)

Gray level transformation - Log transformation, Power law transformation, Piecewise linear transformation. Histogram processing - Histogram equalization, Histogram Matching. Spatial domain Filtering-Smoothing filters, sharpening filters. Frequency domain filtering- Smoothing filters, Sharpening filters- Homomorphic filtering Medical image enhancement using Hybrid filters- Performance measures for enhancement techniques.

UNIT III – SEGMENTATION AND RESTORATION TECHNIQUES

(9)

ROI definition -Detection of discontinuities–Edge linking and boundary detection – Region based segmentation- Morphological processing, Active contour models. Image Restoration- Noise models-

Restoration in the presence of Noise – spatial filtering, Periodic noise reduction by frequency domain filtering- linear position- Invariant degradation- Estimation of degradation function, Inverse filter, Weiner filtering.

UNIT IV - REGISTRATION AND VISUALISATION

Registration-Rigid body transformation, principal axes registration, and feature based. Visualisation-Orthogonal and perspective projection in medicine, Surface based rendering, Volume visualization in medical image. Explain the significance of registration of various imaging modalities

UNIT V - APPLICATIONS OF MEDICAL IMAGE ANALYSIS

Medical Image compression- DCT and Wavelet transform based image compression, Computer-aided diagnosis in mammography, Tumor imaging and treatment, Angiography, Bone strength and osteoporosis, Tortuosity, Applications: Contrast enhancement of mammograms - Detection of calcification by region growing,Feature Extraction - Shape and texture analysis of tumors.

TOTAL (L:45): 45 PERIODS

(9)

(9)

TEXT BOOKS:

- I. John G. Webster, "Medical Instrumentation Application and Design", 4th Edition, Wiley India Pvt. Ltd., New Delhi, 2015.
- 2. Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", Pearson Education, 2012.

- I. L. A Geddes and L. E. Baker, "Principles of Applied Biomedical Instrumentation", 3rd Edition, 2008.
- 2. Khandpur. R. S., "Handbook of Biomedical Instrumentation". Second Edition. Tata Mc Graw Hill Pub. Co., Ltd. 2003.
- 3. Antony Y. K. Chan, "Biomedical Device Technology, Principles and design", Charles Thomas Publisher Ltd, Illinois, USA, 2008.
- 4. Leslie Cromwell, "Biomedical Instrumentation and Measurement", Pearson Education, New Delhi, 2007.

				M	lapping	g of CC	Ds with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	
2		3	3										2	
3		3		3										2
4				3										2
5					3				3	2		2	2	
CO (W.A)	3	3	3	3	3				3	2		2	2	2

			L	Т	Ρ	С
			0	0	4	3
PRE-R	EQUISITE : N	IIL				
		• To learn the basics and fundamentals of image processin	ıg.			
		• To analyze various applications of different transforms.				
Cours	e Objectives:	• To demonstrate the different enhancement techniques.				
		• To describe the applications of image segmentation proc	cess.			
		• To illustrate the advancements and formatting in image	proces	sing.		
The Stu	dent will be able	Course Outcomes to	Co	gnitiv	e Leve	el
COI		t image enhancement algorithms in spatial and frequency og on the images.		A	νP	
CO2	Analyze the in	npact of image manipulation techniques.		A	'n	
CO3	Interpret imag	es with various segmentation techniques.		A	'n	
CO4	Analyze vario degradation.	us restoration techniques in the presence of noise and		A	'n	
CO5	Examine the v	arious morphological operations on images.		А	'n	

LIST OF EXPERIMENTS

- I. Basic operations on images.
- 2. Analysis of spatial and intensity resolution of images.
- 3. Analysis of images with different color models.
- 4. DFT analysis of images.
- 5. Histogram Processing.
- 6. Image Enhancement using Spatial and frequency domain filters.
- 7. Image segmentation using edge and region-based methods.
- 8. Translational and rotational operation of images.
- 9. Morphological operations on images.
- 10. Thresholding functions on images.
- 11. Image restoration in the presence of noise and degradation.
- 12. Extraction of shape and texture features from an image.

TOTAL (60 P) = 60 Periods

				Ma	apping	g of CC	Ds wit	h PO s	/ PSC	s				
						P	Os						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3	3												2
2	3				3									2
3		3												2
4				3										2
5		3		3										2
CO (W.A)	3	3		3	3									2

Mari

		22BMX01 - CELL B	SIOL	DGY				
					L	Т	Ρ	C
					3	0	0	3
PRE-R	EQUISITE: NIL							
Cours	e Objectives:	 To explore cell structure, function To understand essential concommechanisms. To compare and contrast cellul cell types. To investigate recent advancement 	epts ar pro ents in	like cellular pro ocesses and mech	anism	s acro	Ū	
		• To gain practical knowledge in c	ell cul	ture techniques.		• • •		
The Stuc	Co lent will be able to	ourse Outcomes		Cognitive Level	in	eighta; End S Exami	emes	ter
COI		wledge of cell structures and the blain biological processes.	neir	Ар		3	0%	
CO2	Analyze differe their roles in ce	nt methods of cellular transport Il function.	and	An		3	0%	
CO3	Evaluate the organelles.	structure and function of key	cell	E		2	0%	
CO4	Critique cell components.	signaling pathways and t	neir	E		2	0%	
CO5	through inter	edge cell biology concepts effection active discussions and real-wo uring hospital visits.		E	Int	ernal A	Assessi	nent

UNIT I – CELL STRUCTURE

Cells - definition, Eukaryotic cell and prokaryotic cell -differences and key organelles, Relationship and evolution of Eukaryotic cell and prokaryotic cell, plant cells and animal cells - differences and general structure - Cellular environment, tissues, various types of cell, Extra cellular matrix, cytoskeletal proteins, Cell Cycle - Mitosis and meiosis.

UNIT II – CELL ORGANELLES

Cell Organelles and function - Nucleus, Cytoplasm, Endoplasmic reticulum, Golgi complex, lysosomes, cell membranes, chloroplast, mitochondria - structure, importance and function.

UNIT III – CELLULAR TRANSPORT

Transport across cell membranes - importance, classification - Active and passive, passive transport movement of water, small lipid across membrane. Active - Na+ K+ ATPase Pump, Lysosomal and Vacuolar pumps. Cotransport - Symport, antiport - examples, Endocytosis and Exocytosis transport across prokaryotic membrane, entry of viruses and toxins.

(9)

(9)

UNIT IV – CELL SIGNALING AND SIGNAL TRANSDUCTION

Cell signaling - process importance, various kinds of Receptors and ligands - Examples, Different modes of action of ligands, Qualification and characterization of receptors, different modes of signal transduction and amplification with examples, signaling through G-Proteins (Monomeric and trimeric), signaling for growth factors, second messengers, protein kinases, Ca ions and cAMP molecule in signaling.

UNIT V – CELL CULTURE

(9)

(9)

Definition, Media preparation, Propagation of eukaryotic and prokaryotic cell, cell lines, primary cultures, stock cell cultures, maintenance of cell lines in cell culture, explants cultures, differentiation and contamination.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. James E Darnell, Harvey F Lodish, David Baltimore, "Molecular Biology of the Cell", W.H. Freeman publishers, 2012.
- 2. Geoffrey Cooper, "The Cell: A molecular approach", OUP USA; 8th edition, 2019.
- 3. Verma and Aggarval, "Cytology", S. Chand Publications, 2003.

REFERENCES:

- 1. Bruce Alberts, Alexander Johnson, Julian Lewis and Martin Raff, "Molecular Biology of the Cell", fifth edition, Taylor and Francis group, 2012.
- 2. De Robertis, E.D.P and DeRobertis, E.M.F. (2010), "Cell and Molecular Biology", (8th edition) Lippincott Williams and Wilkins, Philadelphia.
- 3. Gerald Karp," Cell and Molecular Biology", John Wiley and sons Inc, 2013.

WEB LINK:

I. https://onlinecourses.nptel.ac.in/noc20_ee42/preview

				Μ	lapping	g of CC) s with	POs /	PSOs					
						PC	Ds						PS	Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3												
3				3										
4					3									3
5									3		2		3	
CO (W.A)	3	3		3	3				3		2		3	3

				L	Т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE: N	IIL					
		• To understand the concepts of Genet	ics.				
		• To introduce the practice of recombine	nant DNA technolo	ogies.			
Course	e Objectives:	• To solve genetic engineering problem	S.				
Cours	e Objectives:	• To design target gene expression with	n advanced genetic	engine	ering	technio	Jues
		• To explore with genetic engineering	g techniques for	cloning	g targe	et gen	e or
		protein expression.					
	C	Course Outcomes	Cognitive		ightag		
he Stuc	lent will be able		Level		End S		
	1				Exami	nation	ו
COI		genetic concepts and the roles of	Ap		4	0%	
	biomolecules	in genetic processes.	•				
	Illustrate tech	nniques to perform gene cloning and					
CO2	create gene lil		An		4	0%	
	_						
CO3		hods in disease diagnosis, forensic	An		1	5%	
CO3		hods in disease diagnosis, forensic enetic research.	An		I.	5%	
	science and ge	5					
CO3 CO4	science and ge Assess the im	enetic research.	An E			5% 5%	
	science and ge Assess the im advancements	enetic research. Inpact and ethical implications of recent					

UNIT I – BASICS OF GENETICS

Biomolecules: Carbohydrates, Proteins, Lipid, Amino Acid and Nucleic Acids. Nucleic Acids: Introduction, History, DNA and RNA - Genetic Material, Types, Mutation. Chromosome, Gene, Expression of Genetic Information, Regulation of mRNA Stability.

UNIT II – RECOMBINANT DNA TECHNOLOGY

Gene Cloning - Concept and Basic Steps; Restriction Modification Enzymes used in Recombinant DNA Technology, Endonucleases, Ligases and Other Enzymes useful in Gene Cloning; Vectors: Plasmid, Bacteriophage and Other Viral Vectors, Cosmids, Artificial Chromosomes, Ti Plasmid, Shuttle Vectors, Expression Vectors; DNA Delivery Methods; Construction of Genomic and cDNA Libraries; Techniques for Selection, Screening and Characterization of Transformants.

UNIT III – ROLE OF POLYMERASE CHAIN REACTION

Concept of PCR; DNA Polymerases; Primer Designing, Linkers, Adapters, Setting up PCR Reactions; Various types of PCR; Applications of PCR in Disease Diagnostics, Forensic Sciences and Genetic Engineering.

UNIT IV – ADVANCED APPROACHES IN GENETIC ENGINEERING

Gene Expression in Prokaryotes & Eukaryotes, Tissue Specific Promoter, Wound Inducible Promoters, Strong and Regulatable Promoters, Promoter Analysis (EMSA and DNA Foot Printing), Gene Expression Profiling (Real Time PCR, SAGE, Differential Display, Microarray); DNA Sequencing Methods; Molecular Markers: RAPD, RFLP, AFLP, SNP; Site Directed Mutagenesis, Gene Silencing Techniques.

(9)

(9)

(9)

Approved by Twelfth Academic Council

UNIT V – APPLICATIONS OF GENETIC ENGINEERING

Genetic Engineering and Biotechnology; Creation of Recombinant Microorganisms, Transgenic Plants and Animals; Cloning of Sheep (Dolly) & Other Mammals; Applications in Conservation; Therapeutic Vs. Reproductive Cloning; Ethical Issues and the Prospects for Human Cloning; Gene Therapy; DNA Drugs and Vaccines.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Old RW and Primrose SB, "Principles of Gene Manipulation, An Introduction to Genetic Engineering", Blackwell Science Publications, 1993.
- 2. B. Primrose and R. M. Twyman "Principles of Genome Analysis and Genomics", 3rd Edition, Blackwell Publishing, 2022.

- 1. Patrick Faraday, "Genetic Engineering: Emerging Concepts and Technologies", Syrawood Publishers, 2018.
- 2. "The Biotech Primer: An Insider"s Guide to the Science Driving the Biopharma Industry", The Biotech Primer for Non-Scientists Series, November 15, 2019.
- 3. Sandhya Mitra, "Genetic Engineering", 2nd Edition, Mcgraw Hill, 2017.
- 4. Desmond S. T. Nicholl, "An Introduction to Genetic Engineering", Cambridge University Press, 2023.

					Mappi	ng of (COs wi	ith PO	s / PSC	Ds				
COs						Р	Os						PSC	Os
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	
2		3											2	
3				3										2
4	3					3		3					2	
5									3	2		3	2	
CO (W.A)	3	3		3		3		3	3	2		3	2	2

		22BMX03 - GENOMI	CS				
				L	Т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE: N	IL					
		• To describe modern sequencing techn	nologies				
		• To apply principles of structural genor	mics to construct o	hrom	osome	maps	
Cours	e Objectives:	• To evaluate the ethical implications of	f genome sequencir	ng pro	jects.		
Cours	e Objectives:	• To apply functional genomics technique	ues to study gene ir	nterac	tions.		
		 To assess the role of genomics ir individuals. 	n predicting diseas	se in	pre-sy	/mptor	matic
	<u> </u>	Course Outcomes	Cognitive		ightag	-	
he Stud	lent will be able		Level		End S Exami		
COI		c sequencing technologies and tools to terpret genomic data.	Ap		4	0%	
CO2	,	importance and necessities to map and organize genomic data.	An		4	0%	
CO3	Evaluate majo impact.	r genome sequencing projects and their	E		I	5%	
CO4		nods for genomic screening and nedicine to help treat genetic disorders.	E		Ľ	5%	
CO5		cements and ethical considerations in ough seminars and discussions.	U	Int	ernal A	Assessr	nent

UNIT I – INTRODUCTION

Introduction, Genomics, Sequencing Technologies: Polymerase Chain Reaction (PCR), Sanger Sequencing, High-Throughput Sequencing Technologies, Illumina, Ion Torrent, PacBio, Nanopore.

UNIT II – STRUCTURAL GENOMICS

Eukaryotic Organelle Genomes (human and other organisms); Assigning Loci to Specific Chromosome; High Resolution Chromosome Mapping; Markers for Mapping (RFLP, Single Nucleotide Polymorphism, Microsatellite Markers, Copy Number Variation, Methods for Detection of Markers), Physical Mapping of Genome; Linkage Mapping; Using Genome Maps for Genetic Analysis - Organizational Principles of Human Genes: Application of Comparative Genomics to Understand the Molecular Mechanism.

UNIT III – GENOME SEQUENCING

Whole Genome Shotgun Sequencing; Introduction to Various Databases, Genome Browsers & Associated Tools: ENSEMBL, Genecards, UCSC Genome Browser, Galaxy and their Application; Overview of Various Genome Scale Projects: Human Genome Project, Hapmap Project, 1000 Genome Projects, Expressed Sequence Tag (EST) Project; Ethical, Legal and Social Implications Addressed by The Human Genome Project; Concept of Epigenomics, Microrna, Long Non-Coding RNA; Concept of Three Dimensional Genome.

UNIT IV – FUNCTIONAL GENOMICS

SAGE, Characterize The Proteome by ORF Analysis, Study of Gene Interactions by Yeast Two-Hybrid System, Study of Developmental Regulation by Using DNA Chips, Biomedical Genomics: Introduction to NGS-Based Targeted Re-Sequencing; Single Cell Sequencing; Experimental Design: WES, Transcriptome,

(9)

(9)

(9)

WGBS, Chip-Seq; Concept of Metabolomics; Molecular Basis of Genetic Variations Leading to Medical Disorders: Types of Genetic Variations; Identification of Human Biomarkers using Genomics; Concept of Genome-Wide Association Studies (GWAS), Related Databases and its Limitations.

UNIT V – IMPACTS OF GENOMICS IN HEALTHCARE

(9)

Screening for Genomic Disorders: Newborn Screening, Preconception Carrier Screening; Genomics of Cardiovascular Disease and Cancer; Concept of Pharmacogenomics; Concept of Genetic Counseling; Predicting Disease in Healthy (Pre-Symptomatic) People and its Ethical Concern.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Primrose SB and R. Twyman "Principles Of Gene Manipulation & Geneomics Blackwell Science Publications, 2006.
- 2. Principles of Genome Analysis and Genomics by S.B.Primrose and R.M.Twyman, Third Edition (Blackwell Publishing), 2003.

- 1. Ansubel FM, Brent R, Kingston RE, Moore DD, "Current Protocols In Molecular Biology", Greene Publishing Associates, NY, 1988.
- 2. Berger SI, Kimmer AR, "Methods In Enzymology", Vol 152, Academic Press, 1987.
- 3. Genomes 3 by T. A. Brown, Third Edition (Garland Science Publishing), 2007.

					Mappi	ing of Q	COs w	ith PO	s / PSC	Ds				
60 2						P	Os						PSC	Ds
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3												
3				3										
4			2	3									2	
5									3	3		3		
CO (W.A)	3	3	2	3					3	3		3	2	

Nin

		22BMX04 - CANCER BIO	LOGY				
				L	т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE: N	IL					
		• To import knowledge on Cancer carcinogenesis.	Biology fundame	ntals a	and pr	rinciple	es of
		• To discuss about molecular cancer ce	ll biology and meta	astasis.			
		• To introduce various therapeutic prod		•			
Cours	e Objectives:	 To emphasize knowledge of the histo the tumor microenvironment. 	orical background	for th	e deve	lopme	nt of
		• To understand cell signaling proce transduction, and the roles of G-Prot Ca ions and cAMP.		-	-		-
		ourse Outcomes	Cognitive		ighta		
he Stud	dent will be able t		Level		End S		
	1				Exami	natio	n
COI	Analyze the fu principles of ca	indamentals of Cancer Biology and the arcinogenesis.	Ap		4	0%	
CO2	Apply therape	utic procedures for treating carcinoma.	Ap		4	0%	
CO3	Evaluate mole mechanisms.	cular cancer cell biology and metastasis	E		I	5%	
CO4	Assess the h microenvironr	istorical development of the tumor nent.	E		Į	5%	
CO5	and gain pract	cical knowledge to real-world scenarios ical insights into cancer biology, clinical ssigning case studies.	An	Int	ernal A	Assessr	nent

UNIT I – FUNDAMENTALS OF CANCER BIOLOGY

Regulation of cell cycle, Mutations that cause changes in signal molecules, Cancer genes – Tumour suppressor genes, oncogenes and their mutations, Modulation of cell cycle in cancer, Different forms of cancers, Clinical examination, Radiological examination, Biopsy and its type, Prediction of aggressiveness of cancer, tumour markers, Molecular tools for early diagnosis.

UNIT II – PRINCIPLES OF CARCINOGENESIS

Theory of carcinogenesis, Chemical carcinogenesis, Metabolism of carcinogenesis, Principles of physical carcinogenesis, X-ray radiation, Mechanisms of radiation carcinogenesis, Diet and cancer.

UNIT III – CELLULAR TRANSPORT

Transport across cell membranes - importance, classification - Active and passive, passive transport - movement of water, small lipid across membrane. Active - Na+ K+ ATPase Pump, Lysosomal and Vacuolar pumps. Cotransport - Symport, antiport - examples, Endocytosis and Exocytosis transport across prokaryotic membrane, entry of viruses and toxins.

UNIT IV - CELL SIGNALING AND SIGNAL TRANSDUCTION

(9)

(9)

(9)

Cell signaling - process importance, various kinds of Receptors and ligands - Examples, Different modes of action of ligands, Qualification and characterization of receptors, different modes of signal transduction and amplification with examples, signaling through G-Proteins (Monomeric and trimeric), signaling for growth factors, second messengers, protein kinases, Ca ions and cAMP molecule in signaling.

UNIT V – CELL CULTURE

(9)

Definition, Media preparation, Propagation of eukaryotic and prokaryotic cell, cell lines, primary cultures, stock cell cultures, maintenance of cell lines in cell culture, explants cultures, differentiation and contamination.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. James E Darnell, Harvey F Lodish, David Baltimore, "Molecular Biology of the Cell", W.H. Freeman Publishers, 2012
- 2. Geoffrey Cooper, "The Cell: A molecular approach", OUP USA; 8th Edition, 2019.
- 3. Vermaand Aggarval," Cytology", S. Chand Publications, 2003.

- 1. Bruce Alberts, Alexander Johnson, Julian Lewis and Martin Raff, "Molecular Biology of the Cell", 5th Edition, Taylor and Francis group, 2012.
- 2. De Robertis, E.D.P and DeRobertis, E.M.F. (2010), "Cell and Molecular Biology", 8th Edition Lippincott Williams and Wilkins, Philadelphia.
- 3. Gerald Karp," Cell and Molecular Biology", John Wiley and sons Inc, 2013.

					Mappi	ing of (COs w	ith PO	s / PSC	Ds				
CO 2						Р	Os						PSC	Ds
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2			3											
3		3		3										
4				3		3							2	
5							3		3			3		
CO (W.A)	3	3	3	3		3	3		3			3	2	

		22BMX05 - PRINCIPLES OF TISSUI	E ENGINEERIN	G			
				L	Т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE: N	IL					
		• To study the cell types and differentia	tion.				
		• To infer knowledge on the basic conc	epts of tissue engi	neering	5.		
Cours	e Objectives:	• To study basics about stem cells and i	ts applications.				
		• To understand the methods and desig	n involved in tissu	ie engin	eering		
		• To study the clinical application on tis	sue repair/ engine	ering.			
The Stuc	C lent will be able	C ourse Outcomes to	Cognitive Level	in	ightag End So Exami	emest	ter
COI	Apply Cell Bic	ology and Tissue Engineering Principles.	Ap		4()%	
CO2		n Cell Applications and Engineering egenerative medicine and personalized utions.	An		4()%	
CO3	•	echniques in Tissue Engineering and search of novel treatments for disease	An		1!	5%	
CO4		engineering approaches and design s in tissue engineering.	An		5	%	
CO5	concepts in o	ir knowledge of complex scientific cell biology and tissue engineering by delivering seminars.	Ар	Int	ernal A	ssessn	nent

UNIT I – INTRODUCTION TO CELL BIOLOGY

Cell Types - Progenitor Cells - Cell Growth and Differentiation - Cell Culture: Expansion - Transfer -Storage and Characterization - Cell Signalling Molecules - Growth Factors - Cell Attachment: Differential Cell Adhesion, Receptor - Ligand Binding - Cell Surface Markers.

UNIT II – FUNDAMENTALS OF TISSUE ENGINEERING

History and Scope of Tissue Engineering - Tissue Organization - Tissue Types: Epithelial, Connective -Vascularity and Angiogenesis - Wound Healing - Extra Cellular Matrix: Matrix Molecules and their Ligands - Tissue Culture – Materials in Tissue Engineering.

UNIT III – STEM CELLS

Definition of Stem Cells – Types of Stem Cells – Differentiation, Dedifferentiation Maturation, Proliferation, Pleuripotency and Immortalization - Sources of Stem Cells: Haematopoetic – Fetal – Cord Blood – Placenta - Bone Marrow - Primordial Germ Cells - Cancer Stem Cells - Induced Pleuripotent Stem Cells.

UNIT IV – ENGINEERING METHODS AND DESIGN

Soft Lithography - Self-assembled Monolayer, Micro Contact Printing, Micro Fluidic Patterning – Laminar Flow Patterning - Cell Interaction with Polymer Scaffolds and Gels - Polymer Scaffolds Fabrications: Electro Spinning - Solvent Casting and Particulate Leaching - Micro Fabrication of Cell Seeded Scaffolds.

UNIT V – APPLICATION OF TISSUE ENGINEERING

(9)

(9)

(9)

(9)

Replacement Engineering: Bone, Cartilage, Skin, Blood, Pancreas, Kidney, Heart Valve and Liver -Regenerative Engineering: Peripheral Nerve Regeneration, Cardiac Tissue Regeneration, Muscle Regeneration – Regulation, Commercialization and Patenting.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Robert P Lanza, Robert Langer and Joseph Vacanti, "Principles of Tissue Engineering", Academic Press, United States, 2020.
- 2. Donglu Shi and Qing Liu, "Tissue Engineering and Nanotheranostics", World Scientific Publications, Singapore, 2018.

- Gary E. Wnek, Gary L Browlin, "Encyclopedia of Biomaterials and Biomedical Engineering", Marcel Dekker Inc, New York, 2008.
- 2. R. Lanza, Anthony Atala (Eds), "Essential of Stem Cell Biology", Academic Press, USA, 2013.
- 3. R. Lanza, Anthony Atala, "Handbook of Stem Cells", Academic Press, USA, 2012.

					Mappi	ing of (COs w	ith PO	s / PSC	Os				
CO .						P	Os						PSC	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3												
3				3										
4					2								2	
5									3	3		3		
CO (W.A)	3	3		3	2				3	3		3	2	

		22BMX06 - NEUROSCIE	INCE				
				L	т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE: N	IL					
		• To understand the basics of nervous	systems and their	⁻ functio	ons		
		• To characterize neuronal cells.					
Cours	e Objectives:	• To identify the effects of neuronal fu	nctions and neura	l disoro	lers.		
		To select suitable testing methods for	r analyzing neural	behavi	or.		
		To apply theoretical knowledge to re	eal-world scenaric	S.			
The Stuc	C lent will be able	Course Outcomes to	Cognitive Level	in	ightag End So Exami	emest	er
COI	the central an	wledge of the structure and function of d peripheral nervous systems, including cules and neurotransmitters.	Ар		4()%	
CO2		onal structures, synaptic functions and neurotransmitters and hormones.	An		4()%	
CO3	Identify the neurological a	causes and features of common nd psychiatric disorders.	An		15	5%	
CO4	Assess the based of the study neurosc	asic research tools and techniques to ience.	E		5	%	
CO5	neuroanatomy	cical knowledge of the nervous system, and neurophysiology to analyze and rld case studies related to neurological	An	Int	ernal A	ssessm	nent

UNIT I – INTRODUCTION TO NERVOUS SYSTEM

Nervous system: Introduction, Central and peripheral nervous system, Signalling molecules, First growth factor, First Neuro transmitters in brain, functional organization, Synaptic potentials and Receptor potentials.

UNIT II – NEURO ANATOMY

Structures and functions of neurons, Synapse: function, signals produced by neurons, Sensors function, Glial cells, molecular and cellular organization of neuronal differentiation, characterization of neuronal cells.

UNIT III - NEUROPHYSIOLOGY AND NEUROPHARMACOLOGY

Resting and action potentials; Mechanism of action potential conduction; Voltage dependent channels; nodes of Ranvier; Chemical and electrical synaptic transmission. Synaptic transmission, neurotransmitters and their release; fast and slow neurotransmission; characteristics of neurites; hormones and their effect on neuronal function.

UNIT IV – NEUROLOGICAL DISORDERS

Pathogenesis, Genetic basis of neurological disorders, Psychiatric Disorders: Psychiatric epidemiology, Unipolar depression, Bipolar depression, Seasonal affective disorder, Panic disorder, Autism, Stroke, Huntington disease.

UNIT V – BEHAVIOUR SCIENCE

Approved by Twelfth Academic Council

(9)

(9)

(9)

(9)

Neuronal mechanism of behaviour, Animal behaviour, Behaviour in various environments, Behavioural and cognitive neuroscience, Behavioural studies using animal model, Testing motor functions, Grip Strength Test, Testing Cognitive Functions, Learning and memory related test.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. Georg Goldenberg, Bruce L. Miller, "Neuropsychology and Behavioral Neurology" Handbook of Clinical Neurology, Elsevier libgen.lc., 2008.
- 2. Michael J. Aminoff, Handbook of Clinical Neurology, Elsevier, London, 2012.

- 1. Mason P., Medical Neurobiology, Oxford University Press, 2011.
- 2. Mathews G.G. Neurobiology, 2nd edition, Blackwell Science, UK, 2000.
- 3. Gordon M. Shepherd G.M, and Shepherd Neurobiology, 3rd Edition Oxford University Press, USA, 1994.

					Mappi	ing of (COs w	ith PO	s / PSC	Os				
60 2						P	Os						PSC	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3												
3				3										
4					2									2
5						3	3					3		
CO (W.A)	3	3		3	2	3	3					3		2

W.U.

		22BMX07 - NUCLEAR ME	DICINE				
				L	Т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE: N	IIL					
		• To understand the concepts of physic	s used in nuclear n	nedicin	e.		
		• To understand the construction and	principle of opera	ation o	f varic	us nuo	lear
Cours	e Objectives:	medicine instruments.					
Cours	e Objectives.	 To study the diagnostic applications of 	of nuclear medicine	•			
		• To study the therapeutic applications	of nuclear medicin	e.			
		• To analyze radiation safety procedure	es and regulations.				
			Cognitive		ightag		
The Stuc	lent will be able	course Outcomes	Level	in	End S	emest	er
			Level	E	xami	natior)
	Apply diagno	stic and therapeutic techniques using					
						NO/	
COI	radionuclides		Ар		40)%	
COI	radionuclides conditions.	to diagnose and treat medical	Ар		40)%	
	radionuclides conditions.	to diagnose and treat medical e principles and mechanisms of					
COI	radionuclides conditions. Illustrate th radioactivity	to diagnose and treat medical	Ap An)%)%	
	radionuclides conditions. Illustrate th radioactivity medicine.	to diagnose and treat medical e principles and mechanisms of and radiation interaction in nuclear					
CO2	radionuclides conditions. Illustrate th radioactivity medicine. Interpret	to diagnose and treat medical e principles and mechanisms of and radiation interaction in nuclear nuclear medicine instrumentation	An		4()%	
	radionuclides conditions. Illustrate th radioactivity medicine. Interpret r effectively, in	to diagnose and treat medical e principles and mechanisms of and radiation interaction in nuclear nuclear medicine instrumentation ncluding gamma cameras, radiation			4(
CO2	radionuclides conditions. Illustrate th radioactivity medicine. Interpret r effectively, in detectors and	to diagnose and treat medical e principles and mechanisms of and radiation interaction in nuclear nuclear medicine instrumentation	An		4()%	
CO2	radionuclides conditions. Illustrate th radioactivity medicine. Interpret r effectively, in detectors and Evaluate and and ethical	to diagnose and treat medical e principles and mechanisms of and radiation interaction in nuclear nuclear medicine instrumentation ncluding gamma cameras, radiation electronic systems. implement radiation safety protocols standards in the use of radioactive	An		4()%	
CO2 CO3	radionuclides conditions. Illustrate th radioactivity medicine. Interpret r effectively, in detectors and Evaluate and and ethical materials in he	to diagnose and treat medical e principles and mechanisms of and radiation interaction in nuclear nuclear medicine instrumentation ncluding gamma cameras, radiation electronic systems. implement radiation safety protocols standards in the use of radioactive ealthcare environments.	An		4()% 5%	
CO2 CO3	radionuclides conditions. Illustrate th radioactivity medicine. Interpret r effectively, in detectors and Evaluate and and ethical materials in he Analyze inform	to diagnose and treat medical e principles and mechanisms of and radiation interaction in nuclear nuclear medicine instrumentation ncluding gamma cameras, radiation electronic systems. implement radiation safety protocols standards in the use of radioactive	An		4()% 5% %	

UNIT I – BASICS OF NUCLEAR MEDICINE

Radioactivity and Interaction of Radiation; Alpha, Beta and Gamma Emission, Laws of Radioactive Decay, Mechanisms of Radioactive Delay, Radiation Intensity and Exposure, Decay Schemes and Energy Levels, Compton Scattering, Pair Productions, Particle Interactions.

UNIT II - NUCLEAR MEDICINE INSTRUMENTATION

Construction and Principle Operation of Gamma Camera, Rectilinear Scanner, Basic Principles of Pulse Height Analyzer, Radiation Detectors-Ionization Chamber, Geiger Muller Counter, Semiconductor Detectors, Scintillation Detectors, Electronic Instrumentation for Radiation Detection System.

UNIT III – DIAGNOSTIC APPLICATIONS OF RADIONUCLIDE

(9)

(9)

(9)

PET-CT, Single Photon Emission Computed Tomography (SPECT), Radio Iodine Therapy for Thyrotoxicosis, Differentiated Thyroid Cancers, Palliative Treatment for Bone Metastasis - 32P and 89 Strontium Dosage

UNIT IV – THERAPEUTIC APPLICATIONS OF RADIONUCLIDE

Intravascular Particulate Radio Nuclide Therapy, Receptor Targeted Therapy, 1311- MIBG Therapy, Targeted Internal Radiation in HCC: 90 Y, Radio - Synovectomy using Yttrium

UNIT V – RADIATION SAFETY

Radiation Protection in Different Nuclear Isotope Therapy Procedures, Management of Radiation Accidents, Radiation Effect on Pregnancy and Fertility, Diagnosis, Evaluation and Treatment of Radiation Overexposure, Instruments used in Radiation Survey & Monitoring, Handling of Radioactive Patients, Role of National and International Bodies in Radiation Safety, ICRP Recommendations, BARC Regulations Regarding Limits of Radiation Exposure.

TEXT BOOKS:

- 1. Simon Cherry, James Sorenson and Michael Phelps. "Physics in Nuclear Medicine", 4th Edition, Elsevier Saunders, 2012.
- 2. Essential Nuclear Medicine Physics, Rachel A Powsner and Edward R Powsner, 2nd Edition, Blackwell publishing, 2006.

REFERENCES:

- 1. Max. H. Lombardi, "Radiation Safety in Nuclear Medicine", 2nd Edition, CRC Press, Florida, USA, 1999.
- 2. Fred A Mettler and Milton J Guiberteau, "Essentials of Nuclear Medicine and Molecular Imaging", 7th Edition, Elsevier, 2018.
- 3. Harvey Ziessman, Janis O Malley and James Thrall, "Nuclear Medicine", 4th Edition, Elsevier, 2013.
- 4. Pete Shackett, "Nuclear Medicine Technology", 2nd Edition, Lipkott William Wilkkins, USA, 2008.
- 5. Jennifer Prekeges, "Nuclear Medicine Instrumentation", 2nd Revised Edition, John and Barelett Publishers, Inc USA, 2012.
- 6. Christian, Paul E., and Kristen M. Waterstram-Rich. Nuclear Medicine and PET/CT-E-Book: Nuclear Medicine and PET/CT-E-Book. Elsevier Health Sciences, 2013.

				١	1 appin	g of C	Os wit	h POs	; / PSO	S				
COs							POs						PS	Os
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3			2										
2	3	2												
3			2	2									2	
4		2			2			3						
5						3	2			2				
CO (W.A)	3	2	2	2	2	3	2	3		2			2	

(9)

(9)

TOTAL (L:45) = 45 PERIODS

	22	BMX08 - RADIOTHERAPY BASICS	& APPLICAT	ION			
				L	Т	Ρ	C
				3	0	0	3
PRE-R	EQUISITE: N	IL					
		• To provide a knowledge on the intera	ction of Non-Ion	izing rad	diation	•	
		• To infer knowledge on the principle lasers, and laser-tissue interactions.	es and applicatio	ons of c	optical	radiat	ions
Cours	e Objectives:	• To analyze the various techniques and for medical applications.	d instruments use	ed in ra	diation	dosim	netry
		• To have a better understanding about	radiation monito	oring ins	trume	nts.	
		• To understand dosimetric concepts a radiation therapy.	nd factors influer	ncing do	se dis	tributio	on ir
he Stuc	C dent will be able	to	Cognitive Level	in	End S	ge of C emest natior	ter
	Apply the k	nowledge of sources, properties and			-xami	nation	1
COI		of non-ionizing radiation in medical	Ар		4	0%	
CO2	Analyze Into Biological Tiss	eractions Between Radiation and ues.	An		4	0%	
CO3		utilize various radiation detection and hniques for accurate measurement and cal practices.	An		I	5%	
CO4	and understa treatment plan	fective radiation monitoring techniques and key parameters for radiation nning in clinical settings.	E		5	5%	
CO5	•	ts from expert talks to enhance their and problem-solving skills in medical	An	Int	ernal A	ssessn	nent

UNIT I - REVIEW OF NONIONISING RADIATION PHYSICS IN MEDICINE

Different Sources of Non Ionising Radiation -Their Physical; Properties - First Law of Photochemistry - Law of Reciprocity - Electrical Impedance and Biological Impedance - Principle and Theory of Thermography – Applications.

UNIT II – TISSUE OPTICS

Various Types of Optical Radiations - UV, Visible and IR Sources - Lasers: Theory and Mechanism - Laser Surgical Systems - Measurement of Fluence from Optical Sources - Optical Properties of Tissues – Theory and Experimental Techniques - Interaction of Laser Radiation with Tissues – Photothermal -Photochemical – Photoablation – Electromechanical Effect.

UNIT III – PRINCIPLES OF RADIATION DETECTION AND DOSIMETERS

Principles of Radiation Detection – Properties of Dosimeters - Theory of Gas Filled Detectors – Ion Chamber Dosimetry Systems - Free Air Ion Chamber – Parallel Plate Chamber - Ionization Chamber – Proportional Chamber - GM Counter – Condenser Type Chambers and Thimble Chambers Working and Different Applications – Film Dosimetery Luminescence Dosimetry – Semiconductor Dosimetry – Gel Dosimetry – Radiographic and Radiochromic Films – Scintillation Detections.

UNIT IV – RADIATION MONITORING INSTRUMENTS

(9)

(9)

(9)

Introduction – Operational Quantities for Radiation Monitoring – Area Survey Meters – Ionization Chambers – Proportional Counters – Neutron Area Survey Meters – GM Survey Meters – Scintillation Detectors – Personal Monitoring – Film Badge – TLD – Properties of Personal Monitors – Radio photo Luminescent Glass Dosimetry System – OSLD.

UNIT V – RADIATION TREATMENT PLANNING PARAMETERS

(9)

Build-up, Central Axis Depth Doses for Different Energies and their Determination - Tissue Air Ratio, Tissue Maximum Ratio and Tissue Phantom Ratio - their Relationship - Back Scatter Factor – Phantom Scatter Factor – Collimator Scatter Factor - Source to Surface Distance – Dependence of SSD.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. F M Khan, "Physics of Radiation Therapy", 3rd Edition, Liippincott Williams & Wilkins, USA, 2003.
- 2. W. R. Hendee, "Medical Radiation Physics", Year Book Medical Publishers Inc., London, 2003.

- I. E. B. Podgorsak, "Radiation Oncology Physics: A Handbook for teachers and students", IAEA publications 2005.
- 2. F. M. Khan, "The Physics of Radiation Therapy", 3rd Edition, Lippincott Williams and Wilkins, U.S.A., 2003.

					Mappi	ing of (COs wi	ith PO	s / PSC	Ds				
COs						P	Os						PSC	Os
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2				3										
3			3											
4		3	3										3	
5						3	3					3		I
CO (W.A)	3	3	3	3		3	3					3	3	I

and all

	22BMX17 - MEDICAL TEXTILES					
			L	Т	Ρ	С
			3	0	0	3
PRE-R	EQUISITE: NIL					
Cours	 Provide students with a foundational und including their properties, classifications, healthcare. Equip students with the knowledge to exp textiles, and their innovative uses in medic relevant legal and ethical aspects. 	and var plore advar	rious nced	appli mater	ication rials, s	is in smart
The Stuc	•••••••••••••••••••••••••••••••••••••••	nitive vel	in	ighta; End S Exami	emes	ter
COI	Explain textile-based systems for various medical applications, including bandages, compression garments, sutures, implantables, extracorporeal materials and drug delivery textiles.	Ąр		4	0%	
CO2	Analyze the properties, applications, and testing	An		4	0%	
CO3	Investigate the use of textile sensors and electronics in medical textiles, and address the legal and ethical issues involved.	۹n		I	5%	
CO4	Assess the properties, applications and role of biopolymers in tissue engineering.	E		Į	5%	
CO5	Document and present the comparative study of various smart textiles.	E	Int	ernal A	Assessi	ment

UNIT I – INTRODUCTION

Medical textiles, classification, current market scenario in international and national level, government initiatives; antimicrobial fibres and finishes; nano fibrous materials and films; super absorbent polymers; operating room garments; personal health care and hygiene products and their testing methods; applications of non, wovens in medicine; textiles in infection prevention control.

UNIT II – BIOPOLYMERS

Biopolymers: classification and their properties, requirements, and applications, testing methods; In vitro tests, direct contact, agar diffusion & elution methods, in vivo assessment of tissue compatibility. Tissue engineering: properties and materials of scaffolds, relationship between textile architecture and cell behavior, applications of textile scaffolds in tissue engineering.

UNIT III – IMPLANTABLES, NON - IMPLANTABLES AND DRUG DELIVERY

Bandages, types, properties and applications; compression garments, types, properties and applications; sutures: types and properties; implantable textiles: hernia mesh , vascular prostheses , stents; Extra corporeal materials: Cartilage nerves , liver ligaments, kidney, tendons, cornea; Drug delivery textiles: Classification, mechanism various fabrication methods, characterization , applications.

UNIT IV – WOUND CARE AND REUSABLE MEDICAL TEXTILES

(9)

(9)

(9)

Wound: types and healing mechanism, textile materials for wound dressing, bio active dressing, anti microbial textiles dressing, composite dressing, testing of wound care materials; Wound 97 compression textiles; Reusable medical textiles: types, advantages, physical properties and performance, reusable processing methods.

UNIT V – SMART MEDICAL TEXTILES AND LEGAL ISSUES

Smart textiles , types, characteristics , smart textiles in wound care; applications of phase change and shape memory materials , monitoring pregnancy, children and cardio patients , mobile health monitoring; electronics in medical textiles; Smart textiles in rehabilitation and applications; textile sensors for healthcare; legal and ethical values involved in the medical textile materials.

TOTAL (L:45) = 45 PERIODS

(9)

TEXT BOOKS:

- 1. Joon B. Park., and Joseph D. Bronzino., Biomaterials, Principles and Applications, CRCPress, Boca Raton London, New York, Washington, D.C. 2002.
- 2. Anand S.C., Kennedy J.F., Miraftab M., and Rajendran S., Medical Textiles and Biomaterials for Health Care , Wood head Publishing Ltd., 2006.
- 3. Horrocks A R, Anand S C , Handbook of Technical Textiles, Woodhead Publishing and Textile Institute, USA, 2000.

- 1. Adanur S., Wellington Sears Handbook of Industrial Textiles , Technomic Publishing Co. Inc., Lancaster Pennylvania, 1995, ISBN 1, 56676, 340, 14.
- 2. Michael Szycher and Steven James Lee, Modern Wound Dressing: A Systematic Approach to Wound Healing, Journal of Biomaterials Applications, 1992.

					Mappi	ing of (COs w	ith PO	s / PSC	Ds				
60 2						F	'O s						PSC	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I			3	3										
2	3	3												
3				3									2	
4		3		3										
5									3	2		2		
CO (W.A)	3	3	3	3					3	2		2	2	

		22BMX18 - VIRTUAL RE	ALITY				
				L	Т	Ρ	C
				3	0	0	3
PRE-R	EQUISITE: NIL						
Cours	e Objectives: • To ind • To iss • To sy: • To	b learn the key components and o cluding input and output devices. b understand the different types nematic, physical, behavior modelin b assess the impact of VR on users ues, usability, and side effects like o develop practical skills in VR pro- odels, creating shapes, and design stems. b explore various applications of V	of modeling in V ng, and model man s, including perforr cyber sickness. ogramming with Ja gning animated 3 VR technology in	R, inc ageme nance, va 3D, D spr fields :	luding nt. health incluc ites a such a	geom 1 and s ling lo nd pa s med	etric, afety ading rticle
ne Stuc		botics, real-time tracking, gaming, Outcomes	Cognitive Level	We in	ighta End S Exami	ge of (emes	ter
COI		lge of the components and al Reality (VR) systems including ces.	Ap		4	0%	
CO2	Implement VR progra using Java 3D and oth	mming concepts and techniques er tools.	Ap		4	0%	
CO3	,	techniques in VR, including tics, physical, and behavior	An		I	5%	
CO4		s in VR systems, including user and safety issues, and usability.	E		ļ	5%	
CO5		o communicate as an individual me of the implemented work in	С	Int	ernal A	Assessr	nent

UNIT I – INTRODUCTION	(9)						
The Three I's of Virtual Reality - Commercial VR Technology and the Five Classic Components of a VR System – Input. Devices :(Trackers, Navigation, and Gesture Interfaces): Three-Dimensional Position							
Trackers, Navigation and Manipulation-Interfaces and Gesture Interfaces-Output Devices: C Displays-Sound Displays & Haptic Feedback							
UNIT II – MODELING	(9)						

Geometric Modelling - Kinematics Modelling- Physical Modelling - Behavior Modelling - Model Management.

UNIT III – HUMAN FACTORS

Methodology and Terminology - User Performance Studies - VR Health and Safety Issues - Usability of Virtual Reality System - Cyber Sickness - Side Effects of Exposures to Virtual Reality Environment.

UNIT IV – VR PROGRAMMING

(9)

Introducing Java 3D - Loading and Manipulating External Models - Using a Lathe to make Shapes. 3D Sprites - Animated 3D Sprites - Particle Systems.

UNIT V - APPLICATIONS

Medical Applications - Robotics Applications - Advanced Real Time Tracking - Other Applications - Games, Movies, Simulations, Therapy.

TOTAL (L:45) = 45 PERIODS

(9)

TEXT BOOKS:

- C. Burdea & Philippe Coiffet, "Virtual Reality Technology", 2nd Edition, Gregory, John Wiley & Sons, Inc., 2008.
- 2. Andrew Davison, "Killer Game Programming in Java", Oreilly SPD, 2005.

- 1. John Vince, "Introduction to Virtual Reality", Springer-Verlag Ltd., 2004.
- 2. William R.Sherman and Alan B.Craig, "Understanding Virtual Reality Interface, Application, Design", The Morgan Kaufmann Series, 2003.

Mapping of COs with POs / PSOs														
COs	POs											PSOs		
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2					3									3
3		3												
4			3			3								
5					3				3	3		3		
CO (W.A)	3	3	3		3	3			3	3		3		3

N.D.

		22BMX21 - SOFT COMPU	JTING				
				L	Т	Р	С
				3	0	0	3
PRE-R	EQUISITE: N	L					
Cours	e Objectives:	 To understand the basics of artific learning methods To learn how to design and use practical biomedical problems. To introduce the concepts of fuzz decisions with uncertain data To understand genetic algorithms a biomedical problems To explore hybrid computing technologic, and genetic algorithms. 	different types o y logic and how and how they can	f neui it car optim	ral net n help nize sc	in ma	s for aking s for
The Stuc	lent will be able	Course Outcomes	Cognitive Level	in	End S	ge of C emest natior	ter
COI		neural networks and learning methods edical problems.	Ар		4	0%	
CO2	architectures,	ffectiveness of various neural network fuzzy logic systems and genetic real-world biomedical applications.	An		4	0%	
CO3	neural netwo	d computational systems combining rks, fuzzy logic and genetic algorithms biomedical solutions.	E		L	5%	
CO4	Evaluate th improvements engineering.	ne performance and potential s of computational models in biomedical	E		5	5%	
CO5		considerations and societal impacts of putational techniques through seminars	E	Int	ernal A	ssessn	nent

UNIT I – INTRODUCTION TO ARTIFICIAL NEURAL NETWORKS

(9)

(9)

(9)

Characteristics - Learning Methods – Taxonomy – Evolution of Neural Networks – Mcculloch - Pitts Neuron - Linear Separability - Hebb Network - Supervised Learning Network: Perceptron Networks -Adaptive Linear Neuron, Multiple Adaptive Linear Neuron.

UNIT II – TYPES OF NEURAL NETWORKS

BPN, RBF, TDNN - Associative Memory Network: Auto-Associative Memory Network, Hetero-Associative Memory Network, BAM, Hopfield Networks, Iterative Autoassociative Memory Network & Iterative Associative Memory Network – Unsupervised Learning Networks: Kohonen Self Organizing Feature Maps, LVQ – CP Networks, ART Network. Case Studies On Biomedical Applications.

UNIT III – FUZZY LOGIC

Membership Functions: Features, Fuzzification, Methods of Membership Value Assignments -Defuzzification: Lambda Cuts - Methods - Fuzzy Arithmetic and Fuzzy Measures: Fuzzy Arithmetic -Extension Principle - Fuzzy Measures - Formation of Rules-Decomposition of Rules, Fuzzy Inference Systems - Overview of Fuzzy Expert System - Fuzzy Decision Making. Case Studies on Biomedical

UNIT IV – GENETIC ALGORITHM

Genetic Algorithm and Search Space - General Genetic Algorithm, Operators - Generational Cycle, Stopping Condition, Constraints. Classification, Genetic Programming, Multilevel Optimization, Real Life Problem, Advances In GA. Case Studies on Biomedical Applications.

UNIT V – HYBRID SOFT COMPUTING TECHNIQUES

(9)

(9)

Neuro-fuzzy Hybrid Systems - Genetic Neuro Hybrid Systems - Genetic Fuzzy Hybrid and Fuzzy Genetic Hybrid Systems - Simplified Fuzzy ARTMAP. Case Studies on Biomedical Applications.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Laurene V. Fausett, "Fundamentals of Neural Networks: Architectures, Algorithms and Applications" Pearson Education, 2010.
- 2. S. N. Sivanandam and S.N.Deepa, "Principles of Soft Computing", Wiley India Pvt. Ltd, 2011.
- 3. J. S. R. Jang, C.T. Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", Pearson Education 2004.

- 1. S. Rajasekaran and G. A .Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis & Applications", Prentice-Hall of India Pvt. Ltd., 2006.
- 2. George J. Klir, Ute St. Clair, Bo Yuan, "Fuzzy Set Theory: Foundations and Applications", Prentice Hall, New Delhi. 1997.
- 3. Simon Haykin, "Neural Networks Comprehensive Foundation", 2nd Edition, Pearson Education, 2005.

					Mappi	ng of (COs w	ith PO	s / PSC	Ds					
6 0						Р	Os						PSOs		
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3	3													
2				3	3										
3			3			3									
4				3			2						2		
5									3	2		2			
CO (W.A)	3	3	3	3	3	3	2		3	3		3	2		

				L	т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE: NI	L					
Cours	e Objectives:	 To understand pattern recognition a To introduce clustering methods for To study about feature extraction ar To equip students with knowledge Support Vector Machines (SVM). To explore recent advances and prace 	unsupervised learni nd structural pattern e of Hidden Markc	ng and recog ov Mo	d classi gnition dels (HMM)	and
he Stuc	Co lent will be able to	ourse Outcomes	Cognitive Level	in	End S	ge of C emest natior	ter
COI	Apply Advanced	Pattern Recognition Techniques.	Ap		4	0%	
CO2		Solve Complex Problems Using Machine Learning Algorithms.	An		4	0%	
CO3	Assess Biom Recognition.	edical Applications of Pattern	E		I	5%	
CO4	Design and Dev	velop Pattern Classification Systems.	с		5	5%	
CO5		ern pattern recognition tools and n practical scenarios through	с	Int	ernal A	ssessn	nent

UNIT I – PATTERN CLASSIFIER	(9)
Overview of Pattern recognition – Discriminant functions – Supervised learning – Parametric estin Maximum Likelihood Estimation – Bayesian parameter Estimation – Problems with Bayes approach– classification by distance functions – Minimum distance pattern classifier.	
UNIT II – CLUSTERING	(9)
Clustering for unsupervised learning and classification – Clustering concept –Hierarchial clu Partitional clustering- k-means algorithm – Validity of Clusters.	ıstering,
UNIT III – FEATURE EXTRACTION AND STRUCTURAL PATTERN RECOGNITION	(9)
KL Transforms – Feature selection through functional approximation – Binary selection -Elements o grammars - Syntactic description - Stochastic grammars - Structural representation.	f formal
UNIT IV – HIDDEN MARKOV MODELS AND SUPPORT VECTOR MACHINE	(9)
State Machines – Hidden Markov Models – Training – Classification – Support vector Machine – Selection.	Feature
UNIT V - RECENT ADVANCES AND APPLICATIONS	(9)

Fuzzy logic – Fuzzy Pattern Classifiers – Case Study Using Fuzzy Pattern Classifiers CAD system in breast cancer detection, ECG signal classification, Fingerprint recognition, cell cytology classification.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. Andrew Webb, —Stastical Pattern Recognition, Arnold publishers, London, 2002.
- 2. C.M.Bishop, —Pattern Recognition and Machine Learning, Springer, 2006.
- 3. Earl Gose, Richard Johnsonbaugh Steve Jost, —Pattern Recognition and Image Analysis, Prentice Hall of India Pvt Ltd., New Delhi, 1996.

- 1. M. Narasimha Murthy and V. Susheela Devi, —Pattern Recognition, Springer 2011.
- 2. Robert J.Schalkoff, —Pattern Recognition Statistical, Structural and Neural Approaches, John Wiley & Sons Inc., New York, 1992.
- 3. R.O.Duda, P.E.Hart and D.G.Stork, —Pattern Classification, John Wiley, 2001.
- 4. S.Theodoridis and K.Koutroumbas, —Pattern Recognition, 4th Ed., Academic Press, 2008.

					Mappi	ing of (COs w	ith PO	s / PSC	Ds				
COs						P	Os						PSOs	
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2				3										
3		3					3						3	
4			3											
5					3				3			2		3
CO (W.A)	3	3	3	3	3		3		3			2	3	3

U.D.

	2	2BMX23 - MACHINE LEARNING FO	OR HEALTHCA	RE			
				L	Т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE: N	IL					
Cours	e Objectives:	 To provide a comprehensive underst To introduce unsupervised learning r To equip with the skills to evaluate selection techniques To delve into advanced topics in machine 	methods e machine learning		Ū		
		To explore scalable machine learning	g approaches.				
The Stuc	C dent will be able	c ourse Outcomes to	Cognitive Level	in	End S	ge of C emest natior	ter
COI		machine learning techniques for data attern recognition.	Ap		4	0%	
CO2	Illustrate scala	ble machine learning solutions.	Ap		4	0%	
CO3	<i>,</i> , , , , , , , , , , , , , , , , , ,	ications in healthcare for improved d treatment strategies.	An		I	5%	
CO4		performance, conduct model selection for effective decision-making.	E		Ľ	5%	
CO5	concepts three proficiency i	ractical application of machine learning ough assignments, fostering hands-on n algorithm implementation, model l real-world problem-solving.	Ap	Int	ernal A	Assessn	nent

UNIT I – SUPERVISED LEARNING

Basic Methods: Distance-Based Methods, Nearest-Neighbours, Decision Trees, Naive Bayes Linear Models: Linear Regression, Logistic Regression, Generalized Linear Models Support Vector Machines, Nonlinearity and Kernel Methods-Beyond Binary Classification: Multi-Class/Structured Outputs, Ranking.

UNIT II – UNSUPERVISED LEARNING

Clustering: K-means/Kernel K-means, Dimensionality Reduction: PCA and kernel PCA, Matrix Factorization and Matrix Completion, Generative Models (Mixture Models and Latent Factor Models)

UNIT III – EVALUATING ALGORITHMS

Machine Learning Algorithms and Model Selection, Introduction to Statistical Learning Theory, Ensemble Methods, Boosting, Bagging, Random Forests.

UNIT IV – SPARSE MODELING AND ESTIMATION

Modeling Sequence/Time-Series Data, Deep Learning and Feature Representation Learning. Medical applications case study.

(9)

(9)

(9)

178 | Page

UNIT V – SCALABLE MACHINE LEARNING

Online and Distributed Learning, A Selection from Some Other Advanced Topics, e.g., Semi-Supervised Learning, Active Learning, Reinforcement Learning, Inference in Graphical Models, Introduction to Bayesian Learning and Inference, Healthcare Applications Case Study.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Kevin Murphy, "Machine Learning: A Probabilistic Perspective", MIT Press, 2012.
- 2. Trevor Hastie, Robert Tibshirani, Jerome Friedman, "The Elements of Statistical Learning", Springer 2009.

REFERENCES:

- 1. Christopher Bishop, "Pattern Recognition and Machine Learning", Springer, 2007.
- 2. Arvin Agah, "Medical Applications of Artificial Intelligence", CRC Press, 2017.

					Mappi	ing of (COs w	ith PO	s / PSC	Ds				
60		POs												
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3	3												
2			3		3									
3			3	3										
4			3	3									2	
5									3			2		2
CO (W.A)	3	3	3	3	3				3			2	2	2

NOV 11

	22 B	MX24 - ARTIFICIAL INTELLIGENCE	IN HEALTHC	ARE			
				L	Т	Р	С
				3	0	0	3
PRE-R	EQUISITE: N	IL					
Cours	e Objectives:	 To understand AI fundamentals, its for problem-solving in healthcare. To explore various search strategies constraint satisfaction and case studies. To infer knowledge on learning mether learning and AI applications in medical. To discuss first-order predicate log systems, with relevant case studies. To study intelligent agent architect biomedical applications of multi-agent. 	s and optimizations. hods, rule-based diagnosis. dic, Prolog progr ture, communica	on pr syster ammir	oblem ms, de ng anc	s, inclu ecision I reaso	uding tree oning
he Stuc	dent will be able	Course Outcomes	Cognitive Level	in	End S	ge of (emes inatio	ter
соі		owledge of ethical considerations and ompliance requirements related to Al healthcare.	Ap		4	0%	
CO2		prithms to enhance diagnostic accuracy te treatment plans in healthcare settings.	Ap		4	0%	
CO3	using AI tech	tic systems and automated processes niques to assist in surgery, rehabilitation care, ensuring precision and safety in dures.	An		I	5%	
CO4	Assess Al-dri Signal Process	ven Systems for Medical Imaging and ing.	E		ļ	5%	
CO5		ng-edge AI techniques and their use in gineering through expert's perspective.	E	Int	ernal A	Assessr	nent

UNIT I – EXPLORATION OF ARTIFICIAL INTELLIGENCE

Overview of Artificial intelligence - Definition - Future of Artificial Intelligence - Behavioral Characteristics of Intelligent Agents - Typical Intelligent Agents - Problem Solving Approach to healthcare problems.

UNIT II – PROBLEM SOLVING METHODS

Problem solving Methods - Search Strategies- Uninformed - Informed - Heuristics - Local Search Algorithms and Optimization Problems - Searching with Partial Observations - Constraint Satisfaction Problems - Constraint Propagation - Backtracking Search. Case studies.

UNIT III – AI DECISION TREE

Learning methods, Rule-based systems- Decision tree learning- Reinforcement learning. Al in Medical diagnosis.

UNIT IV – KNOWLEDGE REPRESENTATION

Approved by Twelfth Academic Council

(9)

(9)

(9)

First Order Predicate Logic - Prolog Programming - Unification - Forward Chaining-Backward Chaining -Resolution - Knowledge Representation - Ontological Engineering-Categories and Objects - Events -Mental Events and Mental Objects - Reasoning Systems for Categories - Reasoning with Default Information. Case Studies.

UNIT V – SOFTWARE AGENTS

Architecture for Intelligent Agents - Agent communication - Negotiation and Bargaining - Argumentation among Agents - Trust and Reputation in Multi-agent systems. Biomedical applications.

TOTAL (L:45) = 45 PERIODS

(9)

TEXT BOOKS:

- 1. M. Tim Jones, "Artificial Intelligence: A Systems Approach", Jones and Bartlett Publishers, Inc.; First Edition, 2015 Reprint. ISBN-13: 978-9380298139.
- 2. Nils J. Nilsson, "The Quest for Artificial Intelligence", Cambridge University Press, 2009. ISBN-13: 978-0521122931.

- 1. William F. Clocksin and Christopher S. Mellish, "Programming in Prolog: Using the ISO Standard", 5th Edition, Springer, 2012 Reprint. ISBN 978-3-642-55481-0, DOI 10.1007/978- 3-642-5548.
- 2. Ian Millington, John Funge, "Artificial intelligence for Games", 2nd Edition, Morgan Kaufmann Publishers, CRC Press, 2012, ISBN: 978-0-12-374731-0.
- 3. S. Russell and P. Norvig, "Artificial Intelligence: A Modern Approach", 3rd Edition, Prentice Hall, 2016. ISBN-1537600311, 97-81537600314.
- 4. David L. Poole and Alan K. Mackworth, "Artificial Intelligence: Foundations of Computational Agents", Cambridge University Press, 2010. ISBN-13: 978-0521519007.

					Mappi	ng of G	COs w	ith PO	s / PSC	Ds				
COs						Р	Os						PSO s	
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3		3					3						
2	3	3												
3			3	3		3							3	
4		3												
5							3							3
CO (W.A)	3	3	3	3		3	3	3					3	3

		22BMX25 - DEEP LEARNING T	ECHNIQUES				
				L	Т	Ρ	C
				3	0	0	3
PRE-R	EQUISITE: N	IL					
		 To Apply Machine Learning Alg Problems. To Implement Deep Learning Archit 					
Cours	e Objectives:	 To Analyze and Optimize Convolution To Develop Efficient Recurrent Non- Sequential Data. To Design and Implement Autoento Synthesis. 	eural Networks a	nd Re	cursiv	e Net	s for
he Stuc	lent will be able	c ourse Outcomes to	Cognitive Level	in	End S	ge of (emes natio	ter
COI	Apply Basic M	achine Learning Algorithms.	Ap		4	0%	
CO2	Apply the kn Data Analysis.	owledge of Deep Learning Models for	Ар		4	0%	
CO3	Interpret Tech	nniques for Sequential Data Analysis.	An		I	5%	
CO4	Assess Neura	Network Performance.	E		ļ	5%	
CO5	assignments,	plex problems through structured applying sequential data analysis ch as RNNs and LSTM networks.	An	Int	ernal A	Assessr	nent

UNIT I – MACHINE LEARNING BASICS

Learning algorithms, Maximum likelihood estimation, Building machine learning algorithm, Basic Machine Learning Algorithms: Naive Bayes, Support Vector Machine, Decision Tree, Random Forest, Neural Networks - Multilayer Perceptron, Back-propagation algorithm and its variants stochastic gradient decent, Curse of Dimensionality.

UNIT II – DEEP LEARNING ARCHITECTURES

Machine Learning and Deep Learning, Representation Learning, Width and Depth of Neural Networks, Activation Functions: RELU, LRELU, ERELU, Unsupervised Training of Neural Networks, Restricted Boltzmann Machines, Auto Encoders, Deep Learning Applications.

UNIT III – CONVOLUTIONAL NEURAL NETWORKS AND TRANSFER LEARNING (9)

Architectural Overview, Motivation, Layers, Filters, Parameter sharing, Regularization, Popular CNN Architectures ResNet, AlexNet, Applications Transfer learning Techniques, Variants of CNN DenseNet, PixelNet.

UNIT IV – SEQUENCE MODELING RECURRENT AND RECURSIVE NETS

(9)

(9)

Recurrent Neural Networks, Bidirectional RNNs, Encoder decoder sequence to sequence architectures BPTT for training RNN, Long Short Term Memory Networks, Neural style transfer in Keras.

UNIT V - AUTOENCODERS AND DEEP GENERATIVE MODELS

Under complete Auto encoder, Regularized Autoencoder, stochastic Encoders and Decoders, Contractive. Encoders - Deep Belief networks, Boltzmann Machines, Deep Boltzmann Machine, Generative Adversarial Networks.

TOTAL (L:45) = 45 PERIODS

(9)

TEXT BOOKS:

- 1. Ian Good fellow, Yoshua Bengio and Aaron Courville, Deep Learning, MIT Press, 2017.
- 2. Josh Patterson, Adam Gibson Deep Learning: A Practitioner's Approach, O'Reilly Media, 2017.
- 3. Umberto Michelucci Applied Deep Learning. A Case-based Approach to Understanding Deep Neural Networks press, 2018.

- 1. Kevin P. Murphy Machine Learning: A Probabilistic Perspective, The MIT Press, 2012.
- 2. Ethem Alpaydin, Introduction to Machine Learning, MIT Press, Prentice Hall of India, Third Edition 2014.

					Mappi	ing of (COs wi	ith PO	s / PSC	Ds				
COs		POs												
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3												
3				3										3
4	3			3										
5									3			2		
CO (W.A)	3	3		3					3			2		3

				L	Т	Ρ	
				3	0	0	
PRE-R	EQUISITE: N	IL					
		• To understand the basics and application	ations of machine v	ision.			
		• To apply image filtering techniques t					
Cours	e Objectives:	• To assess the performance of variou	is edge detection m	nethod	ls.		
		• To study dynamic vision processes li	ke motion detectio	on and	tracki	ng.	
		• To analyze methods for recognizing	objects based on fe	eature	s and p	battern	IS.
he Stuc	C lent will be able	c ourse Outcomes to	Cognitive Level	in	End S	ge of (emes inatio	ter
COI		tional concepts of machine vision to terpret visual data effectively.	Ap		4	0%	
CO2	tasks, includin	prehensive solutions for dynamic vision g motion detection, object tracking and ruction from visual data.	An		4	0%	
CO3	in various	rformance of edge detection algorithms contexts, employing metrics and o measure accuracy and robustness.	E		I	5%	
CO4		select appropriate techniques for image d filtering to optimize image quality and re extraction.	E		ļ	5%	
CO5	knowledge of	practical skills needed to apply the machine vision concepts in real-world bugh assignments.	С	Int	ernal A	Assessr	ner
UNIT	I – MACHINE	VISION FUNDAMENTALS					(9
Project Positic Optica	tion-Coordinate on, Orientation, al Character R	ationships to Other Fields-Role of Systems-Levels of Computation - T Projections, Run-Length Encoding, Bina ecognition. AND FILTERING BASED PROCESS	hresholding, Geon ry Algorithms, Mo	netric	Prop	erties,	ect Si
Region	is and Edges - Ro e Filtering - His	egion Segmentation - Region Representation - Region Representation - Stogram Modification - Linear Systems -	ion - Split and Merg				ng
UNIT	III – EDGE DE						(9
Second Canny	d Directional D Edge Detecto	ge Detection - Comparison- Second Deriv erivative, Laplacian of Gaussian, Image A r - Subpixel Location Estimation - Edg e - Figure of Merit - Sequential Methods -	Approximation - G ge Detector Perfo	aussiai	n Edge	e Dete	ctic
UNIT	IV – DYNAMI	C VISION					(9)

UNIT V – OBJECT RECOGNITION

System Components - Complexity of Object Recognition - Object Representation: Observer-Centered Representations, Object-Centered Representations - Feature Detection - Recognition Strategies: Classification, Matching, Feature Indexing - Verification: Template Matching, Morphological Approach, Symbolic, Analogical Methods.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. Ramesh Jain, Ramesh C Jain, Machine Vision, pp., McGraw Hill, 1995.
- 2. Fabio Solari, Manuela Chessa, Silvio P. Sabatini, Machine vision Applications and Systems, BoD Books on Demand, 2012.
- 3. J. Shi and C. Tomasi, Good Features to Track. In IEEE Conference on Computer Vision and Pattern Recognition, 1994.

REFERENCES:

- I. D. G. Lowe, Distinctive Image Features from Scale-Invariant Keypoints. In International Journal of Computer Vision, 2004.
- 2. D. Comaniciu and P.Meer, Robust analysis of feature spaces: Color image segmentation. IEEE.
- 3. Conference on Computer Vision and Pattern Recognition, June 1997, 750-755.

					Mappi	ing of (COs wi	ith PO	s / PSC	Ds				
60						Р	Os						PSC	Ds
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2			3		3								2	
3		3		3										2
4			3											2
5									3			2	2	
CO (W.A)	3	3	3	3	3				3			2	2	2

		22BMX27 - BIOMETRIC S	YSTEM				
		 To understand the general principles of design of biometric systems and the underlying trade-offs. To study the technologies of fingerprint. To study the technologies of face recognition and hand geometry. To study the technologies of iris. To study the technologies of speech recognition and evaluation o biometrics systems. rse Outcomes Cognitive Level Weightage of COs in End Semester Examination Biometric Technologies and their Ap 40% recognition techniques to recognize etric features. An 15%				С	
				3	0	0	3
PRE-R	EQUISITE: N	IL					
		underlying trade-offs.	C	ometri	c syste	ms an	d the
Cours	e Objectives:	 To study the technologies of face r To study the technologies of iris. To study the technologies of 	ecognition and ha	C			n of
The Stuc	C dent will be able t	ourse Outcomes	•	in	End S	emes	ter
COI	Explain Vario Applications.	us Biometric Technologies and their	Ap		4	0%	
CO2		ric recognition techniques to recognize pometric features.	An		4	0%	
CO3	Analyze biome	etric system performance.	An		I	5%	
CO4	0	ration strategies and security s in combining biometric modalities for entication.	An		ļ	5%	
CO5		erging trends in biometrics, including systems and security implications, lectures.	С	Int	ernal A	Assessi	nent

UNIT I – INTRODUCTION TO BIOMETRICS

Introduction and back ground – biometric technologies – passive biometrics – active biometrics – Biometric characteristics, Biometric applications – Biometric Authentication systems- Taxonomy of Application Environment, Accuracy in Biometric Systems- False match rate- False non match rate- Failure to enroll rate- Derived metrics-Biometrics and Privacy.

UNIT II – FINGERPRINT TECHNOLOGY

History of fingerprint pattern recognition - General description of fingerprints- fingerprint sensors, fingerprint enhancement, Feature Extraction- Ridge orientation, ridge frequency, fingerprint matching techniques- correlation based, Minutiae based, Ridge feature based, fingerprint classification, Applications of fingerprints, Finger scan- strengths and weaknesses, Evaluation of fingerprint verification algorithms.

UNIT III – FACE RECOGNITION AND HAND GEOMETRY

Introduction to face recognition, face recognition using PCA, LDA, face recognition using shape and texture, face detection in color images, 3D model based face recognition in video images, Neural networks for face recognition, Hand geometry – scanning – Feature Extraction – classification.

UNIT IV – IRIS RECOGNITION

Introduction, Anatomical and Physiological underpinnings, Iris sensor, Iris representation and localization-Daugman and Wilde's approach, Iris matching, Iris scan strengths and Weaknesses, System performance, future directions.

(9)

(9)

(9)

UNIT V – VOICE SCAN AND MULTIMODAL BIOMETRICS

Voice scan, speaker features, short term spectral feature extraction, Mel frequency cepstral coefficients, speaker matching, Gaussian mixture model, NIST speaker Recognition Evaluation Program, Introduction to multimodal biometric system – Integration strategies – Architecture – level of fusion – combination strategy, examples of multimodal biometric systems, Securing and trusting a biometric transaction – matching location – local host - authentication server – match on card (MOC).

TOTAL (L:45) = 45 PERIODS

(9)

TEXT BOOKS:

- James Wayman& Anil Jain, "Biometric Systems- Technology Design and Performance Evaluation", SPRINGER (SIE), 1st Edition, 2011.
- 2. Paul Reid, "Biometrics for Network Security", Pearson Education, 2004.
- 3. S.Y. Kung, S.H. Lin, M.W., "Biometric Authentication: A Machine Learning Approach", Prentice Hall, 2004.

- 1. Nalini K Ratha, Ruud Bolle, "Automatic fingerprint recognition system", Springer, 2003.
- 2. L C Jain, I Hayashi, S B Lee, U Halici, "Intelligent Biometric Techniques in Fingerprint and Face Recognition", CRC Press, 1st Edition, 1999.
- 3. John Chirillo, Scott Blaul, "Implementing Biometric Security", John Wiley & Sons, 2003.

					Mappi	ing of (COs w	ith PO	s / PSC	Ds				
()						P	Os						PSC	Ds
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3													
2		3												
3				3										
4						3								
5					3							2		3
CO (W.A)	3	3		3	3	3						2		3

Un

				L	Т	Ρ	C
				3	0	0	3
PRE-R	EQUISITE: N	IIL					
Cours	e Objectives:	 To understand the basics of BCI system EEG signal processing. To gain knowledge on various brain BCIs. To analyze different techniques for example applications. To apply various methods for transle commands. To explore practical applications of B and specific case studies. 	signals and neur xtracting features ating brain signa	al acti s from I featu	vities n brain ures ir	relevar signal nto co	nt to s for ntro
he Stuc	lent will be able	Course Outcomes	Cognitive Level	in	End S	ge of (emestination	ter
COI		undamental principles, structures and of BCI systems.	Ар		4	0%	
CO2		preprocess EEG signals effectively, fact removal and signal enhancement	An		4	0%	
CO3	Interpret BCI and functional	applications for external device control restoration.	An		I	5%	
CO4		ced feature extraction and translation as wavelets, PCA and neural networks nalysis.	E		ļ	5%	
CO5	Report real-v including neur through case	world applications of BCI technology, roprosthetics and mobile robot control, studies to evaluate the implementation I successes of BCI systems.	E	Int	ernal A	Assessn	nent

UNIT I – INTRODUCTION TO BCI

Fundamentals of BCI – Structure of BCI system – Classification of BCI – Invasive, Non-invasive and Partially invasive BCI – EEG signal acquisition - Signal Preprocessing – Artifacts removal.

UNIT II - ELECTROPHYSIOLOGICAL SOURCES

Sensorimotor activity – Mu rhythm, Movement Related Potentials – Slow Cortical Potentials-P300 - Visual Evoked Potential - Activity of Neural Cells - Multiple Neuromechanisms.

UNIT III – FEATURE EXTRACTION METHODS

Time/Space Methods – Fourier Transform, PSD – Wavelets – Parametric Methods – AR, MA, ARMA models – PCA – Linear and Non-Linear Features.

UNIT IV – FEATURE TRANSLATION METHODS

(9)

(9)

(9)

Linear Discriminant Analysis – Support Vector Machines - Regression – Vector Quantization– Gaussian Mixture Modeling – Hidden Markov Modeling – Neural Networks.

UNIT V – APPLICATIONS OF BCI

(9)

Functional restoration using Neuroprosthesis - Functional Electrical Stimulation, Visual Feedback and control - External device control, Case study: Brain actuated control of mobile Robot.

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

I. Bernhard Graimann, Brendan Allison and Gert Pfurtscheller, "Brain-Computer Interfaces: Revolutionizing Human-Computer Interaction", Springer, 2010.

- 1. R. Spehlmann, "EEG Primer", Elsevier Biomedical Press, 1981.
- 2. Fred A Mettler, Milton J Guiberteau, "Essentials of Nuclear Medicine and Molecular Imaging" 7th Edition, Elseiver, 2018.
- 3. Arnon Kohen, "Biomedical Signal Processing", Vol I and II, CRC Press Inc, Boca Rato, Florida, 1986.
- 4. Bishop C.M., "Neural Networks for Pattern Recognition", Oxford, Clarendon Press, 1995.

				1	1 appin	ng of C	Os wit	th POs	: / PSO	S				
60 -							POs						PS	SOs
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2			3	3										
3		3												
4					3									3
5						3		3				2		
CO (W.A)	3	3	3	3	3	3		3				2		3

Mr M

		22BMX31 - BIOMECHA	NICS				
				L	Т	Ρ	C
				3	0	0	3
PRE-R	EQUISITE: NI	L					
Cours	se Objectives:	 To understand the fundamental stress, and strain in fluids and non To analyze different types of flui flow conditions. To explore the development and nature of turbulence. To evaluate friction loss, velocity the human circulatory system. To apply control theory and metadotic stress. 	-fluids. d flows and mea l behavior of the distribution, and echanical analysis	sure vi bound blood to cir	scosity ary lay flow c culator	in var er and dynamic ry syste	rious I the cs in
		focusing on myocardial mechanics	and fluid dynamic				
he stud	C dent will be able	to	Cognitive Level	in	End S	ge of C emest nation	er
соі		owledge of the mechanical properties of biological materials such as bones, oft tissues.	Ap		3	0%	
CO2	Analyze humar biomechanical	n motion dynamics and kinematics using principles.	An		3	0%	
CO3	Interpret bic practical applic	omechanical analysis techniques in ations.	An		2	0%	
CO4	Assess joint human movem	mechanics and their implications for ent.	E		2	0%	
CO5	studies, analyz	nanical principles through detailed case zing real-world scenarios to deepen and problem-solving skills.	Ар	Int	ernal A	ssessm	nent

UNIT I – INTRODUCTION

Definition and perspective of biomechanics, Kinematic concept for analysing human motion, Kinetic concepts for analyzing human motion, Linear kinetics of human movement, Equilibrium, Angular kinetics of human movement, Anthropometry.

UNIT II – BIOMECHANICS OF SOLIDS AND FLUIDS

Constitutive Equation, Stress, strain, viscoelasticity, models of viscoelasticity, Flow properties of blood, dynamics of fluid flow in cardiovascular system, Rheology of blood in micro vessels, Bio viscoelastic solids, Lubrication of joints.

UNIT III – BIOMECHANICS OF HARD AND SOFT TISSUES

Bone: structure, composition, mechanical properties, anisotropy, fracture mechanisms – pseudo elasticity, Structure, function, mechanical properties of: skin, ligaments, skeletal muscles and tendons, Constitutive equations for soft tissues.

UNIT IV – BIOMECHANICS OF JOINTS

(9)

(9)

(9)

Kinetics and kinematics of joints, Skeletal joints, mechanics of the elbow, mechanics of shoulder, mechanics of spinal column, mechanics of hip, mechanics of knee, mechanics of ankle.

UNIT V – ORTHOPAEDIC APPLICATIONS

Gait analysis, Qualitative biomechanical analysis to: improve technique, understand injury development, Amputations and prosthetics, prosthetic components, Introduction to 3D printing, Introduction to accelerometer.

TOTAL(L:45) = 45 PERIODS

(9)

TEXT BOOKS:

- 1. Y.C.Fung, Bio-Mechanics, Mechanical Properties of Tissues, Springer-Verilog, 1993.
- 2. C. Ross Ether and Craig A. Simmons, Introductory Biomechanics from cells to organisms, Cambridge University Press, New Delhi, 2007.
- 3. Susan J Hall, Basics of Biomechanics, McGraw Hill Publishing.co. New York, 8th Edition, 2019.

- 1. Dhanjoo N. Ghista, Orthopaedic Mechanics, Academic Press, 1990.
- 2. Joseph D.Bronzino, Biomedical Engineering Fundamentals, Taylor& Francis, Fourth edition, 2015.
- 3. John Enderle, Susanblanchard, Joseph Bronzino, Introduction to Biomedical Engineering, Elsevier, Third edition, 2011.

				M	lapping	g of CC) s with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3	3						3						
2	3													
3				3										
4			3											
5							3					2		2
CO (W.A)	3	3	3	3			3	3				2		2

		22BMX32 - ERGONOMIC	S				
			et exposed to principles of visual capabilities. earn the mechanics of muscle physiology and significance of rest cycle. earn spatial compatibility and the relation between control orders and rol response. now about the measurements and proportions of the human body. e familiar with the mathematical models, analysis and design of biomedica ces using case studies. Dutcomes Cognitive Level Weightage of COs in End Semester Examination nciples to optimize workplace faces. Ap 40% esponses and ergonomic factors fficiency. An 40% ergonomic design on human ess. E 5%				
				3	0	0	
PRE-R	EQUISITE: N	L					
Cours	e Objectives:	 To learn the mechanics of muscle physic To learn spatial compatibility and the control response. To know about the measurements and To be familiar with the mathematical measurements and 	ology and signifi relation betwe proportions of	en co the hu	ontrol Iman b	orders ody.	ano
he stud	lent will be able	devices using case studies. Course Outcomes to	•	in	End S	emes	ter
COI		omic principles to optimize workplace and interfaces.	Ap		4	0%	
CO2		ological responses and ergonomic factors orkplace efficiency.	An		4	0%	
CO3	Evaluate the ir performance a	npact of ergonomic design on human and safety.	E		I	5%	
CO4	Assess ergon and ergonomi	omic solutions integrating human factors c principles.	E		ļ	5%	
CO5	principles ar discussions,	erdisciplinary perspectives on ergonomic nd their applications through group enhancing their understanding and real-world contexts.	С	Int	ernal A	Assessr	nent

UNIT I - VISUAL AND AUDITORY ERGONOMICS

Process of seeing – visual capabilities – factors affecting visual acuity and contrast sensitivity – human factor aspects of hard copy text and computer screen text, factors in selecting graphic representations symbols, qualitative visual display – process of hearing – principles of auditory display. Measures for monitoring control & mitigation.

UNIT II - MUSCLE PHYSIOLOGY

Muscle physiology – muscle metabolism – respiratory response – joint motion study – measure of physiological in-efficiency and energy consumption – work rest cycles – aspects of manual and posture study, material handling (MMH) Bio-mechanical recommended limits of MMH.

UNIT III - CONTROLS AND DISPLAYS

Spatial compatibility and physical arrangement of displays and controls - Design of displays and controls – movement capability – rotary controls and rotor displays movement of displays orientation of the operator and movement relationships control orders and control responses – human limitations in tracking task.

UNIT IV - ANTHROPOMETRY

Anthropometry – anthropometric design principles – Physical work load and energy expenditure - work space envelope – factors in design of work space surfaces – principles of seat design – principles of control panel. ergonomic implications. Organization classification of human errors theories of accident causation-reducing accidents by altering behavior.

(9)

(9)

(9)

UNIT V - CASE STUDIES

Biomedical Application, Design optimization of Medical Equipment, Ergonomic Keyboard Design for Carpal Tunnel Syndrome, Standing Desk Implementation for Workplace Ergonomics.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Pascale Carayon, "Handbook of Human Factors and Engineering", 2nd Edition, CRC Press, 2011.
- 2. Martin Helander, "Guide to Human Factors and Ergonomics", 2nd Edition, CRC Press, 2005
- 3. Benjamin W.Niebel, "Motion and Time Study", Richard, D. Irwin Inc., 7th Edition, 2002.

REFERENCES:

- 1. Shrawan Kumar, "Biomechanics in Ergonomics", 2nd Edition, CRC Press2007.
- 2. George Kanawaty, "Introduction to work study", ILO, 3rd Edition, Oxford & IBH Publishing, 2001
- 3. Stephen Pheasant, Christine M. Haslegrave, Bodyspace: Anthropometry, Ergonomics and the Design of Work, CRC Press, 2005.

				M	lapping	g of CC	Os with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3	3												
2				3										
3			3			2		2						
4			3										2	
5									3	3				
CO (W.A)	3	3	3	3		2		2	3	3			2	

		22BMX33 - FINITE ELEMENT	ANALYSIS			· · · · ·	
				ems using finite elem etric elements to pl te element solutions	C		
					3		
PRE-R	EQUISITE: NI	L					
Cours	e Objectives:	 To analyze and model engineer methods. To formulate and solve beam and methods. To develop and apply higher-ord stress problems. To evaluate elasticity equations a plane stress, plane strain, and fluic To solve non-linear finite element applications. 	d 2D scalar proble der and isoparame nd implement finit I mechanics.	ems us etric e ce elen	ing fini Iemen nent so	ite eler ts to p plution	ment olane s for
The stu	C dent will be able	ourse Outcomes to	Cognitive Level	in	End S	emes	ter
COI		ematical models to analyze how ructures behave.	Ap		3	0%	
CO2	Analyze and computer mod	enhance biomechanical systems using dels.	An		3	0%	
CO3	,	effects of different conditions on check the accuracy of simulations.	An		2	0%	
CO4	Assess mode enhance produ	els for engineering applications to uct design.	E		2	0%	
CO5		munication skills and critically analyze analysis concepts through researching	An	Int	ernal A	Assessn	nent

UNIT I - INTRODUCTION TO MODELLING

Historical Background, Mathematical Modelling of field problems in Engineering, Governing Equations, Natural and Essential Boundary conditions - Basic concepts of the Finite Element Method. One Dimensional Second Order Equations, Discretization, element types- Linear and Higher order Elements Derivation of Shape functions and Stiffness matrices and force vectors.

UNIT II - BEAM ELEMENTS AND SCALAR PROBLEM IN TWO DIMENSION

Fourth Order Beam Equation Transverse deflections, Natural frequencies of beams and longitudinal vibration. Second Order 2D Equations involving Scalar Variable Variation Formulation Finite Element Formulation Triangular Elements Shape functions and element matrices and vectors. Application to Field Problems in Bio mechanics, Quadrilateral elements.

UNIT III - APPLICATIONS TO FIELD PROBLEMS

Higher order elements. Natural co-ordinate systems Iso parametric elements Shape functions for isoparametric elements One, two and three dimensions Serendipity elements Numerical integration and application to plane stress problems transformation in coordinates- Jacobian of transformation order of convergence- numerical integration example problems- shape functions in natural coordinates rectangular elements- Lagrange family.

(9)

(9)

UNIT IV - NON-LINEAR ANALYSIS

Introduction to Nonlinear problems, some solution methods, computational procedure, simple material nonlinearity, stress stiffening, contact interfaces, problems of gaps and contact, geometric nonlinearity, modelling considerations.

UNIT V - IMPACT ANALYSIS

Mechanical properties of biological and commonly used biomedical engineering materials, Critical reviews of finite element analysis in biomechanical research. Modelling and force analysis of musculoskeletal systems, Stress calculations.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- 1. King-Hay Yang, Basic Finite Element Method as Applied to Injury Biomechanics, Elsevier Academic Press. 2017.
- 2. Connie McGuire, Finite Element Analysis: Biomedical Aspects, NY Research press, 2015.
- 3. Moratal D., Finite Element Analysis from Biomedical Applications to Industrial Developments, InTech Publisher, 2014.

REFERENCES:

- I. J N Reddy, Finite element methods, Tata Mc Graw Hill, 2003.
- 2. Seshu, Text Book of finite element analysis, Prentice Hall, New Delhi, 2003.

				Μ	apping	g of CC) s with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3												
3				3										
4			3										3	
5									2	3		2		
CO (W.A)	3	3	3	3					2	3		2	3	

Undi

(9)

	22BMX35 - CARDIOVASCULAR ENGINE	ERING				
			L	т	Ρ	C
			3	0	0	3
PRE-R	EQUISITE: NIL					
	To Understand Cardiovascular Functions.					
	To Analyze Cardiac Events and Cycles.					
Cours	e Objectives: • To infer knowledge on Cardiac Excitation	and Regul	ation.			
	To Assess Cardiac Output Methods.					
	To Evaluate Hemodynamics Principles.					
The stu		nitive evel	in	End S	ge of C emest natior	er
COI	Apply knowledge of cardiac physiology and hemodynamics to assess and monitor patients' cardiovascular health, aiding in the diagnosis and treatment of cardiac conditions.	Ар		4()%	
CO2	Compare new treatments and interventions using cardiovascular physiology principles.	An		4(0%	
CO3	Interpret clinical data and use it to inform medical decisions.	An		1!	5%	
CO4	Assess medical devices by using principles of cardiac excitation, contraction and hemodynamics.	E		5	%	
CO5	Articulate a research-based report, analyzing medical device testing to comprehend the causes of heart diseases and their connection to suitable treatments.	An	Inte	ernal A	ssessm	ient

UNIT I – OVERVIEW OF THE CARDIOVASCULAR SYSTEM

Functions of the cardiovascular system, Circulation of blood, Central control of the cardiovascular system.

UNIT II – CARDIAC CYCLE

Mechanical events, Arterial cycle and central venous pressure cycle, Clinical aspects of human cardiac cycle.

UNIT III – CARDIAC EXCITATION AND CONTRACTION

Mechanism of contraction, Sinoatrial node function, cardiac conduction system, Atrioventricular node function, Autonomic regulation of the heart rate.

UNIT IV – ASSESSMENT OF CARDIAC OUTPUT

Fick principle, Thermodilution and indicator dilution methods, Pulse Doppler methods, miscellaneous methods.

UNIT V – HEMODYNAMICS

(9)

(9)

(9)

(9)

Relationship between pressure, flow and resistance, Frank-Starling law, Preload, after load and contractility, Control of stroke volume and cardiac output

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- Susan J Hall, Basics of Biomechanics, McGraw Hill Publishing.co. New York, 8th Edition, 2018.
- 2. Dhanjoo N.Ghista, Orthopaedic Mechanics, Academic Press, 2014.

- 1. Joseph D.Bronzino, Biomedical Engineering Fundamentals, Taylor& Francis, 2006.
- 2. John Enderle, Susanblanchard, Joseph Bronzino, Introduction to Biomedical Engineering, Elsevier, 2005.

				M	lapping	g of CC) s with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3	3				2								
2			3					2					2	
3				3										
4				3										
5				3			3					2		
CO (W.A)	3	3	3	3		2	3	2				2	2	

U.D.

	22BMX36 - REHABILITATION ENG	INCERING	<u> </u>	· _ ·		
			L	Т	Ρ	C
			3	0	0	3
PRE-R						
	• To explain the need for medical aids.					
	To understand the sensory rehabilitation	,				
Cours	• To learn the use of orthopedic prosthe	etics and ort	hotics i	n rehal	oilitatic	on.
	To understand virtual reality in rehabil					
	To have an understanding of rehabilitation	tion medicin				
The stu	Course Outcomes Course Outcomes Course Outcomes Course Outcomes Course Course Outcomes Outcomes Outcomes Course Outcomes Outcomes Outcomes Outcomes Outcomes Outcomes Outcomes	Cognitive Level	in	ightag End S Exami	emest	ter
соі	Apply the knowledge of roles and functions of the rehabilitation team and the principles of community- based rehabilitation to enhance proper delivery of care.	Ap		4	0%	
CO2	Analyze engineering concepts in sensory augmentation and substitution, including visual, auditory and tactual systems to develop effective sensory aids.	An		4	0%	
CO3	Analyze modern tools such as virtual reality and robotics to develop innovative rehabilitation systems and enhance mobility recovery.	An		L	5%	
CO4	Assess orthopedic prosthetics, orthotics and functional electrical stimulation systems for motor rehabilitation using engineering principles.	E		5	%	
CO5	Develop insights into rehabilitation engineering advancements by engaging with industry experts, integrating academic knowledge with real-world practices.	С	Int	ernal A	ssessn	nent

UNIT I - INTRODUCTION TO REHABILITATION

Definition - Impairments, disabilities and handicaps, Primary and secondary disabilities, Activities of daily living, Appropriate Technology, Residual function. Rehabilitation. Rehabilitation team – members and their functions. Rehabilitation care –Need for proper delivery of rehabilitation care, Community based rehabilitation and its aspects.

UNIT II - ENGINEERING CONCEPTS IN SENSORY AUGMENTATION AND (9) SUBSTITUTION

Sensory augmentation and substitution- Visual system: Visual augmentation, Tactual vision substitution, and Auditory vision substitution. Auditory system- Auditory augmentation, Hearing aids, cochlear implants, visual auditory substitution, tactual auditory substitution. Tactual system - Tactual augmentation, Tactual substitution.

UNIT III - ORTHOPEDIC PROSTHETICS AND ORTHOTICS

(9)

(9)

Engineering concepts in motor rehabilitation, Artificial limbs- body powered, externally powered and controlled orthotics and prosthetics, Myoelectric hand and arm prosthetics. Functional Electrical Stimulation Systems-Restoration of hand function, restoration of standing and walking, Hybrid Assistive Systems (HAS).

UNIT IV - VIRTUAL REALITY

Introduction to virtual reality, Virtual reality-based rehabilitation, Hand motor recovery systems with Phantom haptics, Robotics and Virtual Reality Applications in Mobility Rehabilitation.

UNIT V - REHABILITATION MEDICINE AND ADVOCACY

(9)

Physiological aspects of Function recovery, psychological aspects of Rehabilitation therapy, Legal aspect available in choosing the device and provision available in education, job and in day-to-day life.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Joseph D Bronzino, "The Biomedical Engineering Handbook". 2nd edition, CRC Press, 2000.
- 2. Robinson C.J, "Rehabilitation Engineering", CRC Press, 2006.

- I. Sashi S Kommu, "Rehabilitation Robotics", 1st edition, CRC Press, 2007.
- 2. Sunder, "Textbooks of Rehabilitation", Jaypee Brothers Medical Publishers Pvt. Ltd, New Delhi, 2nd Edition, Reprint 2007.
- 3. Horia- Nocholai Teodorecu, L.C.Jain, "Intelligent systems and technologies in rehabilitation Engineering", CRC; December 2000.
- 4. Etienne Grandjean, Harold Oldroyd, "Fitting the task to the man", Taylor & Francis, 1988.
- 5. Keswick. J., "What is Rehabilitation Engineering, Annual Reviews of Rehabilitation", Springer Verlag, New York, 1982.
- 6. Warren E. Finn, Peter G. Lopressor, "Handbook of Neuroprosthetic Methods", CRC, 2002.
- 7. Roy A Cooper (Editor), Hisaichi Ohnabe (Editor), Douglas A. Hobson (Editor), "An Introduction to Rehabilitation Engineering (Series in Medical Physics and Biomedical Engineering" CRC Press, 2000.

				М	apping	g of CC	Os with	POs /	PSOs					
						PC	Ds						PS	Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3												
3			3	3										
4					3									3
5							3					3		
CO (W.A)	3	3	3	3	3		3					3		3

link

				L	obility. and suggest su for vital organ nent. on its perforr	Ρ	C
				Image: state 3 0 an mobility. ing and suggest s blogy for vital orgation b	0	3	
PRE-R	EQUISITE: NI	L					
Cours	se Objectives:	 To apply suitable assistive technol To analyze sensory impairment of aiding devices. To explore recent advancements To evaluate an assistive device for To assess the performance of an 	of vision and hear in assistive techno a given organ imp	ing and logy fo pairme	d sugg or vital nt.	organ	S.
he stud	Co dent will be able	parameters. ourse Outcomes to	Cognitive Level	in	End S	emes	ter
COI	and virtual re	vledge of the advanced control systems eality applications in the context of ologies and healthcare innovations.	Ap		4	0%	
CO2		wledge on advanced assistive devices to ncare outcomes and patient quality of	An		4	0%	
CO3		l challenges through the integration of stive technologies and effective implant	An		I	5%	
CO4		ient implant design principles and to address complex healthcare needs.	E		ļ	5%	
CO5	perspectives a evaluate socie	dustry insights, analyze diverse nd enhance communication skills to tal, health, safety, legal, and cultural ssional engineering practice.	E	Int	ernal A	Assessr	nent

UNIT I – ASSISTIVE TECHNOLOGY FOR MOBILITY

Basic assessment and evaluation for mobility, Control systems, navigation in virtual space by wheelchairs, Wheel chair seating and pressure ulcers, Fuzzy logic expert system for automatic tuning of myoelectric prostheses, Intelligent prosthesis.

UNIT II – ASSISTIVE TECHNOLOGY AND SENSORY IMPAIRMENTS

Visual and auditory impairment, assessment methods, Libraille, GRAB, mathematical Braille, Augmentative and alternative methods for hearing impairment, Use of multimedia technology to help hard of hearing children, Haptic as a substitute for vision.

UNIT III – ASSIST DEVICES FOR VITAL ORGANS AND ADVANCEMENTS IN TECHNOLOGY

Cardiac assist devices, Intra-Aortic Balloon Pump (IABP), auxiliary ventricles, Dialysis for kidneys, Intermittent positive pressure breathing (IPPB) type assistance for lungs, Latest use of assistive technology for chronic heart diseases and healthcare, Information technology, telecommunications, new media in assisting healthcare, Future trends in assistive technology, virtual reality based training system for disabled children.

UNIT IV – PRINCIPLES OF IMPLANT DESIGN

(9)

(9)

Principles of implant design, cardiac implants, Clinical problems requiring implants for solution, Permanent versus absorbable devices, the missing organ and its replacement, Tissue engineering, scaffolds, cells and regulators criteria for materials selection, Case study of organ regeneration.

UNIT V - IMPLANT DESIGN PARAMETERS AND ITS SOLUTION

(9) Biocompatibility, local and systemic effects of implants, Design specifications for tissue bonding and modulus matching, Degradation of devices, natural and synthetic polymers, corrosion, wear and tear, Implants for Bone, Devices for nerve regeneration, dental and otologic implants.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- I. Yadin David, Wolf W. von Maltzahn, Michael R. Neuman, Joseph.D, Bronzino, Clinical Engineering, CRC Press, 1st edition, 2010.
- 2. Kenneth J. Turner, Advances in Home Care Technologies: Results of the match Project, Springer, 1st edition, 2012.

- I. Gerr, M. Craddock, Assistive Technology-Shaping the future, IOS Press, 1st edition, 2003.
- 2. Marion. A. Hersh, Michael A. Johnson, Assistive Technology for visually impaired and blind, Springer Science & Business Media, 1st edition, 2010.

				M	lapping	g of CC) s with	POs /	PSO s					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2				3									2	
3		3		3										
4			3			3								
5						3	3	3						
CO (W.A)	3	3	3	3		3	3	3					2	

NYN)

		22BMX38 - HAPTIC	S				
				L	Т	Ρ	C
				3 0 0 of human haptics including , and muscle physiology. with a focus on human factors. sensors and actuators, addres onal haptics for various applications ology in medical applications suc- tional simulations.	3		
PRE-R		IL					
		To comprehend the fundaments sometosensory system motor system				luding	the
				•		tors.	
Cours	e Objectives:	 To understand and assess hap ergonomic barriers. 					ssing
	·	• To implement and analyze comp focusing on rendering and stability	-	for var	ious a	pplicat	ions
		• 5. To explore and apply haptic t telemedicine, rehabilitation, and e	0,		plicatio	ons suc	h as
The stu	C dent will be able	ourse Outcomes to	Cognitive Level	in	End S	emest	er
COI		wledge on the fundamentals of human tion and its application in interface	Ap		4	0%	
CO2	Analyze hapti actuator techn	c systems using various sensor and ologies.	An		4	0%	
CO3		ced haptic rendering techniques and dologies in virtual environments.	E		I	5%	
CO4		cations of haptics in medical simulation, virtual reality and other emerging fields.	E		Į.	5%	
		eminars effectively on haptics, deep understanding and critical analysis	F	Int	ornal A	Assessn	hent

UNIT I - INTRODUCTION (9) Touch, Sense of Touch, Perception of world through touch, Haptics, Tactile system, Tactile receptors, Sensory and Motor specialization of Hand, Haptic perception, Haptic Illusion, Tactile and Haptic Displays, Haptic exploration, Concepts and terminologies.

UNIT II - HUMAN HAPTIC PERCEPTION

Introduction, Touch and cognition, Human Haptic system: Mechanical structure of Arm, Hand haptics system, Human sensory system, The motor system, Haptic cognition, Haptic exploration, Concept of Illusion, Human perceptual parameters for Haptics: Interface development, Perception Thresholds.

UNIT III - MACHINE HAPTICS

Introduction, Haptic Interfaces: Robotic perspective, Haptic interface system, HAVE sensor: Electromechanic sensors, Optical sensors, Capacitive sensor, Resistive sensor, Force sensors, strain gauge sensors, Magnetic sensor, HAVE actuators: Magnetic Levitation Devices, Nonholonomic devices, Magnetic sensors and parallel mechanisms, performance specifications: physical attributes, special attributes and temporal attributes.

(9)

UNIT IV - COMPUTER HAPTICS

Introduction, Haptic rendering subsystems, Polygon, based representation and scene graph, collision detection techniques and bounding volumes, control methods for Haptic systems: Impedance control architecture, Feed, forward impedance control architecture, positive feedback Impedance control architecture, Hybrid compensation Impedance control architecture, Admittance control architecture.

UNIT V - HAPTICS APPLICATIONS

Introduction, Haptics for Medical Applications: Surgical simulation, stoke based rehabilitation, support of the visually impaired, Tele, surgery, Media: Haptic broadcasting. E, commerce, Video games, other application: Mobile Haptics, Haptics and VR, Introduction to Wearable Haptic devices.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- I. Lynette Jones, Haptics, The MIT Press, 2018.
- 2. Abdulmotaleb El Saddik, Mauricio Orozco, Mohamad Eid, Jongeun Cha, Haptics Technologies: Bringing Touch to Multimedia, Springer Science & Business Media, 2011.
- 3. Tom Bruno, Wearable Technology: Smart Watches to Google Glass for Libraries, Rowman & Littlefield Publishers, Lanham, Maryland, 2015.

REFERENCES:

- 1. Hiroyuki Kajimoto, Masashi Konyo, Shoichi Hasegawa, Takuya Nojima, Ki-Uk Kyung, Haptic Interaction: Science, Engineering and Design. (2017). Switzerland: Springer Nature Singapore.
- 2. Abdulmotaleb El Saddik, Mauricio Orozco, Mohamad Eid, Jongeun Cha, Haptics. Technologies Bringing Touch to Multimedia, Springer, 2011.

				M	apping	g of CC) s with	POs /	PSO s					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3												
3				3										
4					3									3
5									3	2				
CO (W.A)	3	3		3	3				3	2				3

Nov.

(9)

				partments in healthcare se structure and the responsibile edical device maintenance. for a hospital and its s nitive wel Weightage of C in End Semest Examination Ap 40% E 15%	C		
					3		
PRE-R	EQUISITE: N	L		11		I	
Cours	e Objectives:	 To apply safety procedures in heal To apply safety norms in diffe according to their working environ To analyze the Health care organ of different levels to implement sa To analyze the regulatory standard To outline the accreditation p standards. 	rent department nments nization structure fety. ds for medical dev	s in h and th vice mai	ie resp intenai	oonsibi nce.	lities
The stu	C dent will be able	ourse Outcomes to	Cognitive Level	in l	End S	emest	er
COI	Illustrate prep managing heal	paredness and response strategies for the theorem the theorem the theorem is theorem is the theorem is the theorem is theorem is theore	Ap		4	0%	
CO2	healthcare w	nplexity science principles to manage orkflows effectively, improving quality linical settings.	An		4	0%	
CO3	Assess patie healthcare dep	nt safety protocols across diverse partments.	E		L	5%	
CO4	standards for	adhere to international regulatory medical device maintenance and safety, pliance with ISO and national health	E		5	5%	
CO5	Analyze case	study findings to evaluate and enhance					

UNIT I – INTRODUCTION

Guidelines and safety practices for improving patient safety, Human error and patient safety, safer care, patients for patient safety, Human factors, patient safety from the perspective of medical residents, patient safety in the world, Infection prevention and control, Adverse event investigation and Risk assessment.

UNIT II – PATIENT SAFETY IN DIFFERENT HEALTHCARE DEPARTMENTS

Patient safety in Intensive care and Anaesthesiology, Safe surgery, Emergency department clinical risk, obstetric safety patient, patient safety in internal medicine, risks in oncology and radiation therapy, patient safety in orthopaedics and Traumatology, patient safety in paediatrics, patient safety in paediatrics and ophthalmology.

UNIT III - HEALTH ORGANIZATION

Community and Primary Care, Complexity Science as a Frame for Understanding the Management and Delivery of High Quality and Safer Care, Measuring Clinical Workflow to Improve Quality and Safety, shift work Organization, Non-technical Skills in Healthcare, Medication Safety, Digital Technology and Usability, Coping with the COVID-19 Pandemic: Roles and Responsibilities for Preparedness.

(9)

(9)

UNIT IV – REGULATORY STANDARDS FOR MEDICAL DEVICE MAINTENANCE International Standards, Medical Device Directive 93/42/EEC, Medical Electrical Equipment ISO 60601,

Safety Testing of Medical Devices ISO 62353, Medical Device Inspection ISO17020. Indian Standards, National Health Mission, Biomedical Equipment Management and Maintenance Program (BMMP), ISO 9001-2008, AERB Compliance, Radiation protection.AE(RP)R-2004, Safety Code AE/RF-MED/SC-3.

UNIT V – HOSPITAL ACCREDITATION AND SAFETY STANDARDS

(9)

(9)

Accreditation, JCI Accreditation & its Policies. Life Safety Standards- Protecting Occupants, Protecting the Hospital and Individuals from Fire, Smoke, and Heat. Managing Hazardous Medical Material and Waste, Laboratory and Radiation safety, Health and safety hazards of shift work. Patient Safety, Human factors, Reliability, Evidence based Medicine, Root cause Analysis.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- I. Donaldson L, Ricciardi W, Sheridan S, Tartaglia R, editors. Textbook of Patient Safety and Clinical Risk Management [Internet].
- 2. Cham (CH): Springer; 2021. PMID: 36315660.

- 1. William Charney, Handbook of Modern Hospital Safety, CRC Press, 2nd Edition, 2009.
- 2. Almira Badnjevic, Mario Cifrek, Ratko Magjarevic, Zijad Dzemic, Inspection of Medical Devices: For Regulatory Purposes, Springer Nature, 2018.

				M	lapping	g of CC)s with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I		3						3						
2				3		3								
3	3					3								
4		3		3			3							
5									3			3		2
CO (W.A)	3	3		3		3	3	3	3			3		2

				Т	P	
			3	0	0	3
QUISITE: N						
			•	tions.		
.		•	ations.			
Objectives:	, , ,					
	, , , , , , , , , , , , , , , , , , , ,			devic	es.	
	I o analyze the software and Qual	ity system regulat		<u> </u>		
-		Cognitive Level	in	End S	emes	ter
	,	Ар		4	0%	
		An		4	0%	
•		An		I	5%	
		E		Ľ	5%	
and applicatio	on of global medical device regulations	An	Int	ernal A	Assessr	nent
	Objectives: Cent will be able Apply principl the performan Explain regu requirements Illustrate qua device manu standards. Assess the im device develo Correlate exp and applicatio	 To apply the global policies on me To analyze implications of the reg To analyze the Standards and Reg To analyze the software and Qual Course Outcomes ent will be able to Apply principles of reliability engineering to enhance the performance of medical devices. Explain regulatory frameworks and compliance requirements in global medical device manufacturing. Illustrate quality management systems for medical device manufacturing adhering to international	Objectives: To understand the basic concepts of medical deviceTo apply the global policies on medical device regulations.To analyze implications of the regulations used for rTo analyze the Standards and Regulations used for rTo analyze the software and Quality system regulati Course OutcomesCognitiveent will be able toCognitive entitiesApply principles of reliability engineering to enhance the performance of medical devices.AppExplain regulatory frameworks and compliance requirements in global medical device manufacturing.AnIllustrate quality management systems for medical device manufacturing adhering to international standards.AnAssess the impact of software regulations on medical device development and compliance.ECorrelate expert insights to enhance comprehension and application of global medical device regulationsAn	COUISITE: NIL To understand the basic concepts of medical device regulations. To apply the global policies on medical device regulations. To analyze implications of the regulations. To analyze the Standards and Regulations used for medical To analyze the software and Quality system regulation. Apply principles of reliability engineering to enhance the performance of medical devices. Explain regulatory frameworks and compliance requirements in global medical device manufacturing. Illustrate quality management systems for medical device manufacturing adhering to international standards. Assess the impact of software regulations on medical device development and compliance. Correlate expert insights to enhance comprehension and application of global medical device regulations An Int 	COUISITE: NIL • To understand the basic concepts of medical device regulations. Objectives: • To apply the global policies on medical device regulations. • To analyze implications of the regulations. • To analyze the Standards and Regulations used for medical device • To analyze the Standards and Regulations used for medical device • To analyze the Standards and Regulations used for medical device • To analyze the software and Quality system regulation. • Weightagin End S • To analyze the software and Quality system regulation. • Evel # Weightagin End S • To analyze the software and Quality system regulation. • Evel # Weightagin End S • To analyze the software and Quality system regulation. • To analyze the software and Quality system regulation. • Evel • To analyze the software and Quality system regulation. • To analyze the software and Quality system regulation. • Weightagin End S • To analyze the software and Quality system regulation App 4 • Explain regulatory frameworks and compliance requirements in global medical device manufacturing. An 4 Illustrate quality management systems for medical device manufacturing adhering to international standards. An 1 Assess the impact of software regulations on medical device development and compliance. E 2	COUISITE: NIL To understand the basic concepts of medical device regulations. To apply the global policies on medical device regulations. To analyze implications of the regulations used for medical devices. To analyze the Standards and Regulations used for medical devices. To analyze the software and Quality system regulation. To analyze the software and Quality system regulation. To analyze the software and Quality system regulation. Course Outcomes ent will be able to Course Outcomes of medical devices. Explain regulatory frameworks and compliance requirements in global medical device manufacturing. Illustrate quality management systems for medical device manufacturing adhering to international standards. Assess the impact of software regulations on medical device regulations on medical device expert insights to enhance comprehension and application of global medical device regulations An Internal Assess Internal Assess Soft medical device regulations An Internal Assess Soft medical device regulations

Defining the device, Overview of quality function deployment, Business proposal Reliability: Definition, Quality Vs Reliability Vs Unreliability, Types of Reliability, Optimizing reliability, Reliability's effects on medical devices. Concept of Failure: Causes of Failure, Practical aspects of failure, Failure rates, Hardware failure, Software Failure. Safety and Risk Management: Medical device safety and risk management, Effectiveness/performance of medical devices, Phases in the life span of a medical device.

UNIT II – DRUG MANUFACTURING PRACTICES

Global Harmonization Task Force (GHTF): Objectives, Scope of the four GHTF study groups, Benefits of the GHTF, Global Medical Device Nomenclature (GMDN) The Food and Drug Administration: Device classification, Registration and listing, The 510 (k) Process, Declaration of conformity, The PMA application, Investigational Device Exemptions (IDEs), Good Manufacturing Practices (GMPs).

UNIT III – MEDICAL DEVICE DIRECTIVES

The European Union: European Directives, European Standardization Bodies, European Standards Development Process, Other European Standards Considerations, Conformity Assessment and Testing, European Organization for Testing and Certification. The Medical Devices Directives: Process, Choosing the appropriate directive, Identifying the applicable essential requirements.

UNIT IV – STANDARDS AND REGULATIONS

Standards and Regulation: Voluntary and mandatory standards, Standards development process, Conformity assessment with standards, National and international standards systems, Identification of standards, Current trends in the use of standards in medical device regulations. The ISO 9000 Series of

(9)

(9)

Standards.

UNIT V – SOFTWARES AND QUALITY SYSTEM REGULATIONS

(9)

Software and Quality system regulation: Software as a Technology, Domestic and International Software Regulations and Standards. Design controls, Document controls, Purchasing controls, Identification and traceability, Production and process controls, Acceptance activities, Non-conforming product, Corrective and preventive action.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Michael Cheng, Medical Device Regulations Global Overview and Guiding Principles, World Health Organization, 2003.
- 2. Des O'Brien, Medical Device Regulations Roadmap A Beginners Guide, Create Space Independent Publishing Platform, 2017.
- 3. Aakash Deep, Medical Device Regulations A Complete Guide, Elsevier Science, 2022.

- Jack Wong, Raymond Tong, Jenny Stanford Publishing Handbook of Medical Device Regulatory Affairs in Asia, Second Edition, 2018.
- 2. G.R Higson, Medical Device Safety, The Regulation of Medical Devices for Public Health and Safety, 2001.

				Μ	lapping	g of CC) s with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3												
3				3		3								
4		3			3									2
5												3		
CO (W.A)	3	3		3	3	3						3		2

		22BMX51 - BIO-MEMS TECH	NOLOGY				
				L	т	Ρ	C
				3	0	0	3
PRE-R	EQUISITE: NI	L					
		• To explore the principles and ap the healthcare industry.	plications of MEN	1S and	Micro	osysten	ns in
		 To understand the fundamental pr Systems (MOEMS) and their applic 	•	Opto I	Electro	mecha	nica
Cours	e Objectives:	 To analyze the properties and app To investigate BioMEMS technology applications, and emerging technology To comprehend the micromaching 	gies for clinical n ogies.	nonitor	ring, la	b-on-a	•
		in microsystem fabrication.		We	ightag	Te of (<u>`^</u>
	-	ourse Outcomes	Cognitive		End S	-	
he stu	dent will be able	to	Level	E	Exami	natior	า
COI		ed microsystem technologies to solve Illenges effectively.	Ар		4	0%	
CO2		nicromachining techniques to fabricate microsystems tailored for healthcare	An		4	0%	
CO3	Assess microf clinical use.	uidic systems and BioMEMS devices for	E		I	5%	
CO4	Evaluate and for biomedica	select appropriate MEMS/Microsystems applications.	E		Ę	5%	
CO5		understanding and application among ofostering interactive discussions.	Ap	Int	ernal A	ssessn	nent

UNIT I – MEMS IN HEALTHCARE

MEMS and Microsystems- Introduction - Typical MEMS and Microsystem Products - Application of Micro-System in Healthcare Industry – Working Principles of Microsystems Micro-Sensors – Micro-Actuation - MEMS with Micro Actuation– Micro Accelerators.

UNIT II – FUNDAMENTALS OF MOEMS

Micro-Opto Electromechanical Systems: Fundamental Principle of MOEMS Technology, Advantages - Light Modulators, Beam Splitter – Micro-Lens, Micro-Mirrors - Digital Micro-Mirror Device, Grating Light Valve, Optical Switch, Waveguide and Tuning.

UNIT III – MICROFLUIDIC SYSTEMS

Microfluidics- Introduction and Fluid Properties, Applications of MFS- Fluid Actuation Methods-Electrophoresis, Dielectrophoresis, Electrowetting, Optoelectrowetting, Electroosmosis Flow, Electrothermal Flow, Thermocapillary Effect- Microfluidic Channel- Microdispenser- Microneedle-

(9)

(9)

Microfilter

UNIT IV – BioMEMS

Introduction to Biomems, Biomems for Clinical Monitoring, Lab on A Chip, DNA Sensors, E-Nose, E-Tongue. Microsystem Approaches to PCR, MEMS Based Implantable Drug Delivery System, Emerging Biomems Technology.

UNIT V – MICROMACHINING

(9)

(9)

Micro System Technology-Photolithography-X-Ray Lithography-Etching-Deposition-Material Properties-Thin Film Process-Clean Room-Laser Deposition-Thin Film Diode-Transistor- FET-ISFET. Software Tools for Design, Analysis and Testing.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Tai-Ran Hsu, "MEMS & Microsystems- Design, Manufacture and Nanoscale Engineering", 2nd Edition John Wiley & Sons, 2008.
- 2. Nitaigour Premchand Mahalik, "MEMS", 2 nd Reprint Tata McGraw Hill, 2008.

- 1. Albert Folch, "Introduction to Bio mems", 1st Edition, CRC Press, 2012.
- 2. N.P.Mahalik, "Micro Manufacturing & Nanotechnology", Springer, 2006.
- 3. Sergey Edward Lysherski, "Nano and Micro-electromechanical systems". CRCPress.2005.
- 4. Wanjun Wang, Steven A. Soper, "BioMEMS Technologies and Applications", CRC Press. 2006.
- 5. Abraham P. Lee, James L. Lee, "BioMEMS and Biomedical Nano technology", Vol.I, Springer, 2006.

Mapping of COs with POs / PSOs														
COs	POs												PSOs	
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3												2	
2			2											
3		3		3										2
4			3	3										
5							2					3		
CO (W.A)	3	3	2.5	3			2					3	2	2

			L	Т	Р	C
			3	0	0	3
PRE-R	REQUISITE: NIL		-		-	
	To introduce fundamental princi nanotechnology.					s of
Cours	se Objectives:	0,		0,		
	I o familiarize with emerging areas i	6,			cine.	
	To infer knowledge in diagnostic ch		•			
	To apply nanotechnology appropria	tely in medical app				
he stuc	Course Outcomes Ident will be able to	Cognitive Level	in	End S	ge of C emest nation	ter
COI	Apply the knowledge of fundamental principles and techniques involved in nanotechnology.	Ар		4	0%	
CO2	Analyze nanotechnology based solutions for biomedical applications, focusing on drug delivery, imaging and surgical interventions.	An		4	0%	
CO3	Deduce the effectiveness of nanotechnology in cancer therapy, including drug delivery mechanisms and diagnostic techniques.	An		I	5%	
CO4	Assess the safety, toxicity and environmental impact of nanomaterials to develop strategies for their safe and effective use.	E		ļ	5%	
CO5	Connect through expert talks' perspective on the societal and environmental impacts of	U	Int	ernal A	Assessn	nent

UNIT I – NANOSTRUCTURES

Preparation, Properties and Characterization - Self-Assembling Nanostructure - Vesicular and Micellar Polymerization-Nanofilms - Metal Nanoparticles - Lipid Nanoparticles - Nanoemulsion - Molecular Nanomaterials: Dendrimers.

UNIT II – NANOTECHNOLOGY IN BIOMEDICAL INDUSTRY

Reconstructive Intervention and Surgery- Nanomaterials in Bone Substitutes and Dentistry – Implants and Prosthesis -in Vivo Imaging- Genetic Defects and Other Disease States — Nanorobotics in Surgery – Nanocarriers: Sustained, Controlled, Targeted Drug Delivery Systems.

UNIT III – NANOTECHNOLOGY IN CANCER THERAPY

Cancer Cell Targeting and Detection- Polymeric Nanoparticles for Cancer Treatment – Mechanism of Drug Delivery to Tumors -Advantages and Limitations - Multifunctional Agents - Cancer Imaging – Magnetic Resonance Imaging- Cancer Immunotherapy.

UNIT IV – NANOTECHNOLOGY IN COSMETICS

Polymers in Cosmetics: Film Formers – Thickeners – Hair Colouring – Conditioning Polymers: Conditioning, Cleansing – Silicons – Emulsions – Stimuli Responsive Polymeric Systems - Formulation of Nano Gels, Shampoos, Hair-Conditioners -Micellar Self-Assembly Sun-Screen Dispersions for UV Protection – Color Cosmetics.

(9)

(9)

(9)

UNIT V – NANOTOXICITY

Nanotoxicology- Introduction, Dose Relationship- Hazard Classification-Risk Assessment and Management - Factors Affecting Nano Toxicity- Dermal Effects of Nanomaterials, Pulmonary, Neuro and Cardiovascular Effects of Nanoparticles - Gene–Cellular and Molecular Interactions of Nanomaterials.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Springer Handbook of Nanotechnology- Ed. by, Springer-Verlag 2004.
- 2. Nanobiotechnology: Concepts, Applications and Perspectives, CM. Niemeyer C A. Mirkin, (Eds), Wiley, 2004.
- 3. Jo Anne Shatkin, "Nanotechnology: Health and Environmental Risks", 2nd Edition, CRC Press, 2013.
- 4. Sarah E. Morgan, Kathleen O. Havelka, Robert Y. Lochhead "Cosmetic Nanotechnology: Polymers and Colloids in Cosmetics", American Chemical Society, 2006.

REFERENCES:

- 1. Tuan VoDinh, "Nanotechnology in Biology and Medicine: Methods, Devices and Applications", CRC Press, 2007.
- 2. C.N.R. Rao, A. Muller, A. K. Cheetham (Eds), "The Chemistry of Nanomaterials: Synthesis, Properties and Applications", Wiley-VCH Verlag 2004.
- 3. Matthew Hull and Diana Bowman, "Nanotechnology: Environmental Health and safety, Risks, Regulation and Management", Elsevier, 2010.

				M	lapping	g of CC) s with	POs /	PSOs					
						PC	Ds						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2			3											
3				3									2	
4		3				3								
5							3					3		
CO (W.A)	3	3	3	3		3	3					3	2	

			Т	Р	С
		3	0	0	3
PRE-R	REQUISITE: NIL		-		-
Cours	 To understand the foundational principl kinematic analysis of robots for determining To explore the mechanics of parallel robot differential motions, and analyze forces in a robots. To design trajectory plans in joint and Cart control systems using controllers. To analyze sensor characteristics, apply image To examine applications in biomedical engin 	positions. ots, apply Jaco multi-degree- esian spaces, ge processing	obian n of-freed implem	natrice Iom (E ent mo	s for DOF)
The stu	Course Outcomes Cognitudent will be able to Leve	tive W	eighta End S Exami	emes	ter
COI	Apply the knowledge of robotic technologies, including design, control, and kinematics, to addressApplyengineering problems.Apply)	4	0%	
CO2	Analyze the role and functioning of sensors, actuators and vision systems in robotic applications.	1	4	0%	
CO3	Explaintheroboticsolutionsforbiomedicalengineeringchallenges,suchasrehabilitationandArsurgicalapplications.	1	I	5%	
CO4	Compare findings on robotic applications in Ar biomedical engineering.	1		5%	
CO5	Reportoncomprehensiveunderstandingandapplicationofroboticsystems,incorporatingApplicationprinciplesofdesign,control,andpracticalapplications.	o In	ternal /	Assessr	nent

UNIT I – BASIC CONCEPTS	(9)
Brief history - Types of Robot–Technology-Robot classifications and specifications- Design and issues- Various manipulators – Sensors - work cell - Programming languages.	Control
UNIT II – DIRECT AND INVERSE KINEMATICS	(9)
Mathematical representation of Robots - Position and orientation - Homogeneous transform	ation -
Various joints - Representation using the Denavit Hattenberg parameters - Degrees of Freedom -	Direct
kinematics - Inverse kinematics - SCARA robots- Solvability – Solution methods - Closed form solu	ution.
UNIT III – PATH PLANNING, MANIPULATOR DIFFERENTIAL MOTION AND STATICS	(9)
Definition-Joint space technique of p-degree polynomial-Cubic polynomial-Cartesian space tech	nique -
Parametric descriptions - Straight line and circular paths - Position and orientation planning - Line	ear and
angular velocities-Manipulator Jacobian-Prismatic and rotary joints–Inverse -Wrist and arm singu Static analysis - Force and moment Balance.	ılarity -

UNIT IV – SENSORS, IMAGE PROCESSING AND ANALYSIS WITH VISION (9)

Sensor Characteristics, Position, Velocity, Acceleration, Force, Pressure and Torque, Microswitches, Visible and IR, Touch, Proximity, Range Finders, Sniff, Vision, Transforms – Fourier, Hough, Resolution, Quantization, Sampling, Image Processing, Segmentation, Region Growing and Splitting, Operations, Object Recognition, Depth, Specialized Lighting, Compression, Colour Images, Heuristics.

UNIT V – APPLICATIONS

(9)

Applications in Biomedical Engineering – Bio Engineering Biologically Inspired Robots, Neural Engineering, Application in Rehabilitation – Interactive Therapy, Bionic Arm, Clinical and Surgical – Gynaecology, Orthopaedics, Neurosurgery.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

1. S. B. Niku, "Introduction to Robotics, Analysis, Control, Applications", Pearson Education, 2020

- 2. Robert Schilling, "Fundamentals of Robotics-Analysis and control", Prentice Hall of India, 2003.
- 3. Fu Gonzales and Lee, "Robotics", McGraw Hill, 1987.
- 4. J Craig, "Introduction to Robotics", Pearson Education, 2005.

REFERENCES:

1. Grover, Wiess, Nagel and Oderey, "Industrial Robotics", McGraw Hill, 2012.

- 2. Klafter, Chmielewski and Negin, "Robot Engineering", Prentice Hall Of India, 1989.
- 3. Mittal, Nagrath, "Robotics and Control, Tata McGraw Hill publications, 2003.

4. Bijay K. Ghosh, Ning Xi, T.J. Tarn, "Control in Robotics and Automation Sensor – Based integration", Academic Press, 1999.

5. Mikell P. Groover, Mitchell Weiss, "Industrial robotics, technology, Programming and Applications", McGraw Hill International Editions, 1986.

6. Richard D. Klafter, Thomas A. Chmielewski and Michael Negin, "Robotic engineering - An Integrated Approach", Prentice Hall Inc, Englewoods Cliffs, NJ, USA, 1989.

				M	lapping	of CC) s with	POs /	PSOs					
		POs												Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3											2	
3			3											
4				3										
5							3					3		
CO (W.A)	3	3	3	3			3					3	2	

	22B	MX54 - ADVANCED HEALTHCAR	RE SYSTEM DES	IGN			
				L	Т	Ρ	C
				3	L T P 3 0 0 hnologies. management. tion in medicine. sues in digital he	3	
PRE-R	EQUISITE: NI	L					
Cours	e Objectives:	 To analyze wearable devices and r To evaluate digital radiology syste To investigate health care networ To critique the requirements, reg To assess standards and interop security and privacy. 	ms and medical im king and tele-consu ulations, and ethica	age ma ultation Il issue	anager n in me s in dig	nent. edicine gital he	ealth.
The stu	Co dent will be able	ourse Outcomes to	Cognitive Level	in	End S	emest	ter
COI	Apply digital healthcare solut	health technologies for effective tions.	Ар		4	0%	
CO2		egration of mobile health and digital hanced patient care.	An		4(0%	
CO3	·	lth networking and interoperability ct on healthcare delivery.	An		1.	5%	
CO4		rategies for overcoming barriers to nnovation and ensuring security and	E		5	%	
CO5	integration, st	ital health technologies, emphasizing andards, ethical considerations and tegies in healthcare through seminars.	E	Inte	ernal A	ssessn	nent

UNIT I – WEARABLE DEVICES AND M-HEALTH CARE

Introduction to Mobile Health Care-Devices-Economy-Average Length of Stay in Hospital, Outpatient Care, Health Care Costs, Mobile Phones, 4G, Smart Devices, Wearable Devices, Uptake of E-Health and M-Health Technologies. Standards, System Design and Case Study.

UNIT II – DIGITAL RADIOLOGY

Digital Radiology for Digital Hospital, Picture Archiving and Communication, System Integration, Digital History of Radiology, Medical Image Archives, Storage and Networks.

UNIT III – E-HEALTH

Health Care Networking, Medical Reporting using Speech Recognition, Physiological Tests and Functional Diagnosis with Digital Methods, Tele-Consultation in Medicine and Radiology.

UNIT IV – DIGITAL HEALTH

Requirements and Best Practices, Laws and Regulations in Digital Health, Ethical Issues, Barriers and Strategies for Innovation.

بززما

(9)

(9)

(9)

UNIT V – STANDARDS FOR INTER OPERABILITY

Selection and Implementation in E-Health Project, Design of Medical Equipments Based on User Needs. Security and Privacy in Digital Health Care.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- Wlater Hruby, "Digital Revolution in Radiology Bridging the future of health care", 2nd Edition, Springer, New York. 2006.
- 2. Christoph Thuemmler, Chunxue Bai, "Health 4.0: How Virtualization and Big Data are Revolutionizing Healthcare", 1st Edition, Springer, 2017.
- 3. Samuel A. Fricker, Christoph Thümmler , Anastasius Gavras, "Requirements Engineering For Digital Health", Springer, 2015.

REFERENCES:

- 1. Rick Krohn (Editor), David Metcalf, Patricia Salber, "Health-e Everything: Wearables and The Internet of Things for Health, ebook. 2013.
- 2. Khandpur.R.S., "Handbook of Biomedical Instrumentation ", 2nd Edition, Tata Mc Graw Hill Pub. Co., Ltd. 2003
- 3. John, G. Webster. Medical Instrumentation: Application and Design. Second Edition. Wiley Publisher, New Delhi. 2013.

				M	lapping	g of CC	Ds witł	n POs /	PSOs					
						PC	Os						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3													
3				3										3
4			3											
5									3	3		2		
CO (W.A)	3		3	3					3	3		2		3

		22BMX55 - CRITICAL CARE E					
			LTPQ3003a comprehensive understanding of various intensive care unit (ICUnt.ore the necessity and functionality of operation theatre equipment.a a comprehensive critical care equipment.a a comprehensive care and operations associated with electrical hazardsa g inspections, and safety protocols in intensive care and operationa patient careApAp40%essionals interact with mergencies in a hospitalAnAn15%Iling and maintaining care facilities to ensure nt comfort.AnAn15%s, analyze healthcare agement practices andF	С			
PRE-R	EQUISITE: NI	 To gain a comprehensive understanding of various intensive care unit (ICU) equipment. To explore the necessity and functionality of operation theatre equipment. To study assistive critical care equipment. To evaluate centralized systems essential for critical care environments. To analyze patient safety considerations associated with electrical hazards, grounding inspections, and safety protocols in intensive care and operation rooms. To functionality and efficiency of ents, equipment and patient care Ap 40% althcare professionals interact with age medical emergencies in a hospital An 40% s for installing and maintaining ns for healthcare facilities to ensure An 15% I operations, analyze healthcare assess management practices and E Internal Assessment 	3				
	e Objectives:	 To gain a comprehensive understate equipment. To explore the necessity and function. To study assistive critical care equivate contralized systems ending the explored systems of the explored systems and the explored systems ending inspections, and safety safety considered systems. 	ctionality of operati uipment. essential for critical erations associated	on the care e with e	eatre e enviror electri	equipm nments cal haz	ent. ards,
The stue	C dent will be able	ourse Outcomes to	-	in	End S	emes	ter
COI		the functionality and efficiency of tments, equipment and patient care	Ap		4	0%	
CO2	,	healthcare professionals interact with anage medical emergencies in a hospital	An		4	0%	
CO3	centralized sys	gies for installing and maintaining tems for healthcare facilities to ensure iciency and patient comfort.	An		I	5%	
CO4	Assess and enfo	orce patient safety protocols.	E		Į	5%	
CO5	delivery syster	bital operations, analyze healthcare ms, assess management practices and nt care quality after completing hospital	E	Int	ernal A	Assessr	nent

UNIT I – INTENSIVE CARE UNIT EQUIPMENT

(9)

(9)

(9)

(9)

Suction apparatus, Different types; Sterilizers, Chemical, Radiation, Steam for small and large units. ICU ventilators. Automated drug delivery systems, Infusion pumps, components of drug infusion system, closed loop control infusion system, implantable infusion system. BMD Measurements – SXA - DXA - Quantitative ultrasound bone densitometer.

UNIT II – OPERATION THEATRE EQUIPMENT

Craniotomy, Electrosurgical Machines (ESU), electrosurgical analysers, surgical aspirator, Instruments for operation. Anaesthesia Machine, Humidification, Sterilization aspects, Boyles apparatus. Endoscopy -Laparoscopy - Cryogenic Equipment - Anaesthesia gas, Anaesthesia gas monitor – surgical Microscope.

UNIT III – ASSISTIVE CRITICAL CARE EQUIPMENT

Defibrillators, Haemodialysis Machine, Different types of Dialyzers, Membranes, Machine controls and measurements. Heart Lung Machine, different types of oxygenators, peristaltic pumps, Incubators.

UNIT IV – CENTRALISED SYSTEMS

Centralized Oxygen, Nitrogen, Air supply & Suction. Centralized Air Conditioning, Operation Theatre table & Lighting. C Arm.

UNIT V – PATIENT SAFETY

Patient electrical safety, Types of hazards, Natural protective mechanisms against electricity, Leakage current, Inspection of grounding and patient isolation, Hazards in operation rooms, ICCU and IMCUs, Opto couplers and Pulse transformers.

TOTAL(L:45) = 45 PERIODS

(9)

TEXT BOOKS:

- 1. John G. Webster, "Medical Instrumentation Application and Design", 4th edition, Wiley India Pvt. Ltd, New Delhi, 2015
- 2. Joseph J. Carr and John M. Brown, "Introduction to Biomedical Equipment Technology", Pearson education, 2012.
- 3. Khandpur. R.S., "Handbook of Biomedical Instrumentation", 2nd Edition. Tata McGrawHill Pub. Co., Ltd., 2003

REFERENCES:

- 1. L. A Geddes and L. E. Baker, "Principles of Applied Biomedical Instrumentation", 3rd Edition, 2008.
- 2. Antony Y.K. Chan, "Biomedical Device Technology, Principles and Design", Charles Thomas Publisher Ltd, Illinois, USA, 2008.
- 3. Leslie Cromwell, "Biomedical Instrumentation and Measurement", Pearson Education, New Delhi, 2007.

				Μ	apping	g of CC) s with	POs /	PSOs					
						РС	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3												
3			3										2	
4						3		3						
5							3					3		
CO (W.A)	3	3	3			3	3	3				3	2	

				L	Т	Ρ	C
				3	0	0	3
PRE-R	EQUISITE: NIL						
	•	To study the role and importance of the heart and lungs. To study various mechanical techn To leave the functioning of the u	niques that helps a	non-fu	unctior	ning he	art.
Cours	e Objectives:	To learn the functioning of the u the blood. To understand the tests to asse electronic devices to compensate To study about recent techniques	ess the hearing los for the loss.	ss and	devel	opmer	
The stu	Course dent will be able to	Outcomes	Cognitive Level	We in	ightag End S Exami	ge of (emest	ter
COI		s and protocols in the operation critical care equipment with	Ар		4	0%	
CO2	Analyze the fu requirements of diver	nctionality and operational rse medical devices.	An		4	0%	
CO3		ncements in medical technology ostic accuracy and patient es.	E		I	5%	
CO4	Assess the efficacy optimize patient care	of medical interventions to	E		5	5%	
CO5		case studies to evaluate the and safety of various medical	E	Inte	ernal A	ssessn	nent

UNIT I - HEART LUNG MACHINE AND ARTIFICIAL HEART

Condition to be satisfied by the H/L System. Different types of Oxygenators, Pumps, Pulsatile and Continuous Types, Monitoring Process, Shunting, The Indication for Cardiac Transplant, Driving Mechanism, Blood Handling System, Functioning and different types of Artificial Heart, Schematic for temporary bypass of left ventricle.

UNIT II – CARDIAC ASSIST DEVICES

Assisted through Respiration, Right and left Ventricular Bypass Pump, Auxiliary ventricle, Open Chest and Closed Chest type, Intra Aortic Balloon Pumping, Prosthetic Cardiac valves, Principle of External Counter pulsation techniques.

UNIT III – ARTIFICIAL KIDNEY

Indication and Principle of Haemodialysis, Membrane, Dialysate, types of filter and membranes, Different types of hemodialyzers, Monitoring Systems, Wearable Artificial Kidney, Implanting Type.

UNIT IV – RESPIRATORY AND HEARING AIDS

(9)

(9)

(9)

Ventilator and its types-Intermittent positive pressure, Breathing Apparatus Operating Sequence, Electronic IPPB unit with monitoring for all respiratory parameters. Types of Deafness, Hearing Aids, SISI, masking techniques, wearable devices for hearing correction.

UNIT V – RECENT TRENDS

Transcutaneous electrical nerve stimulator, bio-feedback, Diagnostic and point-of-care platforms.

TOTAL(L:45) = 45 PERIODS

(9)

TEXT BOOKS:

- 1. Gray E Wnek, Gray L Browlin, "Encyclopedia of Biomaterials and Biomedical Engineering", Marcel Dekker Inc New York, 2004.
- 2. John. G. Webster, "Bioinstrumentation" John Wiley & Sons (Asia) Pvt. Ltd., 2004.
- 3. Joseph D. Bronzino, "The Biomedical Engineering Handbook" 3rd Edition: Three Volume Set, CRC Press, 2006.

REFERENCES:

- 1. Andreas. F. Von racum, "Hand Book of Bio Material Evaluation", Mc-Millan Publishers, 1980.
- 2. Gray E Wnek, Gray L Browlin, "Encyclopedia of Biomaterials and Biomedical Engineering" Marcel Dekker Inc New York 2004.
- 3. D.S. Sunder, "Rehabilitation Medicine", 3rd Edition, Jaypee Medical Publication, 2010.

				M	lapping	g of CC) s with	POs /	PSO s					
	POs												PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3	3				3								
2	3	3												
3			3											
4				3									2	
5							3					3		
CO (W.A)	3	3	3	3		3	3					3	2	

UN

		22BMX57 - AMBULATORY SI	ERVICES				
				L	Т	Ρ	C
			3003analyze artifacts and apply denoising techniques in patient monitoring tems design ambulance vehicles and comply with regulations for patient nsportation.nambulance regulations for patient transport in ambulances.design efficient lift mechanisms for patient transport in ambulances. evaluate smart safety systems and automated alert systems in accident re.Weightage of COs in End Semester ExaminationattomesCognitive LevelWeightage of COs in End Semester Examinationmedical devices and systems for posis, and emergency care.Ap40%ulatory standards for medical stems.An15%in effectiveness of healthcare y in clinical settings.E5%				
PRE-R	REQUISITE: NI	L					
		systems		-			-
Cours	se Objectives:	transportation.		Ū		•	
		• To assess the design and regulatory in ambulances.	aspects of mob	ile diag	gnostic	equip	ment
		• To evaluate smart safety systems a care.	and automated a	lert sy	stems	in acc	iden
The stu	dent will be able	Course Outcomes to	•	in	End S	emes	ter
COI		dvanced medical devices and systems for ring, diagnosis, and emergency care.	Ap				
CO2		es of biomedical engineering to create tions for patient transportation and care.	Ap		4	0%	
CO3	, , ,	and regulatory standards for medical althcare systems.	An		I	5%	
CO4		fficiency and effectiveness of healthcare technology in clinical settings.	E		ļ	5%	
CO5		s from seminar presentations to improve I functionality of patient monitoring and	An	Int	ernal A	Assessr	nent

UNIT I – PATIENT MONITORING SYSTEMS

Artifacts - Denoising techniques - Advancements in Wireless patient Monitoring system - Case study.

UNIT II – DESIGN OF AMBULANCE

Vehicle Design - Ambulance Train - Disaster Relief Squad - Regulation for Patient Transportation - Case Study.

UNIT III – LIFT MECHANISM

Design of Lift Mechanism for Patient - Design of Lift in Ambulance - Computer Based Systems - Case Study.

UNIT IV – DESIGN OF MOBILE DIAGNOSTIC EQUIPMENT

Devices with Battery Backup - Mobile X-Ray Unit - Nursing - Medical Gas Handling – Regulations - GPS In Ambulance Networked Services - Case Study.

(9)

(9)

(9)

UNIT V – ACCIDENT CARE SYSTEMS

Automated Alert System - Smart Safety Systems - Fire Protection - Maintenance And Regulation - Accreditation for Ambulance Services - Case Study.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- 1. David Tse and Pramod Viswanath, "Fundamentals of Wireless Communication", Cambridge University Press, 2005.
- 2. Andreas F. Molisch, "Wireless Communications", 2nd Edition, John Wiley & sons, USA, 2010.

REFERENCES:

- 1. Jochen Schiller, "Mobile Communications", Addison Wesley Publishers, 2000.
- 2. Yi-Bing Lin and Imrich Chlamtac, "Wireless and Mobile Network Architecture", 2nd Edition, John Wiley and Sons, New Delhi, 2001.
- 3. Feher K., "Wireless Digital Communications", Prentice Hall of India, New Delhi, 1995.

				M	apping	g of CC	Os with	POs /	PSO s						
COs	POs													PSOs	
	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3												2		
2			3										2		
3				3										2	
4		3		3										2	
5									3	3		2			
CO (W.A)	3	3	3	3					3	3		2	2	2	

U.D.

				L	Т	Ρ	C			
				3	0	0	3			
PRE-R	EQUISITE: NI	L								
Course Objectives:		 To analyze the historical development and ethical issues in home health care To apply homecare strategies tailored to diverse client needs. To demonstrate proficiency in operating and managing medical devices commonly used in home healthcare settings To identify and discuss recent advancements in medical health technologies relevant to home care. To infer the impact and utilization of wireless technology in improving healthcare delivery at home. 								
⁻he stu	C dent will be able	ourse Outcomes	Cognitive Level	in	ightag End S Exami	emes	ter			
COI		strategies for infection control, patient home care management.	Ap	40%						
CO2	to enhance p	lvancements in health care technologies atient care, emergency response and pring capabilities.	An	40%						
CO3	and mobility-	nalized care plans for elderly, children impaired patients, including mobility omfort measures.	An	15%						
CO4	devices and r patient needs.	ctionality and impact of various medical ecommend suitable devices based on	E	5%						
CO5	addressing con care systems,	al thinking and problem-solving skills in mplex issues related to home health patient management, medical device advancements in healthcare technology tudies.	С	Internal Assessment						

UNIT I – INTRODUCTION TO HOME HEALTH NURSING

(9) Home Health Care - Purpose - Organization of Homecare System - Historical Development of Home Care - Environmental Influences of Home Care -Home Care Organization - Legal and Ethical Issues in Home Care - Case Management and Leadership Strategies - Organisation of Home Care System - Role of Home Care Nurse and Orientation Strategies - Environmental Influences on Home Care - Infection Control in Home - Patient Education in Home.

UNIT II – WORKING WITH CLIENTS

Basic Human Needs - Communication and Interpersonal Skills - Caregiver Observation - Recording and Reporting, Confidentiality. Working with Elderly - Aging and Body Systems. Working with Children -Need for Home Care - Mobility Transfers and Ambulation - Range of Motion Exercises - Skin Care and Comfort Measures.

the Fu	uture c	- Impac of Healt olecular	h Tech	nology	- Inve	enting t	he Fut	ure -T	ools fo	r Self-I	Health	- Futu		•
		IRELES								Treater		Jucing.		(9)
Wirele - Remo Model	ess Con ote Rec Interac	nmunica covery - ction ar hnology	tion Bas Person Id Tech	sics - Ty alized /	ypes of Ambien	Wirele: t Monit	oring -	Future	Trends	in Hea	althcare	Techno	ncy Re ology. N	scue 1ulti
0	0	0,								ΤΟΤ	AL(L:4	5) = 45	PERIC	DDS
I. 2. REFEI I. 2.	Lodewi RENCI Yadin Enginee	Rice, "⊢ jkBos, "	Handbo Wolf \ CRC Pre	W. vor W. vor ess, 201 dvances	Digital H n Maltz 0. s in Hoi	lomeca zahn, M	re: Succ lichael e Techr	R. Ne	uman, s: Resul	ıres", S Joseph.	pringer D. B	, 2011. ronzino	, "Clin	iical
COs	POs												PSOs	
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3													
2			3	3									2	
3		3												
4				3		3								2
5									3			3		2
CO (W.A)	3	3	3	3		3			3			3	2	2

UNIT III – MEDICAL DEVICES AT HOME

Medical Devices at Home - ECG Monitors - Smart Watch - Wireless Infant Monitoring System - PCG Monitors, Medical Alert Services. Activity Monitors - Automatic Wireless Healthcare Monitoring System -The Ventilator Dependent Patient - Device For Patient with Congestive Heart Failure - Device for Patient with Chronic Obstructive Pulmonary Disease - Device for Patient with Diabetic.

UNIT IV – ADVANCEMENT IN MEDICAL TECHNOLOGIES

Advances and Trends in Health Care Technologies - Driver Impacting the Growth of Medical

236 | Page

UN

(9)