

NANDHA ENGINEERING COLLEGE

(Autonomous)

Affiliated to Anna University, Chennal * Approved by AICTE * Accredited by NAAC (A+ Grade) Pitchandampalayam (P.O), Vaikkalmedu, Erode - Perundurai Main Road, Erode - 638 052 Phone: 04294 - 225585, 223711, 223722, 226393 Mobile: 73737 23722 Fax: 04294 - 224787

Website: ww.nandhaengg.org

E-mail: info@ nandhaengg.org

1.1.2 - Details of syllabus revision carried out during the year 2023-2024

B.Tech - Chemical Engineering

S.No	Course Code	Course Name	% of Change
1.	22CHC12	Mass Transfer II	30%
2.	22CHC13	Process Engineering Economics	60%
3.	22CHC14	Process Dynamics and Control	40%
4.	22CHP05	Chemical Reaction Engineering Laboratory	10%
5.	22CHP06	Mass Transfer Laboratory	100%
6.	22CHC15	Transport Phenomena	20%
7.	22CHC16	Process Modeling and Simulation	60%
8.	22CHP07	Process Control Laboratory	100%
9.	22CHP08	Process Modeling and Simulation Laboratory	100%
10.	22CHP09	Process Computation Laboratory	40%
11.	22CHP10	Chemical Equipment Design Laboratory	100%
12.	22GED02	Industrial Training / Internships	60%
13.	22CHD01	Project Work	20%
14.	22CHX01	Introduction to Computational Fluid Dynamics	100%
15.	22CHX02	Modern Separation Techniques	100%
16.	22CHX03	Chemical Process Utilities	100%
17.	22CHX04	Corrosion Technology	100%
18.	22CHX05	Materials of Construction for Process Industries	100%
19.	22CHX06	Process Instrumentation	100%
20.	22CHX07	Pharmaceutical Technology	100%
21.	22CHX11	Petroleum Chemistry and Refining Fundamentals	100%
22.	22CHX12	Primary Refining Technology	100%
23.	22CHX13	Petroleum Refining Primary Processing Technology	100%
24.	22CHX14	Secondary Refining Technology	100%
25.	22CHX15	Petrochemical Unit Processes	100%
26.	22CHX16	Petrochemical Derivatives	100%
27.	22CHX17	Petrochemical Technology	100%
28.	22CHX18	Polymer Technology	60%
29.	22CHX09	Fertilizer Technology	100%
30.	22CHX21	Food Chemistry	100%
31.	22CHX22	Food Materials Science	100%
32.	22CHX23	Processing of Dairy Products	100%

H.O.D. Chemical Engineering Nandha Engineering College, (Autonomous). Erode :638.0524

NANDHA ENGINEERING COLLEGE

(Autonomous)

Affiliated to Anna University, Chennal * Approved by AICTE * Accredited by NAAC (A+ Grade) Pitchandampalayam (P.O), Vaikkalmedu, Erode - Perundurai Main Road, Erode - 638 052 Phone: 04294 - 225585, 223711, 223722, 226393 Mobile: 73737 23722 Fax: 04294 – 224787

Website: ww.nandhaengg.org

E-mail: info@ nandhaengg.org

33.	22CHX24	Fruit and Vegetable Processing and Preservation	100%
34.	22CHX25	Baking and Confectionery Technology	100%
35.	22CHX26	Technology of Fruit and Vegetable Processing	100%
36.	22CHX27	Food Structuring Techniques	100%
37.	22CHX28	Food Quality and Safety	100%
38.	22CHX31	Air Pollution Engineering	100%
39.	22CHX32	Waste Water Treatment	100%
40.	22CHX33	Solid Waste Management	100%
41.	22CHX34	Environmental Impact Assessment	100%
42.	22CHX35	Process Safety Management	100%
43.	22CHX36	Risk Assessment and HAZOP Analysis	100%
44.	22CHX37	Industrial Pollution Control and Management	100%
45.	22CHX38	Environmental Biotechnology	100%
		Average	86.67%

be Dine

H.O.D. Chemical Engineering Nandha Engineering College, (Autonomous) Erode - 638 052.

NANDHA ENGINEERING COLLEGE (AUTONOMOUS), ERODE - 638 052

REGULATIONS - 2022(R22) CHOICE BASED CREDIT SYSTEM (CBCS)

B.TECH - CHEMICAL ENGINEERING

CURRICULAM: I to VIII SEMESTER

SYLLABUS: I to IV SEMESTER

		SEN	1ESTER: I						
SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
I	22MAN01	Induction Programme							
		Г	HEORY	-					
2	22EYA01	Professional Communication - I	HSMC	-	4	2	0	2	3
3	22MYB01	*Calculus and Linear Algebra	BSC	-	4	3	I	0	4
4	22CYB03	Chemistry	BSC	-	3	3	0	0	3
5	22EEC01	Basic Electrical and Electronics Engineering	ESC	-	3	3	0	0	3
6	22MEC01	Engineering Graphics	ESC	-	4	2	0	2	3
7	22GYA01	தமிழர் மரபு / Heritage of Tamils	HSMC	-	Ι	Ι	0	0	I
PRA	CTICALS								
8	22CYP01	*Chemistry Laboratory	BSC	-	2	0	0	2	I
9	22GEP01	Engineering Practices Laboratory	ESC	-	4	0	0	4	2
MAN	IDATORY I	NON-CREDIT COURSES							
10	22MAN03	*Yoga - I	MC	-	Ι	0	0	I	0
				TOTAL	26	14	I	11	20

*Ratified by Eleventh Academic Council

		SEM	1ESTER: II						
SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
тн	EORY								
I	22EYA02	Professional Communication-II	HSMC	-	4	2	0	2	3
2	22MYB02	*Partial Differential Equations And Transforms Techniques	BSC	-	4	3	I	0	4
3	22PYB02	Advanced Material and Nano Technology	BSC	-	3	3	0	0	3
4	22CYB06	*Environmental Science & Sustainability	BSC	-	3	3	0	0	3
5	22CSC01	*Problem Solving and C Programming	ESC	-	3	3	0	0	3
6	22CHC01	*Fundamentals of Chemical Engineering	PCC	-	3	3	0	0	3
7	22GYA02	தமிழரும் தொழில்நுட்பமும் / Tamils and Technology	HSMC	-	I	I	0	0	I
PRA	CTICALS	5		<u>.</u>					
8	22PYP01	*Physics laboratory	BSC	-	2	0	0	2	I
9	22CSP01	*Problem Solving and C Programming Laboratory	ESC	-	4	0	0	4	2
ΜΑΙ	MANDATORY NON-CREDIT COURSES								
10	22MAN02R	SOFT/ANALYTICAL SKILLS – I	MC	-	3	Ι	0	2	0
11	22MAN05	*Yoga - II	MC	-	I	0	0	Ι	0
		·	·	TOTAL	31	19	I	11	23

*Ratified by Eleventh Academic Council

		SEM	ESTER: III						
SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
тн	EORY					<u> </u>			
I	22MYB03	Statistics and Numerical Methods	BSC	-	4	3	I	0	4
2	22MEC08	Basics of Mechanical Engineering	ESC	-	3	3	0	0	3
3	22CHC02	Chemical Engineering Fluid mechanics	PCC	22CHC01	3	3	0	0	3
4	22CHC03	Chemical Process Calculation	PCC	22CHC01	3	3	0	0	3
5	22CHC04	Unit Processes for Chemical Engineers	PCC	-	3	3	0	0	3
6	22CHC05	Mechanical Operations	PCC	22CHC01	3	3	0	0	3
PRA	CTICALS								
7	22CHP01	Fluid Mechanics Laboratory	PCC	22CHC02	4	0	0	4	2
8	22CHP02	Chemical Analysis Laboratory	PCC	-	4	0	0	4	2
MAN		ION-CREDIT COURSES							
9	22MAN04R	SOFT/ANALYTICAL SKILLS – II	МС	-	3	I	0	2	0
10	22MAN09	Indian Constitution	MC	-	I	I	0	0	0
				TOTAL	31	20	I	10	23

		SEM	ESTER: IV						
SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
ТН	EORY							1	
Ι	22CHC06	Chemical Reaction Engineering	PCC	-	3	2	Ι	0	3
2	22CHC07	Process Heat Transfer	PCC	22CHC01	3	2	I	0	3
3	22CHC08	Chemical Engineering Thermodynamics	PCC	-	3	3	0	0	3
4	22CHC09	Mass Transfer I	PCC	22CHC01	3	2	I	0	3
5	22CHC10	Instrumental Methods of Analysis	PCC	-	3	3	0	0	3
6	22CHC11	Chemical Process Industries	PCC	22CHC01	3	3	0	0	3
PRA	CTICALS								
7	22CHP03	Heat Transfer laboratory	PCC	22CHC07	4	0	0	4	2
8	22CHP04	Mechanical Operation Laboratory	PCC	22CHC05	4	0	0	4	2
MAN		ION-CREDIT COURSES							
9	22MAN07R	SOFT/ANALYTICAL SKILLS – III	MC	-	3	Ι	0	2	0
10	22GED01	Personality and Character Development	EEC	-	I	0	0	I	0
				TOTAL	30	16	3	11	22

			SEM	ESTER: V						
SL. NO.	COURSE CODE	COURSE TITLE		CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
тн	EORY			L	L					
I	22CHC12	Mass Transfer I I		PCC	22CHC01	3	2	I	0	3
2	22CHC13	Process Engineering Economics		PCC	-	3	3	0	0	3
3	22CHC14	Process Dynamics and Control		PCC	-	3	2	-	0	3
4	EI	Elective		PEC	-	3	3	0	0	3
5	E2	Elective		PEC	-	3	3	0	0	3
6	E3	Elective		PEC/OEC	-	3	3	0	0	3
PRA	CTICALS									
7	22CHP05	Chemical Reaction Engineering Laboratory		PCC	22CHC06	4	0	0	4	2
8	22CHP06	Mass Transfer Laboratory		PCC	22CHC12	4	0	0	4	2
MAN		NON-CREDIT COURSE	S							
9	22MAN08R	SOFT/ANALYTICAL SKIL IV	LS –	MC	-	3	I	0	2	0
					TOTAL	29	17	2	10	22

*Ratified in twelfth academic council

			SEM	ESTER: VI						
SL. NO.	COURSE CODE	COURSE TITLE	COURSE TITLE C		PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
тні	EORY			I	I					
I	22CHC15	Transport Phenomena		PCC	22CHC02 22CHC07 22CHC09	3	2	I	0	3
2	22CHC16	Process Modeling and Simulation		PCC	-	3	2	I	0	3
3	E4	Elective		PEC	-	3	3	0	0	3
4	E5	Elective		PEC	-	3	3	0	0	3
5	E6	Elective		OEC	-	3	3	0	0	3
6	E7	Elective		PEC/OEC	-	3	3	0	0	3
PRA	CTICALS									
7	22CHP07	Process Control Laborat	tory	PCC	22CHC14	4	0	0	4	2
8	8 22CHP08 Process Modeling and Simulation Laboratory PCC 22CHC16			22CHC16	4	0	0	4	2	
					TOTAL	26	16	2	8	22

		SEM	IESTER: VII						
SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
тне	ORY								
I	22GEA01	Universal Human Values	HSMC	-	2	2	0	0	2
2	EMI	Elective (Management)	HSMC	-	3	3	0	0	3
3	E8	Elective	PEC	-	3	3	0	0	3
4	E9	Elective	PEC	-	3	3	0	0	3
5	EIO	Elective	OEC	-	3	3	0	0	3
PRA	CTICALS								
6	22CHP09	Process Computation laboratory	PCC	-	4	0	0	4	2
7	22CHP10	Chemical Equipment Design laboratory	PCC	-	4	0	0	4	2
8	22GED02	Industrial Training / Internships*	EEC	-	-	0	0	0	Ι
			•	TOTAL	24	14	0	8	19

*Two weeks industrial training/internship carries one credit. Industrial training/internship during VI Semester Summer Vacation/ before VII semester will be evaluated in VII semester

	SEMESTER: VIII											
SL. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с			
PRA	PRACTICALS											
I	22CHD01	Project Work	EEC	-	20	0	0	20	10			
	I I			TOTAL	20	0	0	20	10			

(A)	HSMC, MC	C, BSC, ESC and PCC C	ourses							
	anities, Soci ses (HSMC)	al Science and Managen	nent	AICTE Credit Distribution Norm :12						
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с	P.S
I	22EYA01	Professional Communication – I	HSMC	-	4	2	0	2	3	I
2	22GYA01	Heritage Of Tamils (தமிழர் மரபு)	нѕмс	-	I	I	0	0	I	I
3	22EYA02	Professional Communication-II	HSMC	-	4	2	0	2	3	2
4	22GYA02	Tamils and Technology	HSMC	-	I	Ι	0	0	Ι	2
5	22GEA01	Universal Human Values	HSMC		2	2	0	0	2	7
6	EMI	Elective (Management)	HSMC		3	3	0	0	3	7

Mand	latory Cours	ses (MC)								
S. NO.	COURSE CODE	COURSE TITLE	CATEGOR Y	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с	P.S
Ι	22MAN01	Induction Programme	MC	-	0	0	0	0	0	I
2	22MAN02R	Soft/Analytical Skills – I	MC	-	3	I	0	2	0	I
3	22MAN03	Yoga – I	MC	-	I	0	0	Ι	0	I
4	22MAN04R	Soft / Analytical Skills - II	MC	-	3	I	0	2	0	2
5	22MAN05	Yoga - II	MC	-	I	0	0	I	0	2
6	22MAN07R	Soft / Analytical Skills - III	MC	-	I	I	0	0	0	3
7	22MAN09	Indian Constitution	MC	-	5	3	0	2	0	3
8	22MAN08R	Soft/Analytical Skills - IV	MC	-	0	0	0	Ι	0	4
9	22GED01	Personality and Character Development	MC	-	Ι	0	0	Ι	0	4

Basic	Science Co	ourses (BSC)		AICTE Cree	dit Distributi	on N	orm	:25		
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с	P.S
I	22MYB01	Calculus and Linear Algebra	BSC	-	3	3	I	0	4	I
2	22CYB03	Chemistry	BSC	-	3	3	0	0	3	I
3	3 22CYP01 Chemistry Laboratory		BSC	-	2	0	0	2	I	I
4	22MYB02	Partial Differential Equations And Transforms Techniques	BSC	-	4	3	I	0	4	2
5	22PYB02	Advanced Material and Nano Technology	BSC	-	3	3	0	0	3	2
6	22CYB07	Environmental Science & Sustainability	BSC	-	3	3	0	0	3	2
7	22PYP01	Physics laboratory	BSC	-	2	0	0	2	Ι	2
8	22MYB03 Statistics and Numerical Methods E		BSC	-	4	3	I	0	4	3

Engin	eering Sci	ence Courses (ESC)		AICTE Cre	dit Distribu	tion	Nor	·m:2	4	
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	С	P.S
I	22EEC01	Basic Electrical and Electronics Engineering	ESC	-	3	3	0	0	3	I
2	22MEC01	Engineering Graphics	ESC	-	3	2	0	2	3	I
3	22GEP01	Engineering Practices Laboratory	ESC	-	4	0	0	4	2	I
4	22CSC01	Problem Solving and C Programming	ESC	-	3	3	0	0	3	2
5	22CSP01	Problem Solving and C Programming Laboratory	ESC	-	4	0	0	4	2	2
6	6 22MEC08 Basics of Mechanical ESC Engineering		ESC	-	3	3	0	0	3	2

Progr	ramme Cor	e Courses (PCC)	AICTE Cre	dit Distribu	ution	No	rm :4	18		
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с	P.S
I	22CHC01	Fundamentals of Chemical Engineering	PCC	-	3	3	0	0	3	I
2	22CHC02	Chemical Engineering Fluid mechanics	PCC	22CHC01	3	3	0	0	3	3
3	22CHC03	Chemical Process Calculation	PCC	22CHC01	3	3	0	0	3	3
4	22CHC04	Unit Processes for Chemical Engineers	PCC	-	3	3	0	0	3	3
5	22CHC05	Mechanical Operations	PCC	22CHC01	3	3	0	0	3	3
6	22CHP01	Fluid Mechanics Laboratory	PCC	22CHC02	4	0	0	4	2	3
7	22CHP02	Chemical Analysis Laboratory	PCC	-	4	0	0	4	2	3
8	22CHC06	Chemical Reaction Engineering	PCC	-	3	2	I	0	3	4
9	22CHC07	Process Heat Transfer	PCC	22CHC01	3	2	I	0	3	4
10	22CHC08	Chemical Engineering Thermodynamics	PCC	-	3	3	0	0	3	4
11	22CHC09	Mass Transfer I	PCC	22CHC01	3	2	I	0	3	4
12	22CHC10	Instrumental Methods of Analysis	PCC	-	3	3	0	0	3	4
13	22CHC11	Chemical Process Industries	PCC	22CHC01	3	3	0	0	3	4
14	22CHP03	Heat Transfer laboratory	PCC	22CHC07	4	0	0	4	2	4
15	22CHP04	Mechanical Operation Laboratory	PCC	22CHC05	4	0	0	4	2	4
16	22CHC12	Mass Transfer I I	PCC		3	2	Ι	0	3	5
17	22CHC13	Process Engineering Economics	PCC		3	2	Ι	0	3	5
18	22CHC14	Process Dynamics and Control	PCC		3	2	Ι	0	3	5
19	22CHP05	Chemical Reaction Engineering Laboratory	PCC	22CHC06	4	0	0	4	2	5
20	22CHP06	Mass Transfer Laboratory	PCC	22CHC12	4	0	0	4	2	5

21	22CHC15	Transport Phenomena	PCC		3	2	I	0	3	6
22	22CHC16	Process Modeling and Simulation	PCC		3	3	0	0	3	6
23	22CHP07	Process Control Laboratory	PCC	22CHC14	4	0	0	4	2	6
24	22CHP08	Process Modeling and Simulation Laboratory	PCC	22CHC16	4	0	0	4	2	6
25	22CHP09	Process Computation laboratory	PCC		4	0	0	4	2	7
26	22CHP10	Chemical Equipment Design laboratory	PCC		4	0	0	4	2	7

(C) Pr	ogramme E	Elective Courses (PEC)							
Vertic	al I: Chemi	cal Industry 4.0							
s. no.	COURSE CODE	COURSE TITLE	CATEGORY	PREREQUISITE	CONTACT PERIODS	L	Т	Ρ	С
١.	22CHX01	Introduction to Computational Fluid Dynamics	-	-	3	3	0	0	3
2.	22CHX02	Modern Separation Techniques	-	-	3	3	0	0	3
3.	22CHX03	Chemical Process Utilities	-	-	3	3	0	0	3
4.	22CHX04	Corrosion Technology	-	-	3	3	0	0	3
5.	22CHX05	Materials of Construction for Process Industries	-	-	3	3	0	0	3
6.	22CHX06	Process Instrumentation	-	-	3	3	0	0	3
7.	22CHX07	Pharmaceutical Technology	-	-	3	3	0	0	3
8.	22CHX08	Separation and Purification Processes	-	-	3	3	0	0	3
Verti	cal II: Petro	oleum Technology				•			
s. no.	COURSE CODE	COURSE TITLE	CATEGORY	PREREQUISITE	CONTACT PERIODS	L	Т	Ρ	С
I	22CHXII	Petroleum Chemistry and Refining Fundamentals	-	-	3	3	0	0	3
2	22CHX12	Primary Refining Technology	-	-	3	3	0	0	3
3	22CHX13	Petroleum Refining Primary Processing Technology	-	-	3	3	0	0	3
4	22CHX14	Secondary Refining Technology	-	-	3	3	0	0	3
5	22CHX15	Petrochemical Unit Processes	-	-	3	3	0	0	3
6	22CHX16	Petrochemical Derivatives	-	-	3	3	0	0	3
7	22CHX17	Petrochemical Technology	-	-	3	3	0	0	3
8	22CHX18	Polymer Technology	-	-	3	3	0	0	3

9	22CHX09				3	3	0	0	3
		Fertilizer Technology	-	-	3	3	U	U	3
Verti		d Technology	1	1		1		r	
s. no.	COURSE CODE	COURSE TITLE	CATEGORY	PREREQUISITE	CONTACT PERIODS	L	Т	Ρ	С
I	22CHX21	Food Chemistry	-	-	3	3	0	0	3
2	22CHX22	Food Materials Science	-	-	3	3	0	0	3
3	22CHX23	Processing of Dairy Products	-	-	3	3	0	0	3
4	22CHX24	Fruit and Vegetable Processing and Preservation	-	-	3	3	0	0	3
5	22CHX25	Baking and Confectionery Technology	-	-	3	3	0	0	3
6	22CHX26	Technology of Fruit and Vegetable Processing	-	-	3	3	0	0	3
7	22CHX27	Food Structuring Techniques	-	-	3	3	0	0	3
8	22CHX28	Food Quality and Safety	-	-	3	3	0	0	3
Vertic	al IV : Envii	ronmental and Safety En	gineering						
s. no.	COURSE CODE	COURSE TITLE	CATEGORY	PREREQUISITE	CONTACT PERIODS	L	Т	Р	С
Ι	22CHX31	Air Pollution Engineering	-	-	3	3	0	0	3
2	22CHX32	Waste Water Treatment	-	-	3	3	0	0	3
3	22CHX33	Solid waste Management	-	-	3	3	0	0	3
4	22CHX34	Environmental Impact Assessment	-	-	3	3	0	0	3
5	22CHX35	Process Safety Management	-	-	3	3	0	0	3
6	22CHX36	Risk Assessment and HAZOP Analysis	-	-	3	3	0	0	3
7	22CHX37	Industrial Pollution Control and Management	-	-	3	3	0	0	3
8	22CHX38	Environmental Biotechnology	-	-	3	3	0	0	3

(C) M	(C) MANAGEMENT ELECTIVES													
١.	22GEA02	Principles of Management	MEC	-	3	3	0	0	3					
2.	22GEA03	Total Quality Management	MEC	-	3	3	0	0	3					
3.	22GEA04	Professional Ethics and Human Values	MEC	-	3	3	0	0	3					

(D) E	mployability	Figure Enhancement Courses ((EEC)	AICTE Credit Distribution Norm :15								
S. NO.	COURSE CODE	PRE REQUISITE	CONTACT PERIODS	L	т	Ρ	С	P.S				
I	22GED01	Personality and Character Development	EEC	-	5	3	0	2	0	4		
2	22GED02	Industrial training/ Internships II**	EEC	-	2	0	0	2	Ι	7		
3	22CHD01	Project Work	EEC		20	0	0	20	10	8		

Min	or Degree (Courses												
Chen	Chemical Engineering													
s. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE REQUISITE	CONTACT PERIODS	L	Т	Ρ	С					
I	22CHM01	Fundamentals of Chemical Engineering	-	-	3	3	0	0	3					
2 22CHM02 Fluid Mechanics - - 3 0 0 3														
3	22CHM03	Basic Process Calculations	-	-	3	3	0	0	3					
4	22CHM04	Heat Transfer Operations	-	-	3	3	0	0	3					
5	22CHM05	Mass Transfer Operations	-	-	3	3	0	0	3					
6	22CHM06	Chemical Reaction Engineering	-	-	3	3	0	0	3					
7	22CHM07	Process Plant Utilities	-	-	3	3	0	0	3					
8	8 22CHM08 Process Plant Safety 3 3 0 0 3													

SUMMARY

			B.TE	CH. C	HEMIC	CAL EN	IGINE	ERING			
S. No	SUBJECT		(CREDI	TS AS I	PER SE	MESTE	R		TOTAL	Percentage
5.140	AREA	Ι	П	III	IV	V	VI	VII	VIII	CREDITS	(%)
I	HSMC	4	4					5		13	8.1
2	BSC	8		23	14.3						
3	ESC	8	5	3				16	10		
4	PCC		3	16	22	13	10	4		68	42.2
5	PEC					6	6	6		18	11.2
6	OEC					3	6	3		12	7.4
7	EEC							Ι	10	11	6.8
	TOTAL	20	23	23	22	22	22	19	10	161	100
	Non Credit/ Mandatory	3	2	2	2	Ι					

Supreme

		22CHC12 - MASS TRANSFER II				
			L	Т	Р	С
			3	0	0	3
PRE-R	EQUISITE : 2	2CHC09				
Course	Objective:	 To understand the basic principles of mass transf To perform design calculations for equili operations To gain knowledge on equipments used i extraction and leaching 	ibrium s	taged		
	Outcomes dent will be able	to Cognitive Leve		End Se	e of Co meste	r
соі	Apply importations.	nt chemical concepts in mass transfer Ap		2	.0%	
CO2	Determine th transfer opera	e number of stages required for mass An ions		2	.0%	
СОЗ		number of transfer units and height Ap		4	0%	
CO4		ne different equipments used in An tillation, extraction and leaching.		2	.0%	
CO5		types and up-scaling of sustaining U nologies in process industries.	Int	ernal /	Assessr	nent

UNIT I : ABSORPTION

Introduction, Choice of solvent, Concepts of Co-current and counter-current operations, choice of solvents, Tray tower absorber– Calculation of number of theoretical and actual number of trays. Packed tower absorber – Tower packing and characteristics, Calculation of NTU, HTU and height.

UNIT II : DISTILLATION

Introduction, Vapor-liquid equilibria, Raoult's law and deviations from ideality. Principles of distillation: Simple distillation- calculations using Rayleigh equation, Flash vaporization, Continuous fractionation- Fenske equation; Number of ideal stages by McCabe - Thiele method for binary system.. Principles of extractive and azeotropic distillation.

UNIT III : INTRODUCTION TO MULTICOMPONENT DISTILLATION

(9)

(9)

(9)

Introduction, phase equilibria – K-Values and relative volatility- ideal and non-ideal systems-effect of temperature, pressure and composition on K-values and volatility-Phase diagrams-Calculations of bubble points and dew points- flash distillation for multicomponent mixtures - Key fractionation concepts – Approximate material balance.

UNIT IV : EXTRACTION AND LEACHING

Introduction. Equilibrium in ternary systems; Solvent selection criteria; Single stage operation, Multistage operation for partially miscible and immiscible systems. Extraction equipment - Spray, packed and Mechanically agitated contactors. Pulsed extractors, Centrifugal extractors.

Solid-liquid equilibria; calculations in single stage, multi stage cross current and counter current leaching. Industrial Leaching equipment- Bollman Extractor, Rotocel Extractor, Dorr Agitator and Thickener

UNIT V : ADSORPTION AND MEMBRANE SEPARATION TECHNIQUES

Characteristics and choice of adsorbents, industrial applications. Adsorption isotherms & breakthrough curve. Single and multiple cross current and counter current operation. Membranes separation processes - Principle and concept of osmosis; reverse osmosis, electro dialysis and ultrafiltration.

TOTAL(L:45) = 45 PERIODS

(9)

(9)

TEXT BOOKS

- I. Transport Processes and Separation Process Principles Geankopolis C.J., 5th Edition, 2018.
- 2. Mass Transfer Operations Robert E.Treybal., 3rd Edition, McGraw-Hill Book Company Ltd., 2017.
- 3. Mass Transfer: Theory and Practice Anantharaman N. and Meera Sheriffa Begum K.M., Prentice Hall of India, New Delhi, 2011.
- Fundamentals of Multicomponent Distillation Charles D. Holland, McGraw-Hill Book Company Ltd, 1981.

REFERENCE

 Unit Operation of Chemical Engineering - Warren McCabe, Julian Smith, Peter Harriott, 7th Edition 2017.

					0				(/				
	Mapping of COs with POs / PSOs													
	POs Ds 1 2 3 4 5 6 7 8 9 10 11 12													
COs	I	2 3 4 5 6 7 8 9 10 11												2
I	3													
2	3	3											3	
3		3	3										3	
4		3											3	
5									3					
СО	3	3	3						3				3	

Mapping of Course Outcomes (COs)with Programme Outcomes (POs)/ Programme Specific Outcomes (PSOs)

Supermer

108 | Page

		22CHC13 PROCESS ENGINEERIN	IG ECONOMICS				
				L	Т	Р	С
				3	0	0	3
PRE-R	EQUISITE: 2	2CHC09					
Course	Objective:	 To understanding the concept of To understand the various met investment alternatives. To explain concepts of the esse balance approach. 	hods of selecting p	oroject	•		
	Outcomes dent will be able	e to	Cognitive Level	E	ghtage Ind Sen Examin	nester	s in
COI	Apply the know industries	vledge of process economics in chemical	Ар	20%			
CO2	Prepare the based of the sound decision	asic cost analysis to take economically s.	Ар	20%			
CO3	Evaluate and implementatior	select the alternatives in project n.	An	40%			
CO4	Obtain the e processes	economic operating condition of the	An	20%			
CO5		l presentation by individual/team on related to the course	U	Internal Assessme			

UNIT I : INTERESTAND COST ESTIMATION

Time value of money, Depreciation, capital cost and its estimation. Capital requirement for complete plant, capital recovery, cost indices, demand & supply analysis, break even analysis.

UNIT II : INVESTMENT ALTERNATIVES AND TAXES

Economics of selecting alternatives- Four methods of economics of alternative selection- Annual equivalent method, Present worth method and Future worth method, Types of Taxes, Equivalence after Taxes, Cost comparison after taxes .

UNIT III : PROJECT PROFITABILTY

Estimation project profitability, project feasibility, replacement policy, forecasting sales, inflation and its impact.

UNIT IV : ECONOMIC BALANCE INEQUIPMENTS

Essentials of economic balance, Economic decisions in Chemical Plant–Economics of pipe size— economic balance approach for insulation, batch operation, cyclic operations, evaporation, heat transfer equipment.

UNIT V: FINANCIAL ACCOUNTING (ELEMENTARY TREATMENT)

Principles of accounting, Balance sheet, income statement, Financial Ratio - Cash flow analysis - Funds flow analysis - Comparative financial statements - Analysis & Interpretation of financial statements.

TOTAL(L:45) = 45 PERIODS

(9)

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. Peters and Timmerhaus, Plant design and Economics for Chemical Engineers, McGraw Hill, 5th Edition, 2017.
- 2. Panneer Selvam, R, "Engineering Economics", Prentice Hall of India Ltd, New Delhi, 2nd edition, 2013.
- 3. Dr.S.N.Maheswari and Dr.S.K.Maheshwari: Financial Accounting, Vikas, 2009
- 4. Schweyer.H.E, "Process Engineering Economics", McGraw Hill, 1969.

REFERENCES:

- 1. Mahajani, V.V., Mokashi S. M., Chemical Project Economics, Macmillan Indian Ltd., New Delhi, India (2005).
- 2. F.C.Jelenand J.H.Black, "Cost and Optimization Engineering", McGraw Hill, 3rd Edn., 1992.

Mapping of Course Outcomes (COs)with Programme Outcomes (POs)/
Programme Specific Outcomes (PSOs)

		Mapping of COs with POs / PSOs												
60		POs PSOs							Os					
COs	I	2	3	4	5	6	7	8	9	10	11	12	Ι	2
I	3													
2		3											3	
3			3										3	
4		3												
5										3				
со	3	3	3							3			3	

Supreme

		22CHC14 PROCESS DYNAMICS AN		L				
				L	Т	Р	С	
				3	0	0	3	
PRE-R	REQUISITE : 2	22CHC09						
Course	Objective:	 To get knowledge about the princi for different applications To learn the transient response, closed loop system 	•					
	e Outcomes udent will be able	e to	Cognitive Level	W	Weightage of COs i End Semester Examination			
соі	Apply the kr domain equation	nowledge of Laplace transform for time	Ар	Ар 10%				
CO2	Develop the tr	ransfer function of control systems	Ap		20%			
CO3	Analyze the re	sponse of control systems	An	30%				
CO4	Analyze the st configuration of	tability of control systems and comment the of control loop	An			40%		
CO5	Assess the te control system	chnical and technological advancement in s	U	Ir	nternal	Assess	ment	

UNIT I - TRANSIENT RESPONSE OF SYSTEM

Introduction to process control - Review of Laplace transforms principles - Transfer function for chemical system- Standard input functions - Transient response and characteristic of first and second order systems - Linearization of nonlinear systems

UNIT II - DEVELOPMENT OF CLOSED LOOP CONTROL SYSTEM

(9)

(9)

Controllers: Types and Transfer functions - Principles of pneumatic and electronic controllers; final control elements: function and Transfer functions – control valve characteristics; Feed-back control systems: concept and development of block diagrams - Transportation lag

UNIT III - TRANSIENT RESPONSE AND STABILITY ANALYSIS

(9)

(9)

Servo and regulator mechanism problems - dynamic response of closed loop system - offset calculations; Stability analysis: Routh test and root locus diagrams

UNIT IV - FREQUENCY RESPONSE ANALYSIS

Introduction to frequency response - frequency response characteristic - Bode diagrams - Bode stability criterion - Phase and gain margin - Tuning of controller settings - Ziegler-Nichols and Cohen-Coon methods

UNIT V - ADVANCED CONTROL SYSTEMS

Control Valve characterization, Advanced control systems : principle and applications of feed forward cascade, split-range, ratio and feed forward - feed backward control – Introduction to Digital control system

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- Donald R. Coughanowr, Steven E. LeBlanc "Process Systems Analysis and Control" 3rd Edition Tata McGraw-Hill New Delhi 2013
- 2. George Stephanopoulos, Chemical Process Control-An Introduction to Theory & Practice, (Indian Edition) Pearson, 2015.

REFERENCES:

- Seborg D.E, Edgar T.F., Mellichamp D.A and Doyle III F.J., "Process Dynamics and Control", 3rd edition, Prentice Hall of India, 2011
- 2. Sudheer S. Bhagade and Govind Das Nageshwa "Process Dynamics and Control" Prentice Hall of India New Delhi 2011.

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) / Programme Specific Outcomes (PSOs)

				M	apping	of COs	with P	Os / PS	SOs				
COs						PC	Os					PS	Os
COS	I	2	3	4	5	6	7	8	9	10	12	I	2
I	3											3	
2		3											3
3			3										
4			3										
5	3											3	
СО	3	3	3									3	3

funne

	22CH	P05 CHEMICAL REACTION ENGINEERING LABOR	RATO	RY			
			L	Т	Р	С	
			0	0	4	2	
PRE-RE	QUISITE: 22	CHC06					
Course	Objective:	 To determine the rate constant of batch reactor for reactions. To understand the behavior of PFR and MFR for the same same same same same same same sam					
	Outcomes dent will be abl	e to	С	9			
соі	Apply the kir reaction in a	nowledge to estimate the rate constant and order of the reaction.					
CO2	Determine t	he rate of dissociation of non-catalytic reactor.	Ap				
CO3	Estimate the Distribution	e performance of flow reactor using Residence Time studies.	Ap				
CO4	Calculate and	d verify the average rate constant of the Flow reactors.		A	An		
CO5	Calculate the conversion of given reactants while carried in the combined-flow reactors.						

LIST OF EXPERIMENTS

- I. Irreversible reaction in a Batch Reactor
- 2. Reversible reaction in a Batch Reactor
- 3. Performance study on Combined Reactors (PFR Followed by MFR)
- 4. Performance study on Combined Reactors (MFR Followed by PFR)
- 5. Performance Study on Semi Batch Reactor
- 6. Kinetic Studies in a Mixed Flow Reactor
- 7. Kinetic Studies in a Plug Flow Reactor
- 8. Determination of Rate of Dissociation using Solid Liquid Non Catalytic Reactor
- 9. Study of Adiabatic Reactor.
- 10. Residence Time Distribution in flow reactors.

TOTAL (P:60) = 60 PERIODS

	Mapping of COs with POs / PSOs													
60		POs									PS	Os		
COs	I	2	3	4	5	6	7	8	9	10	11	12	Ι	2
I	3													
2	3													3
3	3													3
4		3	3											
5		3												
со	3	3	3											3

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) / Programme Specific Outcomes (PSOs)

		22CHP06 MASS TRANSFER LABORATORY						
			L	Т	Р	C		
			0	0	4	2		
PRE-RI	EQUISITE: 22	CHC09, 22CHC12						
Course	Ohiostium	To develop sound practical knowledge on different equipments	types	of mas	s trans	fer		
Course	Objective:	• To understand the basic principle of distillation op-	eratior	IS				
		To explore knowledge on extraction/leaching/dryin	ig oper	ations				
	Outcomes Ident will be able	to	С	ognitiv	ve Leve	el		
COI	Analyze and in evaporation.	nterpret data for diffusivity measurement and surface		A	۸n			
CO2	Calculate the d	esign parameters in different distillation operations		A	λp			
CO3	Analyze the se leaching opera	paration efficiency of different solvents on extraction and tions		A	An			
CO4	Analyze the drying performance of material using different drying An							
CO5	Analyze the sep	paration efficiency of different adsorbent		A	۸n			

LIST OF EXPERIMENTS

- I. Determination of the diffusivity of the given liquid to air.
- 2. Estimation of Mass transfer co-efficient using Wetted wall column.
- 3. Verifying the Raleigh's equation for the given system using simple distillation setup
- 4. Determination of vaporization efficiency (Ev) and Thermal efficiency (Et) of the given system using steam distillation apparatus
- 5. Estimation of Height Equivalent to a Theoretical Plate and find out % recovery of the overhead and bottom products of given system under total reflux conditions
- 6. Conduction of Simple /Co-current /Counter current Leaching studies
- Conduction of liquid-liquid extraction studies and plot binodal curve for the given ternary system/Conduction of Liquid-liquid extraction studies in Rotating Disc Contactor
- 8. Studying the concept of Surface Evaporation and finding the constants of Himus Equation

- 9. Verifying adsorption isotherms by Batch Adsorption tests
- 10. Conduction of drying experiments using Vacuum Dryer

TOTAL(P:60) = 60 Periods

REFERENCES:

I. Laboratory manual:

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) /
Programme Specific Outcomes (PSOs)

	Mapping of COs with POs / PSOs														
<u> </u>		POs											PSOs		
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I		3													
2	3														
3		3	3											3	
4		3	3											3	
5		3													
CO (W.A)	3	3	3											3	

Supremer

		22MAN08R - SOFT/ANALYTICA (Common to All Branc					
				L	Т	Ρ	С
				I	0	2	0
PRER	EQUISITE : N	il					
Course	e Objective:	 To enhance the ability to commacross contexts To develop quantitative aptitude and the second se		-		ctively	,
	e Outcomes Ident will be able	to	Cognitive Level	Weightage of C in Continuous Assessment Te			IS
соі	fluently, and	ficiency to communicate accurately, appropriately in various academic, d social contexts.	U		4	0%	
CO2	Solve quantita confidence.	ative aptitude problems with more	Ар	30%			
CO3	Draw valid co problems.	onclusions, identify patterns, and solve	An		3	0%	

UNIT I – VERBAL ABILITY

Grammar - Sentence Completion – Sentence Improvement - Error Spotting - **Listening** - TOEFL Listening Practice Tests - **Speaking** – Interview Skills - **Reading** - GRE Reading Passages - **Writing** - Paragraph Writing.

UNIT II – APTITUDE

Probability - Permutations and Combinations - Data Interpretation on Multiple Charts - Mensuration - Area, Shapes, Perimeter - Races and Games.

UNIT III - REASONING

Data Sufficiency - Mathematical Operations - Pattern Completion - Cubes - Embedded Images.

TOTAL(L:45) = 45 PERIODS

(15)

(15)

(15)

REFEREN	CES:
Ι.	Rizvi, M.Ashraf. Effective Technical Communication. Tata McGraw-Hill Education, 2017.
2.	Aggarwal R S. Quantitative Aptitude for Competitive Examinations. S. Chand Publishing
	Company Ltd(s)., 2022.
3.	Sharma, Arun, How to Prepare for Ougntitative Aptitude for the CAT. Tata McGraw – Hill

- 3. Sharma, Arun. How to Prepare for Quantitative Aptitude for the CAT. Tata McGraw Hill Publishing, 2022.
- 4. Praveen R V. Quantitative Aptitude and Reasoning. PHI Learning Pvt. Ltd., 2016.

	Mapping of COs with POs / PSOs													
	POs													
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I									2	3				
2		2		2										
3		2		2										
CO (W.A)		I		I					I	I				

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) / Programme Specific Outcomes (PSOs)

	22CHC15 TRANSPORT PHE	NOMENA				
			L	Т	Р	С
			2	I	0	3
PRE-RE	QUISITE : 22CHC02, 22CHC07, 22CHC09					
Cou Objec		on the mather the concept o coordinate sys	matical of dime stems.	formul nsional	ation o	of the
	Outcomes dent will be able to	Cognitive Level	We		e of CC emester ination	r
COI	Apply the knowledge to solve problems based on shell momentum, energy & mass balances across various boundary conditions.	Ap		2	20%	
CO2	Apply the equation of changes for systems of various geometry	Ap	20%			
CO3	Apply the knowledge of reaction in transport processes.	Ap		4	10%	
CO4	Infer and analyze for steady state operation for momentum, heat & mass transfer.	An		2	20%	
CO5	Ability to perform in a team to make an effective oral presentation of the study on the topic related to the course	U	In	ternal /	Assessr	nent

UNIT I : MOMENTUM TRANSPORT

Tensor/ Vector, Levels of Transport Phenomena, Viscosity, effect of temperature and pressure on viscosity of gases and liquids, Kinetic theory of viscosity, Newton's law of viscosity (NLV), steady state Shell Momentum balances, boundary conditions, momentum flux at the surfaces, velocity profiles, average velocity of Newtonian and non-Newtonian for flow of a falling film, circular tube, slits, an Annulus, Adjacent flow of two Immiscible fluids.

UNIT II: HEAT TRANSPORT

Thermal conductivity, effect of temperature and pressure on thermal conductivity of gases and liquids, Kinetic theory of thermal conductivity, Fourier's law of heat conduction (FLHC), steady state Shell energy balances, boundary conditions, energy fluxes at surfaces, temperature profiles, average temperature for different types of heat sources such as electrical, nuclear, viscous and chemical.

UNIT III : MASS TRANSPORT

Diffusivity, effect of temperature and pressure on diffusivity, Fick's law of diffusion (FLD), Kinetic theory of diffusivity, steady state Shell mass balances, boundary conditions, Molar flux at surfaces, concentration profiles, average concentration for diffusion through stagnant gas film, Diffusion with homogeneous and heterogeneous chemical reaction, Diffusion into a falling liquid film, Diffusion and chemical reaction in porous catalyst.

9

9

9

UNIT IV : EQUATIONS OF CHANGE AND THEIR APPLICATIONS

Momentum: Equations of Change (Isothermal), equation of continuity, equation of motion, equation of energy (isothermal) their applications in fluid flow problems. Heat: Equations of change (non-isothermal), equation of motion for forced and free convection, equation of energy (non-isothermal). Mass: Equation of continuity for binary mixtures, equation of change to set up diffusion problems for simultaneous heat and mass transfer.

UNITY :TRANSPORT IN TURBULENT AND BOUNDARY LAYER FLOW

Turbulence phenomena; phenomenological relations for transfer fluxes; time smoothed equations of change and their applications for turbulent flow in pipes; boundary layer theory; laminar and turbulent hydrodynamics thermal and concentration boundary layer and their thicknesses; analysis of flow over flat surface. Introduction to macroscopic balances for isothermal flow systems, non-isothermal systems and multicomponent systems.

TOTAL(L:45) = 45 PERIODS

9

9

TEXT BOOKS:

- 1. R. B. Bird, W.E. Stewart, E.W. Lightfoot, Transport Phenomena, 2nd Revised Edition, John Wiley, 2007
- 2. Robert, S Brodkey, Harry C. Hershey, "Transport Phenomena A Unified Approach", Brodkey Publishing 2003.
- 3. Bodh Raj, Introduction to Transport Phenomena, PHI Learning Publications, 2015.

REFERENCES:

prome

- I. R. Welty, R.W. Wilson, and C.W.Wicks, Rorer G.E, Wilson R.W. "Fundamentals of Momentum Heat and Mass Transfer", 5th Edition, John Wiley, New York, 2007
- 2. C. J. Geankoplis, Transport Processes and Separation Process Principles, Prentice- Hall Inc., 4th Edition 2003.
- 3. C. O. Bennett, J. O. Myers, Momentum, Heat and Mass Transfer, 2nd International Student Edition McGraw Hill, 1983.

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) /

	Programme Specific Outcomes (PSOs)														
	Mapping of COs with POs / PSOs														
60	POs													Os	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3												3		
2	3												3		
3	3														
4		3											3		
5									3	3					
Total	3	3							3	3			3		

		22CHC16 PROCESS MODELING AN		ON							
				L	Т	Р	С				
				3	0	0	3				
PRE-RE	EQUISITE : NI	IL									
		To gain knowledge in process sime	ulation								
Course	Course Objective: • To develop a mathematical modeling equation for various unit operations and process										
	Outcomes Ident will be able	e to	Cognitive Level	Veightage of COs in End Semester Examination							
соі		edge of the thermodynamic principles rmulating a mathematical model.	Ap	20							
CO2		ndamental laws to build mathematical mical processes.	Ар		20						
CO3	Develop a mat and Unit-opera	hematical modeling for the Unit-process tion	Ap	30							
CO4		evelop a suitable approach to build models remical processes.	An	30							
CO5		simulation of chemical processes in mulation Packages.	R	Ir	iternal	Assess	ment				

UNIT I: FUNDAMENTALS OF PROCESS MODELING

Mathematical modeling, use of modeling, fundamental laws used in modeling, Model building, Constitutive equations, initial conditions and boundary conditions, black box modeling, gray box modeling, Applications of modeling in process industries

UNIT II: MODELS IN FLUID FLOW OPERATIONS

The process and the model aspects: Mixed vessel - laminar flow in pipe - Gravity flow tank - <u>Cone shaped</u> tank - Mixing tank - Stirred tank heater - Two stirred tank heaters - Interacting stirred tank heaters - Interacting and Non-interacting tanks - Agitated tank for solid dissolution.

UNIT III: MODELING OF REACTORS

(9)

(9)

(9)

(9)

The Process and the model aspects: Batch reactor - Tubular reactor - Jacketed tubular reactor - isothermal and non-isothermal CSTR - CSTR with cooling jacket - CSTRs in series - constant and variable holdup - Continuous stirred tank bioreactor.

UNIT IV: MODELING OF SEPERATION PROCESS

Mathematical model aspects: Multi component flash drum - Compartmental distillation model - Ideal binary distillation column - Binary continuous distillation column - Absorption column - steady state single stage and two stage solvent extraction – Forward and backward feed triple effect evaporator –Double pipe heat exchanger

UNIT V: PROCESS SIMULATION

Process Simulation: Introduction - Scope of process simulation - Formulation of problem - Steps in steady state simulation - Simulation approach for steady state process. Process Simulator: Introduction - Structure of Process Simulator - Professional Simulation Packages (ASPEN and HYSYS) -Selection of Proper Equation of State/Fluid packages -Available Unit Operation Models – HTRI Exchanger Suite modules. Introduction to unsteady state processes.

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- 1. Babu B.V, "Process Plant Simulation", 1st Edition, Oxford University Press, New Delhi, 2004.
- 2. Amiya K. Jana, "Chemical Process Modeling and Computer Simulation", 3rd Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2017 for units I, II, III and IV.

REFERENCES:

- 1. Luyben W.L, "Process Modeling, Simulation and Control for Chemical Engineers", 2nd Edition, Tata McGraw Hill Publishing Company Ltd, New York, 1990.
- 2. Amiya K. Jana, "Chemical Process Modeling and Computer Simulation", 2nd Edition, Prentice Hall of India Pvt. Ltd, New Delhi, 2014.

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) /

				Maj	pping c	of COs	with F	Os / F	SOs					
60	POs													Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	Ι	2
I	3													
2			3											
3			3										3	
4				3									3	
5					3								3	
со	3		3	3	3								3	

Programme Specific Outcomes (PSOs)

	22CHP07 PROCESS CONTROL LABORATORY											
			L	Т	Р	С						
			0	0	4	2						
PRE-RE	EQUISITE: 22	CHC14										
Course	To get knowledge about the principles of controllers											
Course	Objective:	• To learn the transient response of chemical system	and co	ontroll	er							
	e Outcomes udent will be able	Cognitive Level										
COI	Determine the	time constant for first order and second order system		A	An							
CO2	Analysis the controller	performance behavior of P, PI, PD, PID & ON-OFF		A	Nn							
CO3	Examine the p optimization o	An										
CO4	CO4 Analyze the response of higher order system using software											
CO5	Engage in indiv	С										

LIST	OF	EXPERIMEN	TS (Any Ten)
------	----	------------------	--------------

- I. Wheatstone and Kelvin's bridge for measurement of resistance
- 2 Study the characteristics of LVDT/ Hall effect/ Photoelectric transducer
- 3. Estimate the time constant of First order system
- 4. Determine the time constant and study the response of evaluation of interacting/ non-interacting level systems
- 5. Study the response of ON-OFF control on thermal and level process
- 6 Examine the effect of gain of controller in flow process
- 7. Analysis the effect of derivative time of the controller in level process
- 8 Investigate the effect of integral time of the controller in thermal process
- 9. Verification of the flow coefficient and performance characteristics of various control valve
- 10. Estimation of optimum controller settings in thermal process
- Study the characteristic behavior of servo mechanism problem for higher order systems using MATLAB (Simulink)Study the characteristic behavior of regulator mechanism problem for higher order systems using MATLAB (Simulink)

REFERENCES/MANUALS/SOFTWARE:

I. Laboratory Manual

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) /

	Mapping of COs with POs / PSOs														
COs		POs													
	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3												3		
2		3											3		
3			3											3	
4					3									3	
5									I	I					
со	3	3	3		3				I	I			3	3	

Programme Specific Outcomes (PSOs)

Supanne

	22CHP08 PROCESS MODELING AND SIMULATION LABORATORY											
			L	Т	Р	С						
			0	0	4	2						
PRE-RE	EQUISITE: 22	CHC16										
Course	Objective:	 To explore a knowledge in simulating equipments use industries. 	ed in	proce	SS							
Course Outcomes The Student will be able to												
COI		wledge to construct T-x-y / P-x-y diagrams and estimate the rties of chemical components.			Ар							
CO2	Compute the software	simulation of heat transfer equipment using simulation		Ар								
CO3	Demonstrate simulation soft	sensitivity analysis and optimization of parameters using ware.	An									
CO4	Perform simula software	ation of reactor and mass transfer equipment using simulation			Ap							
CO5	Simulate a pro	Ар										

LIST OF EXPERIMENTS (Any Ten)

- 1. Analysis of physical properties and thermodynamic equilibrium diagram construction
- 2. Estimation of physical property for a non- data bank component
- 3. Simulation of mixer
- 4. Simulation of flash separator
- 5. Simulation of heat exchanger by shortcut method
- 6. Calculation of Bubble Point and Dew Point Temperature/Pressure
- 7. Simulation of distillation column
- 8. Simulation of heat exchanger by detailed method
- 9. Simulation of CSTR/Plug flow reactor
- 10. Simulation and analysis of absorption column
- II. Simulation and analysis of extraction column
- 12. Sensitivity analysis and optimization of parameters
- 13. Generate a simple process flow diagram and perform simulation study

TOTAL (P:60) : 60 PERIODS

REFERENCES/MANUAL/SOFTWARE:

- 1. JumaHayday, "Chemical Process Design and Simulation Aspen Plus and Aspen Hysys Applications", AICHE Wiley, USA, 2019.
- 2. Laboratory Manual

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) /

	Mapping of COs with POs / PSOs														
<u> </u>				-	-	PC	Os			-	-		PS	Os	
COs	I	2	3	4	5	6	7	8	9	10	11	12	Ι	2	
I	3	3													
2					3									3	
3		3		3	3		3								
4					3									3	
5					3									3	
со	3	3		3	3		3							3	

Programme Specific Outcomes (PSOs)

	2	22CHP09 PROCESS COMPUTATION LABORATORY	′										
			L	Т	Ρ	С							
			0	0	4	2							
PRE-RE	QUISITE: NI	L											
		To learn the basic chemical calculations using spreads	heet										
Course	Objective:	 To develop a Process Flow and Process Instrumentati software 	ion [Diagrar	ns usir	g							
	To perform the mathematical calculations using software												
	Outcomes dent will be able	(Cognit	ive Lev	vel								
COI	Apply knowle spreadsheet.			Ap									
CO2	Sketch the Pr (P&ID).	ocess Flow (PFD) and Process & Instrumentation Diagram			Ap								
CO3	Compute 3D o	liagram of various Unit-Operations.			Ap								
CO4	Perform math Operations.	ematical algebraic calculations and computations of Unit-			Ap								
CO5	Design of proc	ess equipment using suitable software.			Ap								

LIST OF EXPERIMENTS (Any Ten)		LIST	OF E	XPER	IMEN	TS (A	ny T	en)
-------------------------------	--	------	------	------	------	-------	------	-----

- I. Performing basic chemical calculations using spreadsheet
- 2. Linearization & Error Analysis of graphical data using spreadsheet
- 3. Performing Mass & Energy Balance using spreadsheet
- 4. Development of a Process Flow Diagram using AutoCAD
- 5. Development of Piping and Instrumentation Diagram using AutoCAD and MS Visio
- 6. 3D drawing of a pressure vessel/ heat exchanger/ flash column/ distillation column using AutoCAD and MS Visio
- 7. Basic Commands and Operations in MATLAB:
 - a) Matrix computations
 - b) Solving algebraic/ ODE/ PDE problems
- 8. Design of Shell and Tube / Double pipe heat exchanger using software.
- 9. Design of Condenser using software.
- 10. Estimation of Humidity using software.

- 11. Design of Single effect evaporator using software.
- 12. Design of Plug flow / Mixed Flow Reactor for a given reaction using software.

TOTAL (P:60) : 60 PERIODS

REFERENCES/MANUAL/SOFTWARE:

I. Laboratory Manual

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) /

Mapping of COs with POs / PSOs														
<u> </u>						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3				3									3
2					3									3
3					3									3
4			3		3									3
5			3		3							3		3
СО	3		3		3							3		3

Programme Specific Outcomes (PSOs)

	22CHP10 PROCESS EQUIPMENT DESIGN LABORATORY													
			L	Т	Р	С								
			0	0	4	2								
PRE-R	REQUISITE: N	il												
		Understand processes and equipments used in chemic	cal ind	ustries										
Course	Objective:	• Understand the internals of process equipments.												
		• Develop design solutions using design principles.												
	e Outcomes udent will be able	to	C	ognitiv	e Leve	el								
COI	Apply knowledge to identify processes and equipment to formulate the Ap process flow diagram.													
CO2	Apply knowled for process im	dge for design consideration and assumption requirements plementation.		A	Ψ									
CO3	D3 Analyze and relate the accessories for chemical equipments. An													
CO4	Calculate design parameters for process equipments used in process An													
CO5	Conceptualize and develop design solutions to create visual U U													

LIST OF EXPERIMENTS

- I. Design and drawing considerations of Heat exchangers
- 2. Design and drawing considerations of condensers.
- 3. Design and drawing considerations of evaporators.
- 4. Design and drawing considerations of cooling towers
- 5. Design and drawing considerations of driers.
- 6. Design and drawing considerations of Distillation column
- 7. Design and drawing considerations of Packed column,
- 8. Design and drawing considerations of Reactors
- 9. Design and drawing considerations of Storage vessel and Pressure vessel.
- 10. Design of Plant Layout, Pipe lines and Pipe Layouts.

TOTAL(P:60) = 60 Periods

TEXT BOOKS:

- 1. M.V. Joshi and V.V. Mahajan, "Process Equipment Design", MacMillan India Ltd.
- 2. S. D. Dawande, "Process Design of Equipment's", Central Techno Publications, Nagpur, 2000.
- 3. R.S. Khurmi, "Textbook of Machine design". S. Chand & Company, XXV Edition, 2005.
- 4. M.V. Joshi and V.V. Mahajan, "Design of Process Equipment Design", McMillan India III Edition 1994.

REFERENCES:

- 1. S.D. Dawande, "Process Design of Equipment's", Central Techno Publications, Nagpur, 2000.
- 2. Indian Standard Specifications IS-803, 1962; IS-4072, 1967; IS-2825, 1969. Indian Standards Institution, New Delhi.
- 3. R.H. Perry, "Chemical Engineers' Handbook", McGraw-Hill.
- 4. Suresh C. Maidargi, Chemical Process Equipment Design & Drawing, Vol 1, PHI Learning Ltd (2012).

	Mapping of COs with POs / PSOs														
60						PC	Os						PS	Os	
COs	I	2	3	4	5	6	7	8	9	10	П	12	I	2	
I	3														
2	3														
3		3											3		
4			3										3		
5			3											3	
со	3	3	3										3	3	

artim

		22GED02 – INTERNSHIP / INDUSTRIAL TRAINII														
													L	Т	Ρ	С
													0	0	0	Ι
PRERI	EQUISITE : I	NIL														
Course	 To obtain a broad understanding of the emerge To gain knowledge about I/O models. 											ging	techno	ologies	; in Inc	lustry
	Course Outcomes The Student will be able to										Cog	nitive	Leve	I		
соі	Engage in Industrial activity which is a community service.													U		
CO2	Prepare the p work.	project r	repo	oort, th	nree n	minute	e vid	leo ar	nd the	e post	er of 1	the		,	۹p	
CO3	Identify and specify an engineering product that can make their comfortable.							their	life		,	۹n				
CO4	Prepare a business plan for a commercial venture of the proproduct, together with complying to relevant norms.								propos	sed		,	۹p			
CO5	Identify the community that shall benefit from the product.													E		

During semester breaks, students are encouraged to engage in industrial training or undergo internship in an industry related to the field of study. The duration of the activity shall be of 4 to 6 weeks. The work carried out in the semester break is assessed through an oral seminar accompanied by a written report. It is expected that this association will motivate the student to develop simple Electronic (or other) products to make their life comfortable and convert new ideas into projects.

Every student is required to complete 12 to 16 weeks of internship (with about 40 hours per week), during the Summer/Winter semester breaks. The Internships are evaluated through Internship Reports and Seminars during the VI and VIII semesters. The internships can be taken up in an industry, a government organization, a research organization or an academic institution, either in the country or outside the country, that include activities like:

- Successful completion of Internships/ Value Added Programs/Training
- Programs/ workshops organized by academic Institutions and Industries
- Soft skill training by the Placement Cell of the college
- Active association with incubation/ innovation /entrepreneurship cell of the
- institute;
- Participation in Inter-Institute innovation related competitions like Hackathons

- Working for consultancy/ research project within the institutes
- Participation in activities of Institute's Innovation Council, IPR cell, Leadership
- Talks, Idea/ Design/ Innovation contests
- Internship with industry/ NGO's/ Government organizations/ Micro/ Small/
- Medium enterprises
- Development of a new product/ business plan/ registration of a start-up

	Mapping of COs with POs / PSOs														
						PC	Ds						PS	Os	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I						2									
2										3					
3		I													
4							2	3			2				
5						2									
CO (W.A)		I				2	2	3		3	2				

......

		2	2CHD01 PRC	DJECT WORK					
						L	Т	Р	С
						0	0	20	10
PRE-RE	QUISITE: -								
		 Identif 	ying problem a	nd developing the :	structured r	netho	dology	to s	olve
		the ide	entified problen	n in the industry o	or research	probl	em at	resea	arch
Course	Objective:	Institu	tion.			•			
		 Condu 	icting experime	nts, analyse and di	scuss the te	est re	sults,	and m	ake
		conclu	sions.	-					
		Cours	se Outcomes			C	ognitiv	ve Leve	7
The Stu	dent will be able	to					Seniciv		-1
СОІ	Study problen survey and its	literature		A	γP				
CO2			•	l design/ simulation	is work in		۵	Nn	
02	team in the pr	edetermined me	ethodology.				r	M I	
CO3			need of profe	ssional ethics duri	ng project			J	
	documentation	.						-	

DESCRIPTION

Project work may be allotted to a single student or to a group of students not exceeding 4 per group. The students in a group will be assigned an experimental, design, a case study or an analytical problem or an Industrial Project to be carried out under guidance of a faculty member. The project has to be assigned at the beginning of the eighth semester. The project group should complete the preliminary literature survey & plan of project and submit the report at the end of semester; This is evaluated by a committee constituted by the HoD for assessment. There shall be three reviews during the semester by the committee to review the progress. Students are encouraged to present the one technical paper in any national or international conference at the end of the semester.

TOTAL(P:240)=240 PERIODS

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) / Programme Specific Outcomes (PSOs)

	Mapping of COs with POs / PSOs														
60						PC	Ds						PS	Os	
COs	I	2	3	4	5	6	7	8	9	10	11	12	Ι	2	
I		3										3	3		
2				3						3				3	
3								3					I		
СО		3		3				3		3		3	2	3	

Suparmer

	22CHX01	INTRODUCTION TO COMPUTAT	IONAL FLUID	DYN		S	
				L	Т	Р	С
				3	0	0	3
PRE-R	EQUISITE : -						
		• To learn the governing equations	for fluid flow and	heat	transfe	r.	
		• To acquire knowledge in the diffe	erent types of mo	dels fo	or turb	ulence.	
Course	Objective:	 To attain knowledge infinite vo steady state diffusion and convection 				soluti	on of
		• To conquer knowledge in the coupling in steady flows.	solution algorithr	ns foi	r press	ure–ve	locity
Course	Outcomes			We	eightag	e of CC	Os in
	ident will be able	to	Cognitive Level		d Seme		
				Exa	aminati	on	
соі		ng equations for fluid flow, heat transfer ate the different types of models for	Ap			20%	
CO2	Apply finite vo steady state problems.	lume method for developing solution of diffusion and convection diffusion	An			20%	
CO3		wledge of algorithms in solving unsteady onduction and convection diffusion	Ар			40%	
CO4	Identity the algorithms and the steady flows.	orithms for pressure–velocity coupling in	An			20%	
CO5	Develop the software's	mathematical modeling using Chemical	Ap	Ir	nternal	Assess	ment

UNIT – I CONSERVATION LAWS OF FLUID MOTION AND BOUNDARY 9 CONDITIONS

Governing equations of fluid flow and heat transfer: Equations of state -Navier-Stokes equations for Newtonian fluid - conservative form of governing equations of flow - differential and integral forms of general transport equations - classification of physical behavior.

UNIT – II TURBULENCE AND ITS MODELING

Transition from laminar to turbulent flow - effect of turbulence on properties of the mean flow - Reynoldsaveraged Navier-Stokes equations and classical turbulence models - mixing length model $-k \cdot \epsilon$ model; Turbulent models - Reynolds Stress model and large eddy simulation.

UNIT – III FINITE VOLUME METHOD FOR DIFFUSION AND CONVECTIVE- 9 DIFFUSION PROBLEMS

Finite volume method for one-dimensional, two-dimensional and three-dimensional steady state diffusion steady one-dimensional convection and diffusion- Discretization schemes: the central differencing scheme -Properties of discretization schemes - Assessment of the central differencing scheme for convectiondiffusion problems - upwind differencing scheme - Hybrid differencing scheme - power-law scheme.

9

UNIT – IV SOLUTION ALGORITHMS FOR PRESSURE-VELOCITY COUPLING IN 9 STEADY FLOWS

Staggered grid - momentum equations - SIMPLE algorithm - Assembly of a complete method - SIMPLER, SIMPLEC, and PISO algorithms. Solution of discretized equations: Tri-diagonal matrix algorithm - application of TDMA to two-dimensional and three-dimensional problems.

UNIT – V FINITE VOLUME METHOD FOR UNSTEADY FLOWS

9

One-dimensional unsteady state heat conduction - implicit method for two-and three-dimensional problems - discretization of transient convection- diffusion equation - solution procedures for unsteady flow calculations - steady state calculations using pseudo-transient approach.

TOTAL (L:45) : 45 PERIODS

TEXT BOOK:

1. Versteeg H.K. and Malalasekara W, "An Introduction to Computational Fluid Dynamics: The Finite Volume Method", 2nd edition, Pearson Education, India, 2007.

REFERENCE:

1. Anderson John D., "Computational Fluid Dynamics-The Basics with Applications", 1st edition, Tata McGraw Hill Publishing Company Ltd, United State of America, 2012.

					Mappir	ng of C	Os witl	h POs /	' PSOs					
<u> </u>						PC	Os						PS	Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3												3	
3	3												3	
4		3											3	
5					3									3
СО	3	3			3								3	3

Erpunne

		22CHX02 MODERN SEPERATION		.c]
							
					Т	P	C
ļ				3	0	0	3
PRE-R	EQUISITE : ·	-					
		• To learn the separation processes	for selecting opti	mal pr	ocess	for nev	w and
C		innovative applications and the nove	el techniques of fil	tratior	ı		
Course	Objective:	• To acquire the knowledge in types	s of membranes	and m	nembra	ine mat	terials
	I	and exhibit the understanding of var	rious membrane s	eparat	ion pro	ocesses	ن
~		· · · · · · · · · · · · · · · · · · ·		We	eightag	e of CC	Os in
	Outcomes Ident will be able	 	Cognitive Level	Enc			
The Stud	dent will be able	3 10		Exa	aminati	on	
		lemonstrate the separation process in			209/		
COI	process indust	tries	Ap 20%				
	Apply the kn	owledge of engineering fundamentals to	1				
CO2		tion operations in chemical industries.	Ар			20%	
	Identify mem	brane processes in terms of materials,					
CO3		echanisms of transport and industrial	An			40%	
	applications.						
CO4	Demonstrate	the pursuance of sustainable through Electro dialysis, Electrophoresis	Δn			20%	
		ange chromatography techniques	is An 20%				
		the separation techniques in terms of	of				
CO5	their relativ		U	Ir	nternal	Assess	ment
	applicability in	n the context of technological changes.					

UNIT – I FUNDAMENTALS AND FILTRATION

Basic Concepts – Characteristics and Mechanism of Separation, Feasibility of Separation Processes. Theory and Selection of Equipment for Filtration Process

UNIT – II MEMBRANE PROCESS

Theory of Membranes Process, Types and Choice of Membranes, Types and Relative Merits of Membrane Modules

UNIT – III APPLICATIONS OF MEMBRANE PROCESS

Principle and Applications of Dialysis and Electro Dialysis; Nano Filtration and Reverse Osmosis, Pervaporation, Ultra filtration, Micro filtration.

UNIT – IV OTHER SEPARATION PROCESS I

Principle and Applications of Ion Exchange, Electrophoresis, Dielectrophoresis, Lyophilisation, Chromatography-Gas Chromatography, Column, Paper, HPLC.

UNIT - V OTHER SEPARATION PROCESS II

Principles and Applications of Supercritical Fluid Extraction, Zone melting, Adductive crystallization, Reversible Chemical Complexation, Foam Separation, Thermal Diffusion, Cryoseparations

TOTAL (L:45) : 45 PERIODS

9

9

9

9

9

TEXT BOOK:

- 1. Seader, J.D., Ernest J., Henley, Keith Roper D., "Separation Process Principles", 3rd Edition, John Wiley & Sons, USA, 2010.
- 2. Separation Processes, C. J. King, Second Edition, McGraw Hill Chemical Engineering Series

REFERENCES:

- 1. Scott K., Hughes R, "Industrial Membrane Separation Technology", 1st Edition, Blackie Academic and Professional Publications, United State of America, 1996.
- 2. Ronald W Rousseau, "Hand book of Separation Process Technology", 1st Edition, Wiley India Pvt Ltd, 2008.

					Mappin	ng of CO	Os witł	n POs /	PSOs					
COs						PC	Os						PS	Os
COS		2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3												3	
2	3													
3		3											3	
4		3					3						3	
5												3		
СО	3	3					3					3	3	

22CHX03 CHEMICAL PROCESS UTILITIES											
				L	Т	Ρ	С				
				3	0	0	3				
PRE-I	REQUISITE : -										
Course	e Objective:	• To learn the fundamentals and ap	plications of utilitie	s in pr	ocess	indust	ries				
	e Outcomes udent will be able	to	Cognitive Level	End	ghtage Semes ninatic	ter	Os in				
COI	Apply knowledg manufacturing p	ge on the utilities used to support the rocess	Ар	20							
CO2	Apply the knc process industri	wledge on application of utilities in es	Ар			30					
CO3	Analyze and ide process industri	entify the suitable utilities needed for es	An			30					
CO4		n to improve effective utilization steam, process industries	Ар			20					
CO5		team, Describe the essential utilities nical process flow diagram.	U	Internal Assessmen							

UNIT I – STEAM AND WATER (9) Steam: Properties of steam, Mollier chart, determination of dryness fraction of steam- Different types of calorimeter; Efficient use of steam in process plants, Insulation of Steam Mains. Water: Source and characteristics of water- soft and Demineralised water - Treatment of water for boiler and cooling towers.

UNIT II - COMPRESSED AIR AND INERT GAS

Compressed Air – Introduction, Plant Air Systems, Instrument Air Systems, Operation and Maintenance. Inert Gases – Properties, Uses of inert gases, Sources and Methods of Generation

UNIT III - BOILERS

Types and classification of boilers: water tube, fire tube, coal, oil and gas fired boilers; Stoker fired, pulverized and fluidized bed boilers. Mountings and accessories. Performance and efficiency calculation of boilers

UNIT IV - REFRIGERATION

Principles - compression and absorption refrigeration systems, calculation of efficiency and capacity of refrigeration - Types and properties of refrigerants - eco- friendly refrigerants.

UNIT V - VACUUM SYSTEM

Introduction, Classification of Vacuum, Vacuum Generation equipment – Liquid Ring Vacuum Pump, Steam Jet Ejector, Mechanical Vacuum Pump, Vacuum Measurement using McLeod Gauge, Vacuum Conveying of powders, Vacuum Filtration and Drying

TOTAL (L:45) : 45 PERIODS

(9)

(9)

(9)

TEXT BOOKS:

- 1. Jack Broughton, "Process Utility System Introduction to Design Operation and Maintenance", 1st Edition, Institution of Chemical Engineers, United Kingdom, 1994
- 2. Wolfgang Jorisch, "Vacuum Technology in the Chemical Industry", 1st Edition, Wiley VCH, 2014.

REFERENCES

- 1. Lyle O, "Efficient use of Steam", 1st Edition, H M S O Publishers, United Kingdom, 2000.
- 2. Eskel Nordell, "Water treatment for industrial and other uses", 1st Edition, Reinhold Publishing Corporation, New York, 1961.

					Mappir	ng of C	Os wit	h POs ,	/ PSOs					
COs						PC	Os						PS	Os
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2	3													
3		3											3	
4				3										
5									2					
СО	3	3		3					2				3	3

Erfamme

		22CHX04 CORROSION TEC	HNOLOGY				
				L	Т	Р	С
				3	0	0	3
PRE R	EQUISITE : -						
Course	e Objective:	 To acquire knowledge in the conapplications in chemical process To obtain knowledge in the corr control 	industries				
	e Outcomes udent will be able	e to	Cognitive Level	End	eightag 1 Seme aminati		Ds in
COI		owledge about the different types of their testing methods	Ар	20%			
CO2		owledge on corrosion inspection and vstem for given condition	Ар			30%	
CO3	Identify the sui given conditior	table corrosion prevention technique for	An			30%	
CO4	Identify the co	prrosion involved in specific environment	nt An 20%				
CO5	Comprehend of	of making effective oral presentation	U	lr	nternal	Assess	ment

UNIT - I CORROSION TYPES AND TESTING

9

9

9

9

Basic principles of corrosion and its control: Forms of corrosion, Uniform, Galvanic, Crevice, Pitting, Intergranular, Selective leaching, Erosion, Stress corrosion. Hydrogen Blistering and Embrittlement, Cracking, Cavitation and their Fracture Mechanics. Corrosion testing: Classification, Purpose, Material and Specimen, Surface preparation, Measuring and Weighing. Exposure techniques: Duration – Planned interval test; NACE test methods, Slow-Strain-Rate test, Linear Polarization, AC Impedance method.

UNIT – II PREVENTION METHODS

Corrosion inhibitors, Electroplated coatings, Conversion coatings, Anodizing, Hot dipping, Spray metal coatings, Zinc coating by alloying, Electrophoteric coatings and electro painting, Powder coating. Corrosion minimization by material selection. Cathodic and Anodic protections

UNIT – III INSPECTION AND MANAGEMENT

Corrosion inspection methods: visual, liquid penetration, magnetic particle, radiographic, eddy current, ultrasonic, thermography testing. Corrosion management systems. Process maintenance procedures.

UNIT – IV CORROSION IN SPECIFIC ENVIRONMENTS

Corrosion by organic acids and alkalies. Sea water and Fresh water corrosion on concrete structures, Corrosion in automobiles, Biological corrosion, Halogen corrosion of metals, Corrosion in Petroleum industry, Corrosion in aerospace.

UNIT – V CORROSION IN SPECIFIC CASES AND CONTROL

9

Corrosion and selection of materials of pulp and paper plants. Corrosion of wet scrubbers in pollution control. Nuclear waste isolation and corrosion by liquid metal and fused salts. Corrosion of surgical implants and prosthetic devices. Corrosion in electronic equipment.

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- I. Fontana M.G., "Corrosion Engineering", 1st edition, Tata McGraw Hill Publishing Company Ltd, New Delhi, 2005
- 2. Pierre R. Roberge, "Corrosion Inspection and Monitoring", 1st edition, John Wiley and Sons Inc, Canada, 2008

REFERENCES:

- 1. Jones D.A, "Principle and Protection of Corrosion", 1st Edition, Prentice Hall of India Pvt. Ltd, India, 1996.
- 2. Sastri V.S., Ghali E., Elboujdaini M., "Corrosion Prevention and Protection: Practical Solutions", 1st Edition, John Wiley & Sons Inc, United State of America, 2007.

					Mappir	ng of C	Os witl	h POs /	/ PSOs					
COs						PC	Os						PS	Os
COS	I	2	3	4	5	6	7	8	9	10	11	12	Ι	2
Ι	3		3											
2	3												3	
3		3											3	
4		3												
5														
СО	3	3 3 3												

funne

	22CHX05 N	ATERIALS OF CONSTRUCTION	FOR PROCESS	INDU	JSTR	ES			
				L	Т	Р	С		
				3	0	0	3		
PRE-R	EQUISITE : -								
6	01.1	• To learn the properties of the m	aterial, deformatio	n of r	nateria	l under	· load		
Course	Objective:	• To empower the knowledge in s	selecting the material for sustainability						
	Outcomes Ident will be able	e to	Cognitive Level	Enc	eightage I Seme Iminatio		Os in		
COI	Apply the kno the material	wledge and comment the properties for	Ар						
CO2	Implement the	knowledge on classifying the material	Ар						
CO3		properties and selecting the suitable becific application	An			30%			
CO4		the materials to demonstrate the sustainable development.	Ap	20%					
CO5	Custom the o	composite materials to use in different sciplines	U	Internal Assessme					

UNIT I – FERROUS METAL

Materials- types and properties; Iron carbide phase diagram. Pig, cast and wrought iron - properties and application in chemical industries; deformation of metal; recovery and recrystallization.

UNIT II -STAINLESS STEEL

Special steels – grade, composition, special properties and applications; general criterion and factor affecting the selection of material in process industries

UNIT III -NON FERROUS METAL

Nickel, Aluminium, Copper, Chromium, Lead, Titanium, Zinc and magnesium - alloys, properties and applications in process industries.

UNIT IV – OTHER MATERIAL

Polymers, Ceramic, Glass, Wood and Rubber – Types, Properties, fabrication techniques, stress analysis and application in chemical process industries.

UNIT V – ADVANCE MATERIAL

Mechanism of reinforcement, master bath & compounding equipment used for reinforcement -metallic reinforced matrix, ceramic reinforced matrix, polymer reinforced matrix; Metallic glasses and oxides for high temperature applications; materials for biomedical, cryogenics and sour service

TOTAL (L:45) : 45 PERIODS

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. James A. Lee, Materials of Construction for Chemical Process Industries, McGraw Hill, 1950.
- 2. Frank Rumford, —Chemical Engineering Materials || , Nabu Press, 2013

REFERENCES:

- I. Agrawal B.K., —Introduction to Engineering Materials J., Tata McGraw Hill, 1988
- 2. Krishan K. Chawla, "Composite Materials Science and Engineering", 2nd edition, Springer New York Heidelberg Dordrecht London.

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) /
Programme Specific Outcomes (PSOs)

	Mapping of COs with POs / PSOs															
COs						PC	Os						PS	Os		
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2		
Ι	3															
2	3															
3		3											3			
4							3									
5		3														
СО	3	3					3					3	3			

Supanne

		22CHX06 PROCESS INSTRUM	IENTATION									
				L	Т	Р	C					
				3	0	0	3					
PRE-R	EQUISITE : -											
Course	e Objective:	• To learn the types, performance measurement			U		of					
		 To get knowledge in measuring d 	levice applied in cr									
	Course Outcomes The Student will be able to Cognitive Level Cognitive Level Cognitive Level Cognitive Level End Semester Examination											
соі	Apply the know the measuring o	wledge and Explain the components for device	Ар		20%							
CO2	Apply the know using instrumer	wledge for measuring process parameter nt	Ар			30%						
CO3		itable instrument for measuring process given condition	An			30%						
CO4	CO4 Apply norms for selecting the instrument used Ap											
CO5	Comprehend c	of making effective oral presentation	U	Internal Assessment			ment					

UNIT – I PRINCIPLES OF MEASUREMENT

9

9

9

9

Measuring Instrument: Introduction and its types- Elements and its function. Transducer: Importance and its classification - Measuring errors: Sources - reduction - quantification of systematic and Random errors. Performance characteristics: Static and Dynamic characteristics

UNIT – II TEMPERATURE MEASUREMENT

Principles of temperature measurement: Thermoelectric effect sensors - Varying resistance devices - Radiation thermometers - Thermography - Thermal expansion methods - Fibre-optic temperature sensors - Selection of temperature transducers.

UNIT – III PRESSURE MEASUREMENT

Principles of Pressure Measurement: Manometers - Bourdon tube - Bellows - Diaphragms - Capacitive pressure sensor - Fibre-optic pressure sensors - Resonant-wire devices - Dead-weight gauge - Special measurement devices for low pressures measurement -Selection of pressure sensors.

UNIT – IV FLOW AND VISCOSITY MEASUREMENT

Principles of Flow Measurement: Mass flow rate measurement and Volume flow rate measurement - Choice between flow meters for particular applications. Viscosity measurement: Capillary and tube viscometers - Falling body viscometer - Rotational viscometers.

UNIT – V LEVEL MEASUREMENT

Principles of Level Measurement: Float systems - Pressure measuring devices - Capacitive devices - Ultrasonic level gauge - Radar (microwave) methods - Radiation methods - Vibrating level sensor and Laser methods - Choice between different level sensors.

TOTAL (L:45) : 45 PERIODS

9

TEXT BOOKS:

- 1. Alan S Morris, Reza Langari, "Measurement and Instrumentation: Theory and Application", 3rd Edition, Academic Press, USA, 2001.
- 2. Singh S.K, "Industrial Instrumentation and Control", 2nd Edition, McGraw Hill International Edition, New Delhi, 2006.

REFERENCE:

1. William C Dunn, "Fundamentals of Industrial Instrumentation and Process Control", 1st Edition, McGraw Hill International Edition, New Delhi, 2005.

	Mapping of COs with POs / PSOs																
COs						PC	Os						PS	Os			
	I	2	3	4	5	6	7	8	9	10	11	12	I	2			
Ι	3																
2	3												3				
3		3											3				
4	3																
5								3	3								
СО	3	3						3	3				3				

Jupunur

		22CHX07 PHARMACEUTICAL 1	ECHNOLOGY					
				L	Т	Р	С	
				3	0	0	3	
PRE-R	EQUISITE : -							
		 To get the knowledge in the delivery systems 	e formulation and	l man	ufactu	ring of	drug	
Course	e Objective:	 To get knowledge in societ pharmaceutical industries. 	al, health, safety	and	legal	aspec	ts in	
		To learn the norms in pharmace	utical industries					
	e Outcomes udent will be able	to	Cognitive Level	End	l Seme		Os in	
COI	Apply the know	rledge in the drug metabolism system	Ap	ExaminationAp20%				
CO2	Apply the kno system	wledge in drug synthesis and delivery	Ар			30%		
CO3	Identify the su circumstance	itable drug delivery system for given	An			30%		
CO4		owledge to assess societal, health, safety is in pharmaceutical industries.	Ар			20%		
CO5	Committed to industries	follow the ethics in pharmaceutical	U	Ir	nternal	Assess	ment	

UNIT- I PRINCIPLES AND KINETICS:

Introduction to drugs and pharmaceutical, application of organic therapeutic agents, pharmaco kinetics-Absorption, Distribution, metabolism and Excretion- mechanism and physicochemical principles.

UNIT- II PROCESS SYNTHESIS:

Chemical Conversion process-alkylation, arboxylation, condensation and cyclisation, dehydration, esterification, halogenation, oxidation and sulfonation reactions.

UNIT-III DRUG DELIVERY SYSTEMS:

Tablets and capsules-Types of Tablets and capsules-Formulation and Manufacturing; parential solutions, oral liquids, injections and ointments-methods of preparation.

UNIT- IV PHARMACEUTICAL PRODUCTS:

Vitamins-Functions, laxatives-classification and uses, analgesics -Types and Mechanisms, antacids and antiseptics-classification, mechanism and applications.

UNIT-V QUALITY CONTROL:

Concept of quality control –IPQC tests for tablets, Quality analysis–raw materials, process and finished products. Good Manufacturing Practices- cGMP, FDA regulations.

TOTAL (L:45) : 45 PERIODS

9

9

9

9

9

TEXT BOOKS:

- 1. Brahmankar D.M. and Sunil B. Jaiswal, "Bio pharmaceutics and Pharmacokinetics: A Treatise", 1st Edition, Vallabah Prakashan India, 2017
- 2. Arthur Owen Bentley, "TextbookofPharmaceutics", 8th Edition, All India Traveller Book Seller, India, 2002

REFERENCE:

1. BankerG.S. andRhodes C.T., "Modern Pharmaceutics", 4thEdition, Marcel Dekker Inc, United Stateof America, 2002.

					Mappin	g of C	Os with	POs /	PSOs						
COs	POs COs														
	Ι	I 2 3 4 5 6 7 8 9 IO II													
Ι	3												3		
2	3	3													
3		3											3		
4						3							3		
5		3													
СО	3	3				3		3					3		

	22C	HX08 SEPARATION AND PURIFIC	CATION PROCE	ESSE	S		
				L	Т	Р	С
				3	0	0	3
PRE-R	REQUISITE : -						
Course	e Objective:	 Students will gain a basic knowledge To gain a knowledge about various To gain a knowledge about ads technique. 	membrane separat	tion te	echniqu	Jes	ration
	e Outcomes udent will be able	e to	Cognitive Level	End	eightage 1 Seme aminati		Os in
СОІ		est concepts like super critical fluid ervaporation, lyophilisation etc., in tries.	Ар			20%	
CO2	Apply the known separation met	wledge to improve the performance of hods	Ар			30%	
CO3	Identify the s circumstance	uitable separation methods for given	An			30%	
CO4		owledge to assess societal, health, safety ts in process industries.	Ар			20%	
CO5	Committed to wastes	follow the ethics in in disposal of	U	Ir	nternal	Assess	ment

UNIT I BASICS OF SEPARATION PROCESS

Review of Conventional Processes, Modern Separation Techniques based on size, surface properties, ionic properties and other special characteristics of substances, Process concept, Theory and Equipment used in cross flow Filtration, cross flow Electro Filtration, Surface based solid – liquid separations involving a second liquid.

UNIT II MEMBRANE SEPARATIONS

Types and choice of Membranes, Plate and Frame, tubular, spiral wound and hollow fibre, Pilot Plant and Laboratory Membrane permeators involving Dialysis, Reverse Osmosis, Nano-filtration, Ultra filtration diafiltration and Micro filtration, Ceramic- Bio Membranes.

UNIT III SEPARATION BY ADSORPTION

(9)

(9)

(9)

(9)

Types and choice of Adsorbents, Adsorption Techniques, Dehumidification Techniques, Affinity Chromatography and Immuno Chromatography, Recent Trends in Adsorption.

UNIT V INORGANIC SEPARATIONS

Controlling factors, Applications, Types of Equipment employed for Electrophoresis, Di-electrophoresis, Electro-dialysis, EDR, Bipolar Membranes.

UNIT V APPLICATION OF MODERN SEPARATION TECHNIQUES

Separation involving Lyophilisation, Pervaporation and Permeation Techniques for solids, liquids and gases, zone melting, Adductive Crystallization, other Separation Processes, Supercritical fluid Extraction, Oil spill Management, Industrial Effluent Treatment by Modern Techniques.

TOTAL (L:45) : 45 PERIODS

(9)

TEXT BOOKS:

- I. J D Seader and Ernest J Henley, Separation Process Principles, Wiley; I edition (January 23, 1998)
- 2. Judson king Separation processes, McGraw-Hill College; Subsequent edition (January 1, 1980

REFERENCES:

- I. Nakagawal, O. V., "Membrane Science and Technology" Marcel Dekkar, 1992
- 2. Roussel, R. W., "Handbook of Separation Process Technology", John Wiley, New York, 1987.

					Mappin	g of C	Os with	n POs /	PSOs						
COs	POs														
	I	I 2 3 4 5 6 7 8 9 10 11 1													
Ι	3												3		
2	3	3													
3		3											3		
4	3												3		
5		3													
СО	3	3						3					3		

reformer

				L	Т	Р	С
				3	0	0	3
PRE-R	EQUISITE :						
Course	Ohiostivo	• To learn the fundamentals and m processes.	ethodologies in the	e peti	roleum	refinin	Ig
Course	e Objective:	 To enable students to express the classify the processes used in pet 	•	roleu	ım refir	ning and	d
	e Outcomes udent will be able	e to	Cognitive Level	Enc	eightage I Seme: Iminatio	ster	Ds in
COI	methods of	classification, composition and testing petroleum refinery process and its n the mechanism of the refining process.	Ap			20%	
CO2	Analyze the in produce the pr	sights of primary refining processes to ecursors.	An			20%	
CO3	Apply the second more petroleur	ondary treatment processes to produce m products.	Ар			40%	
CO4	impurities from	atment techniques for the removal of petroleum products.	An			20%	
CO5		e societal impact of petrochemicals learn uring processes.	U	Ir	nternal	Assess	ment
	FICRUDE CH	EMISTRY AND PRODUCTS				(9	?)
comp petro	osition of crude leum standards-	d Evaluation of Crude Oil -Indian petrol e oil (PONA, S, N2,etc) -Thermo-physi chemical analysis data- Testing methods o assay- selection of crude based on produc	ical and physical of petroleum prod	prope	erties	of crue	de oi
UNI	T II - BASICS F	OR REFINING				(9	9)
index	-boiling point-pi	l gas laws-partial pressure-specific gravity ressure of fluid at rest-flow resistan des of heat transfer-diffusion mass transfer	ce-static/induced	press			
		EUM THERMODYNAMICS AND CA				(9)

First/second law-behavior of gas and liquid – PVT relationship- equation of state-VLE- equilibrium constant-Multi component liquid vapor composition calculation-specific gravity calculation-TBP distillation-ASTMconversion to pseudo-components-Molecular weight calculation-pseudo-critical properties-calculation of enthalpy of petroleum fractions-Generalized equation for thermo physical properties of petroleum.

UNIT IV - REFINERY UNIT OPERATIONS AND CALCULATION

Distillation-types-column internals-multi component distillation-relative volatility- 9 azeotropic mixtureabsorption- desorption- adsorption- refrigeration - extraction- drying curve-humfidication principlecrystallization-stripping operation-.boiling curve- application of all operation in refinery and its basic design calculations.

UNIT V - REFINERY PROCESSES AND CATALYST FUNDAMENTAL

(9)

Treating processes of petroleum products- Thermal/catalytic/hydro cracking-reforming/ isomerization /alkylation -principles and reactions- Catalyst phenomenon and theory- surface area/void volume/porosity-catalyst classification and preparation/selectivity/yield/reactivity- heterogeneous reactions- catalytic reactor types (packed bed/moving bed/fluidized bed)- residence time-space velocity- Catalyst loading techniques.

TOTAL (L:45): 45 PERIODS

TEXT BOOKs:

- I. Fundamentals of Petroleum Refining, M.A. Fahim, T.A. Al-sahhaf, A.S. Elkilani; Elsevier Science and Technology
- 3. Modern Petroleum Refining Processes, BK Bhaskara Rao, Oxford & IBH Publishinng Co. Pvt. Ltd.

REFERENCES:

- 1. W. L. Nelson, Petroleum Refinery Engineering,, McGraw-Hill Book Co, 1969
- J. H. Gary, H. Hanwerk and M. J. Kaiser, Petroleum Refining Technology and Economics, CRC Press, 5th Edition, 2007
- Wayne C. Edmister, "Applied Hydrocarbon Thermodynamics", Gulf Publishing Co., 2nd edition, 1988

	Mapping of COs with POs / PSOs														
COs	POs														
003	Ι	I 2 3 4 5 6 7 8 9 10 11 12												2	
I	3												2		
2	2												2		
3					2								2		
4	2			2										2	
5		2													
СО	2		2	2	2								2	2	

funne

22CHX12 PRIMARY REFINING TECHNOLOGY

L	Т	Р	С
3	0	0	3

(9)

(9)

(9)

(9)

PRE-REQUISITE :

Course Objective:

To enable the students to learn the methodologies in the primary petroleum refining processes like crude preparation, atmospheric and vacuum distillation, Lube, asphalt and wax processing.

	Outcomes dent will be able to	Cognitive Level	Weightage of COs in End Semester Examination
СОІ	Analyze the methodologies in the primary petroleum refining processes like crude preparation.	Ap	20%
CO2	Analyze how each refinery process works.	An	20%
CO3	Analyze to learn the operating variables which are applied to achieve the objectives of each refinery process	Ар	40%
CO4	Analyze the feed stocks.	An	20%
CO5	Apply the concepts in asphalt processing and wax treatment technology	U	Internal Assessment

UNIT I - FEED PREPARATION

Pipelines from port to tank farm -safety and regulations -storage techniques in crude oil-impurities removalmeasuring by dipping -spiking techniques -types of salts in crude - desalting process – electric desalterpreheating train and design- furnace and its operation.

UNIT II - ATMOSPHERIC DISTILLATION

Operation and process description of ADU-design characteristics of ADU tower-cutpoints-degree of fractionation-over flash-column pressure and overhead temperature- Preflash system- overhead system-side streams-intermediate pump around and reflux systems- Refinery off gas- LPG treatment-Naphtha stabilizer and splitter-side stripping sections-operating variables

UNIT III - VACUUM DISTILLATION

Operation of VDU- Need of vacuum- ejectors and its types/principle- Overhead ejector system - flash zonedraw off temperature- internal flow in VDU- light/middle/heavy cuts- routing to secondary units- lube based treatments-packing section tower loading of VDU.

UNIT IV - LUBE OIL BASE STOCKS

Viscosity index calculation and pour point - LOBS processing by solvent treatment and hydro treatmentsolvent selection-solvent extraction by NMP, furfural, MEK solvent dewaxing/- refrigerating and filtration hydro finishing- types of LOBS based on VI- types or groups of lube processing-spindle/LN/IN/HN/BN processing and blending. Vacuum residue properties- propane deasphalting-asphalt processing and types-chemical structure-air blowing of bitumen- slack wax processing- wax and types/properties- wax deoiling- unit operations in wax plants- refrigerating and filtration/ hydro treating of wax- molding and storage

TOTAL (L:45): 45 PERIODS

TEXT BOOKS:

- 1. Modern Petroleum Refining Processes, BK Bhaskara Rao, Oxford & IBH Publishinng Co. Pvt. Ltd.
- 2. Prasad, R., "Petroleum Refining Technology", Khanna Publishers, New Delhi, 2000

REFERENCES:

- 1. J.G. Speight and B. Ozum, "Petroleum Refining Processes", Marcel Dekker Inc, New York, 2002
- 2. G.D. Hobson, "Modern Petroleum Technology", Vol I & II, John Wiley & Sons, New York, 5th edition, 1984
- 3. 3) David.S.J."STAN"Jones and Peter R.Pujado "Handbook of Petroleum Processing, Springer, 2006.

				Мар	ping of	f COs y	with P	Os / PS	SOs					
POs													PS	Os
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2		3		2										2
3		3		2										2
4				2									2	
5								3					2	
СО	3	3		2				3					2	2

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) / Programme Specific Outcomes (PSOs)

romme

	22CHX13 PE	ETROLEUM REFINING PRIMARY P	ROCESSING T	ECH	NOLC	ΟGΥ	
				L	Т	Р	С
				3	0	0	3
PRE-RE	QUISITE :	• To gain the knowledge on Origin theories	and Occurrence o	of petr	oleum	with va	arious
Course C	Objective:	 To gain the knowledge on u Petroleum and its products. To gain the knowledge about pr products. 			Ū		
	Dutcomes lent will be able	to	Cognitive Level	W	End S	e of C emeste ninatior	er
	•••	lge on crude composition, types and stics in primary refining operations.	Ap			20%	
	check the quali	itability of various testing methods to ty of crude oil and its products.	An			20%	
CO3 a	and separating		Ар			40%	
CO4 (components lik	roduction techniques available for the e lube oil , wax and bitumen.	An			20%	
CO5 1	Analyze the rol the commerc environment su		U	Ir	nternal	Assess	ment
Theories chemistry characteri	behind the Ori - Compositio	COMPOSITION AND CLASSIFICA gin of petroleum – Exploration and prod n of crude oil – Impurities present in oil properties, Crude oil assay – Indigenc apacity of India.	uction of petroleu crude oil - Cruc	de oil	classif	ication	and
	TESTING O	PETROLEUM PRODUCTS					(9)
		oortant commercial petroleum products: Important testing methods and their Signi		Kerose	ene, Al	F, Die	sel, ai
JNIT III	CRUDE PRO	DCESSING					(9)
oattern ir	n the trays –	il – Dehydration and desalting – Types of Products separation using Atmospheric and its significance.	-				
	LUBE DIST	LLATE TREATMENT TECHNIQUI	ES				(9)
reatment	techniques: Sc	on and its uses - Production of lubrication Ivent extraction, Deasphalting, Dewaxing nufacture of Calcium Grease.	-				

Г

UNIT V WAX AND BITUMEN PROCESSING TECHNIQUES

Paraffinic wax: Classification and its uses, Petroleum jelly manufacture - Bitumen: Types and their properties – Bitumen Testing: Ductility, Penetration Index and Softening point - Asphalt manufacture: Air blowing technology.

TOTAL (L:45) : 45 PERIODS

TEXT BOOKs:

- 1. Ram Prasad, "Petroleum Refining Technology", Khanna Publishers. 2008
- 2. Bhaskara Rao, B.K., "Modern Petroleum Refining Processes", 6th edition, Oxford and IBH Publishing Company Pvt. Ltd. 2018.

REFERENCES:

- 1. James H. Gary and Glenn E. Handwerk., "Petroleum Refining Technology and Economics", 4th Edition, Marcel Dekker Inc., 2001.
- 2. Nelson, W.L., "Petroleum Refinery Engineering", McGraw Hill Publishing Company Limited, 1985.
- 3. Hobson, G.D., "Modern Petroleum Refining Technology", 5th Edition, John Wiley Publishers, 1984

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) / Programme Specific Outcomes (PSOs)

	Mapping of COs with POs / PSOs													
COs						PC	Os						PS	Os
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3	3											2	
2		3	3										2	3
3			3	3									2	
4	3			3										3
5							3		2					
со	3	3		3			3		2				2	3

arfamme

					_	-	-
				L 3	Т 0	P 0	C 3
				3	0	0	3
KE-K	EQUISITE :	—					
Course	Objective:	 To enable the students to lear petroleum refining or upgrading To enable students to learn refining of catalytic cracking. To enable students learn each of instrument air, H2, N2. 	processes. nery operation, me	chani	sm anc	l impor	tance
The Stu	ident will be able	Course Outcomes e to	Cognitive Level	Enc	eightage I Seme Iminatie		Ds in
COI		wledge on different methodologies in the roleum refining processes.	Ар			20%	
CO2	Analyze the o food stock.	peration of Catalytic cracking on the	An			20%	
CO3	Apply the pi industrial purp	rocess of hydro conversion for the ose2.	Ар			40%	
CO4	Apply the thermodynami	basic knowledge on advanced c and chemical operation.	An			20%	
CO5	Gather some l utilities of refin	knowledge in the finishing processes and ing industries.	U	Ir	iternal	Assess	ment
						1	(
-		CRACKING AND COKING					(9)
/isbreak coking-d	king- soaker pro	chnologies- cracking-thermal cracking-med ocess- coil visbreaker - Disadvantages-C operation-fluid coking- flexicoking - type	Coking- thermodyn	namic	s and	mecha	nism
Ι ΤΙΑ	I - CATALYT						(9)
eedstoc echnolo	ks/products/yiel	acking-mechanisms- FCC- main reaction or d pattern- Kinetics and thermodynamics regeneration/fractionation sections-slide als-RFCC/MSCC/Petro FCC	of FCC reactions-	FCC	cataly	st and	licens
JNITI	II - HYDROGI	EN AND HYDROCONVERSION					(9)
atalyst- reatme	Hydro treatmer nt-Hydrocrackin	reforming and shift conversion-operation of processes- catalyst and reaction chemi g process- Typical hydrocracker in refine reaction kinetics of hydrocracker- Operat	stry Naphtha/Diesery- catalyst/severit	el/lub	e/wax/	gasolin	e hyd

UNIT IV – REFORMING / ISOMERISATION / ALKYLATION

Reforming feed index-RON-various reforming technologies-platforming reactions-kinetics and thermodynamics of Pt catalyst reactions-Operation in Straight Run and Continuous Run mode yield calculation- Isomerization techniques- reactions and kinetics- various technologies in isomer importance of catalyst-hexane production-Alkylation process-reactions – various alkylation processes- process variables in reforming/isomer/alky

UNIT V - FINISHING PROCESSES AND UTILITIES

Sources of sulfur in refinery-types of sulfur compounds in crude-sweetening processes- various sulfur treatment process in products-H2S properties and removal by physical and chemical process- Amine selection –amine absorption and regeneration-sour water stripping- Merox process- Sulfur recovery from H2S by Claus /super Claus/ modified Claus technology/SCOT Process/CS2 process; Electricity and steam generation by Gas turbine/boiler-Cooling tower operation-Fuel oil-Cryogenic distillation of air to N2 and O2 production-Instrument air operation

TOTAL (L:45): 45 PERIODS

TEXT BOOK:

- I. Modern Petroleum Refining Processes, BK BhaskaraRao, Oxford & IBH Publishing Co. Pvt. Ltd.
- 2. Prasad, R., "Petroleum Refining Technology", Khanna Publishers, New Delhi, 2000 .
- 3. W. L. Nelson, Petroleum Refinery Engineering,, McGraw-Hill Book Co , 1969

REFERENCES:

- I. J.G. Speight and B. Ozum, "Petroleum Refining Processes", Marcel Dekker Inc, New York, 2002
- 2. G.D. Hobson, "Modern Petroleum Technology", Vol I & II, John Wiley & Sons, New York, 5th edition, 1984
- 3. David.S.J."STAN"Jones and Peter R.Pujado "Handbook of Petroleum Processing, Springer, 2006.

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) / Programme Specific Outcomes (PSOs)

				Map	ping o	f COs	with P	Os / P	SOs					
COs				PS	Os									
	I	I 2 3 4 5 6 7 8 9 10 11 12 1												2
I	3	2												3
2				2									2	
3				3										2
4				3									2	
5							3		2				2	
СО	3	2		3			3		2				2	3

September

(9)

22CHX15 PETROCHEMICAL UNIT PROCESSES												
				L	Т	Р	С					
				3	0	0	3					
PRE-R	EQUISITE : -											
Course	e Objective:	production.	source of petrochemicals, synthesis gas s involved in Sulphonation, Sulfation and									
Course	objective.	 Isomerization. To understand Skills on Fundametertiary unit processes 	ental and Techno	logical	princi	ples inv	volved					
	e Outcomes udent will be able	to	Cognitive Level	End	Weightage of COs in End Semester Examination							
COI		principles of various feed stock and petrochemical industry.	Ар		20%							
CO2	Apply the synth	nesis of gas production.	An		20%							
CO3	,	undamental and principle involved in primary unit processes.	Ap		40%							
CO4	,	undamental and principle involved in secondary unit processes.	An		20%							
CO5		ills on Fundamental and Technological ved tertiary unit processes	U	I	Internal Assessment							

UNIT I - FEED STOCK AND SOURCE OF PETROCHEMICALS	(9)
--	-----

Overview of Petrochemical Industry – The key growth area of India, Economics – Feed stock selections for Petrochemicals – Steam cracking of Gas and Naphtha to produce Olefins, Diolefins and Production of Acetylene.

UNIT II - SYNTHESIS GAS PRODUCTION

Steam reforming of Natural gas – Naphtha and Heavy distillate to produce Hydrogen and Synthesis gas – Production of Methanol – Oxo process.

UNIT III - PRIMARY UNIT PROCESSES

Fundamental and Technological principled involved in Alkylation – Oxidation – Nitration and Hydrolysis.

UNIT IV - SECONDARY UNIT PROCESSES

Fundamental and Technological principled involved in Sulphonation, Sulfation and Isomerisation.

(9)

(9)

(9)

Fundamental and Technological principles involved in Halogenation and Esterification

TOTAL (L:45): 45 PERIODS

TEXT BOOKS:

- I. BhaskaraRao, B.K., "A Text on Petrochemicals", Khanna Publishers, 2000.
- 2. SukumarMaiti, "Introduction to Petrochemicals", 2nd Edition, Oxford and IBH Publishers, 2002.

REFERENCES:

- 1. Margaret Wells, "Handbook of Petrochemicals and Processes", 2nd Edition, Ash Gate Publishing Limited, 2002.
- 2. Sami Matar, and Lewis F. Hatch., "Chemistry of Petrochemical Processes", 2nd Edition, Gulf Publishing Company, 2000.
- 3. Dryden, C.E., "Outlines of Chemical Technology", 2nd Edition, Affiliated East-West Press, 1993.

Mapping of COs with POs / PSOs															
COs	POs													PSOs	
	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3	2											3		
2		3		3									2		
3		3											3		
4		3											3		
5						2								2	
со	3	3		3		2							3	2	

frømme

		22CHX16 PETRO		DERIVATIVES					
					L	Т	Р	С	
					3	0	0	3	
PRE-R	EQUISITE : -								
 To classify the petrochemicals and to know the alternate routes of producing petrochemicals. To identify the alternate route to first, second and third generation petrochemicals 									
	e Outcomes udent will be able	to		Cognitive Level	W	2.1.0 0	e of C emeste ninatior	er	
COI	Design the tech precursors of p	niques and their alterna etrochemicals.	te production of	Ap	20%				
CO2	Analyze the va	rious chemicals from production.	first generation	An	20%				
CO3	Analyze the generation of pe	manufacturing proce etrochemicals.	Ар	40%					
CO4	Analyze the petrochemicals.		An	20%					
CO5	Learn the progeneration petr	operties and characte ochemical.	U	Internal Assessmen					

UNIT I - PRECURSORS	(9)
Indian Petrochemical Industry - Sources of Petrochemicals - Classification of Petrochemicals - C	lassification
of Hydrocarbons - Alternate routes with flow diagram for production of methane, ethylene,	propylene,
acetylene. Chemicals from methane, ethylene, propylene, acetylene.	
UNIT II - FIRST GENERATION PETROCHEMICALS	(9)
Alternate routes with flow diagram for production of butadiene, related dienes, aromatics -	– Benzene,
toluene, xylene - Chemicals from butadiene, related dienes, aromatics - Benzene, toluene, xylene	2.
UNIT III - SECOND GENERATION PETROCHEMICALS	(9)
Alternate routes with flow diagram for production of ethylene glycol, ethylene oxide, Ethyl benz	zene, VCM,
acrylonitrile, phenol, adipic acid, hexmethylenediamine, DMT, TPA, maleic anhydride, styrene.	
UNIT IV - THIRD GENERATION PETROCHEMICALS	(9)
Polymerization – Modes and techniques – Production of polyethylene – LDPE, HDPE, polyprop	ylene, SBR,
SAN, ABS, PU.	
UNIT V - THIRD GENERATION PETROCHEMICALS	(9)
Polyacrylonitrile, polyvinyl chloride, polycarbonates, nylon 6, nylon 66, polyesters, resins, explosiv	ves, organic
dyes.	
TOTAL (L:45) : 4	5 PERIODS

TEXT BOOKS:

- I. BhaskaraRao, B.K., "A Text on Petrochemicals", Khanna Publishers, 2000.
- 2. SukumarMaiti, "Introduction to Petrochemicals", 2nd Edition, Oxford and IBH Publishers, 2002.

REFERENCES:

- Margaret Wells, "Handbook of Petrochemicals and Processes", 2nd Edition, Ash Gate Publishing Limited, 2002.
- 2. Sami Matar, and Lewis F. Hatch., "Chemistry of Petrochemical Processes", 2nd Edition, Gulf Publishing company, 2000.
- 3. Dryden, C.E., "Outlines of Chemical Technology", 2nd Edition, Affiliated East-West Press, 1993

Mapping of COs with POs / PSOs															
COs	POs													PSOs	
	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I			3										2		
2	2	3											2		
3	2	3											2		
4	2	3											2		
5							3					2		2	
со	2	3	3				3					2	2	2	

Sipmur

		22CHX17 PETROCHEMICAL T	ECHNOLOGY								
				L	Т	Р	С				
				3	0	0	3				
PRE-R	EQUISITE : -										
		• To learn the operation and metho	odologies in petro	chemi	cal indu	ustries					
Course	Objective	• To learn the application of petroc	ochemicals in all process fields								
	• To learn each products of petrochemical industries and its application with production techniques in detail.										
The Stu	udent will be able	Course Outcomes e to	Cognitive Level			e of C emeste ninatior	er				
COI	Analyze the ba and their grow	sic knowledge on petrochemical industry th, history.	Ap	20%							
CO2		ifferent methods of production in products and their derivatives.	An			20%					
CO3	Apply knowled products.	ge on the production of petrochemical	Ар			40%					
CO4	Analyze the application with	petrochemical industries and its production techniques in polymers.	An	An 20%							
CO5	Understand th process fields	e application of petrochemicals in all	U	Internal Assessme							

UNIT I - PETROCHEMICALS EVOLUTION

(9)

(9)

(9)

(9)

Petrochemical Industries and their feedstock selection .History, Economics, Growth of petrochemical industry.-structure of Petrochemical complexes- Classification of petrochemicals- Basic building processes-Integration with refinery-flow scheme

UNIT II - INTERMEDIATES FOR PETROCHEMICALS INDUSTRIES

Production Methods - Reforming and cracking of feed stocks; Sources: Chemicals from synthesis gas, olefins and aromatics-Ethylene, Propylene, C4hydrocarbons, higher olefins, Benzene, Toluene, Xylene and their derivatives

UNIT III - COMPLEX PETROCHEMICAL PRODUCTS

Acrylonitrile, Acrylic acid, dimethyl terephthalate, ethanol, ethylene glycol, linear alkyl benzene, methyl tertiary butyl ether, vinyl acetate, vinyl chloride, Maleic and phthalic anhydride, ethyl benzene, Phenol, Cumene, Styrene, Bisphenol, Aniline – Process flow scheme- various technology- advantages-yield pattern-process variables

UNIT IV – POLYMERS

Polymers production: Fibers, Rubbers and Plastics. Acrylonitrile butadiene styrene (ABS), polyethylene-LDPE, HDPE, Polypropylene, PVC, PS, SAN, SBR, PAN, Nylon and Polycarbonates.

Petrochemicals-Lubricants, additives, adhesives, agrochemicals, cosmetics raw materials, electronic chemicals, detergents, paint, healthcare and pharmaceuticals, Fertilizers - Ammonia, Urea, NPK etc.

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- 1. Bhaskara Rao, B.K. "A Text on Petrochemicals", 2nd Edition, Khanna Publishers, NewDelhi, 1998
- 2. H. Steiner, "Introduction to petrochemicals", Pergamon Press, NewYork, 1961.
- 3. Wiseman.P., "Petrochemicals", UMIST Series in Science and Technology, John Wiley &Sons, 1986.
- 4. IDMall, 'Petrochemical process Technology', Macmillan India Limited, 2007.
- 5. A. Chawvel and G. Lefebvre, "Petrochemical Process", Vol. I & II, Gulf Publishing Co., Houston, London

REFERENCES:

- 1. Brown stein A.M. 'Trends in Petrochemical Technology', Petroleum Publishing Company, 1976.
- 2. G.MargaretWells, 'HandbookofPetrochemicalsandProcesses'2nd Revised Edition, Gower Publishing Company.
- 3. Groogins, "Unit Process in Organic Synthesis", McGraw Hill Book Company, New York
- 4. Robert A. Meyers, "Handbook of Petrochemicals Production Processes", McGraw-Hill Education: New York, 2 nd edition, 2019 (ISBN: 9781259643132).
- 5. L.F. Hatc and MatarSarri, "From Hydrocarbons to Petrochemicals", Gulf Publishing Co., Houston, London.
- 6. 6. A.L. Waddams, "Chemicals from Petroleum", Gulf Publishing Company, London, 4th edition, 1980

	Mapping of COs with POs / PSOs														
<u> </u>	POs													PSOs	
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	2												2		
2		2												3	
3	2													2	
4		3											2		
5							3						2		
СО	2	3					3						2	2	

		22CHX18 FERTILIZER TECH	INOLOGY							
				L	Т	Р	С			
				3	0	0	3			
PRE-F	REQUISITE : -									
		To know the production of fertil	izers and its chara	cteris	tics.					
Course	Course Objective: • To know the applications of NPK fertilizers.									
	To express the role of nutrients in mixed fertilizers.									
	e Outcomes udent will be able	e to	Cognitive Level End Semester Examination							
соі	Analyze the va production of f	rious manufacturing process involved in ertilizers.	Ар			20%				
CO2	Analyze the co their manufactu	ncepts of phosphatic fertilizers types and uring methods.	An	20%						
CO3	Analyze the rol	e of potassium fertilizer production.	Ар							
CO4	Analyze the pro	e production of complex and NPK fertilizers. An 20%								
CO5		e knowledge of bio fertilizers, fluid slow release fertilizers and their U Internal As					ment			

UNIT I - NITROGENOUS FERTILISERS

Methods of production of nitrogenous fertilizer-ammonium sulphate, nitrate, urea and calcium ammonium nitrate; ammonium chloride and their methods of production, characteristics and specifications, storage and handling.

UNIT II - PHOSPHATIC FERTILISERS

Raw materials; phosphate rock, sulphur; pyrites etc., processes for the production of sulphuric and phosphoric acids; phosphates fertilizers - ground rock phosphate; bone meal-single superphosphate, triple superphosphate, thermal phosphates and their methods of production, characteristics and specifications.

UNIT III - POTASSIC FERTILISERS

Methods of production of potassium chloride, potassium schoenite, their characteristics and specifications.

UNIT IV - COMPLEX AND NPK FERTILISERS

Methods of production of ammonium phosphate, sulphatediammonium phosphate, nitrophosphates, urea, ammonium phosphate, mono-ammonium phosphate and various grades of NPK fertilizers produced in the country.

UNIT V - MISCELLANEOUS FERTILISERS

Mixed fertilizers and granulated mixtures; biofertilisers, nutrients, secondary nutrients and micro nutrients; fluid fertilizers, controlled release fertilizers, controlled release fertilizers.

TOTAL (L:45) : 45 PERIODS

(9)

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. "Handbook of fertilizer technology", Association of India, New Delhi, 1977.
- 2. Menno, M.G.; "Fertilizer Industry An Introductory Survey", Higginbothams Pvt. Ltd., 1973.

REFERENCES:

- Sauchelli, V.; "The Chemistry and Technology of Fertilizers", ACS MONOGRAPH No. 148, Reinhold Publishing Cor. New York, 1980.
- 2. Fertiliser Manual, "United Nations Industrial Development Organisation", United Nations, New York, 1967.
- 3. Slack, A.V.; Chemistry and Technology of Fertilisers, Interscience, New York, 1966.

	Mapping of COs with POs / PSOs													
COs	POs										PS	Os		
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I		3											3	
2	2													2
3	2													2
4	2													2
5							2						3	
со	2	3					2						3	2

Supanne

	22CHX19 POLYMER TEC	HNOLOGY				
			L	Т	Р	C
			3	0	0	3
PRE-R	EQUISITE : -					
	To know the industrial polyme	rizations concepts.				
Course	 To know the significance of gla polymers. To know the principles of plase 		erature	and pr	operti	es of
	e Outcomes udent will be able to	Cognitive Level		End S	ge of C Semeste ninatio	er
COI	Analyze the concept and classification of polymers an polymerization methods.	d Ap			20%	
CO2	Apply the types of polymerization mechanism.	An			20%	
CO3	Apply the knowledge on molecular weight and it significance through industry.	Ар			40%	
CO4	Design the process on glass transition temperature an melting point.	20%				
CO5	Explain the concept of different molding techniques for different applications.	r U	Ir	nternal	Assess	sment
UNIT	I – INTRODUCTION				(9)
natural Functio	oncepts of macromolecules – Monomers – Polymers – products like cellulose, rubber and proteins - Chemis onality - degree of polymerization-Classification and no osetting polymerization.	stry of Olefins and	Diene	ès – de	ouble l	oonds
		IERIZATION			(9)
coordir	on Polymerization: free radical polymerization – cation nation polymerization – industrial polymerization - erization techniques – Copolymerization concepts – Con	- bulk, emulsion,	suspe		ymeriz	ation -
• •	III - MOLECULAR WEIGHTS OF POLYMERS				(9)
tertiary Cumen	nitrile, Acrylic acid, dimethyl terephthalate, ethanol, o v butyl ether, vinyl acetate, vinyl chloride, Maleic and ne, Styrene, Bisphenol, Aniline – Process flow scheme- s variables	d phthalic anhydrio	de, eth	iyl ber	izene,	Phenol
•	IV - GLASS TRANSITIONS TEMPARATURE				(9)
and ex crystall	ransition Temperature: significance and experimental st operimental study – Relationship between Tg and T ization– factors affecting crystallization - Polymer rements.	m – Crystallinity	in po	olymer	r - sign s – ef	ificance ffect o
UNIT	V -PLASTICS PROCESS – MOULDING TECHN	IQUES			(9)
Thermo	on molding: Principle, Types and advantages - Blow oforming: Principle, Types and advantages - Compression on : Principle, Types and advantages – Calendaring : Prin	on molding: Princip	ole, Typ	oes and		-

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- 1. Billmeyer.F.W.,Jr, Text Book of Polymer Science, Ed. Wiley-Interscience, 1984.
- 2. Seymour. R.B., and Carraher.C.E., Jr., Polymer Chemistry, 2nd Ed., Marcel Dekker, 1988.
- 3. Gowariker.V.T., Viswanathan.N.V., and Sreedar.J., Polymer Science, Wiley Eastern Ltd., 1988.

REFERENCES:

- I. Joel, R.F; Polymer Science and Technology, Eastern Economy Edition, 1999.
- 2. Rodriguez, F., Cohen.C.,Oberic.K and Arches, L.A., Principles of Polymer Systems, 6th edition, CRC Press, 2014.

	Mapping of COs with POs / PSOs														
COs	POs													PSOs	
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3	2											2	2	
2		3											2		
3			2										2		
4				2	3								2		
5							2					2		2	
СО	3	3	2	2	3		2					2	2	2	

		22CHX21 FOOD CHEM	IISTRY				
				L	Т	Р	С
				3	0	0	3
PRE-RI	EQUISITE: -						
Course	Objective:	To explore a knowledge in foodTo gain knowledge in food color	•		•		
The Stu	dent will be able	Course Outcomes to	Cognitive Level	Weightage of COs End Semester Examination			er
COI	Apply the prir industrial pro	nciple and properties of carbohydrates in cessing.	Ap	20%			
CO2	Apply the kno technology.	owledge, operation and process in food	Ap		30%		
CO3	Analyze the p	roperties and types of fat and oils.	Ap	20%			
CO4	Apply the pri process indust	nciple of food processing in Chemical cries.	Ар			30%	
CO5	To learn know food.	wledge the aroma and phytochemicals in	U	Ir	iternal	Assess	ment

UNIT I: CARBOHYDRATES

The principal carbohydrates in the human diet.Chemical properties of carbohydrates -dehydration, caramelization, Maillard reaction. Types Simple Sugars mono and disaccharides, solubility; Artificial sweeteners; Glucose syrup, fructose syrup, Sugar alcohols; Oligosaccharides structure, nomenclature, occurrence, uses in foods. Polysaccharides Starch- amylose and amylopectin- properties, thickening & gelatinization, modified starches, resistant starch, Dextrins and dextrans, Starch hydrolysates – Maltodextrins and dextrins; Structure of glycogen. Fiber-Cellulose & hemicellulose Pectins Gums & seaweeds- gel formation & viscos

UNIT II: PROTEINS

The principal proteins in the human diet. Review of protein structure & conformation; Optical activity, solubility, hydration, swelling, foam formation & stabilization, gel formation, emulsifying effect, thickening & binding, amino acids in Maillard reaction, denaturation; Properties & reactions of proteins in food systems and Food enzymes and its role in food spoilage, application of food enzymes; Texturized proteins; Functional role and uses in foods.

UNIT III:LIPIDS

(9)

(9)

(9)

Review of structure, composition and nomenclature of fats. Properties of fats & oils Edible oil refining processes, winterization, melting points, plasticity, isomerisation, hydrolysis of triglycerides, Saponification number, iodine value, Reichert-Meissl number. Types of fatty acids; Modification of fats hydrogenation- cis and trans isomers, inter-esterification, acetylation, Hydrolytic rancidity & oxidative rancidity; Shortening power of fats, tenderization, frying - smoke point, auto oxidation, polymerization, lipids having emulsifying properties, its application in food industry and detergents; Shortening power of fats, chemistry of steroids, types of fat substitute.

UNIT IV: FOOD COMPOSITION, WATER, MINERALS AND VITAMINS	(9)
Proximate composition of food, water activity in food, moisture content of food, water qu	ality for food
processing. Mineral & vitamin content of foods- stability & degradation during food processing.	
UNIT V: AROMA & IMPORTANT PHYTOCHEMICALS IN FOOD	(9)
Naturally occurring colours/pigments in food and impact on antioxidant level, Synthetic food g	rade Colours,
enzymatic browning of food, flavour& aroma components present in herbs, spices, coffee, tea,	cocoa, fruits,
vegetables & fermented products; and Naturally similar /artificial flavours, Threshold values,	off flavours&
food taints. Naturally occurring toxic substances, protease inhibitors, bioactive compone	ents phytates,

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

polyphenols, saponins, phytoestrogens etc

- I. Belitz H.-D, Grosch W and Schieberle P. Food Chemistry, 4th Edition, Springer-Verlag, 2009.
- 2. Meyer, Lillian Hoagland "Food Chemistry". CBS Publishers, 1987.

REFERENCES:

- 1. Vaclavik, V. A. and Christian E. W. "Essentials of Food Science". 4th Edition, Kluwer Academic, Springer, 2014.
- 2. Richard Owusu-Apenten "Introduction to Food Chemistry" CRC Press, 2005.
- 3. SrinivasanDamodaran, Kirk L. Parkin, "Fennema's Food Chemistry"5th Edition, CRCPress, 2008.

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) /
Programme Specific Outcomes (PSOs)

	Mapping of COs with POs / PSOs													
COs		Pos												
COS	I	2	3	4	5	6	7	8	9	10	11	12	Ι	2
I	3													
2													3	
3	3												3	
4	3													
5						3							3	
СО	3					3							3	

PRE-REQUISITE: - Course Objective: Impart an understanding on the micro structural food materials To gain have a basic idea on characterization of f Course Outcomes To gain have a basic idea on characterization of f Cognitive Level CO1 Apply fundamental concept in chemical food processing industry. Apply CO2 Design the given data and find the formation and structure of food biopolymers. An CO3 Analyze of the food gels and food structure and food processing. An CO4 Apply Interpret the technologies for characterization of engineered/structured food materials. App CO5 Apply the knowledge of engineering food materials. App CO5 Apply the knowledge of engineering food materials. App UNIT I: INTRODUCTION Fundamentals of food materials, Molecular basis of food materials, Observation ranges and size-property relationship, The Composite Structure of Biologic crystalline structures of materials. UNIT II: MICROTOMACROLEVELSTRUCTURESOFFOODMATERI/ Microstructure definitions, Measurement of microstructures/nanostructures, structures, Interfacial assembly of food materials. UNIT III: FOOD GELS Introduction tofood biopolymers, Rheology of food gels: yielding and gelli andstructure of biopolyme	ood ma	aterials. /eighta; End S	ge of C Semest	COs in				
Ourse Objective: Impart an understanding on the micro structural food materials To gain have a basic idea on characterization of for gain have a basic idea on characterization of for gain have a basic idea on characterization of for gain best on the student will be able to Cognitive Level Cognitive Level Cognitive Level Cognitive of food biopolymers. Cognitive content of food biopolymers. Cognitive content of food biopolymers. Cognitive content of food biopolymers. Cognitive content of food food gels and food structure and food processing. Cognitive content of food materials. Cognitive content of food materials. Cognitive content of a processing. Cognitive content of a procese p	ood ma	aterials. /eighta; End S	ular basis of als. ntage of CC nd Semester xamination 20% 20% 20% 20% 40% 20% rnal Assessn (9) Is at various Amorphous (9) onship betv tion of su (9) ntter, Form ucture-rhea (9) (NMR), Fo X-ray scatt (AFM).	COs in				
Course Objective: food materials • To gain have a basic idea on characterization of f Course Outcomes The Student will be able to CO1 Apply fundamental concept in chemical food processing industry. CO2 Design the given data and find the formation and structure of food biopolymers. An CO3 Analyze of the food gels and food structure and food processing. Ap CO4 Apply Interpret the technologies for characterization of engineered/structured food materials. Ap CO5 Apply the knowledge of engineering food materials. Ap UNIT I: INTRODUCTION Fundamentals of food materials. Mp Fundamentals of food materials. Me Microstructure of Biologic crystalline structures of materials. UNIT II: MICROTOMACROLEVELSTRUCTURESOFFOODMATERIA Microstructure definitions, Measurement of microstructures/nanostructures, structure and quality, Microstructure and emulsions, Fibrous Composites structures, Interfacial assembly of food materials. UNIT III: FOOD GELS Introduction tofood biopolymers, Rheology of food gels: yielding and gelli andstructure of biopolymer network gels, Formation micro- andnano-gelpa relationships of food gels and food gel structures. UNIT IV: FOODMATERIALCHARACTERIZATION	ood ma	aterials. /eighta; End S	ge of C Semest	COs in				
The Student will be able to Cognitive Level CO1 Apply fundamental concept in chemical food processing industry. Ap CO2 Design the given data and find the formation and structure of food biopolymers. An CO3 Analyze of the food gels and food structure and food processing. An CO4 Apply Interpret the technologies for characterization of engineered/structured food materials. Ap CO5 Apply the knowledge of engineering food materials. Ap UNIT I: INTRODUCTION Fundamentals of food materials, Molecular basis of food materials, Observation ranges and size-property relationship, The Composite Structure of Biologic crystalline structures of materials. UNIT II: MICROTOMACROLEVELSTRUCTURESOFFOODMATERIA Microstructure definitions, Measurement of microstructures/nanostructures, structure and quality, Microstructure and emulsions, Fibrous Composites structures, Interfacial assembly of food materials. UNIT III: FOOD GELS Introduction tofood biopolymers, Rheology of food gels: yielding and gelli andstructure of biopolymer network gels, Formation micro- andnano-gelpa relationships of food gels and food gel structures. UNIT IV: FOODMATERIALCHARACTERIZATION		End S	Semest					
CO1 industry. Ap CO2 Design the given data and find the formation and structure of food biopolymers. An CO3 Analyze of the food gels and food structure and food processing. An CO4 Apply Interpret the technologies for characterization of engineered/structured food materials. Ap CO5 Apply the knowledge of engineering food materials. Ap CO5 Apply the knowledge of engineering food materials. Ap Fundamentals of food materials, Molecular basis of food materials, Observation ranges and size-property relationship, The Composite Structure of Biologic crystalline structures of materials. UNIT II: MICROTOMACROLEVELSTRUCTURESOFFOODMATERI/ Microstructure definitions, Measurement of microstructures/nanostructures, structure and quality, Microstructure and emulsions, Fibrous Composites structures, Interfacial assembly of food materials. UNIT III: FOOD GELS Introduction tofood biopolymers, Rheology of food gels: yielding and gellia andstructure of biopolymer network gels, Formation micro- andnano-gelpa relationships of food gels and food gel structures. UNIT IV: FOODMATERIALCHARACTERIZATION				n				
CO2 structure of food biopolymers. An CO3 Analyze of the food gels and food structure and food processing. An CO4 Apply Interpret the technologies for characterization of engineered/structured food materials. Ap CO5 Apply the knowledge of engineering food materials. Ap UNIT I: INTRODUCTION Fundamentals of food materials, Molecular basis of food materials, Observation ranges and size-property relationship, The Composite Structure of Biologic crystalline structures of materials. UNIT II: MICROTOMACROLEVELSTRUCTURESOFFOODMATERIA Microstructure definitions, Measurement of microstructures/nanostructures, structure and quality, Microstructure and emulsions, Fibrous Composite structures, Interfacial assembly of food materials. UNIT II: FOOD GELS Introduction tofood biopolymers, Rheology of food gels: yielding and gellia andstructure of biopolymer network gels, Formation micro- andnano-gelpa relationships of food gels and food gel structures. UNIT IV: FOODMATERIALCHARACTERIZATION			20%					
CO3 processing. An CO4 Apply Interpret the technologies for characterization of engineered/structured food materials. Ap CO5 Apply the knowledge of engineering food materials. Ap UNIT I: INTRODUCTION Fundamentals of food materials, Molecular basis of food materials, Observation ranges and size-property relationship, The Composite Structure of Biologic crystalline structures of materials. UNIT II: MICROTOMACROLEVELSTRUCTURESOFFOODMATERIA Microstructure definitions, Measurement of microstructures/nanostructures, structure and quality, Microstructure and emulsions, Fibrous Composites structures, Interfacial assembly of food materials. UNIT III: FOOD GELS Introduction tofood biopolymers, Rheology of food gels: yielding and gelliandstructure of biopolymer network gels, Formation micro- andnano-gelparelationships of food gels and food gel structures. UNIT IV: FOODMATERIALCHARACTERIZATION			20%					
CO4 engineered/structured food materials. Ap CO5 Apply the knowledge of engineering food materials. Ap UNIT I: INTRODUCTION Fundamentals of food materials, Molecular basis of food materials, Observation ranges and size-property relationship, The Composite Structure of Biologic crystalline structures of materials. UNIT II: MICROTOMACROLEVELSTRUCTURESOFFOODMATERI/ Microstructure definitions, Measurement of microstructures/nanostructures, structure and quality, Microstructure and emulsions, Fibrous Composites structures, Interfacial assembly of food materials. UNIT III: FOOD GELS Introduction tofood biopolymers, Rheology of food gels: yielding and gellia andstructure of biopolymer network gels, Formation micro- andnano-gelpa relationships of food gels and food gel structures. UNIT IV: FOODMATERIALCHARACTERIZATION		nalyze of the food gels and food structure and food An An						
UNIT I: INTRODUCTION Fundamentals of food materials, Molecular basis of food materials, Observation ranges and size-property relationship, The Composite Structure of Biologic crystalline structures of materials. UNIT II: MICROTOMACROLEVELSTRUCTURESOFFOODMATERIA Microstructure definitions, Measurement of microstructures/nanostructures, structure and quality, Microstructure and emulsions, Fibrous Composites structures, Interfacial assembly of food materials. UNIT III: FOOD GELS Introduction tofood biopolymers, Rheology of food gels: yielding and gellin andstructure of biopolymer network gels, Formation micro- andnano-gelpa relationships of food gels and food gel structures. UNIT IV: FOODMATERIALCHARACTERIZATION			20%					
Fundamentals of food materials, Molecular basis of food materials, Observation ranges and size-property relationship, The Composite Structure of Biologic crystalline structures of materials. UNIT II: MICROTOMACROLEVELSTRUCTURESOFFOODMATERIA Microstructure definitions, Measurement of microstructures/nanostructures, structure and quality, Microstructure and emulsions, Fibrous Composites structures, Interfacial assembly of food materials. UNIT III: FOOD GELS Introduction tofood biopolymers, Rheology of food gels: yielding and gellin andstructure of biopolymer network gels, Formation micro- andnano-gelpa relationships of food gels and food gel structures. UNIT IV: FOODMATERIALCHARACTERIZATION	Ir	nternal	l Asses	sment				
 UNIT II: MICROTOMACROLEVELSTRUCTURESOFFOODMATERIA Microstructure definitions, Measurement of microstructures/nanostructures, structure and quality, Microstructure and emulsions, Fibrous Composites structures, Interfacial assembly of food materials. UNIT III: FOOD GELS Introduction tofood biopolymers, Rheology of food gels: yielding and gellia andstructure of biopolymer network gels, Formation micro- andnano-gelpa relationships of food gels and food gel structures. UNIT IV: FOODMATERIALCHARACTERIZATION 			it varic	ous siz				
Microstructure definitions, Measurement of microstructures/nanostructures, structure and quality, Microstructure and emulsions, Fibrous Composites structures, Interfacial assembly of food materials. UNIT III: FOOD GELS Introduction tofood biopolymers, Rheology of food gels: yielding and gellin andstructure of biopolymer network gels, Formation micro- andnano-gelpa relationships of food gels and food gel structures. UNIT IV: FOODMATERIALCHARACTERIZATION				(9)				
Introduction tofood biopolymers, Rheology of food gels: yielding and gellin andstructure of biopolymer network gels, Formation micro- andnano-gelpa relationships of food gels and food gel structures. UNIT IV: FOODMATERIALCHARACTERIZATION	The re		ship b	etweel				
andstructure of biopolymer network gels, Formation micro- andnano-gelpa relationships of food gels and food gel structures. UNIT IV: FOODMATERIALCHARACTERIZATION				(9)				
	•							
			((9)				
Introduction, Material Characterization Techniques; Nuclear Magnetic Re Transform Infra-Red (FT-IR), X-ray powder diffraction, Small angle neu (SANSandSAXS),Confocalmicroscopy,Scanningelectronmicroscopy,AtomicForce	tron 8	& X-r	ay sca	Fourie				
UNIT V: FOODMATERIALENGINEERING			1	(9)				

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- 1. Bhesh Bhandari & YrjöH. Roos. "Food Materials Science and Engineering" Wiley -Blackwell Publishing, 2012.
- 2. José Miguel Aguilera & Peter J. Lillford, "Food Materials Science Principles and Practice", Springer New York, 2008.

REFERENCES:

- Alexandru Mihai Grumezescu & Alina Maria Holban, "Handbook of food bioengineering" Elsevier Science, 2018.
- 2. Charis Michel Galanakis, "Food Structure and Functionality" Elsevier Science, 2020.

	Mapping of COs with POs / PSOs													
COs		Pos												
003	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2		3												
3		3												
4													3	
5	3					3								
СО	3	3				3							3	

funne

					L	Т	Р	C			
					3	0	0	3			
PRE-R	EQUISITE: -				•						
 To gain a knowledge about the composition of milk and physical chemical properties of milk. To Understand the process flow for the preparation of different products 											
The Stu	(udent will be able		Dutcomes	Cognitive Lev		End S	ge of COs ir Semester nination				
COI	Apply the basic in dairy proces	•	ot of various process operation	n Ap		20%					
CO2	Apply the princ	iples of	different thermal processing.	Ар		30%					
CO3			nd process of Homogenization dairy processing.	n Ap		30%					
CO4	Analyze the different dairy		flow for the preparation of .	of An		20%					
CO5	Understand the manufacturing of	•	ss and equipments used for th production.	ue U	I	Internal Asse					

UNIT I: EVAPORATION & MIXING (9) Basic principles of evaporators, construction and operation, Different types of evaporators used in dairy industry, Calculation of heat transfer area and water requirement of condensers. (9) Mixing and agitation: Theoryand purpose of mixing. Equipments used for mixing solids. liquids and gases.

Mixing andagitation:Theoryandpurposeof mixing. Equipmentsusedformixing solids, liquidsand gases. Different types of stirrers, paddles and agitators. UNIT II: DRYING (9)

UNIT II: DRYING(9)Introduction to principle of drying, Equilibrium moisture constant, bound and unbound moisture,
Rateofdrying-constantandfallingrate,EffectofShrinkage,Classificationofdryers-sprayand drum dryers, spray
drying, etc., air heating systems, Atomization and feeding systems. Theory of solid gas separation, cyclone
separators, Bag Filters, Care and Maintenance of drum and spray dryers.

UNIT III: PROCESSING EQUIPMENTS

Mechanization and equipment used in manufacture of indigenous dairy products, Ice-cream and Cheesemaking equipments. Packaging equipments: Packagingmachinesfor milk &milk products. Membrane Processing: Ultra filtration, Reverse Osmosis and electro dialysis, Materials for membrane construction.

UNIT IV: MECHANICAL SEPARATION

Fundamentals involved in separation. Sedimentation, Principles involved in filtration, Types, ratesof filtration, pressure drop calculations. Gravity setting, principles of centrifugal separation, different types of centrifuges.

(9)

(9)

UNIT V: THERMAL PROCESSING

(9)

Pasteurization: Batch, flash and continuous (HTST) pasteurizers, Flow diversion valve, Pasteurizer control, Care and maintenance of pasteurizers. Sterilization: Different type of sterilizers, in bottle sterilizers, autoclaves, continuous sterilization plant, UHT sterilization, Blow molding machines.

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- 1. De Sukumar Outlines of Dairy Technology, Oxford University press, New Delhi, 2002.
- 2. R.K.Robinson, Modern dairy technology Vol. I Advances in Milk processing. Elsevier Applied Science Publishes, London, 1986.
- 3. Gerrit Smit, Dairy processing Improving quality, Published by Wood head Publishing Limited, CCR PRESS, 2000.

REFERENCES:

- H.G.Kessler, Food engineering and dairy technology, Verlag A.Kessler, Freising, (F.R.Germany.) 1981.
- 2. A.W.Farrall, Engineering for dairy and food products, John Wiley and Sons, NewYork, 1963.

	Mapping of COs with POs / PSOs													
COs						Po	os						PSOs	
003	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3												3	
3	2												2	
4		2											3	
5							3						2	
СО	3	2					3						3	

22CHX24 FRUIT AND VEGETABLE PROCESSING AND PRESERVATION												
				L	Т	Р	С					
				3	0	0	3					
PRE-RE	EQUISITE : -											
 To understand the concept of physiological and post harvest changes fruits and vegetables To learn the pre processing for fruits and vegetables and preservat techniques. 												
	Outcomes Ident will be able	e to	Cognitive Level	Weightage of COs i End Semester Examination			er					
COI		h to suitable preservation techniques fruits and vegetables.	Ap	20%								
CO2	Apply the beverages	techniques to process different fruit	Ap	30%								
CO3	Analyze the p fruits and vege	hysiological and post harvest changes in tables.	ⁿ An 309									
CO4	Analyze to Se for fruits and v	lect suitable storage and pre processing vegetables.	An	20%								
CO5	Develop proc vegetable proc	essing techniques for various fruits and lucts	U	Assess	ment							

UNIT I: PHYSIOLOGY AND POST HARVEST CHANGES OF FRUITS AND VEGETABLES

(9)

Scope of Fruits and Vegetables Processing Industry in India and World-present status. Classification of Fruits and Vegetables, Physiological Development, Harvesting methods, Postharvest changes of fruits and vegetables, Methods of reducing post-harvest changes.

UNIT II: PREPROCESSING OPERATIONS AND STORAGE METHODS

(9)

(9)

(9)

(9)

Precooling, Evaporative Cooling, Washing, Peeling, Grading, Blanching. Storage methods: Storage of fruit and vegetables - under ambient conditions, low temperature storage.

UNIT III: PRESERVATION OF FRUITS AND VEGETABLES PRODUCT

Chilling, Freezing, Pasteurization, Sterilization, Irradiation, Waxing, Edible coating, Controlled Atmospheric Storage (CAS), Modified Atmospheric Storage (MAS).

UNIT IV: FRUIT AND BEVERAGES

Classification of fruit beverages, Juice, Squash, cordial, Juice concentrate, nectar, Ready to Serve (RTS). Fermented fruit beverages – Wine, vinegar production. Juice making equipment.

UNIT V:PROCESSING OF FRUITS AND VEGETABLES PRODUCTS

Production of Intermediate Moisture Foods (IMF) - jam, jellies and marmalades, Defects in Jam and Jelly. Candied preserve, fruit bar, tutti fruity, fruit powder, Fermented vegetables products – Pickle, sauerkraut.

TOTAL (L:45) : 45 PERIODS

TEXT	BOOKS:
Ι.	Srivastava R.P & Sanjeev Kumar, "Fruit and Vegetable Preservation: Principles and Practices", 3rd
	Edition, CBS Publishers & Distributors, New Delhi, 2014.
2.	Fellows, P J. "Food Processing Technology Principles and Practice". 3rd Edition, Woodhead, 2009.
REFE	RENCES:
١.	Rajarathnam S & Ramteke R.S, "Advances in Preservation and Processing Technologies of Fruits and Vegetables", 1st Edition, New India Publishing Agency, New Delhi, 2011.
2.	Salunke, D. K and S. S Kadam "Hand Book of Fruit Science and Technology Production,
	Composition, Storage and Processing". Marcel Dekker, 2005.

				Map	ping c	of COs	with F	POs / F	SOs					
<u> </u>		Pos												Os
COs	I	2	3	4	5	6	7	8	9	10	П	12	I	2
I	3													
2	3												3	
3		3											3	
4		3												
5						3			3				3	
СО	3	3				3			3				3	

	22CHX25 BAKING AND CONFECTIONERY TECHNOLOGY												
				L	Т	Р	С						
				3	0	0	3						
PRE -REQUISITE : -													
<u></u>	Ohiostiaas	• To explore a knowledge in bake	ry products										
Course Objective: • To gain knowledge in confectionery products													
	Outcomes Ident will be able	Cognitive Level Find Semest											
COI	Apply the fu confectionery t	nction and process of baking and echnology.	Ap	Ap 30%									
CO2		propriate equipment for baking process rheological properties of dough.	Ap 20%										
CO3	Design and manufacturing	apply processing techniques for process.	Ap	30%									
CO4		processing techniques for preparation of pakery products	f Ap 20%			20%							
CO5	Apply the proc confectionery p	cessing techniques to formulate different broducts	Ap	Internal Assessme			ment						

UNIT I: INTRODUCTION TO BAKING

Classification of bakery products. Bakery ingredients and their functions-Essential ingredients Flour, yeast and sour dough, water, salt- Other ingredients Sugar, color, flavor, fat, milk, milk powder and bread improvers. Leaveners and yeast foods. Shortenings, emulsifiers and antioxidants

UNIT II: EQUIPMENTS IN BAKERY INDUSTRY

Handling of ingredients- dough mixers, dividers, rounder, sheeter, laminating equipments, fermentation enclosures and brew equipment, ovens and slicers. Farinograph, Amylograph, Alveograph, Extensograph. And Mixograph.

UNIT III:BREAD MAKING PROCESS

Chemistry of Dough Development. Bread making methods- Straight dough/bulk fermentation, Sponge and dough, Activated dough development, Chorleywood bread process, No time process. Characteristics of good bread- Internal and external characters. Bread defects/faults and remedies. Spoilage of bread.

UNIT IV: BAKERY PRODUCTS

Production of cakes and cookies/ biscuits. Types of biscuit dough's –Developed dough, short dough's, semisweet, enzyme modified dough's and batters. Cake making Ingredients and their function Structure builders. Tenderizers, moisteners and flavor enhancers. Production process for Wafers- type of flour, raising agents and maturing. Other miscellaneous products puff pastry, chemically leavened. Problems of baking.

UNIT V:CONFECTIONERY PRODUCTS

Composition and manufacturing process- Sugar boiled products-Candy, Toffees, fudge, caramel, aerated confectionery. Bubble gums and chewing gums. Chocolate Processing –chocolate shells, candy bars. Fruit confections. Confectionery product quality parameters, faults and corrective measures. Spoilage of confectionery products.

TOTAL (L:45) : 45 PERIODS

(9)

(9)

(9)

(9)

(9)

١.	Matz, Samuel A., —Bakery Technology and Engineering, 1992, 3rd Edition, Chapman & Hall, London.
2.	Cauvain, Stanley P, and Young, Linda S., —Technology of Bread Making, 2007, springer
REFEI	RENCES:
١.	Edwards W.P. — Science of bakery products, RSC, UK, 2007.
2.	Samuel A. Matz., —Equipment for Bakers, Pan Tech International Publication. 1988.
3.	Sugar Confectionery manufacture-(Ed) E.B.Jackson, 2nd Edition, Blackie Academic and professional Glasgow, 1995

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) /
Programme Specific Outcomes (PSOs)

				Map	oping c	of COs	with F	POs / F	SOs					
60						Po	os						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	
2	3		3											3
3			3											3
4			3											3
5							3							2
со	3		3				3						2	3

	22CHX2	6 TECHNOLOGY OF FRUIT AND V	EGETABLE PR	OCE	SSIN	G	
				L	Т	Р	С
				3	0	0	3
PRE-RE	EQUISITE: -						
Course	Objective:	 Enable students to appreciate the processing of fruits and vegetable To gain a knowledge about thern vegetable technology. 	es.				the
	Outcomes Ident will be able	to	Cognitive Level	Weightage of COs in End Semester Examination			
COI	Apply the basic vegetables.	c process agricultural aspects of fruits and	Ap	20%			
CO2		chniques and processing of fruits and hrough industrial processed product.	Ap	20%			
CO3		preservation and apply the process to rocessed product.	An	40%			
CO4	Apply therma vegetable tech	l processing methods in fruit and nology.	Ap	20%			
CO5	Identify the su vegetable prod	itable processing techniques of fruit and lucts.	Ap	Assess	ment		

UNIT I: BASIC AGRICULTURAL ASPECTS OF VEGETABLES AND FRUITS

(9)

(9)

(9)

(9)

Ability to identify all commercially important fruits and vegetables with their names in important Indian languages, important regions, season, Production and processing scenario of fruits and vegetable India and World. Scope of Fruit and Vegetable Preservation Industry in India. Present status, constraints and prospectus.

UNIT II: FRESH FRUITS AND VEGETABLES

Physical, Textural characteristics, structure and composition. Maturity standards; Importance, methods of Maturity determinations maturity indices for selected fruits and vegetables. Harvesting of important fruits and vegetables. Fruit ripening- chemical changes, regulations, methods. Calculation of respiration rates, Spoilage of fruits, vegetable and their processed products.

UNIT III: PRESERVATION OF FRUITS AND VEGETABLES

Preservation by fermentation- Definition, Advantages, disadvantages, Types of fermentation, equipments; Fruit wine. Irradiation applications for fruits and Vegetable. Minimally processed fruits and vegetables, solving problems with respect to natural resistance of fruit, General preprocessing, drying and freezing of fruits and vegetables.

UNIT IV: CANNING, PUREES AND JUICES

Canning- General pre-processing, specific or salient points in fruits and vegetables like – Blanching, exhausting, processing conditions; Indian Food Regulation and Quality assurance Fruit Juice / pulp/ Nectar/Drinks, concentrates - General and specific processing, different packing including aseptic.

UNIT V:FRUIT AND VEGETABLE PRODUCTS

(9)

Ready to eat fruit and vegetable products, Jams/Marmalades, Squashes/cordials, Ketchup/sauces, Chutneys, Fruit Bar, Soup powders, Candied Fruits, Natural colors, Fruit and Vegetable Fibres- General and specific processing, different packing including aseptic, Dried Onion, Powder. Garlic Dried Garlic, Powder, Oil. Potato Wafer; starch, Papad, Carrot Preserve, candy, Pickle, Jam. Cauliflower and cabbage Dried cauliflower and cabbage, Sauerkraut, Pickle Leafy vegetables; Dried Leafy Vegetables.

TOTAL (L:45) : 45 PERIODS

TEXT BOOK:

1. Fellows, PJ. "Food Processing Technology Principles and Practice". 3rd Edition, Wood head, 2009.

REFERENCES:

- 1. Salunke, D. K and S. S Kadam "Hand Book of Fruit Science and Technology Production, Composition, Storage and Processing". Marcel Dekker, 2005.
- 2. Sivasankar, B. "Food Processing & Preservation", Prentice Hall of India, 2002.

	Mapping of COs with POs / PSOs													
COs						Po	os						PSOs	
003	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	
2	3												2	
3		2											3	
4	3												2	
5							3						2	
со	3	2					3						2	

Sopume

22CHX27 FOOD STRUCTURING TECHNIQUES С L Т 0 3 0 3 **PRE-REQUISITE: -**To learn the technical and functional performance of structured food materials Course Objective: To Understand the Performance of food structured. Weightage of COs in Course Outcomes Cognitive Level End Semester The Student will be able to Examination Apply the techniques to developing structured food COL Ap 20% products. Apply the knowledge of the Performance of food CO2 30% Ap structured Apply the modern techniques of food structure CO3 30% Ap development. Design the technical and functional performance of CO4 An 20% structured food materials. Understand the concepts and principles of food CO5 U Internal Assessment structuring.

UNIT I: INTRODUCTION

(9)

Nature of food structure, Food structure development, Role of hydrocolloids and proteins in food structure development, making of structured foods, Destruction, destabilization and deformation of food matrix, Application of materials science in food design.

UNIT II: TECHNIQUES FOR FIBROUS STRUCTURE FORMATION

(9)

Cultured meat, Myco protein, Wet spinning, Electro spinning, Extrusion, Mixing of proteins and hydrocolloids, Freeze structuring, Shear cell technology.

Food Printing: 3D food printing; Approaches, Technologies in food printing, Printability of food components, Factors affecting the printability, 4D Printing; Concept and Functionality, smart food materials, shape memory effect in 4D food printing

UNIT III:FOOD STRUCTURE DEVELOPMENT IN EMULSION SYSTEMS

(9)

(9)

Emulsions: Principles and Preparation, Basic constituents of Food emulsion, Emulsion architecture, Microstructure design and performance. Food Structure Development in Oil and Fat Systems; nano scale crystals and the structures of lipids and fat, fat crystal network.

UNIT IV: STRUCTURING OF FOOD SYSTEMS

Structuring Dairy Products by means of Processing and Matrix Design, Processing of Food Powders, Structured Cereal Products, Structured Meat Products, Structured Chocolate Products, Edible Moisture Barriers for Food Product Stabilization.

(9)

Food Structure Development for Rheological/ Tribological Performance; structure-property-oral process relationships. Developing Food Structure for Mechanical Performance; structure and bulk behavior of soft solid foods, particulate composites and gels, cellular solid foams, and short fiber- reinforced foods.

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- Fotis Spyropoulos, Aris Lazidis & Ian Norton, "Handbook of Food Structure Development" Royal Society of Chemistry, 2020.
- 2. Bhesh Bhandari & YrjöH. Roos. "Food Materials Science and Engineering" Wiley-Blackwell Publishing, 2012.

REFERENCES:

- 1. Jose Miguel Aguilera & Peter J. Lillford, "Food Materials Science Principles and Practice", Springer New York, 2008.
- 2. AlexandruMihaiGrumezescu&AlinaMariaHolban,"Handbookoffoodbioengineering" Elsevier Science, 2018.

	Mapping of COs with POs / PSOs													
COs						Po	os						PSOs	
003	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	2												2	
2		3											2	
3	3												3	
4			3											
5						3							2	
СО	2	3	3			3							2	

hum

22CHX28 FOOD QUALITY AND SAFETY

L	Т	Р	С
3	0	0	3

PRE-REQUISITE : -

Course Objective:

- To familiarize with the different types of plastic packaging, paper and paperboard packaging
- To gain knowledge about trends in packaging

The Stu	Course Outcomes dent will be able to	Cognitive Level	Weightage of COs in End Semester Examination
COI	Apply the principle and concepts in food packaging.	Ap	20%
CO2	Apply the paper and paperboards for various food applications.	Ар	20%
CO3	Apply the appropriate metal and glass containers for food packaging	Ар	40%
CO4	Analyze suitable plastic for packaging based on their properties	An	20%
CO5	Learn to Select and adapt recent trends in food packaging	U	Internal Assessment

UNIT I: FOOD QUALITY AND PACKAGING

Definitions and basic functions of a food package. Food package design and development. Physical and physico-chemical processes affecting product quality, migration from packaging to foods, predicting the shelf life of foods. Package standards and regulation. Labeling, bar coding.

UNIT II: PAPER AND PAPERBOARD PACKAGING

Paper and paperboard- manufacture, properties analysis and packaging aspects. Package types – pouches, sacks, cartons, boxes, tubes, tubs, labels, sealing tapes, cap liners and diaphragm.

UNIT III:PLASTIC PACKAGING

Types of plastics used in packaging – PE, PP, PET, PVC, EVOH, PVA. Secondary conversion techniques – film, extrusion and thermal lamination. Printing of plastic films and rigid plastic containers. Natural extracts in plastic food packaging. Food contact and barrier properties. Sealability and closure.

UNIT IV: METAL CANS AND GLASS CONTAINERS

(9)

(9)

(9)

(9)

(9)

Raw materials for can making -steel, aluminum. Can making processes - three piece welded cans, DWI, DRD cans - end making processes, coating, film laminates and inks, corrosion and sulphur staining. Flash 18 process, retorting equipment. Definition and composition. Glass container manufacture - melting, forming, surface treatments. Closure selection. Glass bottle design and specification.

UNIT V: TRENDS IN FOOD PACKAGING

Active and intelligent packaging, modified atmosphere packaging - vacuum and inert gas packaging, biodegradable and edible packaging, aseptic packaging, self-heating and cooling cans. Recycling of non-biodegradable packaging materials.

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS: I. Richard Coles and Mark J. Kirwan, "Food and Beverage Packaging Technology", 2nd Edition, Blackwell Publishing Asia Pvt Ltd, CRC press, USA, 2011. 2. Han, Jung H. "Innovations in Food Packaging". Elsevier, 2005. REFERENCES: I. Han Jung H, "Innovations in Food Packaging", 2nd Edition, Academic Press, USA, 2014. 2. Ahvenainen, Raija. "Novel Food Packaging Techniques". Wood Head Publishing, 2003.

	Mapping of COs with POs / PSOs														
COs		Pos													
003	Ι	2	3	4	5	6	7	8	9	10	11	12	Ι	2	
I	3													3	
2	3												2		
3	3												3		
4		3												3	
5							3					3	2		
СО	3	3					3					3	2	3	

		22CHX31 AIR POLLUTION EN	IGINEERING				
				L	Т	Р	С
				3	0	0	3
PRE-RE	QUISITE : -						
Course (Objective:	 To understand the nature and ch To Identify, formulate and solve control devices Understand the knowledge abore devices 	air pollution prol	olems	using	•	
	Outcomes dent will be able	e to	Cognitive Level	W	End S	ge of C emeste ninatior	er
COI	and basic conc	ature and characteristics of air pollutants, epts of air quality management.	An			20%	
CO2	•	mulate solve air pollution problems using control devices to meet applicable	An	20%			
CO3	To analyze th devices.	e particulate air pollutants and control	An 4				
CO4	Analyze the air	r quality behavior and its measurement.	An	20%			
CO5		the knowledge to control the air dustries using various models.	U	Ir	nternal	Assess	ment
UNITI	: INTRODUC	TION				Ι	9
Introduc Framew Ambien	ction to Air Q ork –Regulatory	uality; An Overview of the Clean Air A y System –Laws and Regulations– Clean ai tandards in India; Properties of Air Pollu	r Act–Provisions f	or Re	ecent D	Develop	oments
UNITI	I:GASEOUS P	OLLUTANTS					9
equation recover	ns; .Adsorption y system-Conti	Description of equipment-Packed and Principle Adsorbents, Equipment descrinuous Rotary bed, Fluidized bed, Design Principle Adsorbents, Equipment description- Design	ptions - PSA - A and Performance	dsorp equa	tion c	ycle -	Solvent
UNITI	II: PARTICUL	ATE AIR POLLUTION					9
		chanisms – Fluid particle Dynamics – Pa ones – Electrostatic precipitators and Bagfi		ution	– Effic	ciency–	Gravity

UNITIV: AIR POLLUTION CONTROL

Principles of Pollution Prevention- Characteristics and control of VOCs and HCs, Characteristic sand control of sulphur oxides and nitrogen oxides, Control of mobile source pollutants - Control of particulate matters– Techniques of air pollution control-equipments

9

Meteorology and winds- Stability of the atmosphere, lapse rates & inversions- Air pollution dispersion models, Gaussian equation and variation, Industrial Air Pollution Sources and Prevention

TOTAL (L:45) : 45 PERIODS

9

TEXTBOOKS:

- 1. Richardw. Boubeletal., "Fundamentals of Air Pollution", Academic Press, NewYork, 1994.
- 2. Noel DeNevers, "Air Pollution Control Engg.", McGraw Hill, NewYork, 1995.
- 3. M.N.Raoetal., "Air Pollution" Tata McGraw Hill, 1989.

REFERENCES

- I. David, H.F. ,Liu, Bela G., Liptak Air Pollution, Lweis Publishers, 2000.
- 2. Stern, A.C., Air Pollution (Vol.I–Vol.VIII), AcademicPress,2006.
- 3. Davis, W.T., Air Pollution Engineering Manual, John Wiley & Sons, Inc., 2000.
- 4. Heck, R.M., and Farrauto, R.J., Catalytic Air Pollution Control: Commercial Technology, 2nd Edition John Wiley Sons, 2012
- 5. Pierce, J.J., Environmental pollution and control, Butterworth-Heinemann, 4thedn, 1997.

				١	1apping	g of CO	s with	POs / P	SOs					
	POs													
COs	I	I 2 3 4 5 6 7 8 9 10 11 12												
I	3	2											3	
2	3	3												2
3	3												2	
4				3									2	
5											3			2
СО	3	3		3							3		2	2

romme

		22CHX32 WASTE WATER TH	REATMENT									
				L	Т	Р	С					
				3	0	0	3					
PRE-RE	EQUISITE : -											
 To understand the Physical and chemical Characteristics of wastewater a their measurement. To understand the various pollutant treatment techniques. Understand the concepts using biological treatment methods 												
	Outcomes dent will be able	to	Cognitive Level		End S	ge of Co emeste ninatior	er					
соі	'	Physical and chemical Characteristics of d their measurement.	An 20%									
CO2		rious pollutant treatment techniques in eatment process.	Ар			20%						
CO3	Analyze the methods.	concepts using biological treatment	An			40%						
CO4	•	reactors used for various treatment ed on the process.	nt Ap 20%									
CO5	Understand the treatment proc	e membrane based advanced waste water cess.	U	h	nternal	Assess	ment					

UNIT I: WASTE WATERTREATMENT AN OVERVIEW

Terminology – Regulations – Health and Environment Concerns in waste water management –Constituents in waste water; inorganic, Organic and heavy metal constituents.

UNIT II: CHEMICAL UNIT PROCESSES

Role of unit processes in waste water treatment-Principles of Chemical treatment – Coagulation -flocculation– Precipitation–flotation–solidification and stabilization–disinfection

UNIT III: BIOLOGICAL TREATMENT

Objectives of biological treatment– significance–Principles of aerobic and anaerobic treatment-kinetics of biological growth – Factors affecting growth – attached and suspended growth -Determination of Kinetic coefficients for organics removal – Biodegradability assessment –selection of process-reactors-batch-continuous type.

UNIT IV: AEROBIC AND ANAEROBIC TREATMENT METHODS

9

9

9

9

Activated Sludge process and variations, Sequencing Batch reactors, Membrane Biological Reactors-Trickling Filters- RBC-Moving Bed Reactors- fluidized bed reactors, aerated lagoons, waste stabilization ponds- Design of units – UASB, up flow filters, Fluidized beds MBR, septic tank and disposal

UNIT V: ADVANCED WASTEWATER TREATMENT

Technologies used in advanced treatment – Classification of technologies- Removal of Colloids and suspended particles– Membrane Filtration – Ion Exchange – Advanced oxidation process –Zero liquid Discharge.-Software Applications

TOTAL (L:45) : 45 PERIODS

TEXTBOOKS:

- 1. Wastewater Engineering Treatment and Reuse: McGraw Hill, G.Tchobanoglous, FlBiston, 2002.
- 2. S.P.Mahajan, Pollution control in process industries, 27th Ed.Tata McGraw Hill Publishing Company Ltd., 2012.
- 3. C.S.Rao, Environmental Pollution Control Engineering, New Age International, 2007

REFERENCES

- 1. Casey, T.J., Unit Treatment Processes in Water and Wastewater Engineering, John Wiley & Sons, 2006.
- 2. Metcalf & Eddy, Inc. Wastewater Engineering Treatment, Disposal, and Reuse, Fourth Edition, Tata McGraw Hill, 1995.14
- 3. Cheremisinoff, P.N., Handbook of water and wastewater technologies, BH Publications, 2002.
- 4. Sincero, P.A., and Sincero , A.G., Physical Chemical treatment of water and wastewater, IWA Publications, 2002.
- 5. Spellman, R.F., Handbook of water and wastewater treatment plant operations, CRCPress /Taylor&FrancisPublications,2009.

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) / Programme Specific Outcomes (PSOs)

	Mapping of COs with POs / PSOs														
		POs													
COs	Ι	I 2 3 4 5 6 7 8 9 10 11 12													
I	3												2		
2	3	2												3	
3	3												2		
4		3												3	
5							2				3			3	
СО	3	3					2				3		2	3	

9

		22CHX33 SOLID WASTE MAI	NAGEMENÍ		-			
				L	Т	Р	С	
				3	0	0	3	
PRE-F	REQUISITE : -							
		• To know about the solid waste of	characteristics and	its so	urces.			
Course	Objective:	• To identify and analyze different	methods of treatm	nent o	of solid	waste		
	·	• To understand Industrial practice	es in solid waste m	anage	ment			
~	<u> </u>			W	eightag	ge of C	Os in	
	e Outcomes Jdent will be able		Cognitive Level		End S	emeste	er	
The Su	ident will be able	to			Exan	ninatior	า	
COI	Analyze the sol	id waste characteristics and its sources.	Ар	20%				
CO2	Analyze differe	nt methods of treatment of solid waste.	An	20%				
CO3	Analyze the management.	Industrial practices in solid waste	Ар			40%		
CO4	Apply and Diprocessing of se	scuss the process and significance of olid wastes.	An			20%		
CO5	Understand the disposal.	e waste and management of the waste	U	Ir	nternal	Assess	ment	

Sources and types of municipal solid wastes- Public health and environmental impacts of improper disposal of solid wastes- sampling and characterization of wastes - factors affecting waste generation rate and characteristics - Elements of integrated solid waste management – Requirements and salient features of Solid waste management rules (2016) -- Role of public and NGO[°] s- Public Private participation – Elements of Municipal Solid Waste Management Plan

UNIT II: SOURCE REDUCTION, WASTE STORAGE AND RECYCLING

Waste Management Hierarchy - Reduction, Reuse and Recycling - source reduction of waste – On-site storage methods – Effect of storage, materials used for containers – segregation of solid wastes – Public health and economic aspects of open storage – case studies under Indian conditions – Recycling of Plastics and Construction/Demolition wastes.

UNIT III: COLLECTION AND TRANSFER OF WASTES

Methods of Residential and commercial waste collection – Collection vehicles – Manpower – Collection routes – Analysis of waste collection systems; Transfer stations –location, operation and maintenance; options under Indian conditions – Field problems- solving.

UNIT IV: PROCESSING OF WASTES

Objectives of waste processing – Physical Processing techniques and Equipment; Resource recovery from solid waste composting and bio meth nation; Thermal processing options – case studies under Indian conditions.

UNIT V: WASTE DISPOSAL

Land disposal of solid waste- Sanitary landfills – site selection, design and operation of sanitary landfills – Landfill liners – Management of leachate and landfill gas- Landfill – Dumpsite Rehabilitation

TOTAL (L:45) : 45 PERIODS

9

9

9

TEXTBOOKS:

- 1. William A. Worrell, P. AarneVesilind (2012) Solid Waste Engineering, Cengage Learning, 2012.
- 2. John Pitchel (2014), Waste Management Practices-Municipal, Hazardous and industrial CRC Press, Taylor and Francis, New York.
- 3. Tchobanoglous, G., Theisen, H. M., and Eliassen, R. "Solid. Wastes: Engineering Principles and Management Issues". McGraw Hill, New York, 1993.
- 4. Vesilind, P.A. and Rimer, A.E., "Unit Operations in Resource Recovery Engineering", Prentice Hall, Inc., 1981

REFERENCES:

- 1. Government of India, "Manual on Municipal Solid Waste Management", CPHEEO, Ministry of UrbanDevelopment, New Delhi, 2000.
- 2. Manser A.G.R. and Keeling A.A.," Practical Handbook of Processing and Recycling of Municipal solid Wastes", Lewis Publishers, CRC Press, 1996.

				١	1apping	g of CO	s with l	POs / P	SOs						
		POs PS													
COs	Ι	I 2 3 4 5 6 7 8 9 10 11 12													
I	3												2		
2		2		3										3	
3		3												3	
4			3		2									2	
5							3						2		
СО	3	3	3	3	2		3						2	3	

	2	2CHX34 ENVIRONMENTAL IMPA		іт			
				L	Т	Р	С
				3	0	0	3
PRE-RE	EQUISITE : -						
		• To understand the concept of en	vironmental Impac	t asse	essmer	t	
Course	Objective:	 To know various components an 	d assessment techr	nique	s of El	4	
Course	Objective.	 To gain knowledge about EIA me exposure 	onitoring studies th	roug	h vario	ous indu	ustrial
	Outcomes Ident will be able	to	Cognitive Level	Weightage of COs ir End Semester Examination			
соі	Analyze the assessment.	concept of environmental Impact	Ap	20%			
CO2		vill be able to know various components techniques of EIA	An 20%				
CO3	The Students v management pl	vill be able to understand Environmental an	Ap			40%	
CO4	The Students economic asses	will be able to understand socio ssment plans	^o An 20%			20%	
CO5		vill be able to gain knowledge about EIA dies through various industrial exposure	U	In	iternal	Assess	ment

UNIT I: INTRODUCTION

Impacts of Development on Environment – Rio Principles of Sustainable Development- Environmental Impact Assessment (EIA) – Objectives – Historical development – EIA Types – EIA in project cycle –EIA Notification and Legal Framework.

UNIT II: ENVIRONMENTAL ASSESSMENT

Screening and Scoping in EIA – Drafting of Terms of Reference, Baseline monitoring, Prediction and Assessment of Impact on land, water, air, noise, flora and fauna - Matrices – Networks – Checklist Methods - Mathematical models for Impact prediction

UNIT III: ENVIRONMENTAL MANAGEMENT PLAN

Plan for mitigation of adverse impact on water, air and land, water, energy, flora and fauna – Environmental Monitoring Plan – EIA Report Preparation – Public Hearing-Environmental Clearance.

UNIT IV: SOCIO ECONOMIC ASSESSMENT

Baseline monitoring of Socio economic environment – Identification of Project Affected Personal – Rehabilitation and Resettlement Plan- Economic valuation of Environmental impacts – Cost benefit Analysis

9

9

9

9

UNIT V: MONITORING STUDIES AND APPLICATIONS

Environmental monitoring - guidelines - policies - planning of monitoring programmes; Environmental Management Plan- Post project audit ; Case studies of EIA of developmental projects in Food, Fertilizer and Petrochemical industry

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- I. Canter, L. W., Environmental Impact Assessment, McGraw Hill, New York, 1996.
- 2. Petts, J., Handbook of Environmental Impact Assessment Vol. I and II, Blackwell Science, London, 2009.
- 3. Lawrence, D.P., Environmental Impact Assessment Practical solutions to recurrent problems, Wiley-Interscience, New Jersey, 2003.
- 4. Anjaneyulu, Y., and Manickam, V., Environmental Impact Assessment, Methodologies, 2nd Edition, BS Publications, 2007

REFERENCES:

- 1. Becker H. A., Frank Vanclay, "The International handbook of social impact assessment" conceptual and methodological advances, Edward Elgar Publishing, 2003.
- 2. Barry Sadler and Mary McCabe, "Environmental Impact Assessment Training Resource Manual", United Nations Environment Programme, 2002.
- 3. Judith Petts, "Handbook of Environmental Impact Assessment Vol. I and II", Blackwell Science New York, 1998.
- 4. Ministry of Environment and Forests EIA Notification and Sectoral Guides, Government of India, New Delhi, 2010.

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) /
Programme Specific Outcomes (PSOs)

	Mapping of COs with POs / PSOs POs PSOs														
		POs													
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2	
I					2										
2							3	2					3		
3							3						3		
4						2	3						3		
5									3						
CO					2	2	3	2	3				3		

9

		22CHX35 PROCESS SAFETY M	ANAGEMENT				
				L	Т	Р	С
				3	0	0	3
PRE-RI	EQUISITE : -						
Course	Objective:	 To understand the chemical proc chemicals and plant inspection To learn the different analysis to ov To understand the hazard analysis a 	ercome the accide	ents ir	n proce	ess indu	stry
	Outcomes Ident will be able	e to	Cognitive Level	Veightage of COs in End Semester Examination			
COI	Apply the basic safety codes.	e, importance of chemical process safety,	Ap			20%	
CO2		ocedure of safety of safe handling of blant inspection	An			20%	
CO3	Analyze the accidents in pro	different analysis to overcome the ocess industry	Ap			40%	
CO4	Analyze the wa	y of hazard analysis in process industry	An			20%	
CO5	Understand the industry	e safety management in different process	U	Internal Assessmen			

UNIT I: PROCESS SAFETY INFORMATION

9

Safety vs Process Safety, Importance of Process Safety, Elements of Process safety - Overview ; Process Safety Information (PSI) – Importance of Process Safety Information , Types of PSI, Collection of PSI, familiarization of formats for capturing PSI, Challenges

UNIT II: SAFETY PROGRAMMES AND PROCEDURES

9

9

9

Need for safety in industries; Safety Programmes - components and realization; Potential hazards

- extreme operating conditions, toxic chemicals; safe handling-Implementation of safety procedures - periodic inspection and replacement; Standard Operating Procedure - Overview and its importance, how to write effective operating procedure, Types of Procedures, Standard operating conditions and consequence of deviation; Emergency planning

UNIT III: ACCIDENT ANALYSIS

Accidents – identification and prevention, promotion of industrial safety. Process Safety Incident reporting and Investigation – Element overview, reporting and its importance; Process safety incident classification, Root cause analysis, making recommendations; Past accident analysis- Fixborough-Mexico- Chernobyl nuclear disaster-Bhopal gas analysis- process safety indicators

UNIT IV: PROCESS HAZARD ANALYSIS

Hazard identification- safety audits, checklist, what if analysis, vulnerability models- event tree analysis- fault tree analysis. Asset Integrity Process Hazard Analysis - Introduction to PHA, Overview of PHA Techniques, Selection of PHA techniques Implementation of recommendation – Key Aspects. Cyclic PHA /Revalidation; Review of PHA methodology (Prerequisites, Team Composition and their attributes)

UNIT V: SAFETY MANAGEMENT

Employee Participation – Overview, Benefits of Employee participation, Various modes of engaging workforce in PSM, Challenges; Management of Change – Types of Changes, Managing Changes in PSM Perspective, Framework, evaluating changes-Institutionalizing and integrating safety into the PSM fabric, 5 tier approach, selection, training, Performance monitoring; Case studies – Process safety management in industry – present and futuristic approach

TOTAL (L:45) : 45 PERIODS

9

TEXT BOOKS:

- I. Chemical Process Safety: Fundamentals with Applications, Daniel A. Crowl, J.F. Louvar, Prantice Hall, NJ, 1990.
- 2. Fawatt, H.H. and Wood, W.S., "Safety and Accident Prevention in Chemical Operation", Wiley Interscience, 1965.
- 3. Marcel, V.C., Major Chemical Hazard- Ellis Harwood Ltd., Chi Chester, UK, 1987.
- 4. Hyatt, N., Guidelines for process hazards analysis, hazards identification & risk analysis, Dyadem Press, 2004

REFERENCES:

- I. Handley, W., "Industrial Safety Hand Book ", 2nd Edn., McGraw-Hill Book Company, 1969.
- 2. Heinrich, H.W. Dan Peterson, P.E. and Rood, N., "Industrial Accident Prevention", McGraw Hill Book Co., 1980.
- 3. Taylor, J.R., Risk analysis for process plant, pipelines and transport, Chapman and Hall, London, 1994

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) /
Programme Specific Outcomes (PSOs)

	Mapping of COs with POs / PSOs													
	POs											PSOs		
COs	I	2	3	4	5	6	7	8	9	10	11	12	Ι	2
I	2												2	
2			3										2	
3				3									3	
4		2		2									2	
5											3			
со		2	3	3		3		3			3		2	

3 0 0 3 RE-REQUISITE : - Course Objective: • To Understand the knowledge of types of risks arising in workir environment. • To Perform Risk Assurance and Assessment • To Perform Risk Assurance and Assessment • To HAZOP and its consequences and to create hazard free workin premises Course Outcomes he Student will be able to Cognitive Level Weightage of COs i End Semester Examination Col Analyze the types of risk arising in working environment. Apply the techniques to know the Risk Assurance and An 20% Assessment. CO2 Apalyze to identified the hazard and to select the techniques. An 20% CO4 Demonstrate the knowledge of HAZOP and its consequences and to create hazard free working premises. U Internal Assessment Internal Assessment INT I: RISK ANALYSIS 9 Isk analysis introduction, quantitative risk assessment, rapid risk analysis –comprehensive risk analysis INT I: RISK ANALYSIS 9 <th></th> <th>2</th> <th>2CHX36 RISK ASSESMENT AND H</th> <th></th> <th>SIS</th> <th></th> <th></th> <th></th>		2	2CHX36 RISK ASSESMENT AND H		SIS				
RE-REQUISITE : - • To Understand the knowledge of types of risks arising in workir environment Course Objective: • To Perform Risk Assurance and Assessment • To HAZOP and its consequences and to create hazard free workin premises fourse Outcomes he Student will be able to Col Analyze the types of risk arising in working environment. CO2 Apply the techniques to know the Risk Assurance and Assessment CO2 Apply the techniques to know the Risk Assurance and Assessment. CO3 Design Risk management systems and planning to development of risk management. CO4 Analyze to identified the hazard and to select the techniques. CO5 consequences and to create hazard free working premises. CO4 Demonstrate the knowledge of HAZOP and its consequences and to create hazard free working premises. U Internal Assessment premises. 9 NIT II: RISK ANALYSIS 9 sik assessment - introduction and available methodologies, Risk assessment steps- Quantitative risk analysis introduction, quantitative risk assessment, rapid risk analysis -comprehensive risk analysis NIT II: RISK ASSESSMENT 9 sik assessment tree, fault tree, consequence analysis and layer of protection analysis- Bow ti analysis 9 NIT II: EMERGENCY PLANNING 9 Verral					L	Т	Р	С	
 To Understand the knowledge of types of risks arising in workir environment To Perform Risk Assurance and Assessment To HAZOP and its consequences and to create hazard free workir premises Course Outcomes he Student will be able to Cognitive Level Analyze the types of risk arising in working Ap 20% Apply the techniques to know the Risk Assurance and An 20% Assessment. Co2 Apply the techniques to know the Risk Assurance and An 20% Design Risk management systems and planning to development of risk management. Co4 Analyze to identified the hazard and to select the techniques. Demonstrate the knowledge of HAZOP and its consequences and to create hazard free working premises. Internal Assessment Internal Assessment Internal Assessment Internal Assessment 9 isk analysis introduction, quantitative risk assessment, rapid risk analysis –comprehensive risk analysis entification, evaluation and control of risk INIT II: RISK ASSESSMENT 9 Isk assessment – introduction and available methodologies, Risk assessment steps- Quantitative rist assessment is analysis –comprehensive risk analysis INIT II: EMERGENCY PLANNING 9 Iverall risk nalysisemergency planning-on site & off site emergency planning, risk management ISO 1400 vor pressure, jet fire-fire ball 					3	0	0	3	
Course Objective: environment • To Perform Risk Assurance and Assessment • To HAZOP and its consequences and to create hazard free workin premises Course Outcomes he Student will be able to Cognitive Level Weightage of COs in End Semester Examination CO1 Analyze the types of risk arising in working environment. Ap 20% CO2 Apply the techniques to know the Risk Assurance and Assessment. An 20% CO3 Design Risk management systems and planning to development of risk management. Ap 40% CO4 Analyze to identified the hazard and to select the techniques. An 20% CO5 Consequences and to create hazard free working premises. U Internal Assessment CO5 consequences and to create hazard free working premises. 9 1 INIT II: RISK ANALYSIS 9 1 1 RISK assessment – introduction, quantitative risk assessment, rapid risk analysis –comprehensive risk analysis 9 Risk assessment – introduction and available methodologies, Risk assessment steps- Quantitative rist assessment rialysis-event tree, fault tree, consequence analysis and layer of protection analysis- Bow tie analysis 9 Verall risk analysisemergency planning-on site & off site emergency planning, risk management ISO 1400	PRE-RE	EQUISITE : -							
Course Outcomes he Student will be able to Cognitive Level End Semester Examination CO1 Analyze the types of risk arising in working environment. Ap 20% CO2 Apply the techniques to know the Risk Assurance and Assessment. An 20% CO3 Design Risk management systems and planning to development of risk management. Ap 40% CO4 Analyze to identified the hazard and to select the techniques. An 20% CO5 consequences and to create hazard free working premises. U Internal Assessment INIT I: RISK ANALYSIS 9 sisk analysis introduction, quantitative risk assessment, rapid risk analysis –comprehensive risk analysis entification, evaluation and control of risk 9 INIT II: RISK ASSESSMENT 9 sisk assessment – introduction and available methodologies, Risk assessment steps- Quantitative ri taalysis-event tree, fault tree, consequence analysis and layer of protection analysis. 9 INIT III: EMERGENCY PLANNING 9 Verall risk analysisemergency planning-on site & off site emergency planning, risk management ISO 1400 MS models case studies- marketing terminal, gas processing complex ; Risk due to Radiation, explosion du over pressure, jet fire-fire ball	Course	e Objective:	environmentTo Perform Risk Assurance andTo HAZOP and its consequent	Assessment	e ha	zard f	ree wa	orking	
COI Analyze the types of risk arising in working environment. Ap 20% CO2 Apply the techniques to know the Risk Assurance and Assessment. An 20% CO3 Design Risk management systems and planning to development of risk management. Ap 40% CO4 Analyze to identified the hazard and to select the techniques. An 20% CO5 Demonstrate the knowledge of HAZOP and its consequences and to create hazard free working premises. U Internal Assessment INIT I: RISK ANALYSIS 9 isk analysis introduction, quantitative risk assessment, rapid risk analysis –comprehensive risk analysis entification, evaluation and control of risk 9 INIT II: RISK ASSESSMENT 9 isk assessment – introduction and available methodologies, Risk assessment steps- Quantitative ristalysis-event tree, fault tree, consequence analysis and layer of protection analysis- Bow tie analysis INIT III: EMERGENCY PLANNING 9 verall risk analysisemergency planning-on site & off site emergency planning, risk management ISO 1400 MS models case studies- marketing terminal, gas processing complex ; Risk due to Radiation, explosion du over pressure, jet fire-fire ball				Cognitive Level	W				
CO1 environment. Ap 20% CO2 Apply the techniques to know the Risk Assurance and Assessment. An 20% CO3 Design Risk management systems and planning to development of risk management. Ap 40% CO4 Analyze to identified the hazard and to select the techniques. An 20% CO4 Analyze to identified the hazard and to select the techniques. An 20% CO5 Demonstrate the knowledge of HAZOP and its consequences and to create hazard free working premises. U Internal Assessment INIT I: RISK ANALYSIS 9 isk analysis introduction, quantitative risk assessment, rapid risk analysis –comprehensive risk analysis entification, evaluation and control of risk 9 INIT II: RISK ASSESSMENT 9 tisk assessment – introduction and available methodologies, Risk assessment steps- Quantitative ribalysis-event tree, fault tree, consequence analysis and layer of protection analysis- Bow tie analysis INIT II: EMERGENCY PLANNING 9 twerall risk analysisemergency planning-on site & off site emergency planning, risk management ISO 1400 MS models case studies- marketing terminal, gas processing complex ; Risk due to Radiation, explosion du over pressure, jet fire-fire ball	The Stu	ident will be able	to			Exan	ninatior	ו	
Assessment. An 20% CO3 Design Risk management systems and planning to development of risk management. Ap 40% CO4 Analyze to identified the hazard and to select the techniques. An 20% CO5 Demonstrate the knowledge of HAZOP and its consequences and to create hazard free working premises. U Internal Assessment INIT I: RISK ANALYSIS 9 sisk analysis introduction, quantitative risk assessment, rapid risk analysis –comprehensive risk analysis entification, evaluation and control of risk 9 INIT II: RISK ASSESSMENT 9 sisk assessment – introduction and available methodologies, Risk assessment steps- Quantitative rishalysis-event tree, fault tree, consequence analysis and layer of protection analysis- Bow tie analysis 9 INIT II: EMERGENCY PLANNING 9 Verall risk analysisemergency planning-on site & off site emergency planning, risk management ISO 1400 MS models case studies- marketing terminal, gas processing complex ; Risk due to Radiation, explosion du over pressure, jet fire-fire ball	COI	,	types of risk arising in working	Ар			20%		
Ap 40% Analyze to identified the hazard and to select the techniques. An 20% Demonstrate the knowledge of HAZOP and its consequences and to create hazard free working premises. U Internal Assessment INIT I: RISK ANALYSIS 9 isk analysis introduction, quantitative risk assessment, rapid risk analysis –comprehensive risk analysis entification, evaluation and control of risk 9 INIT II: RISK ASSESSMENT 9 isk assessment – introduction and available methodologies, Risk assessment steps- Quantitative ristalysis-event tree, fault tree, consequence analysis and layer of protection analysis- Bow tie analysis 9 INIT III: EMERGENCY PLANNING 9 verall risk analysisemergency planning-on site & off site emergency planning, risk management ISO 1400 MS models case studies- marketing terminal, gas processing complex ; Risk due to Radiation, explosion du over pressure, jet fire-fire ball	CO2	An An							
Locot techniques. An 20% Locot Demonstrate the knowledge of HAZOP and its consequences and to create hazard free working premises. U Internal Assessment INIT I: RISK ANALYSIS 9 isk analysis introduction, quantitative risk assessment, rapid risk analysis –comprehensive risk analysis entification, evaluation and control of risk 9 INIT II: RISK ASSESSMENT 9 isk assessment – introduction and available methodologies, Risk assessment steps- Quantitative rish malysis-event tree, fault tree, consequence analysis and layer of protection analysis- Bow tie analysis 9 INIT III: EMERGENCY PLANNING 9 Iverall risk analysisemergency planning-on site & off site emergency planning, risk management ISO 1400 YS MS models case studies- marketing terminal, gas processing complex ; Risk due to Radiation, explosion du o over pressure, jet fire-fire ball 1	CO3	-	• • • •	Ар			40%		
CO5 consequences and to create hazard free working premises. U Internal Assessment INIT I: RISK ANALYSIS 9 isk analysis introduction, quantitative risk assessment, rapid risk analysis –comprehensive risk analysis entification, evaluation and control of risk 9 INIT II: RISK ASSESSMENT 9 isk assessment – introduction and available methodologies, Risk assessment steps- Quantitative rimalysis-event tree, fault tree, consequence analysis and layer of protection analysis- Bow tie analysis INIT III: EMERGENCY PLANNING 9 verall risk analysisemergency planning-on site & off site emergency planning, risk management ISO 1400 MS models case studies- marketing terminal, gas processing complex ; Risk due to Radiation, explosion due over pressure, jet fire-fire ball	CO4		entified the hazard and to select the	An		20%			
isk analysis introduction, quantitative risk assessment, rapid risk analysis –comprehensive risk analysis entification, evaluation and control of risk INIT II: RISK ASSESSMENT 9 isk assessment – introduction and available methodologies, Risk assessment steps- Quantitative rish halysis-event tree, fault tree, consequence analysis and layer of protection analysis- Bow tie analysis INIT III: EMERGENCY PLANNING 9 Everall risk analysisemergency planning-on site & off site emergency planning, risk management ISO 1400 MS models case studies- marketing terminal, gas processing complex ; Risk due to Radiation, explosion due o over pressure, jet fire-fire ball	CO5	consequences	•	U	Ir	nternal	Assess	ment	
entification, evaluation and control of risk 9 INIT II: RISK ASSESSMENT 9 isk assessment – introduction and available methodologies, Risk assessment steps- Quantitative rist 9 isk assessment tree, fault tree, consequence analysis and layer of protection analysis- Bow tie analysis 9 INIT III: EMERGENCY PLANNING 9 overall risk analysisemergency planning-on site & off site emergency planning, risk management ISO 1400 1400 MS models case studies- marketing terminal, gas processing complex ; Risk due to Radiation, explosion due to over pressure, jet fire-fire ball 9			YSIS					9	
isk assessment – introduction and available methodologies, Risk assessment steps- Quantitative risk halysis-event tree, fault tree, consequence analysis and layer of protection analysis- Bow tie analysis INIT III: EMERGENCY PLANNING 9 Overall risk analysisemergency planning-on site & off site emergency planning, risk management ISO 1400 MS models case studies- marketing terminal, gas processing complex ; Risk due to Radiation, explosion due o over pressure, jet fire-fire ball		•	• •	sk analysis –compr	eher	isive ri	sk anal	ysis –	
Malysis-event tree, fault tree, consequence analysis and layer of protection analysis- Bow tie analysis INIT III: EMERGENCY PLANNING 9 Overall risk analysisemergency planning-on site & off site emergency planning, risk management ISO 1400 MS models case studies- marketing terminal, gas processing complex ; Risk due to Radiation, explosion due over pressure, jet fire-fire ball		II: RISK ASSES	SMENT					9	
overall risk analysisemergency planning-on site & off site emergency planning, risk management ISO 1400 MS models case studies- marketing terminal, gas processing complex ; Risk due to Radiation, explosion du o over pressure, jet fire-fire ball								e risk	
MS models case studies- marketing terminal, gas processing complex ; Risk due to Radiation, explosion du o over pressure, jet fire-fire ball		III: EMERGEN	CY PLANNING					9	
	EMS mo	dels case studie	s- marketing terminal, gas processing com	,,		•			
INIT IV: HAZARD 9		IV: HAZARD						9	

Hazard - Hazard identification – methods: Process Hazard Analysis - Introduction to PHA, Overview of PHA Techniques, Selection of PHA techniques Implementation of recommendation – Key Aspects. Cyclic PHA /Revalidation; Review of PHA methodology (Prerequisites, Team Composition and their attributes)

UNIT V: HAZOP

Introduction to HAZOP-Significance of HAZOP -HAZOP procedure –HAZOP Analysis -Computer usage in HAZOP- softwares employed - Limitations of HAZOP – case studies.

TOTAL (L:45) : 45 PERIODS

9

TEXT BOOKS:

- 1. Chemical Process Safety: Fundamentals with Applications, Daniel A. Crowl, J.F. Louvar, Prantice Hall, NJ, 1990.
- 2. Fawatt, H.H. and Wood, W.S., "Safety and Accident Prevention in Chemical Operation", Wiley Interscience, 1965.
- 3. Marcel, V.C., Major Chemical Hazard- Ellis Harwood Ltd., Chi Chester, UK, 1987.
- 4. Hyatt, N., Guidelines for process hazards analysis, hazards identification & risk analysis, Dyadem Press, 2004

REFERENCES:

- I. Handley, W., "Industrial Safety Hand Book ", 2nd Edition. McGraw-Hill Book Company, 1969.
- 2. Heinrich, H.W. Dan Peterson, P.E. and Rood, N., "Industrial Accident Prevention", McGraw-Hill Book Co., 1980.
- 3. Taylor, J.R., Risk analysis for process plant, pipelines and transport, Chapman and Hall, London, 1994

Mapping of Course Outcomes (COs) with Programme Outcomes (POs) /
Programme Specific Outcomes (PSOs)

	Mapping of COs with POs / PSOs													
	POs												PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I		3											2	
2		2												2
3			2											2
4		3												2
5						3			2				2	
СО		3	2			3			2				2	2

	22CHX37 INDUSTRIAL POLLUTION CONT	ROL AND MAN	AG	EMEN	т		
			L	Т	Р	C	
			3	0	0	3	
PRE-RI	EQUISITE : -						
	To learn about industrial wastes	and its sources					
Course	Objective: • To learn about control and remo	•		•			
	To learn about audit methods an	d pollution contro	ol regu	ulations	5		
Course	Outcomes		W		ge of C		
	ident will be able to	Cognitive Level			emeste		
	1			Exan	ninatior	า	
COI	Analyze about industrial wastes and its sources	Ap			20%		
CO2	Apply the concept removal of specific industrial pollutants.	An			20%		
CO3	Analyze and management the various industrial pollutants.	Ар			40%		
CO4	Apply the recent trends to manage the industrial waste management	An			20%		
CO5	The Students will be able to learn about audit methods and pollution control regulations	U	Internal Assessment				
UNIT						9	
wastes,	ial wastes and their sources: Various industrial processes Noise & radiation emissions. Sources of industrial wat ng water use and required water quality.						
UNIT						9	
of spec cyanide	ses responsible for deterioration in water quality, Various ific pollutants in industrial wastewaters, e.g., oil and grease , fluoride, toxic organics, heavy metals, radioactivity etc. scharge effluent.	e, bio-degradable o	organi	cs, che	micals	such a	
UNIT	111					9	
waste	I of gaseous emissions: Hood and ducts, Tall stacks, Part generation and disposal management. Hazardous waste . Noise& radiation: Generation, control and management						
UNIT	IV					9	
technol	trends in industrial waste management, Cradle to logies; Case studies of various industries, e.g., dairy, fertiliz netal plating, thermal power plants, etc.				•		
UNIT	V					9	
	mental audit: Definition and concepts, Environmental audit methodologies, Various pollution regulations, Introduction	on to ISO and ISO	1400	0.			
		тс	DTAL	(L:45)	: 45 PE	RIOE	
ae	Approved	bv Twelfth	Aca	dom			

TEXTBOOKS

- 1. Metcalf & Eddy "Wastewater Engineering: Treatment & Reuse", Tata McGraw Hill.
- 2. Azad, H.S. "Industrial Wastewater Management Handbook", McGraw Hill.
- 3. Arceivala, S.J. & Asolekar, S.R. "Wastewater Treatment for Pollution Control and Reuse", McGraw Hill.
- 4. Culp, G., George, W., Williams, R. and Mark, Hughes, V.Jr. "Wastewater Reuse and Recycling Technology-Pollution Technology" Review-72, Noyes Data Corporation, New Jersey.

REFERENCES

- 1. Pandey, G.N. and Corney, G.C. "Environmental Engineering", Tata McGraw Hill.
- 2. Edmund, B. Besselieve P.E. "The Treatment of Industrial Wastes", McGraw Hill.
- 3. Nancy, J.S. "Industrial Pollution Control: Issues and Techniques", Van Nostrand Reinhold.
- 4. Shen, T.T. "Industrial Pollution Prevention Handbook", Springer-Verlag.
- 5. Environment (protection) Act 1986, Ministry of Environment and Forest, Government of India.

	Mapping of COs with POs / PSOs													
	POs												PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	Ι	2
I	2												2	
2	2												2	
3			2											2
4					2									2
5								2			2		2	
СО	2		2		2			2			2		2	2

warme

		22CHX38 ENVIRONMENTAL BIC	TECHNOLOG	Y								
				L	Т	Р	С					
				3	0	0	3					
PRE-RI	EQUISITE : -											
 To critically analyze relevant journal articles and investigate industri applications of the concepts of biotechnology for effluent treatment. To learn as to how they can manipulate, enhance or retard biologic 												
 I o learn as to how they can manipulate, enhance or retard biological processes 												
	e Outcomes udent will be able	to	Cognitive Level			ge of C Semeste ninatior	er					
COI		nowledge of existing and emerging that are important in the area of otechnology.	Ар	.р 20%								
CO2		owledge of importance of microbial technologies for environmental d processes.	Ар			20%						
CO3	analyze case s research progr	vledge of waste water technologies and tudies of the area to conceptualize a ram with an aim to solve the existing nental problems.	AP/An			40%						
CO4	for effluent treatment.											
CO5	Present the bio natural sources	ological processes for bioremediation of and xenobiotic degradation.	U	h	nternal	Assess	ment					

UNIT I: ENVIRONMENTAL SYSTEMS AND POLLUTANTS

Physical and chemical aspects of natural environmental processes, Metals and nonmetals, carcinogens, radioactive materials, and pathogens/pathogenic sample. Industrial, Municipal and agricultural waste, Handling, processing, and disposal of various hazardous and toxic materials, diversity and role of

microorganisms in diverse and complex environments, Use and management of microbes for the benefit of ecosystems and society

UNIT II: AIR POLLUTION

Dynamic nature of air quality, Ambient and industrial conditions, Principals and practices of air quality management, Air Quality Management, Air treatment technologies, Contaminant movement in air matrices, and data analysis

UNIT III: WATER AND WASTE WATER TREATMENT

Water resources, drinking water standards, water quality characteristics, water pollutants, Sampling and laboratory instrument procedures, An overview of the geology, properties, flow, and pollution of ground water systems, sewage and potable water treatment plants, Unit operations, physical, chemical and biological used in waste water treatment, Design of an Effluent treatment plant, Reactors for waste water treatment

9

9

9

UNIT	IV: SOIL POLLUTION AND SOLID WASTE MANAGEMENT	9
concep	ation, processing, and disposal of municipal, industrial, and agricultural waste mater ots of solid waste management, Design and operation of landfills, waste-to-energy systems is, recycling facilities, and other emerging waste management technologies.	
UNIT	V: POLLUTION PREVENTION	9
system	les of pollution prevention and environmentally conscious products, processes and i s, Post-use product disposal, life cycle analysis, Pollution prevention economics, Overv nmental laws such as the Clean Air and Clean Water Acts, Regulatory issues	•
	TOTAL (L:45) :	45 PERIODS
TEXT	BOOKS	
١.	Young MM, Comprehensive Biotechnology; Pergamon Press.	
2.	De AK, Environmental Chemistry; Wiley Eastern Ltd.	
REFE	RENCES	
١.	Allsopp D, Seal KJ, Introduction to Biodeterioration; ELBS/Edward Arnold.	
2.	Metcalf, Eddy, Tchobanoglous G,Waste Water Engineering - Treatment, Disposal and Reu McGraw Hill	use; Tata

	Mapping of COs with POs / PSOs													
	POs												PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	Ι	2
I	3													
2	3												3	
3		3											3	
4		3												
5									3	3				
СО	3	3							3	3			3	

Supanne