

NANDHA ENGINEERING COLLEGE (Autonomous)

Affiliated to Anna University Chennal + Approved by AICTE + Accredited by NBA - New Delhi Pltchandampalayam (P.O), Valkkalmedu, Erode - Perundural Road, Erode - 638 052 Phone : 04294 - 225585, 223711, 223722, 226393 Mobile : 73737 23722 Fax : 04294 - 224787 Website : www.nandhaengg.org E.mail : info@nandhaengg.org

1.1.2 Details of the courses where the syllabus revision was carried out in

Course Code	Course Name	% of change
22CIC13	Embedded Systems	100%
22CIC14	Automata Theory and Compiler Design	100%
22CIC15	Full Stack Development	100%
22CIP09	Embedded Laboratory	100%
22CIP10	Full Stack Development Laboratory	100%
22CIC16	Mobile Application Development for IoT	100%
22CIC17	Computer Vision and Robotics	100%
22CIP11	Mobile Application Development for IoT Laboratory	100%
22CIP12	Computer Vision Lab	100%
22CIX01	Industrial and Medical IoT	100%
22CIX02	Block Chain Technology	100%
22CIX03	Beyond 5G and IoT Technologies	100%
22CIX04	Programming for IoT Boards	100%
22CIX05	Wearable Computing	100%
22CIX06	Fog and Edge Computing	100%
22CIX07	Wireless Ad-hoc and Sensor Networks	100%
22CIX08	Image Processing	100%
	Average	100%

B.E - Computer Science and Engineering (IoT)

S.MAHESWARI M.E., (Ph.D) ASSISTANT PROFESSOR & HEAD DEPARTMENT OF COMPUTER SCIENCE AND ENGINEERING (IoT) NANDHA ENGINEERING COLLEGE (AUTONOMOUS) ERODE - 638052.

NANDHA ENGINEERING COLLEGE

(An Autonomous Institution affiliated to Anna University Chennai and approved by AICTE, New Delhi) Erode-638 052, Tamilnadu, India, Phone: 04294 – 225585

Curriculum and Syllabi

for

B.E – Computer Science and Engineering (Internet of Things)[R22]

[CHOICE BASED CREDIT SYSTEM]

[This Curriculum and Syllabi are applicable to Students admitted in (2022-26) and (2023-2027) batches only]

JULY 2024

	INSTITUTE VISION AND MISSION										
VISION	• To be an Institute of excellence providing quality Engineering, Technology and Management education to meet the ever changing needs of the society.										
	• To provide quality education to produce ethical and competent professionals with social Responsibility										
MISSION	• To excel in the thrust areas of Engineering, Technology and Entrepreneurship by solving real- world problems.										
	• To create a learner centric environment and improve continually to meet the changing global needs.										

	B.E – COMPUTER SCIENCE AND ENGINEERING (IoT)						
VISION	To be a centre of excellence providing high quality Computing and Internet of Things education to meet the ever growing needs of the smart society.						
	• To provide quality education to produce Computer Science and Internet of Things professionals with social responsibility						
MISSION	To excel in research in the field of Computing and Internet of Things						
	To be a learner centric environment with continual progress to meet the global smart computing needs.						
	The graduates of Computer Science and Engineering (Internet of Things) will be						
PROGRAM ME	PEO1: Core Competency: To transform the graduates as experts in the computing profession and to satisfy the needs of the IoT industry.						
EDUCATION AL OBJECTIVES	PEO2: Research, Innovation and Entrepreneurship: To empower the graduates with knowledge in communicating equipments using Internet with ability to offer solutions for real time applications						
(PEO)	PEO3: Ethics, Human values and Life- Long Learning: To possess the necessary soft skills for working in diverse cultural and inter disciplinary teams and ensure that the graduates practice professional ethics in IoT.						
	The students of Computer Science and Engineering (Internet of Things) will be able to						
PROGRAM ME SPECIFIC	PSO1: Knowledge Proficiency: Students at the time of graduation will be equipped with knowledge of IoT equipments in various platforms, possess computing skills with secured network control and act responsibly in legal, ethical and security related issues.						
OUTCOMES (PSO)	PSO2: Recent Technology: Students at the time of graduation will be able to apply emerging appropriate technology and programming skills to find optimal solutions for complex problems by applying domain knowledge to transform innovative ideas into						
2 P a g e	reality. Approved by Tenth Academic Council						

PROGRAM OUTCOMES:

At the end of a programme a students will be able to demonstrate ability to

a-l	GRADUATE ATTRIBUTES	PO No.	PROGRAMME OUTCOMES
а	Engineering Knowledge	PO1	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
b	Problem Analysis	PO2	Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
c	Design and Development of Solutions	PO3	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
d	Investigation of Complex Problems	PO4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
е	Modern Tool Usage	PO5	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
f	The Engineer and Society	PO6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
g	Environment and Sustainability	P07	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
h	Ethics	PO8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
i	Individual and Team Work.	PO9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
j	Communication	PO10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

k	Project Management and Finance	PO11	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
I	Lifelong Learning	PO12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES WITH PROGRAMME OUTCOMES

A broad relation between the programme objectives and the outcomes is given in the following table

PROGRAMME	PROGRAMME OUTCOMES											
EDUCATIONAL OBJECTIVES	Α	В	С	D	E	F	G	н	I	J	К	L
1	3	3	3	3	3	1	1	2	2	1	3	3
2	3	3	3	3	3	1	1	1	2	1	3	3
3	3	3	3	3	3	2	2	3	1	2	2	3

MAPPING OF PROGRAM SPECIFIC OUTCOMES WITH PROGRAMME OUTCOMES

A broad relation between the Program Specific Objectives and the outcomes is given in the following table

PROGRAM SPECIFIC OUTCOMES	PROGRAMME OUTCOMES											
	Α	В	С	D	E	F	G	н	I	J	к	L
1	3	3	3	3	2	1	2	2	1	2	2	3
2	3	3	3	3	3	2	3	3	3	3	3	3

Contribution

1: Reasonable

2: Significant

3: Strong

NANDHA ENGINEERING COLLEGE (AUTONOMOUS), ERODE – 638 052

REGULATIONS – 2022

CHOICE BASED CREDIT SYSTEM

B.E – Computer Science and Engineering (Internet of Things)

		SEMES	TER: I						
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUIS ITE	CONTA CT PERIOD S	L	т	Р	с
1	22MAN01	Induction Programme	MC	-	-	_	_	-	-
THE	ORY								
2	22EYA01	Professional Communication - I	HSMC	-	4	2	0	2	3
3	22MYB01	Calculus and Linear Algebra*	BSC	-	4	3	1	0	4
4	22PYB01	Semiconductor Physics	BSC	-	3	3	0	0	3
5	22ECC01	Basics of Electronics Engineering	ESC	-	3	3	0	0	3
6	22CSC01	Problem Solving and C Programming	ESC	-	3	3	0	0	3
7	22GYA01	தமிழர் மரபு / Heritage of Tamils*	HSMC	-	1	1	0	0	1
PRA	CTICAL								
8	22ECP01	Basics of Electronics Engineering Laboratory	ESC	-	4	0	0	4	2
9	22CSP01	Problem Solving and C Programming Laboratory	ESC	-	4	0	0	4	2
10	22PYP01	Physics Laboratory*	BSC	-	2	0	0	2	1
Mar	ndatory No	n Credit Courses							
11	22MAN02	Soft/Analytical Skills - I	МС	-	3	1	0	2	0
12	22MAN03	Yoga – I*	МС	-	1	0	0	1	0
				TOTAL	32	16	1	15	22

*Ratified by Eleventh Academic Council

		S	SEMESTER: II						
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
THEO	RY								
1	22EYA02	Professional Communication - II	HSMC	22EYA01	4	2	0	2	З
2	22MYB03	Statistics and Numerical Methods*	BSC	-	4	3	1	0	4
3	22CIC01	Data Structures using C*	ESC	22CSC01	3	3	0	0	3
4	22CIC02	Python Programming	ESC	-	3	3	0	0	3
5	22CIC03	Digital Principles and Computer Organization	ESC	-	3	3	0	0	3
6	22GYA02	தமிழரும் தொழில் நட்பமும் / Tamils and Technology*	HSMC	-	1	1	0	0	1
PRAC	TICAL								
7	22CIP01	Data Structures Laboratory*	ESC	22CSP01	4	0	0	4	2
8	22CIP02	Python Programming Laboratory	ESC	-	4	0	0	4	2
9	22MEP01	Engineering Graphics Laboratory	ESC	_	4	0	0	4	2
Mand	latory Non	Credit Courses	·		·		-		
10	22MAN04	Soft/Analytical Skills - II	MC	22MAN02	3	1	0	2	0
11	22MAN05	Yoga – II*	MC	-	1	0	0	1	0
				TOTAL	32	16	1	17	23

*Ratified in Eleventh Academic Council

		S	EMESTER: III						
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
THEO	RY								
1	22MYB05	Discrete Mathematics	BSC	-	4	3	1	0	4
2	22CIC04	Algorithms	PCC	-	3	3	0	0	3
3	22CIC05	Internet of Things and its Applications	РСС	-	3	3	0	0	3
4	22CIC06	Java Programming	PCC	-	3	3	0	0	3
5	22CIC07	Operating Systems	PCC	-	3	3	0	0	3
PRAC	TICAL							•	
6	22CIP03	Algorithms Laboratory	PCC	-	4	0	0	4	2
7	22CIP04	Internet of Things and its Applications Laboratory	РСС	-	4	0	0	4	2
8	22CIP05	Java Programming Laboratory	РСС	-	4	0	0	4	2
Mand	atory Non Cred	it Courses							
9	22MAN07 [#] / 22MAN07R ^{##}	Soft/Analytical Skills - III	МС	22MAN04	3	1	0	2	0
10	22MAN09	Indian Constitution	MC	-	1	1	0	0	0
				TOTAL	32	17	1	14	22

[#] Applicable for (2022-2026) Batch only

** Applicable for (2023-2027) Batch only

		S	EMESTER: IV						
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
THEOF	RY								
1	22CIC08	Artificial Intelligence and Machine Learning	PCC	-	3	3	0	0	3
2	22CIC09	Computer Networks	PCC	-	3	3	0	0	3
3	22CIC10	Database Management System	PCC	-	3	3	0	0	3
4	22CIC11	Sensors and Actuator Devices	PCC	-	3	3	0	0	3
5	22CIC12	Privacy and Security in IoT	PCC	22CIC05	3	3	0	0	3
6	22CYB07	Environmental Science and Engineering	BSC	-	3	3	0	0	3
PRAC	TICAL					•			
7	22CIP06	Computer Networks Laboratory	РСС	-	4	0	0	4	2
8	22CIP07	Database Management System Laboratory	РСС	-	4	0	0	4	2
9	22CIP08	Sensors and Actuator Devices Lab	РСС	-	4	0	0	4	2
Mand	atory Non C	Credit Courses				I			
	22MAN08 [#] / 22MAN08 ^{##}		МС	22MAN07	3	1	0	2	0
11	22GED01	Personality and Character Development	EEC	-	0	0	0	1	0
				TOTAL	33	19	0	15	24

[#] Applicable for (2022-2026) Batch only

^{##} Applicable for (2023-2027) Batch only

			SEMESTER: V						
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
THEO	RY								
1	22CIC13	Embedded Systems	РСС	-	3	3	0	0	3
2	22CIC14	Automata Theory and Compiler Design	PCC	-	4	3	1	0	4
3	22CIC15	Full Stack Development	РСС	-	3	3	0	0	3
4	E1	Elective(PEC)	PEC	-	3	3	0	0	3
5	E2	Elective(PEC)	PEC	-	3	3	0	0	3
6	E3	Elective(OEC/PEC)	PEC/OEC	-	3	3	0	0	3
PRAC	TICAL								
7	22CIP09	Embedded Laboratory	РСС	-	4	0	0	4	2
8	22CIP10	Full Stack Development Laboratory	PCC	-	4	0	0	4	2
Mand	atory Non C	Credit Courses							
9	22MAN10R	Communication and Quantitative Reasoning	МС	-	3	1	0	2	0
				TOTAL	31	19	1	11	23

			SEMESTER: VI						
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
THEOP	RY								
1	22CIC16	Mobile Application Development for IoT	PCC	-	3	3	0	0	3
2	22CIC17	Computer Vision and Robotics	PCC	-	3	3	0	0	3
3	E4	Elective(PEC)	PEC	-	3	3	0	0	3
4	E5	Elective(PEC)	PEC	-	3	3	0	0	3
5	E6	Elective(OEC)	OEC	-	3	3	0	0	3
6	E7	Elective(OEC/PEC)	PEC/OEC	-	3	3	0	0	3
PRAC	ΓΙCAL								
7	22CIP11	Mobile Application Development for IoT Laboratory	PCC	-	4	0	0	4	2
8	22CIP12	Computer Vision Lab	PCC	-	4	0	0	4	2
				TOTAL	30	19	0	11	22

		S	EMESTER: VII						
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
THEOF	RY								
1	22GEA01	Universal Human Values	HSMC	-	2	2	0	0	2
2	EM	Elective (Management)	HSMC	-	3	3	0	0	3
3	E8	Elective(PEC)	PEC	-	3	3	0	0	3
4	E9	Elective(OEC/PEC)	PEC/OEC	-	3	3	0	0	3
5	E10	Elective(OEC)	OEC	-	3	3	0	0	3
PRAC	TICAL								
6	22GED02	Internship/Industrial Training	EEC	-	0	0	0	0	2
				TOTAL	14	14	0	0	16

		S	EMESTER: VII	l					
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
PRACT	ΓΙCAL								
1	22CID01	Project Work	EEC	-	20	0	0	20	10
				TOTAL	20	0	0	20	10

(A) ł	HSMC,BSC,	and ESC Courses							
(a)Hu	manities an	d Management Science	es (HSMC)						
S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
1.	22EYA01	Professional Communication - I	HSMC	-	4	2	0	2	3
2.	22GYA01	தமிழர் மரபு / Heritage of Tamils	HSMC	-	1	1	0	0	1
3.	22EYA02	Professional Communication- II	HSMC	22EYA01	4	2	0	2	3
4.	22GYA02	தமிழரும் தொழில் நுட்பமும் / Tamils and Technology	HSMC	-	1	1	0	0	1
5.	22GEA01	Universal Human Values	HSMC	-	2	2	0	0	2
6.	EM	Elective - Management	HSMC	-	3	3	0	0	3

(b) Ba	sic Sciences	s (BSC)							
S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
1.	22MYB01	Calculus and Linear Algebra	BSC	-	4	3	1	0	4
2.	22PYB01	Semiconductor Physics	BSC	-	3	3	0	0	3
3.	22PYP01	Physics Laboratory	BSC	-	2	0	0	2	1
4.	22MYB03	Statistics and Numerical Methods	BSC	-	4	3	1	0	4
5.	22MYB05	Discrete Mathematics	BSC	-	4	3	1	0	4
6.	22CYB07	Environmental Science and Engineering	BSC	-	3	3	0	0	3

(c) Eng	gineering Sc	iences (ESC)							
S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
1.	22ECC01	Basics of Electronics Engineering	ESC	-	3	3	0	0	3
2.	22CSC01	Problem Solving and C Programming	ESC	_	3	3	0	0	3
3.	22ECP01	Basics of Electronics Engineering Laboratory	ESC	-	4	0	0	4	2
4.	22CSP01	Problem Solving and C Programming Laboratory	ESC	-	4	0	0	4	2
5.	22CIC01	Data structures Using C	BSC	22CSC01	3	3	0	0	3
6.	22CIC02	Python Programming	BSC	-	3	3	0	0	3
7.	22CIC03	Digital Principles and Computer Organization	BSC	-	3	3	0	0	3
8.	22CIP01	Data structures Using C Laboratory	ESC	22CSP01	4	0	0	4	2
9.	22CIP02	Python Programming Laboratory	ESC	-	4	0	0	4	2
10.	22MEP01	Engineering Graphics Laboratory	ESC	-	4	0	0	4	2

(d) Ma	andatory Non (Credit Courses (MC)							
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
1.	22MAN01	Induction Programme	MC	-	-	-	-	-	-
2.	22MAN02	Soft/Analytical Skills - I	МС	-	3	1	0	2	0
3.	22MAN03	Yoga – I	MC	-	1	0	0	1	0
4.	22MAN04	Soft/Analytical Skills - II	MC	22MAN02	3	1	0	2	0
5.	22MAN05	Yoga – II	MC	-	1	0	0	1	0
6.	22MAN07 [#] / 22MAN07R ^{##}	Soft/Analytical Skills - III	МС	22MAN04	3	1	0	2	0

7.	22MAN08 [#] / 22MAN08R ^{##}	Soft/Analytical Skills - IV	MC	22MAN07	3	1	0	2	0
8.	22MAN09	Indian Constitution	MC	-	1	1	0	0	0
9.	22MAN10R	Communication and Quantitative Reasoning	MC	-	3	1	0	2	0

(B) PR	OGRAMME	CORE (PCC)							
1.	22CIC04	Algorithms	РСС	-	3	3	0	0	3
2.	22CIC05	Internet of Things and its Applications	РСС	-	3	3	0	0	3
3.	22CIC06	Java Programming	PCC	-	3	3	0	0	3
4.	22CIC07	Operating Systems	РСС	-	3	3	0	0	3
5.	22CIP03	Algorithms Laboratory	РСС	-	4	0	0	4	2
6.	22CIP04	Internet of Things and its Applications Laboratory	PCC	-	4	0	0	4	2
7.	22CIP05	Java Programming Laboratory	PCC	-	4	0	0	4	2
8.	22CIC08	Artificial Intelligence and Machine Learning	PCC	-	3	3	1	0	3
9.	22CIC09	Computer Networks	PCC	-	3	3	0	0	3
10.	22CIC10	Database Management System	PCC	-	3	3	0	0	3
11.	22CIC11	Sensors and Actuator Devices	PCC	-	3	3	0	0	3
12.	22CIC12	Privacy and Security in IoT	PCC	22CIC05	3	3	0	1	3
13.	22CIP06	Computer Networks Laboratory	РСС	-	4	0	0	4	2
14.	22CIP07	Database Management	PCC	-	4	0	0	4	2

		System Laboratory							
15.	22CIP08	Sensors and Actuator Devices Lab	PCC	-	4	0	0	4	2
16.	22CIC13	Embedded Systems	PCC	-	3	3	0	0	3
17.	22CIC14	Automata Theory and Compiler Design	PCC	-	3	3	0	0	3
18.	22CIC15	Full Stack Development	PCC	-	3	3	0	0	3
19.	22CIP09	Embedded Systems Laboratory	PCC	-	4	0	0	4	2
20.	22CIP10	Full Stack Development Laboratory	PCC	-	4	0	0	4	2
21.	22CIC16	Mobile Application Development for IoT	PCC	-	3	3	0	0	3
22.	22CIC17	Computer Vision and Robotics	PCC	-	3	3	0	0	3
23.	22CIP11	Mobile Application Development for IoT Laboratory	PCC	-	4	0	0	4	2
24.	22CIP12	Computer Vision Laboratory	PCC	-	4	0	0	4	2

(C) Engi	(C) Engineering Employability Course (EEC)										
S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с		
1	22GED01	Personality and Character Development	EEC	-	0	0	0	1	0		
2	22GED02	Internship/Industrial Training	EEC	-	0	0	0	0	2		
3	22CID01	Project Work	EEC	-	20	0	0	20	10		

		PROGRAM		LECTIVE					
		Vertical I -UB		OMPUTING					
5.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE REQUISITE	CONTACT PERIODS	L	Т	Ρ	с
1	22CIX01	Industrial and Medical IoT	PSE	-	3	3	0	0	3
2	22CIX02	Block Chain Technology	PSE	-	3	3	0	0	3
3	22CIX03	Beyond 5G and IoT Technologies	PSE	-	3	3	0	0	3
4	22CIX04	Programming for IoT Boards	PSE	-	3	3	0	0	3
5	22CIX05	Wearable Computing	PSE	-	3	3	0	0	3
6	22CIX06	Fog and Edge Computing	PSE	-	3	3	0	0	3
7	22CIX07	Wireless Ad-hoc and Sensor Networks	PSE	_	3	3	0	0	3
8	22CIX08	Image Processing	PSE	-	3	3	0	0	3
		Vertical II -	Machine In	telligence					
1	22CIX11	Exploration and Visualization of Data	PSE	-	3	3	0	0	3
2	22CIX12	Big Data Analytics	PSE	-	3	3	0	0	3
3	22CIX13	Deep Learning	PSE	-	3	3	0	0	3
4	22CIX14	Recommender Systems	PSE	-	3	3	0	0	3
5	22CIX15	Optimization Techniques	PSE	-	3	3	0	0	3
6	22CIX16	Computer vision	PSE	-	3	3	0	0	3
7	22CIX17	Ethics of Al	PSE	-	3	3	0	0	3
8	22CIX18	Robotic Process Automation	PSE	-	3	3	0	0	3
	1	Vertical I	II - Data An	alytics			I	1	1
1	22CIX21	Pattern Recognition	PSE	-	3	3	0	0	3
2	22CIX22	Text and Speech Analytics	PSE	-	3	3	0	0	3
3	22CIX23	Time Series Analysis and Forecasting	PSE	-	3	3	0	0	3
4	22CIX24	Health care Analytics	PSE	-	3	3	0	0	3
5	22CIX25	Predictive Analytics	PSE	-	3	3	0	0	3
6	22CIX26	Image and Video Analytics	PSE	-	3	3	0	0	3

7	22CIX27	Natural Language Processing	PSE	-	3	3	0	0	3
8	22CIX28	Augmented Reality and Virtual Reality	PSE	-	3	3	0	0	3
		Vertical IV - Digita	l Forensics 8	k Infosec Auditi	ng				
1	22CIX31	Cryptography and network security	PSE	-	3	3	0	0	3
2	22CIX32	Ethical Hacking	PSE	-	3	3	0	0	3
3	22CIX33	Cyber Forensics	PSE	-	3	3	0	0	3
4	22CIX34	Social network security	PSE	-	3	3	0	0	3
5	22CIX35	Biometric Security	PSE	-	3	3	0	0	3
6	22CIX36	Cyber Physical System	PSE	-	3	3	0	0	3
7	22CIX37	Mobile Device Security	PSE	-	3	3	0	0	3
8	22CIX38	Intrusion Detection System	PSE	-	3	3	0	0	3
		Vertical V	– Web Deve	lopment					
1	22CIX41	Design Thinking	PSE	-	3	3	0	0	3
2	22CIX42	Fundamentals of Data Science	PSE	-	3	3	0	0	3
3	22CIX43	Agile Methodologies	PSE	-	3	3	0	0	3
4	22CIX44	Cloud Computing	PSE	-	3	3	0	0	3
5	22CIX45	UI and UX design	PSE	-	3	3	0	0	3
6	22CIX46	DevOps	PSE	-	3	3	0	0	3
7	22CIX47	Social and information networks	PSE	-	3	3	0	0	3
8	22CIX48	Multimedia Data Compression and Storage	PSE	-	3	3	0	0	3
		Vertical VI – Softwa	are Develop	nent Engineeriı	ng				
1	22CIX51	Cloud Service Management	PSE	-	3	3	0	0	3
2	22CIX52	Software Testing Tools and Techniques	PSE	-	3	3	0	0	3
3	22CIX53	Software Quality Assurance	PSE	-	3	3	0	0	3
4	22CIX54	Software project management	PSE	-	3	3	0	0	3
5	22CIX55	IT Operations	PSE	-	3	3	0	0	3
6	22CIX56	Mean Stack Development	PSE	-	3	3	0	0	3

7	22CIX57	Web Mining	PSE	-	3	3	0	0	3
8	22CIX58	Product life cycle	PSE	-	З	R	0	0	R
0	2201730	management	T SL		5	5	0	0	5

	_	MANAG		CTIVES			-	-	
1.	22GEA02	Principles of Management	HSMC	-	3	3	0	0	3
2.	22GEA03	Total Quality Management	HSMC	-	3	3	0	0	3
3.	22GEA04	Professional Ethics and Human Values	HSMC	-	3	3	0	0	3
		OP	EN ELECTIVE	S					
1.	22CIZ01	Internet of Things and its applications	OEC	-	3	3	0	0	3
2.	22CIZ02	Sensors and Actuator devices	OEC	-	3	3	0	0	3
3.	22CIZ03	Industrial and Medical IoT	OEC	-	3	3	0	0	3
4.	22CIZ04	Wearable Computing	OEC	-	3	3	0	0	3

			or degree cou ernet of Thing						
S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE REQUISITE	CONTACT PERIODS	L	т	Р	С
1	22CIM01	Internet of Things	OEC	-	3	3	0	0	3
2	22CIM02	Fundamentals of Sensors and Actuators	OEC	-	3	3	0	0	3
3	22CIM03	IoT App Development	OEC	-	3	3	0	0	3
4	22CIM04	IoT for Industrial and Medical Applications	OEC	-	3	3	0	0	3
5	22CIM05	Wearable Computing	OEC	-	3	3	0	0	3
6	22CIM06	Fog and Edge Computing	OEC	-	3	3	0	0	3
7	22CIM07	Privacy and Security in IoT	OEC	-	3	3	0	0	3
8	22CIM08	Embedded Systems for IoT	OEC	-	3	3	0	0	3

SEM	нѕмс	BSC	РСС	ESC	EEC	PEC	OEC	TOTAL
I	4	8		10				22
II	4	4		15				23
		4	18					22
IV		3	21					24
v			14			9		23
VI			10			6	6	22
VII	5				2	3	6	16
VIII					10			10
TOTAL	13	19	63	25	12	18	12	162
R22 %	8.0	11.7	38.8	15.4	7.4	11.1	7.4	162
AICTE Credits Recomme nded	16	23	59	29	15	12	9	163
AICTE MODEL CURRI %	10%	14%	36%	18%	9%	7%	6%	

CREDIT DISTRIBUTION

TOTAL CREDITS (22+23+22+24+23+22+16+10) = 162 CREDITS

Der

		22CIC13 - EMBEDDED SYS	STEMS							
				L	Т	Ρ	C			
				3	0	0	3			
PRE-R	EQUISITE : NI	L								
 To introduce students to various components of typical embedded systems viz., sensors and actuators, data converters, UART etc., and their interfacing. To expose students to characteristics and various challenge of real time operating systems in terms of resources and deadline. 										
	e Outcomes udent will be ab	le to	Cognitive Level	in	End S	ge of Semes natio	ter			
CO1	-	nallenges in designing an embedded various microcontrollers	An		4	0%				
CO2		the working principle to interface stem components.	Ар		2	0%				
CO3	-	enefits and drawbacks of real –time d to recommend acceptable solution allenges.	An		2	0%				
CO4	-	ideas behind serial communication and their applications.	An		2	0%				
CO5	Implement th application.	ne embedded system in real world	Ар	Inte	ernal A	ssess	ment			

UNIT I – INTRODUCTION

Overview of Embedded System - Design Challenge: Optimizing Design Merits - Embedded Processor Technology: Software and Hardware - Application of Specific Processors - Micro-controller architecture: 8051, PIC, and ARM.

UNIT II - I/O INTERFACING TECHNIQUES

Introduction to memory - Memory interfacing: SRAM, DRAM and Flash Memory - A/D - D/A - Timer and counter - Watchdog timers: ATM Timeout using a Watchdog Timer - Encoder & Decoder – UART - Sensors and actuators interfacing.

UNIT III - REAL TIME OPERATION SYSTEM

Classification and characteristics of Real – Time Tasks - features of real time operating system - issues and challenges in RTS - Real time task Scheduling : EDF- RMA and Hybrid schedulers - POSIX : RT and IEEE POSIX Standards.

(9)

(9)

UNIT IV - EMBEDDED NETWORKING PROTOCOLS

Serial Protocols : Inter Integrated Circuits (I²C) and Controllers Area Network - Embedded Ethernet Controller - RS232 – Bluetooth - ZigBee - Wi-Fi.

UNIT V - APPLICATION OF EMBEDDED SYSTEM AND CASE STUDIES

Introduction to embedded system application using case studies : Role in Agriculture sector, Automotive electronics, Consumer Electronics, Industrial controls, Embedded system for Adaptive Cruise Control (ACC), Study of Embedded system for Smart Card.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Vahid, Frank, and Tony D. Givargis. Embedded system design: a unified hardware/software introduction. John Wiley & Sons, 2001.
- 2. RajKamal. Embedded Systems-SoC, IoT, AI and Real-Time Systems. McGraw-Hill Education, 2020.

REFERENCES:

 Marilyn Wolf, Computer as Components – Principles of Embedded Computing System Design, Fourth Edition, Morgan Kaufman Publishers, 2016.

				Ν	lappin	g of C	Os witl	n POs /	' PSOs					
						PC	Ds						PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3												3	
2				3									3	
3			3		3									3
4	3				3									
5									3	3				3
CO (W.A)	3		3	3	3				3	3			3	3
	3		3	3	3				3	3			3	

(9)

	22CIC14 – AUTOMATA THEORY AND	COMPILER DES	IGN			
	(Common to 22CCC1	3)		1	[T
			L	Т	Ρ	С
			3	1	0	4
PRE-REQ	JISITE: NIL	CCC13) L T P 3 1 0 iler design and design context free grammers, the intermediate code generation Cognitive Level Weightage of in End Semess Examination Ap 20% s. Ap 20% n. E Ap 20%				
Course Objective	any language, various parsing teerinques, t					
Course Ou t The studen	tcomes t will be able to	-	in	End S	Seme	ster
CO1	Design minimized automata for regular expression.	Ар		2	.0%	
CO2	Construct parsing table using different parsers. SLR, CLR, LALR and Shift reduce parsing.	Ар		2	.0%	
CO3	Generate intermediate code for the expression.	E		2	.0%	
CO4	Apply the code optimization techniques to generate machine code.	Ар		2	0%	
CO5	Demonstrate the construction of automata using JFLAP and present the compiler construction process with a sample code	Ар		20)%	

UNIT I - INTRODUCTION TO COMPILERS & LEXICAL ANALYSIS

Introduction – Translators - Compilation and Interpretation - Language processors - The Phases of Compiler – Compiler Construction Tools – Lexical Analysis – Role of Lexical Analyzer – Input Buffering – Specification of Tokens – Recognition of Tokens – Finite Automata – Regular Expressions to Automata NFA, DFA – Minimizing DFA.

UNIT II – CONTEXT FREE GRAMMAR AND PUSHDOWN AUTOMATA

Types of Grammar - Chomsky's hierarchy of languages – Context Free Grammar (CFG) and Languages – Derivations and Parse trees – Ambiguity in grammars and CNF and GNF – Push Down Automata (PDA) : Definition – Moves – Instantaneous descriptions – Languages of push down automata – Equivalence of pushdown automata and CFG - CFG to PDA - PDA to CFG – Deterministic Pushdown Automata.

UNIT III – SYNTAX ANALYSIS

Role of Parser – Types of Parsing - Top down parser and Bottom up parser - Recursive Descent Parser -LL(1) - LR(0) Item Construction of SLR Parsing Table – CLR(1) - LALR Parser - Error Handling and Recovery in Syntax Analyzer.

(9)

(9)

UNIT IV - IMPLEMENTATION OF THREE ADDRESS CODE

Intermediate Representation: Translation to Syntax Trees and DAGs.- Syntax-Directed Translation Schemes for Code Generation - Assignment and Boolean Operators & Control flow – Backpatching - Procedural calls.

UNIT V – CODE OPTIMIZATION & CODE GENERATION

Principal Sources of Optimization – Peep-hole optimization - DAG- Optimization of Basic Blocks - Issues in the Design of a Code Generator - Basic Blocks and Flow Graphs; Representation of Flow Graphs, Loops- A Simple Code Generator.

TOTAL (L:45, T:15) : 60 PERIODS

TEXTBOOKS:

- 1. J.E .Hopcroft, R.Motwani and J.D Ullman, Introduction to Automata Theory, Languages and computations, Second Edition, Pearson Education, 2003.
- 2. Alfred V. Aho, Monica S.Lam, Ravi Sethi, Jeffrey D.Ullman, "Compilers: Principles, Techniques and Tools", Second Edition, Pearson Education, 2009.

REFERENCES:

- 1. H.R.Lewis and C.H.Papadimitriou, Elements of the theory of computation, Second Edition, PHI, 2003.
- 2. J.Martin, Introduction to Languages and the theory of computation, Third Edition, TMH, 2003.
- 3. Randy Allen, Ken Kennedy, Optimizing Compilers for Modern Architectures: A Dependence Based Approach, Morgan Kaufmann Publishers, 2002.

			Μ	apping	of COs	s with F	POs / P	SOs						
						POs							PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1			3										3	3
2	3												3	3
3			3										3	3
4	3	3											3	3
5					3					3		3	3	3
CO (W.A)	3	3	3		3					3		3	3	3
	•	•	•	•	•		•	•	•		•			•

(9)

				L	T	P	C
		ITE: NIL		3	0	0	3
Cou Objec	rse	To provide students with a solid foundation in development fundamentals, integrate with database best practices in web development					
Course The Stu		o mes vill be able to	Cognitive Level	in	End S	ge of Semes inatio	ter
CO1		/ fundamental concepts of MERN stack for Web cation development.	Ар		2	.0%	
CO2	node	ze and develop web applications using bootstrap, and Express JS focused on social and onmental issues	An		4	.0%	
CO3	Integ effect	rate front-end and back-end components tively with databases and external services.	An		2	.0%	
CO4		ement Full stack application through React ework.	An		2	.0%	
CO5		onstrate teamwork and problem-solving skills in ct development.	С	Inte	ernal A	Assess	ment
UNIT	I - BAS	SICS OF MERN STACK					(9)
		uction-MERN Components - Need for MERN - Serv e.js npm.	er-Less Hello	Wor	ld - Se	erver S	Setup
UNIT	II – BO	OTSTRAP AND NODE JS BASICS					(9)
- Boot	strap J	to Bootstrap - Bootstrap Basics - Bootstrap Grids - S.Node.js basics - Local and Export Modules - Nod e.js File system - Node Inspector - Node.js Event Em	e Package M				
	III - NC	DDE JS EXPRESS					(9)

UNIT IV - MONGODB

MongoDB - MongoDB Basics - Documents -Collections - Query Language - Installation - The Mongo Shell - Schema Initialization - MongoDB Node.js Driver - Reading from MongoDB - Writing to MongoDB.

UNIT V - REACT

React Introduction – State - Lifecycle methods - Hooks – useState, useEffect, useContext - Event handling - Forms – controlled components, submission, validation.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Pro MERN Stack, Full Stack Web App Development with Mongo, Express, React, and Node, Vasan Subramanian, A Press Publisher, 2019.
- 2. Bradshaw, S., Brazil, E., & Chodorow, K. (2019). MongoDB: the definitive guide: powerful and scalable data storage. O'Reilly Media.
- 3. Mardan, A. (2014). Express. js Guide: The Comprehensive Book on Express. js. Azat Mardan.
- 4. Kogent Learning Solutions Inc. "HTML5 Black Book: Covers CSS3, JavaScript, XML, XHTML, AJAX, PHP and JQUERY", Wiley India Pvt. Limited, 2011.
- 5. Deitel and Deitel and Nieto, "Internet and World Wide Web How to Program", Prentice Hall, 5th Edition, 2011.
- 6. Zammetti, F. (2020). Modern Full-Stack Development: Using TypeScript, React, Node. js, Webpack, and Docker. Apress.

REFERENCES:

- 1. Silvio Moreto, Matt Lambert, Benjamin Jakobus, Jason Marah, "Bootstrap 4–Responsive Web Design" Packt Publishing (6 July 2017)
- 2. Thomas Powell, "Web Design: The Complete Reference" ,Osborne / McGraw-Hill
- 3. https://www.w3schools.com/

					Ν	lappin	g of C	Os wit	h POs ,	/ PSOs				
							POs						F	PSOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3				3								3	
2		3	3		3	3	3						3	
3			3		3									3
4				3	3								3	
5					3			3	3	3	3			3
CO (W.A)	3	3	3	3	3	3	3	3	3	3	3		3	3

(9)

		22CIP09 - EMBEDDED SYSTEM LABORATORY				
			L 0 edded system effectively im ocols. ses in the with Internet	Т	Ρ	С
			0	0	4	2
PRE-R	REQUISITE	: NIL				
		Provide a comprehensive understanding of embe	edded sy	/stems a	and th	neir
C	ourse	application in IoT				
Obj	ective:	• Equip students with the knowledge and skills to e	effective	ly imple	ment	
		and manage a range of IoT communication proto	ocols.			
c	0				Cog	nit
	e Outcome udent will l	-			iv	е
THE SU					Lev	/el
CO1		ne knowledge of embedded systems and their range of us	es in the	e	Δ	р
01	Internet	of Things environment.				Υ
	Interfacir	ng the various kind of embedded system components w	vith Inte	rnet of		
CO2	Things.				Д	n
CO3	Apply en	bedded programming techniques to solve real-world pro	blems		Д	р
CO4		an integrated hardware and software solutions for embed functionality and efficiency.	ded syst	ems to	А	р
	-					
CO5	Design a	a various IoT communication protocols to enable se	amless	device	^	р

LIST OF EXPERIMENTS :

- 1. Monitoring a machinery vibration using vibration sensors
- 2. Interfacing an MQ-2 Gas Sensor with an LED
- 3. Interfacing an ADXL345 Accelerometer with ARM
- 4. Interfacing soil moisture sensor with ARM
- 5. Implementing a program to heartbeat sensor and ARM
- 6. Interfacing UART for LED Control between IoT and PC
- 7. Application to transmit & receive a character through RS232 and Bluetooth low energy Communication
- 8. Interfacing GSM Module with IoT and Sending Sensor Data to Cloud
- 9. Interfacing ESP8266(WIFI Module) with IoT for HTTP Communication
- 10. Implement Zigbee interface for Data Transmission with IoT

TOTAL (P:60) = 60 PERIODS

				Μ	lappin	g of CC	Ds with	n POs /	' PSOs					
	POs													Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3												3	
2		3												
3					3									2
4				3										
5										3				
CO (W.A)	3	3		3	3					3			3	2

Approved by Twelfth Academic Council

		22CIP10 - FULL STACK DEVELOPMENT LABORATORY				
		(Common to 22CSP09 AND 22ITP10)				
			L	Т	Ρ	С
			0	0	4	2
PRE-R	EQUISITE : NI	L				
Cours	se Objective:	To develop full stack applications with clear understandi business logic and data storage.	ng of	user	interf	ace,
	Outcomes Ident will be ab	le to	Cog	nitive	e Levo	el
CO1	Install and de	velop programs using React JS.		Ap)	
CO2	Make use of	multiple node js modules to implement the application.		Ar	۱	
CO3	Develop resp	onsive and dynamic web pages		С		
CO4	Develop resp	onsive and mobile supported applications		С		
CO5		abase operations using MongoDB and aware of recent in Full Stack through self-learning.		Ar	ı	

LIST OF EXPERIMENTS :

- 1. Build a Basic React APP that display custom message from users
- 2. Create a Login form using React JS
- 3. Write a program to upload Single/Multiple images to cloudinary using Node JS
- 4. Write a program to create router using Node.js with Express
- 5. Design a program to create Single Responsive Page using Bootstrap
- 6. Implement Create and Read Operations in MongoDB.
- 7. Implement Update and Delete Operations in MongoDB.

TOTAL (P:60) = 60 PERIODS

				N	lappin	g of C	Os witł	n POs /	' PSOs					
	POs													
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3												3	
2		3			3								3	
3		3	3											3
4				3	3								3	
5					3				2			3		
CO (W.A)	3	3	3	3	3				2			3	3	3

	22MAI	N10R - COMMUNICATION AND QUA	NTITATIVE REAS	SONII	NG		
				L	Т	Ρ	С
				1	0	2	0
PRE-R	REQUISITE : NI	L					
Cours	se Objective:	 To enhance the proficiency of the communication To acquire skills required to solve 		·			itten
	e Outcomes udent will be ab	le to	Cognitive Level	ir	n Cont	ge of (tinuou ent To	IS
CO1	Converse and various contex	draft ideas clearly and persuasively in ts.	U		4	0%	
CO2	Solve quant confidence.	titative aptitude problems with	Ар		3	0%	
CO3	Draw valid co problems.	nclusions, identify patterns, and solve	An		3	0%	

UNIT I - LANGUAGE BOOSTERS	(5+10)
JAM - General Topic Presentation - Group Discussion - Mock Interview - E Mail Writing - I writing	Essay
UNIT II – APTITUDE	(5+10)
Mensuration - Area, Shapes, Perimeter - Races and Games - Data Interpretation on Multip Charts.	ole
UNIT III - REASONING	(5+10)
Venn diagram - Syllogism - Data Sufficiency - Cubes & Embedded Images	

TOTAL (L:45) = 45 PERIODS

REFERENCES:

- 1. Rizvi, M.Ashraf. *Effective Technical Communication*. Tata McGraw-Hill Education, 2017.
- 2. Aggarwal R S. *Quantitative Aptitude for Competitive Examinations*. S.Chand Publishing Company Ltd(s)., 2022.
- 3. Arun Sharma. *How to Prepare for Quantitative Aptitude for the CAT*. Tata McGraw Hill Publishing, 2022.
- 4. Praveen R V. Quantitative Aptitude and Reasoning. PHI Learning Pvt. Ltd., 2016.

COs СО (W.A)

Mapping of COs with POs / PSOs

POs

PSOs

Approved by Twelfth Academic Council

131 | Page

	2	2CIC16-MOBILE APPLICATION DEVELOPI (Common to 22AIX38)	MENT FOR I	оΤ			
				L	Т	Ρ	С
				3	0	0	3
PRE-R	REQUISITE : NI	L					
		• To introduce mobile design princip	les and impl	emen	tation	of	
C	o Obio stivov	Application development with And	roid and IOS				
Cour	se Objective:	To develop competency in the stud	dents to inde	epend	lently	desigr	۱
		and develop their own professiona	l apps.				
	e Outcomes udent will be ab	le to	Cognitiv e Level	in	End S	ge of C emest nation	er
CO1	Analyzes th architecture fo	e fundamental mobile application r IoT through outlining.	An		20	0%	
CO2		design constraints for mobile applications, ormance, usability, security, availability, and	An		20	0%	
CO3		IoT applications using standardized software platforms.	Ар		20	0%	
CO4	Apply low pov a prototype.	ver communication technologies to create	Ар		20	0%	
CO5	Create an IoT s management	solution development plan from a Product perspective.	С		20)%	

UNIT I - INTRODUCTION TO IOT ECOSYSTEM

IoT ecosystem; Industry 4.0; Application development platforms for IoT; IoT Data sources - GPS and WIFI integration with social media applications.

UNIT II - BASIC DESIGN

Introduction Basics of embedded systems design Embedded OS - Design constraints for mobile applications, both hardware and software related Architecting mobile applications user interfaces for mobile applications touch events and gestures Achieving quality constraints performance, usability, security, availability and modifiability.

UNIT III - SENSOR DATA PROCESSING

Sensor Data-Gathering and Data-Dissemination Mechanisms; Sensor Database system architecture; Sensor data-fusion mechanisms; Data-fusion Architectures and models.

(9)

(9)

UNIT IV - PROGRAMMING FRAMEWORKS FOR INTERNET OF THINGS

IoT Programming Approaches: Node-Centric Programming - Database approach - Model-Driven Development - IoT Programming Frameworks: Android Things - ThingSpeak - IoTivity - Node-RED - DeviceHive - Contiki and Cooja – Zetta.

UNIT V - COMMUNICATION TECHNOLOGIES FOR LOW POWER WIRELESS INTERACTIONS

Wireless communications in product development – Bluetooth LE - Near Field Communications (NFC) – WiFi; Prototyping Bluetooth LE with Arduino Nano; Power management strategies and practices - Case Study: E-Health - Telemedicine.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Kale, Vivek. Parallel Computing Architectures and APIs: IoT Big Data Stream Processing 1st edition, CRC Press, 2019.
- 2. Lea, Perry. Internet of Things for Architects: Architecting IoT solutions by implementing sensors, communication infrastructure, edge computing, analytics, and security, 1st edition, Packt Publishing Ltd, 2018.

REFERENCES:

1. Fadi Al-Turjman, Intelligence in IoT-enabled Smart Cities, 1st edition, CRC Press, 2019

2. Giacomo Veneri, and Antonio Capasso, Hands-on Industrial Internet of Things: Create a powerful industrial IoT infrastructure using Industry 4.0, 1st edition, Packt Publishing,2018

				N	lappin	g of CO	Os witł	n POs /	' PSOs					
	POs													Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
2	3	-	3	-	-	-	-	-	-	-	-	-	3	-
3	-	3	-	3	3	-	-	-	-	-	-	-	-	3
4	-	3	3	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	3	3	3	-
CO (W.A)	3	3	3	3	3	-	-	-	-	-	3	3	3	3

(9)

	22CIC17 - COMPUTER VISION AND ROBOT	ICS				
			L	Т	Ρ	C
			3	0	0	3
PRE-R	EQUISITE : NIL					
	To understand the Fundamental Concept	s Relate	ed To	o sour	ces,	
Cours	se Objective: shadows and shading.					
	To understand the Geometry of Multiple	Views.				
Course	e Outcomes Cognitiv	<i>i</i> e	Wei	ghtag	ge of (COs
	udent will be able to Level		in	End S	emest	er
THE SIL			E	xami	natior	ו
CO1	Implement fundamental image processing An			2(0%	
01	techniques required for computer vision.				570	
CO2	Implement boundary tracking techniques. An			20	0%	
	Apply chain codes and other region descriptors,					
CO3	Hough Transform for line, circle, and ellipse Ap			2(0%	
000	detections			_	0,0	
604	Apply 3D vision techniques and Implement motion			24	20/	
CO4	related techniques. Ap			20)%	
CO5	Develop applications using computer vision Ap			21	0%	
205	techniques			20	570	

UNIT I - FUNDAMENTALS OF IMAGING: FROM LIGHT MEASUREMENT TO COLOR REPRESENTATION

(9)

CAMERAS: Pinhole Cameras. Radiometry – Measuring Light: Light in Space, Light Surfaces, Important Special Cases. Sources, Shadows, And Shading: Qualitative Radiometry, Sources and Their Effects, Local Shading Models, Application: Photometric Stereo, Interreflections: Global Shading Models. Color: The Physics of Color, Human Color Perception, Representing Color, A Model for Image Color, Surface Color from Image Color.

UNIT II - ADVANCED IMAGE PROCESSING: FILTERS, EDGE DETECTION, AND TEXTURE ANALYSIS

(9)

(9)

Linear Filters: Linear Filters and Convolution, Shift Invariant Linear Systems, Spatial Frequency and Fourier Transforms, Sampling and Aliasing, Filters as Templates. Edge Detection: Noise, Estimating Derivatives, Detecting Edges. Texture: Representing Texture, Analysis (and Synthesis) Using Oriented Pyramids, Application: Synthesis by Sampling Local Models, Shape from Texture.

UNIT III - MULTI-VIEW GEOMETRY AND SEGMENTATION TECHNIQUES IN IMAGING

The Geometry of Multiple Views: Two Views Stereopsis: Reconstruction, Human Stereposis, Binocular Fusion, Using More Cameras Segmentation by Clustering: Segmentation, Human Vision: Grouping and Getstalt, Applications: Shot Boundary Detection and Background Subtraction, Image Segmentation by Clustering Pixels, Segmentation by Graph-Theoretic Clustering,

UNIT IV - MODEL-BASED SEGMENTATION AND TRACKING TECHNIQUES

Segmentation by Fitting a Model: The Hough Transform, Fitting Lines, Fitting Curves, Fitting as a Probabilistic Inference Problem, Robustness Segmentation and Fitting Using Probabilistic Methods: Missing Data Problems, Fitting, and Segmentation, The EM Algorithm in Practice. Tracking With Linear Dynamic Models: Tracking as an Abstract Inference Problem, Linear Dynamic Models, Kalman Filtering, Data Association, Applications and Examples

UNIT V - GEOMETRIC CAMERA MODELS AND CALIBRATION

(9)

Geometric Camera Models: Elements of Analytical Euclidean Geometry, Camera Parameters and the Perspective Projection, Affine Cameras and Affine Projection Equations. Geometric Camera Calibration: Least-Squares Parameter Estimation, A Linear Approach to Camera Calibration, Taking Radial Distortion into Account, Analytical Photogrammetry, An Application: Mobile

TOTAL (L:45) = 45 PERIODS

TEXT BOOK:

1. David A. Forsyth and Jean Ponce: Computer Vision – A Modern Approach, PHI Learning (Indian Edition), 2009.

REFERENCES:

- 1. E. R. Davies: Computer and Machine Vision Theory, Algorithms and Practicalities, Elsevier (Academic Press), 4th edition, 2013.
- 2. R. C. Gonzalez and R. E. Woods "Digital Image Processing" Addison Wesley 2008.
- 3. Richard Szeliski "Computer Vision: Algorithms and Applications" Springer-Verlag London Limited 2011.

				Μ	lappin	g of C	Os witł	ı POs /	' PSOs					
	POs													Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3												3	
2	3	3											3	
3				3										3
4				3									3	
5							3							
CO (W.A)	3	3		3			3						3	3

	22CIP09	MOBILE APPLICATION DEVELOPMENT FOR IOT LAB	ORAT	ORY		
			L	Т	Ρ	С
			0	0	4	2
PRE-R	EQUISITE : NI	L				
		To explore various Hybrid App Development Pl	atform	٦S.		
Cour	se Objective:	 To acquire the knowledge of app releases and the play store. 	publis	hing a	n app	to
	e Outcomes udent will be ab	le to	Co	gnitiv	e Leve	əl
CO1	Demonstrate tools.	the configuration of Android Software Development		А	р	
CO2	Design and d	evelop Mobile Applications using Android and Kotlin.		А	n	
CO3		nplex android application by using APIs, Libraries, and dling techniques.		А	р	
CO4	Construct the release.	mobile application using a hybrid framework or SDK		А	n	
CO5	Publish the m	obile application on Google Play Store.		(2	

LIST OF EXPERIMENTS :

- 1. Install Android Studio and Configure Latest Android SDKs and Android Virtual Devices.
- 2. Create an application that takes the name from a text box and shows "hello message" along with the name entered in the text box, when the user clicks the OK button.
- 3. Create a screen that has input boxes for User Name, Password, Address, Gender(radio buttons for male and female), Age (numeric), Date of Birth (Date Picket), State (Spinner) and a Submit button. On clicking the submit button, print all the data below the Submit Button (use any layout).
- 4. Design a complete Student Management Application using Android and provide effective navigation between various Activities.
- 5. Design a mobile IoT APP for a smart home.
- 6. Design a mobile IoT App for Agriculture motor control from a remote location.
- 7. Design a mobile IoT APP for home protection which monitors for intruders and sends a message to your phone immediately and also sends an email.
- 8. Design a Green leaf disease detection using Rasberry Pi.
- 9. Develop an Android Application that stores Student Details into the hosting server and retrieve student details from the server.
- 10. Prepare and Publish Your Android Apps in Google Play Store.

TOTAL (P:60) = 60 PERIODS

				N	lappin	g of C	Os witł	n POs /	' PSOs					
						PC	Ds						PSO	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	-	-	-	-	-	-	-	-	-	-	-	3	-
2	3	-	3	-	-	-	-	-	-	-	-	-	3	-
3	-	3	-	3	3	-	-	-	-	-	-	-	-	3
4	-	3	3	-	-	-	-	-	-	-	-	-	-	-
5	-	-	-	-	-	-	-	-	-	-	3	3	3	-
CO (W.A)	3	3	3	3	3	-	-	-	-	-	3	3	3	3

		22CIP12 - COMPUTER VISION LABORATORY				
			L	Т	Р	C
			3	0	0	3
PRE-R	REQUISITE : NI	L				
Cour	rse Objective:	 To Make students acquainted with practical asperimages. To Improve quality of image by applying enhance To understand Feature Extraction algorithms. 				
	e Outcomes udent will be ab	le to	Co	gnitiv	ve Lev	el
CO1		ne basic image processing techniques and enhance usting contrast		Ą	мр	
CO2	Detects edges	using various kernels using transformation		A	ф	
CO3	Apply histogra	m processing, convert between various color spaces.		A	мр	
CO4	Partition datas	et by classification and clustering		A	Nn	
CO5	Comprehend of	computer vision systems for real world problems.		A	Nn	

LIST OF EXPERIMENTS :

- 1. Implement basic image operations
 - a. Loading and displaying an image.
 - b. Color formats
 - c. Image enhancement.
- 2. Implement smoothing filters on an image using
 - a.Gaussian filter
 - b. Median filter
 - c. Mean Filter
- 3. Demonstrate fourier Transformations
- 4. Implement histogram calculation and equalization for the given image.
- 5. Implement morphological operations like dilation, erosion, opening and closing on the given image
- 6. Implement edge detection on images using any two edge detection masks.
- 7. Detection of motion from structure.
- 8. Implement texture extraction of a given image.
- 9. Implement object detection like recognizing pedestrians.
- 10. Implement face recognition of an image using K-Means clustering.
- 11. Implement dimensionality reduction using PCA for the given images.
- 12. Demonstrate model based reconstruction using tensor flow.

TOTAL (P:60) = 60 PERIODS

Approved by Twelfth Academic Council

				N	lappin	g of CO	Os with	n POs /	' PSOs					
						РС	Ds						PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3												3	
2	3	3											3	
3		3	3											3
4				3									3	
5							3							
CO (W.A)	3	3	3				3						3	3

	22GEA01 UNIVERSAL HUMAN VAL					
	(For Common To All Branches)	•	т	Р	
			L 2	0	Р 0	<u>С</u> 2
PRE-REO	QUISITE : NIL		-	U	v	
	To help the students appreciate the essential	•		etwee	n 'VAL	UES'
Cours	 and 'SKILLS' to ensure sustained happiness and To facilitate the development of a holistic per life and profession. 	,		tuden	ts tow	ards
Objecti	• To highlight plausible implications of holistic human conduct.	: understandi	ng in	terms	of et	hical
	To understand the nature and existence.To understand human contact and holistic was	ay of living				
Course O The Stude	utcomes ent will be able to	Cognitive Level	in	End S	ge of (emest natior	ter
CO1	Evaluate the significance of value inputs informal education and start applying them in their life and profession.	E				
CO2	Distinguish between values and skills, happiness and accumulation of physical facilities, the Self and the Body, Intention and Competence of an individual.	Ар				
CO3	Analyze the value of harmonious relationship based on trust and respect in their life and profession.	An	Inte	ernal A	ssessr	nent
CO4	Examine the role of a human being in ensuring harmony in society and nature.	Ар				
CO5	Apply the understanding of ethical conduct to formulate the strategy for ethical life and profession.	Ар				

UNIT I- INTRODUCTION-BASIC HUMAN ASPIRATION, ITS FULFILLMENT THROUGH ALL-ENCOMPASSING RESOLUTION

(6)

(6)

The basic human aspirations and their fulfillment through Right understanding and Resolution, Right understanding and Resolution as the activities of the Self, Self being central to Human Existence; Allencompassing Resolution for a Human Being, its details and solution of problems in the light of Resolution

UNIT II- RIGHT UNDERSTANDING (KNOWING)- KNOWER, KNOWN & THE PROCESS

The domain of right understanding starting from understanding the human being (the knower, the experiencer and the doer) and extending up to understanding nature/existence – its interconnectedness and co-existence; and finally understanding the role of human being in existence (human conduct).

1. IvanIllich,1974, Energy& Equity, The Trinity Press, Worcester, and Harper Collins ,USA

REFERENCES:

TEXT BOOK:

2. E.F. Schumacher, 1973, Smallis Beautiful: a studyofeconomicsasifpeoplemattered, Blond& Briggs, Britain.

inHuman Values and Professional Ethics. ISBN 978-93-87034-47-1, Excel Books, New Delhi

3. Sussan George, 1976, How the Other Half Dies, Penguin Press. Reprinted 1986, 1991

1. R R Gaur, R Asthana, G P Bagaria, 2019 (2nd Revised Edition), A Foundation Course

- 4. DonellaH.Meadows, DennisL.Meadows, JorgenRanders, WilliamW.BehrensIII, 1972, LimitstoGrowth–ClubofRome'sreport, UniverseBooks.
- 5. ANagraj, 1998, Jeevan Vidya Ek Parichay, Divya Path Sansthan, Amarkantak.
- 6. PLDhar, RRGaur, 1990, Science and Humanism, Common wealth Publishers.
- 7. ANTripathy, 2003, HumanValues, NewAgeInternationalPublishers
- 8. EGSeebauer&RobertL.Berry,2000,FundamentalsofEthicsforScientists&Engineers, OxfordUniversityPress
- 9. MGovindrajran, SNatrajan&V.S.SenthilKumar, EngineeringEthics (includingHumanValues), Eastern EconomyEdition, Prentice HallofIndia Ltd.
- 10. SubhasPalekar,2000,HowtopracticeNaturalFarming,Pracheen(Vaidik)KrishiTantraShodh,Amr avati
- 11. BPBanerjee, 2005, Foundations of Ethics and Management, ExcelBooks
- 12. BLBajpai,2004,IndianEthosandModernManagement,NewRoyalBookCo.,Lucknow. Reprinted2008.

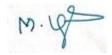
UNIT III- UNDERSTANDING HUMAN BEING

Understanding the human being comprehensively as the first step and the core theme of this course; human being as co-existence of the self and the body; the activities and potentialities of the self; Basis for harmony/contradiction in the self

UNIT IV- Understanding Nature and Existence

A comprehensive understanding (knowledge) about the existence, Nature being included; the need and process of inner evolution (through self-exploration, self- awareness and self-evaluation), particularly awakening to activities of the Self: Realization, Understanding and Contemplation in the Self (Realization of Co-Existence, Understanding of Harmony in Nature and Contemplation of Participation of Human in this harmony/ order leading to comprehensive knowledge about the existence).

UNIT V- Understanding Human Conduct, All-encompassing Resolution and Holistic Way of Living


Understanding Human Conduct, different aspects of All-encompassing Resolution (understanding, wisdom, science etc.), Holistic way of living for Human Being with All- encompassing Resolution covering all four dimensions of human endeavor viz., realization, thought, behavior and work (participation in the larger order) leading to harmony at all levels from Self to Nature and entire Existence

TOTAL (L:30) : 30 PERIODS

(6)

(6)

				Мар	ping o	of COs	with	POs /	' PSOs	5				
						PC	Ds							PSOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1						2	2	3	2	2		3		
2						2	2	3	2	2		3		
3						2	2	3	2	2		3		
4						2	2	3	2	2		3		
5						2	2	3	2	2		3		
CO (W.A)						2	2	3	2	2		3		

142 | Page

Approved by Twelfth Academic Council

	22GED02 – INTERNSHIP / INDUSTRIAL TRAINING	3			
		L	Т	Ρ	С
		0	0	0	2
PRE-R	EQUISITE : NIL				
Cour	 To obtain a broad understanding of the emerging techn 	ologie	s in In	dustry	/
Object	• To gain knowledge about I/O models.				
	Outcomes dent will be able to	Co	gnitiv	e Lev	el
CO1	Engage in Industrial activity which is a community service.		ι	J	
CO2	Prepare the project report, three minute video and the poster of the work.		А	p	
CO3	Identify and specify an engineering product that can make their life comfortable.		А	n	
CO4	Prepare a business plan for a commercial venture of the proposed product, together with complying to relevant norms.		А	.p	
CO5	Identify the community that shall benefit from the product.		[Ξ	

During semester breaks, students are encouraged to engage in industrial training or undergo internship in an industry related to the field of study. The duration of the activity shall be of 4 to 6 weeks. The work carried out in the semester break is assessed through an oral seminar accompanied by a written report. It is expected that this association will motivate the student to develop simple products to make their life comfortable and convert new ideas into projects.

Every student is required to complete 12 to 16 weeks of internship (with about 40 hours per week), during the Summer/Winter semester breaks. The Internships are evaluated through Internship Reports and Seminars during the VI and VIII semesters. The internships can be taken up in an industry, a government organization, a research organization or an academic institution, either in the country or outside the country, that include activities like:

- Successful completion of Internships/ Value Added Programs/Training Programs/ workshops organized by academic Institutions and Industries
- Soft skill training by the Placement Cell of the college
- Active association with incubation/ innovation /entrepreneurship cell of the institute.
- Participation in Inter-Institute innovation related competitions like Hackathons.
- Working for consultancy/ research project within the institutes
- Participation in activities of Institute's Innovation Council, IPR cell, Leadership Talks, Idea/ Design/ Innovation contests

- Internship with industry/ NGO's/ Government organizations/ Micro/ Small/Medium enterprises
- Development of a new product/ business plan/ registration of a start-up

				M	apping	g of CC	Ds witl	h POs	/ PSO:	5				
						РС	Ds						PS	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1						2								
2										3				
3		1												
4							2	3			2			
5						2								
CO (W.A)		1				2	2	3		3	2			

	22CID01- PROJECT WORK							
			L	Т	Р	C		
			0	0	20	10		
Course	EQUISITE : NIL Outcomes dent will be able to	Cognitive Level	in	End S	ge of Semes inatio	ter		
CO1	Engage in independent study to research literature in the identified area and consolidate the literature search to identify and formulate the engineering problem.	Ар	20 % - First Revi (Internal)					
CO2	Prepare the Gantt Chart for scheduling the project , engage in budget analysis, and designate responsibility for every member in the team and identify the community that shall benefit through the solution to the identified research work and also demonstrate concern for environment	Ap, E						
CO3	Identify, apply the mathematical concepts, science concepts, and engineering concepts necessary to implement the identified engineering problem, select the engineering tools /components required to reproduce the identified project, design, implement, analyze and interpret results of the implemented project	Ap, An, C	20 % - Second Review (Internal) 20 % - Third Revie (Internal)					
CO4	Engage in effective written communication through the project report, the one-page poster presentation, and preparation of the video about the project and the four page IEEE format of the work and effective oral communication through presentation of the project work and demonstration of the project.	E	20		inal Re ternal)	eview		
CO5	Perform in the team, contribute to the team and mentor/lead the team, demonstrate compliance to the prescribed standards/ safety norms and abide by the norms of professional ethics and clearly specify the outcome of the project work (leading to start-up/ product/ research paper/ patent)	Ap, An	20		inal Re ternal)	view		

DESCRIPTION

Project work may be allotted to a single student or to a group of students not exceeding 3 per group. The title of project work is approved by head of the department under the guidance of a faculty member and student(s) shall prepare a comprehensive project report after completing the work to the satisfaction of the guide.

The Head of the department shall constitute a review committee for project work. There shall be three reviews during the semester by the committee to review the progress. Student(s) shall make

presentation on the progress made by him / her / them before the committee and evaluation is done as per Rules and Regulations

TOTAL (P: 300) = 300 PERIODS

				Μ	appin	g of CC	Os witl	h POs ,	/ PSOs					
						PC	Ds						PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1		3										3	3	3
2						3	3				3		3	3
3	3	3	3	3	3								3	3
4								3		3			3	3
5									3		3	3	3	3
CO (W.A)	3	3	3	3	3	3	3	3	3	3	3	3	3	3

146 | P a g e

Approved by Twelfth Academic Council

	22CIX01-INDUSTRIAL & MEDIC/ (Common to 22CSX31,22ITX31,22AIX31	-	31)			
			L	Т	Ρ	C
			3	0	0	3
PRE-R	EQUISITE : NIL					
	To provide students with good dep		•		gning	
Course	Objective: Industrial and Medical IoT Systems					
course	Students will learn the new evolution	on in hardwa	ire, sof	tware	and d	ata
C	e Outcomes C	Cognitive	We	ighta	ge of (COs
	udent will be able to	Level	in	End S	emest	er
The Sit		Levei	l	Exami	natior	1
	Apply data management techniques to analyze and					
CO1	manipulate IIoT data, using tools for basic analytics	Ар		2	0%	
	and mining.					
CO 2	Analyze various attack types targeting IoMT devices	٨		h	00/	
CO2	and systems, demonstrating the ability to identify specific vulnerabilities in real-world scenarios.	An		2	0%	
	Apply the IoMT system architecture by designing a					
	basic framework that includes data collection,					
CO3	management, and server layers, ensuring proper	Ар		4	0%	
	integration of each component.					
	Analyze the impact of smart medicinal packages on					
CO4	medication adherence, examining data on patient	An		2	0%	
	outcomes and adherence rates.					
605	Analyze case studies from various industrial IoT					
CO5	domains, focusing on operational efficiency, safety	An	Inte	ernal A	ssessr	nen
	improvements, and sustainability impacts.					

UNIT I- INTRODUCTION TO INDUSTIAL IOT (IIOT)

Introduction to IIOT, History of IIOT, Components of IIOT - Sensors, Interface, Networks, Key terms – IOT Platform, Interfaces, API, clouds, Data Management Analytics, Mining & Manipulation; Role of IIOT in Manufacturing Processes Use of IIOT in plant maintenance practices, Sustainability through Business excellence tools Challenges & Benefits in implementing IIOT

UNIT II - INTERNET OF MEDICAL THINGS SECURITY THREATS, SECURITY CHALLENGES AND POTENTIAL SOLUTIONS

(9)

(9)

IoMT Attack Types, Challenges in IoMT Security Schemes, Current Security Plans for IoMT, Potential Solutions for Security Vulnerabilities.

UNIT III - INTERNET OF MEDICAL THINGS INTRODUCTION AND SYSTEM ARCHITECTURE

Introduction, IoMT Devices-On-Body Devices, In-Home Devices, Community Devices, In-Clinic Devices, In- Hospital Devices, IoMT System Architecture-Data Collection Layer, Data Management Layer, Medical Server Layer.

UNIT IV – HEALTH CARE TECHNOLOGIES & IoMT

Home Monitoring System for Aged Care, Smart Medicinal Packages for Medication Adherence, Smart Drug Delivery System for Automated Drug Dispensation, Connected Rural Healthcare Consultation, Population and Environment Monitoring of Infectious Diseases-What are IoMT and its working? Tracking assets and resources, Internet of things in hospitals, collection and integration of clinical data, Major benefits of IoT in healthcare, Disadvantages of IoT in healthcare.

UNIT V – APPLICATION DESIGN & CASE STUDY

Application Design & Case Study: Wireless Patient Monitor system, Wearable Fitness & Activity Monitor Application Design: Design of IOT based pulse oximeter, Reliability of IoT-Aware BPNM Healthcare process. Industrial IOT- Application Domains: Oil, chemical and pharmaceutical industry, Applications of UAVs in Industries, Real case studies: Milk Processing and Packaging Industries, Manufacturing Industries.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

1. Veneri, Giacomo, and Antonio Capasso. Hands-on Industrial Internet of Things: Create a Powerful Industrial IoT Infrastructure Using Industry 4.0, 1st edition, Packt Publishing Ltd, 2018.

2. Reis, Catarina I., and Marisa da Silva Maximiano, eds. Internet of Things and advanced application in healthcare, 1st edition, IGI Global, 2016.

3. D. Jude Hemanth and J. Anitha George A. Tsihrintzis- Internet of Medical Things Remote Healthcare Systems and Applications, covered by Scopus.

REFERENCES:

1. Alasdair Gilchrist, Industry 4.0: The Industrial Internet of Things, 1st Edition, Apress, 2017

2. Aboul Ella Hassanien, Nilanjan Dey and Sureaka Boara, Medical Big Data and Internet of Medical Things: Advances, Challenges and Applications, 1st edition, CRC Press, 2019.

(9)

(9)

				N	lappin	g of CO	Ds with	n POs /	' PSOs					
						Po	DS						PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3												3	
2	3	3											3	
3		3	3											3
4				3									3	
5							3							
CO (W.A)	3	3	3				3						3	3

22CIX02-BLOCKCHAIN					
		L	Т	Р	С
		3	0	0	3
REQUISITE : NIL					
	5			nain	
rse Outcomes Student will be able to	Cognitive Level	End	Seme	ster	Os ir
Apply the principles of blockchain technology to articulate their significance.	D Ap		2	0%	
Evaluate the effectiveness of different consensu algorithms in specific blockchain applications.	s An		2	0%	
Evaluate their impact on security and privacy in digital transactions.	n An		2	0%	
distributed ledger technologies into a busines	s An		2	0%	
Apply appropriate techniques to manage trust			2	0%	
•	(Common to 22CSX32,22ITX3 REQUISITE : NIL To impart knowledge of dia To acquire knowledge in end rse Objective: To impart knowledge of dia To acquire knowledge in end rse Objective: To impart knowledge of dia To acquire knowledge in end Student will be able to Apply the principles of blockchain technology to articulate their significance. Evaluate the effectiveness of different consensulal algorithms in specific blockchain applications. Evaluate their impact on security and privacy in digital transactions. Implement a strategic plan for integrating specifi distributed ledger technologies into a business environment, considering operational efficiency security, and regulatory compliance. Apply appropriate techniques to manage trust based business networks, considering societa	(Common to 22CSX32,22ITX32 and 22AIX32) REQUISITE : NIL rse Objective: • To impart knowledge of distributed ledgers in insective in emerging concepts uses Cognitive Level Se Outcomes Student will be able to Apply the principles of blockchain technology to articulate their significance. Ap Evaluate the effectiveness of different consensus algorithms in specific blockchain applications. An Evaluate their impact on security and privacy in digital transactions. An Implement a strategic plan for integrating specific distributed ledger technologies into a business environment, considering operational efficiency, security, and regulatory compliance. Ap Apply appropriate techniques to manage trustbased business networks, considering societal, Ap	(Common to 22CSX32,22ITX32 and 22AIX32) L 3 REQUISITE : NIL ***********************************	(Common to 22CSX32,22ITX32 and 22AIX32)LT30REQUISITE : NIL• To impart knowledge of distributed ledgers in business • To acquire knowledge in emerging concepts using blockchse Objective:• To impart knowledge in emerging concepts using blockchse Outcomes Student will be able toWeightage Cognitive LevelApply the principles of blockchain technology to 	(Common to 22CSX32,22ITX32 and 22AIX32)LTP300REQUISITE : NIL***********************************

The growth of blockchain technology – Distributed Systems – P2P – Distributed Ledger – Cryptographically Secure - Generic Element of Blockchain – Benefits and limitations of blockchain - Block chain Challenges - Tiers of BT – Types of Blockchain - Consensus.

UNIT II – DECENTRALIZATION

Methods of Decentralization – Routes to Decentralization – Smart Contract – Decentralized Organization – Platforms for Decentralization – Consensus Algorithms.

UNIT III – CRYPTOCURRENCIES

Cryptographic Hash Functions – Cryptography basic and Concepts – Introduction Bitcoin – Bitcoin Network and Payments – Bitcoin clients and APIs – Alternative Coins

UNIT IV - DISTRIBUTED LEDGERS FOR BUSINESS

Ethereum: Introduction – Ethereum Network – Components – Programming Languages; Hyperledger: Introduction – Reference Architecture – Fabric – Sawtooth Lake – Corda.

(9)

(9)

UNIT V - BLOCKCHAIN DEVELOPMENT TOOLS AND FRAMEWORKS

Compilers: Solidity Complier – Ganache – Metamask – Truffle; Languages: Solidity – Go – Java – NodeJS; Blockchain Use case: Financials – Insurance - Supply Chain Management – HealthCare – IoT.

TOTAL (L:45) = 45 PERIODS

(9)

TEXT BOOKS:

1. Van Haren Publishing (Editor), "Introduction to Blockchain Technology: The Many Faces of Blockchain Technology in the 21st Century", Paperback Import, 2019.

2. Imran Bashir, "Mastering Blockchain" Packt 2nd Ediction, 2018.

REFERENCES:

1 . Don, Alex Tapscott, "Blockchain Revolution". Portfolio Penguin 2016.

2. William Mougayar, "Business Blockchain Promise, Practice and Application of the Next Internet Technology", John Wiley & Sons 2016.

				Μ	lappin	g of C	Os with	n POs /	PSOs						
						PC	Ds						PSC		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3	-	-	-	-	-	-	-	-	-	-	-	3	-	
2	3	3	-	-	-	-	-	-	-	-	-	-	3	-	
3	-	3	3	-	-	-	-	-	-	-	-	-	-	3	
4	-	-	3	3	3	-	-	-	-	-	-	-	-	-	
5	-	-	-	-	-	-	-	-	-	-	3	3	3	-	
CO (W.A)	3	3	3	3	3	-	-	-	-	-	3	3	3	3	

		22CIX03-BEYOND 5G AND IOT TECHN (Common to 22CSX33,22ITX33,22AIX33 a		3)				
		· · · · · · · · · · · · · · · · · · ·		Ĺ	Т	Р	C	
				3	0	0	3	
PRE-RE	QUISITE :	NIL						
Course Objecti	_	 Explore the evolution from 5G to 6G and latency, and connectivity. Examine the role of edge computing in r time data processing in IoT systems. 						
	e Outcome udent will l	25	Cognitive Level		/eight in End Exar	-	ester	
CO1	of 5G to	owledge of key capabilities and requirements evaluate their implications for specific industry ons, such as IoT, smart cities, and autonomous	Ар			20%		
CO2	design,	the specific requirements for 5G waveform including spectral efficiency, flexibility, and to interference.	An		20%			
CO3	design a elements	owledge of the 5G architecture framework to basic model of a 5G network, incorporating such as the Radio Access Network (RAN) and vork components.	Ар		40%			
CO4	systems,	the theoretical foundations of multi-antenna identifying key requirements and performance s essential for effective MIMO operation.	An			20%		
CO5	impleme technolo	a detailed case study on a specific ntation of V2X or terahertz communication gy, evaluating its design, performance s, and lessons learned.	An	In	ternal	Asses	sme	
UNIT	۲ I- OVERN	VIEW OF 5G WIRELESS COMMUNICATIONS					(9)	
high	level 5G us	bbile technologies (1G-5G), 3GPP Releases & its k sage scenarios (eMBB, URLLC, mMTC), Key capab 5G frequency bands, 5G Use cases.	2 1					
		FORM DESIGN FOR 5G & BEYOND					(9)	
with (FBM	CP-OFDM IC) and uni iple access	5G Waveform Design and Waveform Requireme , generalized frequency division multiplexing versal filtered multi-carrier (UFMC), Multiple Acce es (NOMA), Sparse Code Multiple Access (SCMA)	(GFDM), filte sses Techniq	er ba ues –	nk m	ulticar orthog	riers onal	

UNIT III - 5G ARCHITECTURE AND 5G NEXTGEN CORE NETWORK (9) 5G Architecture: Introduction, 5G Architecture framework, 3GPP 5G architecture, Non-Roaming 5G system architecture, overall RAN architecture, Functional Split Between NG-RAN and 5G Core Network. 5G NextGen core network: Modern network requirements, SDN architecture, NFV benefits and requirements, - NFV Reference Architecture, Network Slicing concepts & requirements **UNIT IV - MASSIVE MIMO SYSTEMS** (9) Introduction to Multi-Antenna system, Theoretical background: MIMO requirement, MIMO vs. massive MIMO, Massive MIMO benefits, single user and multi-user MIMO, capacity of MIMO for unknown CSIT, massive MIMO capacity, Massive MIMO OFDM transmitter employing digital precoding, analog beamforming and hybrid of digital precoding and analog beamforming. UNIT V - V2X COMMUNICATIONS AND NOVEL ASPECTS IN TERAHERTZ WIRELESS COMMUNICATIONS (9) Vehicle-to-Vehicle (V2V) Communications, Vehicle-to-Infrastructure (V2I) Communications, Vehicle-to-Pedestrian (V2P) Communication, Self-driving Vehicles & its challenges, Vehicle-to-

Network (V2N) Communications. Overview, potential spectral windows at THz frequencies, Terahertz wave propagation characteristics, opportunities & challenges, application

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

 Saad Z. Asif, "5G Mobile Communications Concepts and Technologies" CRC Press, 2019.
 Suvra Sekhar Das and Ramjee Prasad, "Evolution of Air Interface Towards 5G: Radio Access Technology and Performance Analysis", Gistrup, Denmark: River Publishers series in Communication, 2018.

3. Wei Xiang, Kan Zheng, Xuemin (Sherman) Shen, "5G Mobile Communications", Springer publications-2016.

4. William Stallings "5G Wireless: A Comprehensive Introduction", Pearson Education, 2021.

5. Afif Osseiran, Jose F. Monserrat, Patrick Marsch, "5G Mobile and Wireless Communications Technology" Cambridge University Press-2016.

REFERENCES:

1. R. S. Kshetrimayum, "Fundamentals of MIMO Wireless Communications", Cambridge University Press, UK, 2017.

2. Jonathan Rodriguez, "Fundamentals of 5G Mobile Networks" first edition, John Wiley & Sons, 2015.

				Μ	lappin	g of C	Os witl	n POs /	' PSOs					
		POs												Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1													3	
2	3		3										3	
3		3												3
4				3									3	
5									2					
CO (W.A)	3	3	3	3					2				3	3

	22CIX04 – PROGRAMMING FOR Io (Common to 22CSX34,22ITX34,22AIX34 ar					
	· · ·	ĺ	-	Т	Ρ	С
		3	3	0	0	3
PRE-RE	QUISITE : NIL					
Course	 To introduce Internet of Things (IoT) envi designing smart systems To explore open-source computer hardw development and debugging environmen necessary libraries 	vare/software	platfo	orm,	5	
	e Outcomes udent will be able to	Cognitive Level	in	End	-	of CO lester ion
CO1	Investigate various challenges and explore open source hardware prototyping platforms for designing IoT devices	Ар			20%	
CO2	Analyze basic circuits, sensors and interfacing, data conversion process and shield libraries to interface with the real world	An			20%	
CO3	Apply knowledge on Tkinter GUI using python in different sensors	Ар			20%	
CO4	Program SBC by exploring protocols, data conversion process, API and expansion boards for practical IoT devices using Python	Ар			20%	
CO5	Apply embedded programming constructs and constraints in real time systems for real world socio- economic problems	Ар			20%	

UNIT I- INTRODUCTION TO RASPBERRY PI	(9)
Raspberry Pi components-Installation of NOOBS and Raspbian on SD card- Termina	.,
Installation of Libraries on Raspberry pi- Getting the static IP address of Raspberry Pi-ru	
Installing the remote desktop server.	1 5
UNIT II - INTERFACING WITH RASPBERRY PI	(9)
Interfacing of relay with raspberry Pi-LCD-DHT11 sensor-ultrasonic sensor- camera-pla	ay with digital
sensor, analog sensor and actuator.	
UNIT III – PYTHON GUI WITH TKINTER	(9)
Tkinter for GUI design-LED Blink-brightness control-selection from multiple options-f	Reading a PIR
sensor- Reading a analog sensor.	-
UNIT IV – DATA ACQUISITION WITH PYTHON	(9)
Basics-CSV File- Storing Arduino data with CSV file- plotting random numbers usin	g Matplotlib-
Plotting real time from arduino- Integrating the plots in the TKinter window.	

UNIT V – CONNECTING TO THE CLOUD	(9)
Smart LoT systems, DUT11 data logger with thiskspeak conver ultraconic concer data log	aar air quality

Smart IoT systems- DHT11 data logger with thinkspeak server-ultrasonic sensor data logger-air quality monitoring system-landslide detection and disaster management system-smart motion detector and upload image to gmail.com.

TEXT BOOKS :

1. Rajesh singh, Anitha Gehlot, Lovi raj gupta, Bhupendra singh and MahendranSwain "Internet of things with Raspberry Pi and Arduino" CRC Press 2020.

REFERENCES:

- 1. Sai Yamanoor, Srihari Yamanoor "Python programming with Raspberry Pi" Packet Publishing Ltd, Ist edition, 2017.
- 2. Wolfram Donat "Learn raspberry Pi programming in python" A Press 2014.

COs	POs													PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3												3		
2		3												3	
3				3										3	
4			3										3		
5									3	3					
CO (W.A)	3	3	3	3					3	3			3	3	

	22CIX05-WEARABLE COMPUT (Common to 22CSX36,22ITX36,22AIX36 a	-				
			L	Т	Ρ	С
			3	0	0	3
PRE-REC	QUISITE : NIL					
Course Objectiv	 Explore various applications of wearable com healthcare, sports, entertainment, and fitness Examine the technical challenges associated w power management, data accuracy, and user 	with wearable				
	Outcomes dent will be able to	Cognitive Level		Veigh [:] in Enc Exai	-	ester
CO1	Apply theoretical knowledge to practical situations, fostering skills in design, evaluation, and innovative thinking within the field of wearable technology.	Ар			20%	
CO2	Analyze different signal processing techniques can be integrated into wearable systems to improve data quality and user experience.	An			20%	
CO3	Apply knowledge of different wireless communication techniques to evaluate their suitability for implementing BANs in healthcare settings.	Ар			40%	
CO4	Apply theoretical knowledge to practical challenges in wireless health systems, fostering skills in design, problem-solving, and innovation within the context of healthcare technology.	An			20%	
CO5	Analyze case studies focused on wearable technologies used for monitoring patients with chronic diseases, assessing their impact on patient care and management.	An	Ir	nternal	Asses	ssmer

UNIT-I INTRODUCTION TO WEARABLE SYSTEMS

(9)

(9)

Wearable Systems- Introduction, Need for Wearable Systems, Drawbacks of Conventional Systems for Wearable Monitoring, Applications of Wearable Systems, Types of Wearable Systems, Components of wearable Systems. Sensors for wearable systems- Wearable ground reaction force sensor.

UNIT-II SIGNAL PROCESSING

Wearability issues -physical shape and placement of sensor, Technical challenges - sensor design, signal acquisition, sampling frequency for reduced energy consumption, Rejection of irrelevant information. Power Requirements- Solar cell, Vibration based, Thermal based, Human body as a heat source for power generation.

UNIT-III WIRELESS HEALTH SYSTEM

Need for wireless monitoring, Definition of Body area network, BAN and Healthcare, Technical Challenges- System security and reliability, BAN Architecture – Introduction, Wireless communication Techniques.

UNIT-IV SMART TEXTILE

Introduction to smart textile- Passive smart textile, active smart textile. Fabrication Techniques-Conductive Fibres, Treated Conductive Fibres, Conductive Fabrics, Conductive Inks.Case studysmart fabric for monitoring biological parameters - ECG, respiration.

UNIT-V APPLICATIONS OF WEARABLE COMPUTING

Medical Diagnostics, Medical Monitoring-Patients with chronic disease, Hospital patients, Elderly patients, neural recording, Gait analysis, Sports Medicine.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

1. Title: "Wearable Sensors: Fundamentals, Implementation and Applications" Author: Edward Sazonov, Sergey G. Togov Publisher: Elsevier Year: 2014

REFERENCES:

- 1. Wearable Sensors: Fundamentals, Implementation, and Applications" edited by Subhas Chandra Mukhopadhyay.
- 2. "Wearable Sensors: Fundamentals, Implementation, and Applications" edited by Robert Matthews and Alberto Piaggesi.
- 3. "Wearable Sensors and Systems" edited by Mehmet R. Yuce.

				N	lappin	g of C	Os witł	n POs /	' PSOs					
						Po	os						PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3													
2	3		3										3	
3		3												3
4				3									3	
5							3							
CO (W.A)	3	3	3	3			3						3	3

(9)

(9)

		22CCX37)	L	Т	Р	C	
			3	0	0	3	
PRE-R							
Cours	 To introduce IoT enabling technologies a To review underlying technologies, limita performance metrics and discuss generic computing. 	tions, and	l cha	llenge	s alon	-	
	e Outcomes udent will be able to	Cognitiv Level		CC S	ightag Ds in E emest amina	nd ter	
201	Explore technologies behind the communication and management of fogs and edge resources.	Ар			20%		
02	Analyze the techniques for storage and computation in fogs, edges and clouds.	An			20%		
CO3	Implement Internet of Everything (IoE) applications through fog computing architecture and use optimization techniques for the same	Ар			40%		
CO4	Analyze the goals of middleware for fog and edge computing.	An			20%		
CO5	Review the performance and issues of the applications developed using fog and edge architecture.	Ар			Interna sessm	-	
UNIT	I- INTERNET OF THINGS (IOT) AND NEW COMPUTING PAR	ADIGMS			(9)	
	uction - Relevant Technologies - Fog and Edge Computing Com nd Edge Computing - Business Models - Opportunities and Chall		e Clo	oud -	Hierar	chy o	
UNIT	II - CHALLENGES IN FEDERATING EDGE RESOURCES				(9)	
Integr	uction –the networking challenge - the management challen ated C2F2T Literature by Modeling Technique - Integrated C rios - Integrated C2F2T Literature by Metrics.	•				•	
	III – OPTIMIZATION PROBLEMS IN FOG AND EDGE COMPUT	ING			(9)	

UNIT IV – MIDDLEWARE FOR FOG AND EDGE COMPUTING

Need for Fog and Edge Computing Middleware - Design Goals-State-of-the-Art Middleware Infrastructures - System Model - Fog Data Management - Smart Building - Predictive Analysis with FogTorch .

UNIT V – APPLICATIONS OF FOG AND EDGE COMPUTING

Exploiting Fog Computing in Health Monitoring-Smart Surveillance Video Stream Processing at the Edge for Real - Time Human Objects Tracking-Fog Computing Model for Evolving Smart Transportation Applications - Testing Perspectives of Fog - Based IoT Applications - Legal Aspects of Operating IoT Applications in the Fog.

TEXT BOOKS :

1. Buyya, Rajkumar, and Satish Narayana Srirama, Fog and Edge computing: Principles and Paradigms, 2019, 1st edition, John Wiley & Sons, USA.

REFERENCES:

- 1. Bahga, Arshdeep, and Vijay Madisetti, Cloud computing: A hands-on approach, 2014, 2ndedition, CreateSpace Independent Publishing Platform, USA
- 2. OvidiuVermesan, Peter Friess, "Internet of Things From Research and Innovation to Market Deployment", 2014, 1st edition, River Publishers, India

				Μ	lappin	g of C	Os witl	n POs /	' PSOs					
						Po	DS						PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3												3	
2		3												3
3				3										3
4			3										3	
5									3	3				
CO (W.A)	3	3	3	3					3	3			3	3

(9)

			L	Т	Ρ	С
			3	0	0	3
PRE-RE	QUISITE : NIL					
Course	Objective:	Understand the design issues in ad hocLearn the different types of MAC proto		etwork	S.	
	e Outcomes udent will be ab	le to	Cognitive Level	C S	ighta Os in emes amina	End ter
CO1		g the concepts, network architectures and f ad hoc and wireless sensor networks	U		20%)
CO2	Understanding networks	g the working of MAC Protocols for ad hoc	U		20%)
CO3	Understanding networks	U	20%			
CO4	Analyze the p networks	protocol design issues of ad hoc and sensor	An	20%		
CO5	-	g protocols for ad hoc and wireless sensor respect to some protocol design issues	Ар		20%)
JNIT I-	FUNDAMEN	TALS OF WIRELESSS COMMUNICATION TEC	CHNOLOGY		(9)
		m Allocation-characteristics of wireless channe eless internet- mobile IP.	I-modulation	technic	ques-r	nultip
INIT II	– AD-HOC WI	RELESS NETWORK AND MAC PROTOCOLS			(9)
		eless networks-Applications- Issues in Ad-Hoc ther MAC Protocols.	wireless netw	ork. M	AC Pro	otoco
	I – ROUTING P	ROTOCOLS FOR AD-HOC WIRELESS NETWO	ORKS		(9)
outing		designing a routing protocol-classifications emand routing protocol-hybrid routing protocol	• .			
	/ – TRANSPOR	T LAYER PROTOCOLS			(9)
		oort layer protocols-TCP over Ad-hoc wireles				

UNIT V –	WIRELESS	SENSOR	NETWORKS
		SEITOOK	

Sensor network architecture-data dissemination-data gathering-MAC protocols for sensor networks-Location discovery-Quality of a sensor network-evolving standards.

(9)

TEXT BOOKS :

- 1. C. Siva Ram Murthy, and B. S. Manoj, "Ad Hoc Wireless Networks: Architectures and Protocols ", Prentice Hall Professional Technical Reference, 2008.
- 2. Dargie, Waltenegus, and Christian Poellabauer. Fundamentals of wireless sensor networks: theory and practice. John Wiley & Sons, 2010.

REFERENCES:

- 1. Carlos De Morais Cordeiro, Dharma Prakash Agrawal "Ad Hoc & Sensor Networks: Theory and Applications", World Scientific Publishing Company, 2006.
- 2. Holger Karl and Andreas Willig "Protocols and Architectures for Wireless Sensor Networks", Wiley, 2005

	Mapping of COs with POs / PSOs													
						РС	Ds						PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3												3	
2	3												3	
3	3												3	
4		3												3
5				3	3				2	2				3
CO (W.A)	3	3		3	3				2	2			3	3

	22CIX08-IMAGE PROCESSING (Common to 22CSX38,22ITX38 and 22CCX35)												
			L	Т	Ρ	С							
			3	0	0	3							
PRE-RE	QUISITE : NIL												
Course	 To provide the basic knowledge on i Objective: To develop the ability to apprehend processing algorithms. 	• •		•	-								
		gnitive Level	I	ghtag End Se Exami	emest	er							
CO1	Understand different components of image processing system	U		20	0%								
CO2	Describe various image transforms, enhancement techniques using various processing methods	U		20	0%								
CO3	Illustrate the compression and segmentation techniques on a given image	Ар		4	0%								
CO4	Demonstrate the filtering and restoration of images(pixels) with examples	Ар		20	0%								
CO5	Illustrate the various schemes for image representation and detection techniques with examples	An		20	0%								

UNIT-I DIGITAL IMAGE FUNDAMENTALS

Introduction: Digital Image Processing, Fundamental Steps in Digital Image Processing, Components of an Image Processing System.

Digital Image Fundamentals: Elements of Visual Perception, Image Sensing and Acquisition, Image Sampling and Quantization, Some basic Relationships between Pixels.

UNIT-II IMAGE ENHANCEMENT IN THE SPATIAL AND FREQUENCY DOMAIN

(9)

(9)

(9)

Image Enhancement in the Spatial Domain: Some Basic Gray Level Transformation, Histogram Processing, Enhancement Using Arithmetic/Logic Operations, Basics of Spatial Filtering, Smoothing spatial Filters, Sharpening spatial Filters.

Image Enhancement in the Frequency Domain: Introduction to the Fourier Transform and the Frequency Domain, Smoothing frequency-domain Filters, Sharpening Frequency-domain Filters, Homomorphic Filtering, Implementation.

UNIT-III IMAGE RESTORATION

Image Restoration: A Model of the Image Degradation/Restoration Process, Linear, Position-Invariant Degradations, Inverse Filtering, Minimum Mean Square Error (Wiener) Filtering, Constrained Least Squares Filtering. Wavelets and Multi resolution Processing: Multi resolution Expansions, Wavelet Transforms in one Dimension, The Fast Wavelet Transform, Wavelet Transforms in Two Dimensions.

UNIT-IV IMAGE COMPRESSION & SEGMENTATION

(9)

(9)

Image Compression: Image Compression Models, Error-free Compression, Lossy Compression, Image Compression Standards.

Image Segmentation: Detection of Discontinuities, Edge Linking and Boundary Detection, Thresholding, Region-Based Segmentation.

UNIT-V REPRESENTATION AND DESCRIPTION

Various schemes for representation-chain codes-polygonal approximation-signatures –boundry segments- boundary descriptors: shape numbers-fourier descriptors and regional descriptors-topological descriptors-texture-moments of two dimentional functions.

TOTAL (L:45) = 45 PERIODS

TEXT BOOK:

1. Rafael C. Gonzalez and Richard E. Woods, Digital Image Processing. Prentice Hall India/Pearson Education.

REFERENCES:

- 1. A.K.Jain, Fundamentals of Digital Image Processing. Prentice Hall India.
- 2. Madhuri.A.Joshi, Digital Image Processing, PHI.
- 3. Sonka, Image Processing, Analysis and Machine Vision. Cengage Publications.

	Mapping of COs with POs / PSOs														
		POs													
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1															
2	3		3										3		
3		3												3	
4				3									3		
5							3								
CO (W.A)	3	3	3				3						3	3	

			L	Т	Ρ	С
			3	0	0	3
PRER-E						
Cou		•				
Object	tive: • To perform univariate, bivariate and mu	ulti variate data				,
Course (Dutcomes	Cognitive	We	-	-	COs in
	lent will be able to	Level			Semes	
				Exan	ninati	on
CO1	Analyze and visualize the tools for exploratory data analysis.	Ар			20%	
CO2	Analyze and design solutions for geographical datasets using tool/packages.	An			20%	
CO3	Apply and analyze univariate.	An			20%	
CO4	Apply and analyze bivariate using contingency table.	Ар			20%	
	Analy data describe and meaning according					
CO5	Apply data cleaning and grouping concepts in dataset.	С			20%	
UNIT I EDA fui	dataset. - EXPLORATORY DATA ANALYSIS ndamentals – Understanding data science – Signific	cance of EDA		ing se	ense o	
UNIT I EDA fui Compar transfor	dataset EXPLORATORY DATA ANALYSIS	cance of EDA re tools for EDA nd pivoting, Tr	- Visu	ing se al Aids	ense o s for E	of data DA- Da
UNIT I EDA fui Compar transfor Groupin	dataset. - EXPLORATORY DATA ANALYSIS Indamentals – Understanding data science – Signific ing EDA with classical and Bayesian analysis – Softwar mation techniques-merging database, reshaping ar	cance of EDA re tools for EDA nd pivoting, Tr	- Visu	ing se al Aids	ense o s for E	of data DA- Da
UNIT I EDA fui Compar transfor Groupin Groupin UNIT I Importin plots –	dataset. - EXPLORATORY DATA ANALYSIS Indamentals – Understanding data science – Signific ing EDA with classical and Bayesian analysis – Softwar mation techniques-merging database, reshaping ar ig Datasets - data aggregation – Pivot tables and cross I – VISUALIZING USING MATPLOTLIB Ing Matplotlib – Simple line plots – Simple scatter plot Histograms – legends – colors – subplots – text	cance of EDA re tools for EDA nd pivoting, Tr -tabulations. rs – visualizing e and annotatio	- Visu ansforr errors - n - cu	ing se al Aid: matior - dens	ense o s for E n tech	of data DA- Da nniques (9) d conto
UNIT I EDA fui Compar transfor Groupin Groupin UNIT I Importin plots – dimensi	dataset. - EXPLORATORY DATA ANALYSIS Indamentals – Understanding data science – Signific ing EDA with classical and Bayesian analysis – Softwar mation techniques-merging database, reshaping ar ig Datasets - data aggregation – Pivot tables and cross I – VISUALIZING USING MATPLOTLIB Ing Matplotlib – Simple line plots – Simple scatter plot Histograms – legends – colors – subplots – text onal plotting - Geographic Data with Basemap - Visual	cance of EDA re tools for EDA nd pivoting, Tr -tabulations. rs – visualizing e and annotatio	- Visu ansforr errors - n - cu	ing se al Aid: matior - dens	ense o s for E n tech	of data DA- Da nniques (9) d conto n – thr
UNIT I EDA fui Compar transfor Groupin UNIT I Importin plots – dimensi UNIT I	dataset. - EXPLORATORY DATA ANALYSIS Indamentals – Understanding data science – Signific ing EDA with classical and Bayesian analysis – Softwar mation techniques-merging database, reshaping ar ig Datasets - data aggregation – Pivot tables and cross I – VISUALIZING USING MATPLOTLIB Ing Matplotlib – Simple line plots – Simple scatter plot Histograms – legends – colors – subplots – text onal plotting - Geographic Data with Basemap - Visual II - UNIVARIATE ANALYSIS	cance of EDA re tools for EDA nd pivoting, Tr -tabulations. rs – visualizing e and annotatio lization with Sea	- Visu ransfori errors - n – cu iborn.	ing se al Aids matior - dens ustomi	ense o s for E n tech ity and izatior	of data DA- Da nniques (9) d contc n – thr (9)
UNIT I EDA fui Compar transfor Groupin Groupin UNIT I Importin plots – dimensi UNIT I	dataset. - EXPLORATORY DATA ANALYSIS Indamentals – Understanding data science – Signific ing EDA with classical and Bayesian analysis – Softwar mation techniques-merging database, reshaping ar ig Datasets - data aggregation – Pivot tables and cross I – VISUALIZING USING MATPLOTLIB Ing Matplotlib – Simple line plots – Simple scatter plot Histograms – legends – colors – subplots – text onal plotting - Geographic Data with Basemap - Visual	cance of EDA re tools for EDA nd pivoting, Tr -tabulations. and annotatio lization with Sea	- Visu ransfori errors - n – cu iborn.	ing se al Aids matior - dens ustomi	ense o s for E n tech ity and izatior	of data DA- Da nniques (9) d conto n – thr (9)
UNIT I EDA fui Compar transfor Groupin UNIT I Importir plots – dimensi UNIT I	dataset. - EXPLORATORY DATA ANALYSIS indamentals – Understanding data science – Significing EDA with classical and Bayesian analysis – Softwar mation techniques-merging database, reshaping are ing Datasets - data aggregation – Pivot tables and cross I – VISUALIZING USING MATPLOTLIB ing Matplotlib – Simple line plots – Simple scatter plot Histograms – legends – colors – subplots – text onal plotting - Geographic Data with Basemap - Visual II - UNIVARIATE ANALYSIS ction to Single variable: Distributions and Variables - N and Standardizing – Inequality - Smoothing Time Serie V - BIVARIATE ANALYSIS	cance of EDA re tools for EDA nd pivoting, Tr -tabulations. and annotatio lization with Sea Numerical Summers.	- Visu ansforn errors - n – cu born.	ing se al Aid: matior - dens ustomi	ense o s for E n tech ity and ization	of data DA- Da Iniques (9) d conto n – thr (9) Spread
UNIT I EDA fui Compar transfor Groupin UNIT I Importir plots – dimensi UNIT I Introduc Scaling UNIT I Relatior	dataset. - EXPLORATORY DATA ANALYSIS Indamentals – Understanding data science – Signific ing EDA with classical and Bayesian analysis – Softwar mation techniques-merging database, reshaping ar ig Datasets - data aggregation – Pivot tables and cross I – VISUALIZING USING MATPLOTLIB Ing Matplotlib – Simple line plots – Simple scatter plot Histograms – legends – colors – subplots – text onal plotting - Geographic Data with Basemap - Visual II - UNIVARIATE ANALYSIS Ition to Single variable: Distributions and Variables - N and Standardizing – Inequality - Smoothing Time Serie V - BIVARIATE ANALYSIS Iships between Two Variables - Percentage Tables -	cance of EDA re tools for EDA nd pivoting, Tr -tabulations. rs – visualizing e and annotatio lization with Sea Numerical Summers.	- Visu ansforn errors - n – cu born.	ing se al Aid: matior - dens ustomi	ense o s for E n tech ity and ization	of data DA- Da Iniques (9) d conto n – thr (9) Spread
UNIT I EDA fui Compar transfor Groupin UNIT I Importir plots – dimensi UNIT I Introduc Scaling UNIT I Relatior	dataset. - EXPLORATORY DATA ANALYSIS indamentals – Understanding data science – Significing EDA with classical and Bayesian analysis – Softwar mation techniques-merging database, reshaping are ing Datasets - data aggregation – Pivot tables and cross I – VISUALIZING USING MATPLOTLIB ing Matplotlib – Simple line plots – Simple scatter plot Histograms – legends – colors – subplots – text onal plotting - Geographic Data with Basemap - Visual II - UNIVARIATE ANALYSIS ction to Single variable: Distributions and Variables - N and Standardizing – Inequality - Smoothing Time Serie V - BIVARIATE ANALYSIS	cance of EDA re tools for EDA nd pivoting, Tr -tabulations. rs – visualizing e and annotatio lization with Sea Numerical Summers.	- Visu ansforn errors - n – cu born.	ing se al Aid: matior - dens ustomi	ense o s for E n tech ity and ization	of data DA- Da Iniques (9) d conto n – thr (9) Spread
UNIT I EDA fur Compar transfor Groupin UNIT I Importir plots – dimensi UNIT I Relatior Several	dataset. - EXPLORATORY DATA ANALYSIS Indamentals – Understanding data science – Signific ing EDA with classical and Bayesian analysis – Softwar mation techniques-merging database, reshaping ar ig Datasets - data aggregation – Pivot tables and cross I – VISUALIZING USING MATPLOTLIB Ing Matplotlib – Simple line plots – Simple scatter plot Histograms – legends – colors – subplots – text onal plotting - Geographic Data with Basemap - Visual II - UNIVARIATE ANALYSIS Ition to Single variable: Distributions and Variables - N and Standardizing – Inequality - Smoothing Time Serie V - BIVARIATE ANALYSIS Iships between Two Variables - Percentage Tables -	cance of EDA re tools for EDA nd pivoting, Tr -tabulations. rs – visualizing e and annotatio lization with Sea Numerical Summers.	- Visu ansforn errors - n – cu born.	ing se al Aid: matior - dens ustomi	ense o s for E n tech ity and ization	of data DA- Da Iniques (9) d conto n – thr (9) Spread

TEXT BOOKS:

- 1. Suresh Kumar Mukhiya, Usman Ahmed, "Hands-On Exploratory Data Analysis with Python", Packt Publishing, 2020. (Unit 1)
- 2. Jake Vander Plas, "Python Data Science Handbook: Essential Tools for Working with Data", Oreilly, 1st Edition, 2016. (Unit 2)
- 3. Catherine Marsh, Jane Elliott, "Exploring Data: An Introduction to Data Analysis for Social Scientists", Wiley Publications, 2nd Edition, 2008. (Unit 3,4,5)

REFERENCE BOOKS:

- 1. Eric Pimpler, Data Visualization and Exploration with R, GeoSpatial Training service, 2017.
- 2. Claus O. Wilke, "Fundamentals of Data Visualization", O'reilly publications, 2019.
- 3. Matthew O. Ward, Georges Grinstein, Daniel Keim, "Interactive Data Visualization: Foundations, Techniques, and Applications", 2nd Edition, CRC press, 2015.

	Mapping of COs with POs / PSOs														
60 -							POs							PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3														
2		3	3				3						3		
3	3	3											3		
4	3	3												3	
5	3				3				3						
CO (W.A)	3	3	3		3		3		3				3	3	

	22CIX12 - BIG DATA ANA (Common to 22CSX13,22ITX13,22AI		5)			
	· · ·		L	Т	Ρ	С
			3	0	0	3
PRE-REC	QUISITE : NIL					
Course	 Acquire a deep understanding of big of 	data and NoSQL.				
Objective	Develop expertise in map reduce analy	vtics using Hadoo	p and	l relat	ed too	ls
objective	Explore the Hadoop related tools for	Big Data Analytics				
Course C	Dutcomes	Cognitive		eighta s in E	ge of nd	
The Stud	ent will be able to	Level	Sei	meste	r	
			Exa	amina	tion	
CO1	Real-world datasets can be analyzed using various big data analytics tools and approaches.	An			20%	
CO2	Analyze the effectiveness of numerous NoSQL databases under different loads.	An		2	0%	
CO3	Analyze Hadoop's architecture, notably HDFS, and use this information to develop a distributed computing environment	An		2	0%	
CO4	To address certain data processing issues, use customized mappers and reducers.	Ар		2	0%	
CO5	Analyze data processing jobs and determine a suitable tool (Pig or Hive) based on the task criteria.	An		2	0%	

UNIT I – UNDERSTANDING BIG DATA

Introduction To Big Data – Sudden Hype Around Big Data Analytics - Classification Of Analytics – Top Challenges Facing Big Data –Importance Of Big Data Analytics - Challenges Posed By Big Data - Terminologies Used In Big Data Environments – Basically Available Soft State Eventual Consistency(BASE) – Few Top Analytics Tools

UNIT II – NOSQL DATA MANAGEMENT

Introduction To Nosql – Types Of Nosql Database – Use Of Nosql In Industry – Nosql Vendors – SQL Vs Nosql – Newsql – Comparison Of SQL,Nosql And Newsql - Introduction To Cassandra - Features Of Cassandra – CQL Data Types – CQLSH – CRUD – Collections – Time To Live(TTL) – Alter Commands – Import And Export – Querying System Tables

UNIT III – BASICS OF HADOOP

Hadoop – Features Of Hadoop - Versions Of Hadoop – Hadoop Distributions – Hadoop Vs SQL – Cloud Based Hadoop Solution - Hadoop Introduction – RDBMS Vs Hadoop - Hadoop Overview – Use Case Of Hadoop – Hadoop Distributions – Processing Data With Hadoop – Interacting With Hadoop Ecosystem

9

9

9

UNIT IV – MAP REDUCE APPLICATIONS	9
Introduction To Map Reduce – The Configuration API – Setting Up The Development En	vironment –

Writing A Unit Test With MRUnit – Running On A Cluster- – Map Reduce Workflows–How Map Reduce Works Anatomy Of Map Reduce Job Run – Failures – Shuffle And Sort – Task Execution– Map Reduce Types And Formats - Input And Output Format – Map Reduce Features

UNIT V – HADOOP RELATED TOOLS

Pig – Installing And Running Pig – Comparison With Databases – Pig Latin – User Defined Functions – Data Processing Operators – Hive – HiveQL – Tables – Querying Data – User-Defined Functions –Data Analytics – Multimedia - Streaming of data - Case Study: Analyzing Social Media Data

TOTAL (L:45):45 PERIODS

9

TEXT BOOKS:

- 1. Seema Acharya and Subhashini Chellappan, "Big Data and Analytics", 2nd Edition, Wiley, 2019. (Unit 1-4).
- 2. Tom White, Hadoop: The Definitive Guide, O'Reilly Media, Inc., Fourth Edition, 2015. (Unit 5).

REFERENCES

1.EMC Education Services, "Data science and Big data Analytics: Discovering, Analyzing, Visualizing and Presenting Data", John Wiley and Sons, 2015.

2.Alan Gates, Programming Pig Dataflow Scripting with Hadoop, O'Reilly Media, Inc, 2011.

	Mapping of COs with POs / PSOs													
						Ρ	os						PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3		3								3	
2	3	3			3									3
3			3	3									3	
4		3		3									3	
5				3	3									3
CO (W.A)	3	3	3		3								3	3

	22CIX13 - DEEP LEARNING (Common to 22CSX01,22ITX01 and 22AIC13)										
			L	Т	Ρ	С					
			3	0	0	3					
PRE-RE	QUISITE : NIL										
Course	Objective: • To understand and apply deep learning tech time applications.	iniques	to su	pport	real-						
	Outcomes Cogniti dent will be able to Level			COs i Sem	-						
CO1	Apply the concepts of neural networks and Ap deep learning.		20%								
CO2	Categorize the types of autoencoders in An frameworks.			20)%						
CO3	Demonstrate the hardware support and frameworks (Keras - PyTorch) in Boltzmann Ap machines model.			20)%						
CO4	Apply the concepts of CNN and RNN. An			4)%						
CO5	Build the Recurrent Neural Network to model the sequence data.				ernal sment	:					

UNIT I – NEURAL NETWORKS

Introduction – Basic Architecture of Neural Networks – Training Neural Network with Backpropagation – Practical Issues in Neural Network Training - Power of Function Composition – Common Neural Architectures – Neural Architectures : Binary Classification Models – Multiclass Models.Introduction to Deep Learning

UNIT II – AUTOENCODER AND FRAMEWORKS

Introduction to Autoencoder – Features of Autoencoder - Types of Auto Encoder: Vanilla Autoencoder – Multilayer Autoencoder – Stacked Autoencoder – Deep Autoencoder – Denoising Autoencoder - Convolutional Autoencoder – Regularization in Autoencoder – Open Source Frameworks: SciPy – TensorFlow – Keras – PyTorch

UNIT III – BOLTZMANN MACHINES AND HARDWARE SUPPORT

(9)

(9)

(9)

Boltzmann Machine: Relation to Hopfield Networks. RBM Architecture: Energy Based Model – Gibbs Distribution – Gibbs Sampler – Contrastive Divergence – Example – Types of RBM – Hardware support for Deep Learning.

UNIT IV – CONVOLUTION NEURAL NETWORKS

Convolution Network – Components of CNN Architecture - Rectified Linear Unit(ReLU)Layer-Exponential Linear Unit (ELU or SELU) - Unique Propertied of CNN - Architectures of CNN – Application of CNN – Case studies: Image Classification using CNN - Visual Speech Recognition using 3D-CNN

UNIT V – RECURRENT NEURAL NETWORKS

RNN versus CNN – Feedforward Neural Network versus RNN. - Simple Recurrent Neural Network : training an RNN – Backpropagation Through time (BPTT) – RNN Topology – Challenges with Vanishing Gradients – Bidirectional and Stateful RNNs – Long Short term memory(LSTM) – LSTM Implementation – Gated Recurrent Unit (GRU) – Deep Recurrent Neural Network.- Case studies: Stock Market Prediction Using RNN – Next Word Prediction Using RNN-LSTM.- Tamil Handwritten Character Optical Recognition Using CRNN

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

1. Aggarwal, Charu C, "Neural Networks and Deep learning", 2ndEdition, Springer Cham, 2023.

2. Lovelyn, S., Rose, L. Ashok kumar, D. KarthikaRenuka, Deep Learning using Python, Wiley India Pvt. Ltd., First Edition, 2019.

REFERENCES:

- 1. Ian Goodfellow, Yoshua Bengio, and Aaron Courvill, "Deep Learning", 1 st Edition, MIT Press, USA, 2018.
- 2. Josh Patterson and Adam Gibson, "Deep Learning-A Practitioner"s Approach", 1st Edition, O"ReillySeries, August 2017.

	Mapping of COs with POs / PSOs														
	Pos													Os	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3												3		
2		3			3									3	
3	3		3		3										
4	3												3		
5					3				3	3					
CO (W.A)	3	3	3		3				3	3			3	3	

(9)

	22CIX14 - RECOMMENDER SYSTEMS (Common to 22CSX03,22ITX03 and 22AIX0	2)				
			L	Т	Ρ	С
			3	0	0	3
PRE-RE	QUISITE : NIL					
Course	• To learn the significance of machine learnin Recommender systems.	g algo	prithm	ns for		
			V	Veigh	tage o	f
Course	Outcomes Cognitiv	/e		COs i	n End	
The Stud	dent will be able to Level			Sem	ester	
			E	Exami	natior	1
CO1	Apply the concepts and applications of Ap recommender systems.			2)%	
CO2	Analyze various collaborative filtering models in content based recommendation.			2)%	
CO3	Conduct investigation about the issues in recommender system and experimental Ap setup.			2	0%	
CO4	Apply Recommendation system properties in Ap IPVT.			2)%	
CO5	Implement the knowledge sources and Ap recommendation types.			2)%	

UNIT I – INTRODUCTION

Introduction - Recommender Systems Function - Data and Knowledge Sources - Recommendation Techniques - Application and Evaluation - Applications of recommendation systems - Issues with recommender system.

UNIT II – CONTENT-BASED RECOMMENDATION

High level architecture of content-based systems - Advantages and drawbacks of content based filtering- Item Representation - Learning User Profiles and Filtering - Trends and Future Research - Neighborhood-based Recommendation - Components of Neighborhood Methods.

UNIT III – COLLABORATIVE FILTERING

Preliminaries: Baseline predictors - The Netflix data - Implicit feedback - Matrix factorization models - Neighborhood models - Enriching neighborhood models - Between neighborhood and factorization - Constraint-based Recommenders.

(9)

(9)

UNIT IV – CONTEXT-AWARE RECOMMENDER SYSTEMS (9)

Context in Recommender Systems - Paradigms for Incorporating Context in Recommender Systems - Combining Multiple Approaches – Case Studies - Additional Issues in Context-Aware Recommender Systems- Evaluating Recommender Systems: Experimental Settings -Recommendation System Properties.

UNIT V – IPVT, MATCHING RECOMMENDATION TECHNOLOGIES

IPTV Architecture - Recommender System Architecture- Recommender Algorithms-Recommender Services – System Evaluation - Knowledge Sources – Domain - Knowledge Sources - Mapping Domains to Technologies.

TOTAL (L:45) = 45 PERIODS

(9)

TEXT BOOKS:

- 1. Francesco Ricci , Lior Rokach , Bracha Shapira , "Recommender Sytems Handbook", 1st ed, Springer (2011)
- 2. Charu C. Aggarwal, "Recommender Systems: The Textbook", First Ed., Springer, 2016.

REFERENCES:

- 1. Manouselis N., Drachsler H., Verbert K., Duval E., "Recommender Systems for Learning", Springer, 1st Edition, 2013.
- 2. Dietmar Jannach , Markus Zanker , Alexander Felfernig and Gerhard Friedrich, "Recommender Systems: An Introduction", Cambridge University Press (2011), 1st ed.

Mapping of COs with POs / PSOs														
	Pos												PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3												3	
2		3												
3	3			3										
4	3												3	
5	3	3												3
CO (W.A)	3	3		3									3	3

		22CIX15 - OPTIMIZATION TE (Common to 22AIX04 and 2	-				
				L	Т	Ρ	С
				3	0	0	3
PRE-REQ	UISITE : N	11L					
Course O	hiactiva	To apply transportation algorith	nms in engineering	g prol	olems	and to)
Course O	bjective.	handle the problems of Project	Management usir	ng CP	M anc	I PERT	
					-	tage c	of
Course O			Cognitive		COs i	n End	
The Stude	ent will be a	able to	Level			ester	
	1			E	ו		
CO1		to apply and solve linear nming problems	Ар		2	0%	
CO2		e transportation algorithms in ering problems.	An		2	0%	
CO3	Analyze situatio	e game theory concepts in practical ns.	An		2	0%	
CO4		tand the problems of Project ement using CPM and PERT	U		2	0%	
CO5	-	e various types of Non-linear nming problems	An		2	0%	

UNIT I – LINEAR PROGRAMMING

Introduction – Formulation of Linear Programming Problem – Advantages of Linear Programming methods – Limitations of Linear Programming models – Standard form of LPP – Graphical Method – Simplex Method – Artificial variable techniques – Big M Method. Understanding convex sets, functions, and optimization problems- Non-Convex Optimization: Techniques for dealing with local minima, saddle points, and global optimization in non-convex landscapes.

UNIT II – TRANSPORTATION PROBLEM

9

9

9

Mathematical Formulation of Transportation Problem – Initial basic feasible solution – North West Corner Method – Least Cost Method – Vogel's approximation method – Optimal solution – MODI Method – Degeneracy – Unbalanced transportation problem – Maximization transportation problem

UNIT III – ASSIGNMENT PROBLEM AND THEORY OF GAMES

Assignment Problem: Mathematical model of Assignment problem – Hungarian Method – Unbalanced assignment problem. Theory of Games: Two-person zero-sum game – Pure strategies - Game with mixed strategies – Rules of Dominance – Solution methods: Algebraic method – Matrix method – Graphical method

UNIT IV – PROJECT MANAGEMENT	9
Basic Concept of network Scheduling – Construction of network diagram – Critical pat Programme evaluation and review technique – Project crashing – Time-cost trade-off	
UNIT V – NON-LINEAR PROGRAMMING	9
Formulation of non–linear programming problem – Constrained optimization v constraints – Kuhn-Tucker conditions – Constrained optimization with inequality const	

TOTAL = 45 PERIODS

TEXT BOOK:

1. Kanti Swarup, Gupta P.K. & Man Mohan, "Operation Research", 14th Edition, Sultan Chand & Sons, New Delhi, 2014.

- 1. Sharma J.K., "Operations Research Theory and Applications", 4th Edition, Macmillan Publishers India Ltd., New Delhi, 2009.
- 2. Gupta P.K. & Hira D.S., "Operations Research: An Introduction", 6th Edition, S.Chand and Co. Ltd, New Delhi, 2008.

				Μ	lappin	g of CO	Ds with	n POs /	PSOs					
						P	os						PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3				2								3	
2			3										3	
3					3								3	
4	3		3										3	
5	3		3										3	
CO (W.A)	3		3		3								3	

		22CIX16 - COMPUTER V		•					
		(Common to 22CSX05,22ITX05,22AI	CO5 and 22CCX23	3) L	т	Р	С		
				3	0	0	3		
PRE-RE	QUISITE : N	IL							
Course	Objective:	 To impart knowledge and under algorithms and techniques used from the world. 	5				a		
	Outcomes dent will be a	ble to	Cognitive Level		COs i Sem	tage o n End ester natior			
CO1	feature	t image processing techniques for extraction and enhancement in vision applications.	Ар		3	0%			
CO2	-	object detection and recognition sing various techniques.	An						
CO3	Make use image transform	of the optimization technique for alignment and geometric ations.	Ар		30%				
CO4		ep learning models to synthesize r advanced photography techniques.	An		2	0%			
CO5		innovative solution for immersive techniques in virtual reality.	С			ernal ssment	I		
Introduc formatio	on-The digit	Formation: Geometric primitives an al camera-Image processing: Poin ic transformations.					-		
	- RECOGNII	ION &FEATURE DETECTION AND M	ATCHING			g)		
	-	n-Image Classification-Object detection ontours-Contour tracking-Lines and va	•				and		
		LIGNMENT AND STITCHING & STRU		-			9		
structure	e from mo	Image stitching-Geometric Intrinsic o otion-Multi-frame structure from m nancing Autonomous Navigation: A Cas	notion-Simultaneo	bus l	ocaliz	ation			

UNIT IV – COMPUTATIONAL PHOTOGRAPHY & DEPTH ESTIMATION

Photometric calibration-High dynamic range imaging-Super-resolution:"Advancing Image Clarity: A Case Study on Super-Resolution Techniques"-denoising-blur removal-Image matting and compositing-Epipolar geometry-Sparse correspondence-Dense correspondence-Local methods-Global optimization-Multi-view stereo

9

UNIT V – 3D RECONSTRUCTION & IMAGE-BASED RENDERING	9

Shape from X-3D Scanning-Surface representation-Point-based representation-Volumetric representation-GAN:Generative Adversarial Networks-Vision Transformation-Light fields and Lumigraphs:"Case study on Immersive Rendering in VR"-Video-based rendering:"Case study on Dynamic Scene Reconstruction Techniques".

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer- Texts in Computer Science, Second Edition, 2022.
- 2. E. R. Davies, "Computer Vision: Principles, Algorithms, Applications, Learning", Cambridge University Press, recent edition, 2022.

- 1. Simon J.D. Prince, "Computer Vision: Models, Learning, and Inference" ,2nd edition, Cambridge University Press.2012.
- 2. David A. Forsyth and Jean Ponce,"Computer Vision: A Modern Approach", published by Prentice Hall,recent edition 2022.

					Ma	apping	of CC	Os witl	h POs ,	/ PSOs	5				
60 -		POs												PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1		3													
2					3										
3			3												
4				3											
5							3	3	3		3			3	
CO (W.A)		3	3	3	3		3	3	3		3			3	

	22CIX17 - ETHICS OF AI (Common to 22CSX06,22ITX06 and 22AIX0	06)				
			L	Т	Ρ	С
			3	0	0	3
PRE-RE	EQUISITE : NIL					
Course	• To Learn about the Ethical initiatives in the intelligence and reach AI standards and Re			ficial		
	Outcomes Cogniti dent will be able to Level			COs i Sem		
CO1	Apply about morality and ethics in Al Ap			20	0%	
CO2	Evaluate the knowledge of real time Ap Ap			2	0%	
CO3	Analysis the ethical harms and ethical An initiatives in Al			2	0%	
CO4	Apply AI standards and Regulations like AIAgent, Safe Design of Autonomous andApSemi-Autonomous SystemsAp			2	0%	
CO5	Apply the societal issues in AI with National and International Strategies on AI Ap			2	0%	

UNIT I –INTRODUCTION

Definition of morality and ethics in Al-Impact on society-Impact on human psychology-Impact on the legal system-Impact on the environment and the planet-Impact on trust.

UNIT II –ETHICAL INITIATIVES IN AI

International ethical initiatives-Ethical harms and concerns-Case study: healthcare robots, Autonomous Vehicles, Warfare and weaponization.

UNIT III – AI STANDARDS AND REGULATION

Model Process for Addressing Ethical Concerns During System Design - Transparency of Autonomous Systems-Data Privacy Process- Algorithmic Bias Considerations - Ontological Standard for Ethically Driven Robotics and Automation Systems

UNIT IV – ROBOETHICS: SOCIAL AND ETHICAL IMPLICATION OF ROBOTICS

Robot-Roboethics- Ethics and Morality- Moral Theories-Ethics in Science and Technology - Ethical Issues in an ICT Society- Harmonization of Principles- Ethics and Professional Responsibility Roboethics Taxonomy.

9

9

9

9

UNIT V – AI AND ETHICS- CHALLENGES AND OPPORTUNITIES 9

Challenges - Opportunities- ethical issues in artificial intelligence- Societal Issues Concerning the Application of Artificial Intelligence in Medicine- decision-making role in industries-National and International Strategies on AI. Chat gpt basics, prompt engineering.

TOTAL= 45 PERIODS

TEXT BOOKS:

- 1. Y. Eleanor Bird, Jasmin Fox-Skelly, Nicola Jenner, Ruth Larbey, Emma Weitkamp and Alan Winfield ,"The ethics of artificial intelligence: Issues and initiatives", EPRS | European Parliamentary Research Service Scientific Foresight Unit (STOA) PE 634.452 March 2020
- 2. Patrick Lin, Keith Abney, George A Bekey," Robot Ethics: The Ethical and Social Implications of Robotics", The MIT Press- January 2014.

- 1. Towards a Code of Ethics for Artificial Intelligence (Artificial Intelligence: Foundations, Theory, and Algorithms) by Paula Boddington, November 2017
- 2. Mark Coeckelbergh," AI Ethics", The MIT Press Essential Knowledge series, April 2020

				N	lappin	g of CC	Ds with	n POs /	' PSOs										
						F	os						PSOs						
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2					
1								3						3					
2	2						2	3						3					
3							2	3						3					
4	3					2		3						3					
5								3						3					
CO (W.A)	2.5					2	2	3						3					

	(C	22CIX18 - ROBOTICS PROCESS A Common to 22CSX08,22ITX08,22AI		38)			
				L	Т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE :	NIL					
Course Objecti		• To implement the fundamentation major paradigms for achieving		in rol	botics	and t	he
				W	/eight	age o	of
Course	Outcomes		Cognitive		COs i	n End	
The Stu	ident will be	able to	Level		Seme	ester	
				E	xami	natior	ו
CO1	Interpret f end effect	eatures of an Industrial robot with ors	AP		20)%	
CO2	robot and	he characteristics of Autonomy d use Hierarchical Paradigm for g intelligence in Robots.	AP		20)%	
CO3	Apply read	ctive paradigm for Al Robots	AP		20)%	
CO4		ents able to know the various areas of automation and material	U		20)%	
CO5	Design se	nsor and vision system for robots	An		20)%	

UNIT I – FUNDAMENTALS OF ROBOTICS

Automation and Robotics, A brief history of Robotics, The robotics market and the future prospects, Robot anatomy, Robot drive systems, Precision of Movement, Robotic sensors, Robot programming and work cell control, Robot applications

UNIT II – ROBOT TECHNOLOGY

Basic control systems concepts and models, Controllers, Control system analysis, Robot sensors and actuators, Velocity sensors, Actuators, Power transmissions systems, Modeling and control of a single joint robot, Robot motion analysis and control.

UNIT III -ROBOT END EFFECTORS AND SENSORS

Types of end effectors, Mechanical grippers, other types of gripper, Tools as end effectors, The robot/end effectors interface, Considerations in gripper selection and design, Transducers and sensors, Sensors in robotics, Tactile sensors, Proximity and range sensors

UNIT IV -MACHINE VISION AND ARTIFICIAL INTELLIGENCE(9)Introduction to machine vision, The sensing and digitizing functions in machine vision, Image
processing analysis, Training the vision system, Robotic applications, Introduction to AI, Goals

of AI research, AI techniques, AI and Robotics

(9)

(9)

UNIT V- ROBOT APPLICATIONS IN MANUFACTURING	(9)
Material transfer and machine loading/unloading, Processing operations - spot weldi	ng,
continuous arc welding, spray coating, other processing operations using robots, Asso	embly
and Robotic assembly automation, Designing for robotic assembly, Inspection autom	ation

TOTAL (L: 45) = 45 PERIODS

TEXT BOOK:

1. "Industrial robotic technology-programming and application" by M.P.Groover et al, McGrawhill 2008

- 1. Richared D.Klafter, Thomas Achmielewski and Mickael Negin," Robotic Engineering an Integrated approach" prentice hall India- newdelhi-2001
- 2. "Robotics technology and flexible automation" by S.R. Deb, Dr Sankha Deb ,Tata McGraw-Hill Education ,2009
- 3. <u>https://www.robots.com/applications</u>

					Марр	oing o	f COs	with	POs /	PSOs				
60 -	COs POs													Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1														
2		3												
3	3					3								3
4					3						3			
5			3						3				3	
CO (W.A)	3	3	3		3	3			3		3		3	3

	22CIX21 - PATTERN RECOGNITION (Common to 22CSX11,22ITX11,22AIX11 and 22CC	X24)			
		Ĺ	Т	Ρ	С
		3	0	0	3
PRE-RE	QUISITE : NIL				
Course	 To impart knowledge for solving real-world prase computer vision, speech recognition, and b To enrich the proficiency of the students in evolution. 	ioinform aluating	atics. and se	electin	
	appropriate pattern recognition models based metrics and domain-specific requirements.	l on perf	ormar	ice	
	Outcomes Cognitive dent will be able to Level		COs i Sem	tage o n End ester natior	
CO1	Apply advanced probabilistic models and decision theory concepts to optimize Ap inference.		-	0%	<u> </u>
CO2	Apply supervised learning algorithms for solving An problems.		2	0%	
CO3	Interpret unsupervised learning techniques Ap for clustering data.		3	0%	
CO4	Apply graphical models and sequential datatechniques to solve complex problems suchApas plant disease diagnosis.Ap		2	0%	
CO5	Evaluate proficiency in designing, training, and optimizing neural networks			ernal ssment	:

	9
Probability Theory:Probability densities-Bayesian probabilities-The Gaussian distribu- curve fitting-Model Selection-The Curse of Dimensionality-Decision Theory: Min misclassification rate-Minimizing the expected loss-The reject option-Inference and functions for regression-Information Theory.	nimizing the
UNIT II – PROBABILITY DISTRIBUTION AND LINEAR MODELS FOR REGRESSION	9
Binary Variables-Multinomial Variables-The Gaussian Distribution-Linear Basis Funct Bayesian Linear Regression:Parameter distribution-Predictive distribution-Baye Comparison-The Evidence Approximation:Evaluation of the evidence function-Ma evidence function-Effective number of parameters-Limitations of Fixed Basis Functions.	sian Model
UNIT III -LINEAR MODELS FOR CLASSIFICATION	9
Discriminant Functions-Probabilistic Generative Models-Probabilistic Discriminative Mo regression-Multiclass logistic regression-Probit regression-The Laplace Approximati Logistic Regression:Laplace approximation-Predictive distribution	•

UNIT IV –NEURAL NETWORKS AND KERNEL METHODS	9
Feed-forward Network Functions-Network Training-Error Backpropagation-The Hese Regularization in Neural Networks-Mixture Density Networks-Bayesian Neural Constructing Kernels-Radial Basis Function Networks:Nadaraya-Watson model-Gaussia	Networks-
UNIT V –GRAPHICAL MODELS AND SEQUENTIAL DATA	9
Bayesian Networks-Conditional Independence-Markov Random Fields-Inference in Models-Markov Models-Hidden Markov Models-Case study on Plant Disease Diagnosis Forest -Conditional Mixture Models.	
TOTAL (L:45) = 45 PERI	ODS

TEXT BOOKS:

- 1. Christopher M. Bishop "Pattern Recognition and Machine Learning", Springer, Second edition 2021.
- 2. David G.Stork,PeterE.Hart,and Richard O.Duda"PatternClassification",published by Wiley in recent edition in 2022.

REFERENCES:

1.Sergios Theodoridis and Konstantinos Koutroumbas"Machine Learning: A Bayesian and Optimization Perspective"AcademicPress,recent edition 2022.

2.David J.C. MacKay"Information Theory, Inference, and Learning Algorithms" Cambridge University Press, 2003.

3. David Barber "Bayesian Reasoning and Machine Learning", Cambridge University Press, 2012.

4. Ian Goodfellow, Yoshua Bengio, and Aaron Courville" DeepLearning", MIT Press, 2016.

	Mapping of COs with POs / PSOs															
60 -	POs													PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2		
1					3											
2		3											3			
3				3									2			
4					3									2		
5							2	3	3	2	2			3		
CO (W.A)		3		3	3		2	3	3	2	2		2.5	2.5		

	22CIX22 - TEXT AND SPEECH ANALYTICS (Common to 22CSX12,22ITX12 and 22AIX12	2)				
	(L	Т	Ρ	C
			3	0	0	3
PRE-RE	EQUISITE : NIL					
	To understand natural language proce	essing b	asio	CS.		
Course	• To apply classification algorithms to te answering and dialogue systems to de				uestio	n-
	recognition system & speech synthesi	zer.				
	OutcomesCognitivdent will be able toLevel	e		COs i Sem	tage c n End ester	
			E	Exami	natior	า
CO1	Examine the foundations of natural language processing and speech analysisAn			2	0%	
CO2	Apply classification algorithms to text documents Ap			2	0%	
CO3	Analysis question-answering and dialogue An systems			2	0%	
CO4	Apply deep learning models for buildingspeech recognition and text-to-speechsystems			2	0%	
CO5	Evaluate coreference and coherence for text An An			2	0%	

UNIT I -INTRODUCTION

Foundations of natural language processing – Language Syntax and Structure- Text Preprocessing and Wrangling – Text tokenization – Stemming – Lemmatization – Removing stopwords – Feature Engineering for Text representation – Bag of Words model- Bag of N-Grams model – TF-IDF mode

UNIT II - TEXT CLASSIFICATION

Vector Semantics and Embeddings -Word Embeddings - Word2Vec model – Glove model – FastText model – Deep Learning models for text classification– Recurrent Neural Networks (RNN) – Transformers –Text summarization and Topic Models

UNIT III – QUESTION ANSWERING AND DIALOGUE SYSTEMS

Information retrieval – IR-based question answering – knowledge-based question answering – language models for QA – classic QA models – chatbots – Design of dialogue systems – evaluating dialogue systems

9

9

9

UNIT IV – TEXT-TO-SPEECH SYNTHESIS	9								
Robot-Roboethics- Ethics and Morality- Moral Theories-Ethics in Science and Technology - Ethical Issues in an ICT Society- Harmonization of Principles- Ethics and Professional ResponsibilityRoboethics Taxonomy.									
UNIT V – AUTOMATIC SPEECH RECOGNITION	9								
Named Entity Recognition (NER)-Coreference resolution-Text coherence and cohesic sentiment analysis-Speech recognition: Acoustic modelling – Feature Extraction - H DNN systems									

TOTAL= 45 PERIODS

TEXT BOOK:

1. Daniel Jurafsky and James H. Martin, "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics, and Speech Recognition", Third Edition, 2022.

REFERENCES:

1. Dipanjan Sarkar, "Text Analytics with Python: A Practical Real-World approach to Gaining Actionable insights from your data", APress, 2018.

2. Tanveer Siddiqui, Tiwary U S, "Natural Language Processing and Information Retrieval", Oxford University Press, 2008.

3. Lawrence Rabiner, Biing-Hwang Juang, B. Yegnanarayana, "Fundamentals of Speech Recognition" 1st Edition, Pearson, 2009.

4. Steven Bird, Ewan Klein, and Edward Loper, "Natural language processing with Python", O'REILLY

				M	apping	g of CC)s with	POs /	PSOs					
	POs													
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1		3											3	
2	3												3	
3		3												3
4	3				3								3	
5		3			3									3
CO (W.A)	3	3			3								3	3

	22CIX23 - TIME SERIE (Comr	S ANALYSIS A non to 22AIX1		NG			
				L	Т	Ρ	С
				3	0	0	3
PRE-RE	QUISITE : NIL						
Course Objectiv	analysis and f	forecasting precasting mod	ental concepts of dels and evaluation				
	Dutcomes lent will be able to		Cognitive Level		COs ii Seme		
CO1	Ability to identify time series of and trends	lata patterns	AP		20%		
CO2	Make use of various smoothi for time series data analysis	ing methods	AP		20)%	
CO3	Skill in applying appropriate models	time series	AP		20)%	
CO4	Understand and apply freque time series analysis	ency domain	U		20)%	
CO5	Make use of variance tra techniques for time series a forecasting		AP		20)%	

UNIT I – EXPLORATORY ANALYSIS

Graphical displays–Numerical description of Time Series Data–Use of Data transformations and Adjustments–General Approach to Time Series Modeling and Forecasting – Evaluating and Monitoring Forecasting Model Performance-Statistical Inference in Linear regression– Model Adequacy Checking

UNIT II – SMOOTHING METHODS:

First-Order Exponential Smoothing–Modeling Time Series data–Second-Order Exponential Smoothing–Higher-Order Exponential Smoothing–Forecasting–Exponential Smoothing for Seasonal Data–Exponential Smoothing of Bio surveillance data – Exponential Smoothers and ARIMA models

UNIT III – ARIMA MODELS

Linear Models for Stationary Time Series–Finite Order Moving Average Processes–Finite Order Auto regressive Processes–Mixed Autoregressive-Moving Average Processes –Non stationary Processes – Time Series Model building – Forecasting ARIMA Processes – Seasonal Processes – ARIMA Modeling of Bio surveillance data

(9)

(9)

UNIT IV – TRANSFER FUNCTIONS AND INTERVENTION MODELS	(9)
Transfer Function Models – Transfer Function – Noise Models – Cross – Correlation	Function-
Model Specification – Forecasting with Transfer Function-Noise Models–Intervention	Analysis
UNIT V- OTHER FORECASTING METHODS	(9)
Multivariate Time Series Models and Forecasting–State Space Models–Archan models–Direct Forecasting of Percentiles–Combining Forecasts to improve Performance–Aggregation and Disaggregation of Forecasts–Neural Netw Forecasting–Spectral Analysis–Bayesian Methods in Forecasting	Prediction
TOTAL (L: 45) = 4	5 PERIODS

ТЕХТ ВООК:

1. Douglas C. Montgomery, Cheryl L. Jennings, Murat Kulahci, "Introduction to Time Series Analysis and Forecasting", 2nd Edition, Wiley, 2016.

REFERENCE:

1. George E.P.Box, Gwilym M.Jenkins, Gregory C. Reinsel, Greta M. Ljung, "Time Series Analysis: Forecasting and Control", 5thEdition, Wiley, 2016.

					Ма	pping	of CC	Ds witl	h POs ,	/ PSOs	5			
60 -				PS	PSOs									
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1		3	3											3
2					3									
3	3					3							3	
4													3	
5				3								3		
CO (W.A)	3	3	3	3	3	3						3	3	3

	(Coi	22CIX24 - HEALTH CARE AN mmon to 22CSX14,22ITX14,22AI		6)			
				L	Т	Ρ	С
				3	0	0	3
	QUISITE : NIL Objective:	 To impart knowledge on health learning concepts. 	n care analytics us	sing m	achin	e	
	Outcomes dent will be able	to	Cognitive Level		COs i Semo		
CO1	Apply machir health care ar	e learning and deep learning in alysis.	Ар		40)%	
CO2	-	appropriate selection of data selection to train a model.	Ар		20	0%	
CO3		tabase for clinical support and a using NoSQL database	An		20	0%	
CO4	Visualize pre sensors.	processing data using smart	An		20)%	
CO5	Prepare a mi and data anal	ni project to predict healthcare ysis.	С			ernal sment	t

UNIT I – INTRODUCTION TO HEALTHCARE ANALYSIS

Overview - History of Healthcare Analysis Parameters on medical care systems- Health care policy- Standardized code sets – Data Formats – Machine Learning Foundations: Tree Like reasoning , Probabilistic reasoning and Bayes Theorem, weighted sum approach.

UNIT II – ANALYTICS ON MACHINE LEARNING

Machine Learning Pipeline – Pre-processing –Visualization – Feature Selection – Training model parameter – Evaluation model : Sensitivity , Specificity , PPV ,NPV, FPR ,Accuracy , ROC , Precision Recall Curves –Python: Variables and types, Data Structures and containers , Pandas Data Frame :Operations – Scikit –Learn : Preprocessing , Feature Selection.

UNIT III – HEALTH CARE MANAGEMENT

IOT- Smart Sensors – Migration of Healthcare Relational database to NoSQL Cloud Database – Decision Support System – Matrix block Cipher System – Semantic Framework Analysis – Histogram bin Shifting and Rc6 Encryption – Clinical Prediction Models – Visual Analytics for Healthcare.

(9)

(9)

UNIT IV – HEALTHCARE AND DEEP LEARNING

Introduction on Deep Learning – DFF network CNN- RNN for Sequences – Biomedical Image and Signal Analysis – Natural Language Processing and Data Mining for Clinical Data – Mobile Imaging and Analytics – Clinical Decision Support System.

UNIT V – CASE STUDIES

Predicting Mortality for cardiology Practice –Smart Ambulance System using IOT –Hospital Acquired Conditions (HAC) program- Healthcare and Emerging Technologies – ECG Data Analysis.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Chandan K.Reddy, Charu C. Aggarwal, "Health Care data Analysis", First edition, CRC, 2015.
- 2. Vikas Kumar, "Health Care Analysis Made Simple", Packt Publishing, 2018.

REFERENCES:

- 1. Nilanjan Dey, Amira Ashour , Simon James Fong, Chintan Bhatl, "Health Care Data Analysis and Management, First Edition, Academic Press, 2018.
- 2. Hui Jang, Eva K.Lee, "HealthCare Analysis : From Data to Knowledge to Healthcare Improvement", First Edition, Wiley, 2016.
- 3. Kulkarni , Siarry, Singh ,Abraham, Zhang, Zomaya , Baki, "Big Data Analytics in HealthCare", Springer, 2020.

	Mapping of COs with POs / PSOs													
	POs													Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3												3	
2	3	3			3									3
3	3		3											
4		3	3		3								3	
5	3				3				3	3				
CO (W.A)	3	3	3		3				3	3			3	3

(9)

	22CIX25 - PREDICTIVE ANALY (Common to 22CSX15,22ITX15 and					
	· · · · ·		L	Т	Ρ	С
			3	0	0	3
PRE-RE	QUISITE :NIL					
Course	• Proficient in different predictive m regression analysis, classification,	5 11	aches	s, such	as	
	Outcomes dent will be able to	Cognitive Level		COs i Sem	tage o n End ester	
			E	xami	natio	า
CO1	Analyze the performance of predictive analytics using appropriate metrics and understand the implications of these metrics.	An		2	0%	
CO2	Apply data preparation and rules in predictive analytics to interpret the results in meaningful ways.	Ар		2	0%	
CO3	Analyze and interpret the outputs of predictive models to generate actionable insights	An		2	0%	
CO4	Analyze different predictive models to determine the most suitable model for a given problem based on performance metrics	An		2	0%	
CO5	Apply techniques to collect text data from various sources of text mining	Ар		2	0%	

UNIT I -INTRODUCTION TO PREDICTIVE ANALYTICS9Overview of Predictive Analytics-Setting Up the Problem-Data Understanding-Single Variable
Summaries -Data Visualization in One Dimension, Two or Higher Dimensions-The Value of
Statistical Significance-Pulling it all together into a Data Audit9UNIT II -DATA PREPARATION AND ASSOCIATION RULES9Data Preparation-Variable Cleaning-Feature creation-Item sets and Association rules-Terminology-
Parameter settings-How the data is organized-Measures of Interesting rules-Deploying Association
rules-Problems with Association rules-Building Classification rules from Association rules9UNIT III - MODELING9Descriptive Modeling-Data Preparation issues with Descriptive modeling-Model Selection-Principal
Component analysis-Clustering algorithms-Interpreting Descriptive models-Standard cluster model
interpretation

UNIT IV – PREDICTIVE MODELLING	9
Decision Trees-Logistic Regression-Neural Network Model-K-Nearest Neighbors-Na Regression Models- Linear Regression-Building Neural Networks using XLMiner-Othe Algorithms	
UNIT V – TEXT MINING	9
Motivation for Text Mining-A Predictive modeling approach to Text Mining-Str Unstructured data-Why Text mining is hard-Data Preparation steps-Text mining features with Text mining features-Regular Expressions - Web mining - Text Mining vs. Web M studies:-Survey Analysis	es-Modeling
TOTAL (L:45) : 4	15 PERIODS

TEXT BOOKS:

- 1. Dean Abbott, "Applied Predictive Analytics-Principles and Techniques for the Professional Data Analyst", Wiley, 2014.(Unit 1-5)
- 2. Jiawei Han and Micheline Kamber, "Data Mining Concepts and Techniques", 3rd Edition, Elsevier, 2012

- 1. Conrad Carlberg, "Predictive Analytics: Microsoft Excel", 1st Edition, Que Publishing, 2012.
- 2. Alberto Cordoba, "Understanding the Predictive Analytics Lifecycle", Wiley, 2014
- 3. Anasse Bari, Mohamed Chaouchi, Tommy Jung, Predictive Analytics for Dummies, 2nd Edition, Wiley, 2017.

	Mapping of COs with POs / PSOs													
	POs													Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3												
2		3	3											3
3		3	3	3									3	
4		3	3	3									3	
5	3								3					
CO (W.A)	3	3	3		3					3			3	3

	22CIX26 - IMAGE AND (Common to 22CSX16,22ITX		(27)				
			L	Т	Ρ	(
			3	0	0	Э	
PRE-RE	QUISITE : NIL						
Course	Objective: • To provide a broad vie videos.	w on processing and ar	alyzing	image	es and		
	Outcomes dent will be able to	Cognitive Level		Veigh COs i Sem Exami	n End ester		
CO1	Apply the image processing technique image and video analysis.	s for Ap		20%			
CO2	Use image pre-processing techniques object detection.	for Ap	20%				
CO3	Apply the various levels of segmenta and interpret the results for o detection.			2	0%		
CO4	Apply recognition and machine lear techniques.	ning Ap		20	0%		
CO5	Make use of video analysis for real time studies.	case An		2	0%		

UNIT I - INTRODUCTION

Computer Vision – Image representation and image analysis tasks - Image representations – Digitization- Digital image properties- color images- Linear integral transforms- Images as stochastic processes- Data structures for Image Analysis - Levels of image data representation - Traditional and Hierarchical image data structures.

UNIT II - IMAGE PRE-PROCESSING

Pixel brightness transformations – Geometric transformations-Local pre-processing - Image smoothing - Edge detectors - Zero-crossings of the second derivative - Scale in image processing - Canny edge detection - Parametric edge models - Edges in multi-spectral images - Local pre-processing in the frequency domain - Line detection by local pre-processing operators - Image restoration.

UNIT III - OBJECT DETECTION USING MACHINE LEARNING

(9)

(9)

(9)

Object detection– Object detection methods – Deep Learning framework for Object detection– Bounding box approach-Intersection over Union (IoU) –Deep Learning Architectures-Fast R-CNN-Faster R-CNN-You Only Look Once(YOLO)-Single Shot MultiBox Detector(SSD)-Transfer Learning-Python Implementation.

UNIT IV - FACE RECOGNITION AND GESTURE RECOGNITION	(9)
Face Recognition- Applications of Face Recognition-Process of Face Recognition-Dee	p Face
solution by Face book- FaceNet for Face Recognition- Python Implementation using Fa	ceNet-
Python Solution for Gesture Recognition.	

UNIT V - VIDEO ANALYTICS

(9)

Video Processing – use cases of video analytics-Vanishing Gradient and exploding gradient problem-ResNet architecture- ResNet and skip connections-Inception Network- GoogLENet architecture-Improvement in Inception v2-Video analytics-Python Solution using ResNet and Inception v3.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Milan Sonka, Vaclav Hlavac, Roger Boyle, "Image Processing, Analysis, and Machine Vision", 4th edition, Thomson Learning, 2013. (UNIT-I and II)
- 2. Vaibhav Verdhan, (2021, Computer Vision Using Deep Learning Neural Network Architectures with Python and Keras, Apress 2021 (UNIT-III, IV and V)

- 1. Richard Szeliski, "Computer Vision: Algorithms and Applications", Springer Verlag London Limited, 2011.
- 2. Caifeng Shan, FatihPorikli, Tao Xiang, Shaogang Gong, "Video Analytics for Business Intelligence", Springer, 2012.
- 3. D. A. Forsyth, J. Ponce, "Computer Vision: A Modern Approach", Pearson Education, 2003.
- 4. E. R. Davies, (2012), "Computer & Machine Vision", Fourth Edition, Academic Press.

				Μ	lappin	g of CC	Ds with	n POs /	' PSOs						
						P	Os						PS	PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3												3		
2	3				3								3		
3	3												3		
4	3													3	
5		3	3		3									3	
CO (W.A)	3	3	3		3								3	3	

	22CIX27 - NATURAL LANGUAGE PRO (Common to 22CSX17,22ITX17 and 2					
			L	Т	Ρ	С
			3	0	0	3
PRE-RE	QUISITE : NIL					
Course	• To learn and understand syntactic an knowledge representation and interfa		elem	ents o	f NLP	and
Course	Outcomes The Student will be able to	gnitive Level	in	eighta End Exam	Seme	ster
CO1	Summarize the concepts in speech and language processing and utilize regular expressions and other statistical methods to create Language Models.	Ар		ć	20%	
CO2	Apply Vector Embedding to words and build Neural Language models.	Ар			20%	
CO3	Solve sequence labeling problems (Named Entity Tagging and POS tagging) using RNN and LSTM.	An			20%	
CO4	Apply the Machine translation model to dialogue systems.	Ар			20%	
CO5	Illustrate the working of Automatic speech recognition and information retrieval.	Ар			20%	

UNIT I –FUNDAMENTALS OF NATURAL LANGUAGE PROCESSING	9
Regular Expressions, Text normalization, Edit DistanceN-gram language mode Evaluating language models: training and test sets-perplexity-Sampling sentences from model-Generalization and Zeros-Smoothing-Native bayes,text classification and sentim regression	a language
UNIT II -VECTOR SEMANTICS AND NEURAL NETWORK MODELS	9
Lexical Semantics – Vector Semantics – Words and Vectors – Cosine for measuring simila weighing terms in vectors – pointwise Mutual Information (PMI) – Applications of TF-IDF Visualizing embeddings-Neural Network Language Models – Units – XOR problem – Fee Neural Networks – Training Neural Nets – Neural Language Models.	and PPMI –
UNIT III – SEQUENCE LABELING AND DEEP LEARNING ARCHITECTURES	9
English word classes –Part-of-Speech (PoS) Tagging – Named Entities and Named Entit – HMM PoS – Conditional Random Fields – Evaluation of Named Entity Recognitio LSTMsTransformers and large language models-Fine tuning and masked language mo	n-RNN and

UNIT IV – MACHINE TRANSLATION (MT) AND DIALOGUE SYSTEMS 9

Language divergences and Typology – Machine translation using Encoder-Decoder model – Encoder-Decoder–Beam search-Translating in low resource situations- MT evaluation – Bias and ethical issues-properties of human conversations-Frame based dialogue systems-Dialogue acts and dialogue state.

UNIT V –AUTOMATIC SPEECH RECOGNITION AND INFORMATION RETRIEVAL

The Automatic Speech Recognition Task -Feature Extraction for ASR: Log Mel Spectrum -Speech Recognition Architecture-CTC and TTS -Information Retrieval -Information Retrieval with Dense Vector-Evaluating Retrieval-based Question Answering-Context free grammars and constituency parsing-Dependency parsing-Information extractions-Semantic role labeling.

TOTAL (L:45) = 45 PERIODS

9

TEXT BOOKS:

1. Daniel Jurafsky and James H.Martin, "Speech and Language Processing: An Introduction to Natural Language Processing, Computational Linguistics and Speech Recognition" (Prentice Hall Series in Artificial Intelligence), 2020

2. "Foundations of Statistical Natural Language Processing" by Christopher D. Manning and Hinrich Schuetze, MIT Press, 2018

REFERENCES:

1. Jacob Eisenstein. "Natural Language Processing ", MIT Press, 2019

- 2. Samuel Burns "Natural Language Processing: A Quick Introduction to NLP with
- Python and NLTK, 2019

					Мај	oping	of CO	s with	POs /	PSOs				
60-			PS	PSOs										
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3												3	
2	3	3			3									3
3	3		3											
4		3	3		3								3	3
5	3		3		3				3	3				
CO (W.A)	3	3	3		3					3			3	3

	22CIX28 - AUGUMENTED REALITY AND VIRTUAL R (Common to 22CSX16,22ITX18 and 22AIX18)					
		L	Т	Р	С	
		3	0	0	3	
PRE-R	EQUISITE :NIL					
Cours	• To impart the knowledge of Exploring the d applications of augmented reality and virtual	•				
	OutcomesCognitivedent will be able toLevel		eighta n End S Exami	-	er	
CO1	Apply principles of virtual reality and commercial VR technologies.		30%			
CO2	Analyze the classic components of a VR system through hands-on experimentation and An simulation.		2	0%		
CO3	Make use of diverse modeling techniques with real-world sensor data.		3	0%		
CO4	Evaluate the solution to enhance VR user experience and safety in diverse fields.		2	0%		
CO5	Create VR applications by utilizing VR programming tools.	In	ternal A	Assessr	nent	

UNIT I - INTRODUCTION	(9)
The three I's of virtual reality, commercial VR technology and the five cl	
system, Augmented Reality and Tele presence.	,
UNIT II -INPUT AND OUTPUT DEVICES	(9)
Input Devices : Trackers, Navigation, and Gesture Interfaces): Three-dim	ensional position trackers,
navigation and manipulation, interfaces and gesture interfaces. Output I	Devices: Graphics displays,
sound displays& haptic feedback.	
UNIT III –MODELING	(9)
Geometric modelling, kinematics modelling, physical modelling, beh	aviour modelling, model
management and Modelling real-life from sensors.	
UNIT IV - HUMAN FACTORS	(9)
Methodology and terminology, user performance studies, VR health and s	afety issues. Applications:
Medical applications, military applications, robotics applications, Virtu	al product design (CAD
display, process simulation, virtual prototyping) ,Enhancing Training a	nd Skill Development in
Healthcare Using AR and VR: A Case Study on Simulation-Based Learning	
UNIT V -VR PROGRAMMING	(9)
VR Programming-I: Introducing Unity 3D, Project panel, Scene hierarc	hy, Simple game object,
Scene editor: A case study on Developing and Evaluation of a Simple	Game Object and Scene
Editor for Indie Game Developers VR Programming-II: Middle VR, devic	e management, graphics

card limitation, 3D user interactions, deployment, VR software: A case study on the Impact of Unreal Engine in Architectural Visualization: A Case Study of VR Integration in Real Estate Marketing.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOK:

1. "Virtual Reality Technology", Gregory C. Burdea& Philippe Coiffet, John Wiley & Sons, Inc., Second Edition,2006

REFERENCES:

- 1. "Virtual Reality Technology" Grigore C. Burdea and Philippe Coiffet, recentedition, January 2022.
- 2. "Virtual Reality Technology and Applications" Harry F. Shneider , FirstEdition, 2018.
- 3. "Virtual Reality: Concepts and Technologies" Philippe Fuchs, Pascal Guitton, and Guillaume Moreau, First Edition, 2011.

4. "Human Factors in Augmented Reality Environments" Philippe Fuchs, Patrick Reignier, and Fabien Lotte, First Edition, 2020.

5. "Unreal Engine Virtual Reality Quick Start Guide: Design and Develop immersive virtual reality experiences with Unreal Engine 4" Jessica Plowman, , First Edition, 2019

						Марр	ing of	f COs v	with P	Os / PS	SOs			
60-	POs													PSOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3													3
2		3											3	
3			3		3								3	
4			3										3	
5					3		3		3	2		3		3
CO (W.A)	3	3	3		3		3		3	2		3	3	3

	2	2CIX31 – CRYPTOGRAPHY AND NETWOF (Common to 22CCC12)	RK SECUR	ITY				
		· · · · · · · · · · · · · · · · · · ·		L	Т	Ρ	С	
				3	0	0	3	
PRE-REG	QUISITE: NIL							
Course	Objective:	• To equip students with a thorough and practices of securing digital inf			g of the	e princi	ples	
	Outcomes lents will be abl	le to	Cognitiv Level	ve	in En	ntage d Sem aminat		
CO1		er theory concepts in the tion of cryptographic algorithms	Ар		20%			
CO2	Analyze bloc and efficienc	ck cipher algorithms in terms of security cy.	An		20%			
CO3	Scenarios us	: Key Cryptography in Real-World e public key cryptography to secure data nications in various real-world	Ар		20%			
CO4	D4 Analyze common hash algorithms such as MD5, SHA-1, and SHA-2. An							
CO5	-	functioning and security protocols such HTTPS, and IPsec.	An			20%		

UNIT I-INTRODUCTION AND NUMBER THEORY

Computer security concepts - OSI security architecture – Security attacks – Security services – Security mechanism – Model for network security– Classical encryption techniques: substitution techniques, transposition techniques, Rotor machine, steganography– Finite Fields and Number Theory: Divisibility and Division algorithm–Euclid's algorithm-Modular arithmetic-Groups, Rings, Fields – Finite fields– Polynomial Arithmetic–Prime numbers-Fermat's and Euler's theorem- Testing for primarily-The Chinese remainder theorem-Discrete logarithms.

UNIT II-BLOCK CIPHERS AND ENCRYPTION STANDARDS

Block cipher and Data Encryption Standard–Advanced Encryption Standards: Finite field arithmetic–AES structure–AES transformation functions–AES key expansion–AES implementation-Block cipher operation : Multiple Encryption and triple DES - Electronic Codebook - Cipher Block Chaining Mode - Cipher Feedback Mode – Output Feedback Mode-Counter Mode–Pseudo random Number Generation-Stream cipher–RC4.

UNIT III- PUBLIC KEY CRYPTOGRAPHY

Public key cryptography: Principles of public key cryptosystems-The RSA algorithm - Diffie Hellman Key exchange- El Gamal cryptosystem - Elliptic curve arithmetic - Elliptic curve cryptography –

(9)

(9)

Pseudorandom Number Generation Based on an Asymmetric Cipher.

UNIT IV -MESSAGE AUTHENTICATION AND DIGITAL SIGNATURES

Cryptographic Hash Function s- Message Authentication Code – Digital signature – Key management and distribution – user authentication.

UNITV- NETWORK AND INTERNET SECURITY

Transport level security-Wireless network security-Electronic Mail security: PGP,S/MIME– IP security – Intruders – Malicious software–Firewalls.

TOTAL :45 PERIODS

(9)

(9)

TEXT BOOKS:

- 1. David Cielen, Arno D.B. Meysman, and Mohamed Ali, "Introducing Data Science", Manning Publications, 2016. (Unit I)
- 2. RobertS. Witte and JohnS. Witte, "Statistics", EleventhEdition, WileyPublications, 2017. (Units II and III).
- 3. Jake Vander Plas, "PythonDataScienceHandbook", O'Reilly, 2016. (Units IV and V)

REFERENCE:

1. Allen B.Downey, "Think Stats :Exploratory Data AnalysisinPython", GreenTeaPress, 2014.

	Mapping of COs with POs / PSOs													
COs		POs												
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3													
2		3												
3			3										3	
4	3		3	3	3									
5			3	3	3									3
CO (W.A)	3	3	3	3	3								3	3

	22CIX32 – ETHICAL HACKING					
	(Common to CSX22,22ITX22 and 22C	CC14)				
			L	Т	Ρ	C
PRE-REQUI	SITE: NIL		3	0	0	3
Course Objective:	• To provide a comprehensive understanding of c including various kinds of malware and attacks, techniques for foot printing, social engineering, sweeping. The course aims to equip students wi hacking to identify and expose system vulnerabi	and to explore port scanning, th practical skil	tool and	s and ping	k I	es,
Course Out	comes will be able to	Cognitive Level	Ċ	eigh Os i Sem kami	n Er este	nd er
CO1	Analyze and gain knowledge on the basics of computer- based vulnerabilities	Ар		2	0%	
CO2	Demonstrate and analyze the network and vulnerability attacks in system.	An		2	0%	
CO3	Investigation about foot printing, reconnaissance and scanning methods using tools	Ар		2	0%	
CO4	Analyze the basics of scanning methodologies and exploitation techniques using modern tools	An		2	0%	
CO5	Perform in a team to identify the options for network protection and firewall protection in ethical hacking.	Ар		2	0%	

UNITI-INTRODUCTION

Ethical Hacking Overview - Role of Security and Penetration Testers - Penetration-Testing Methodologies- Laws of the Land - Overview of TCP/IP- The Application Layer - The Transport Layer- The Internet Layer - IP Address

UNITII-NETWORK AND COMPUTER ATTACKS

Network and Computer Attacks - Malware - Protecting Against Malware Attacks. - Intruder Attacks -Denial-of-Service Attacks- Distributed Denial-of-Service Attacks-- Buffer Overflow Attacks- Ping of Death Attacks - Session Hijacking-Addressing Physical Security- Key loggers

UNITIII-FOOT PRINTING AND SOCIAL ENGINEERING

Web tools for Foot printing, Competitive Intelligence - Analyzing a Company's Web Site-Using Other Foot printing Tools-Using E-mail Addresses-Using HTTP Basics-Other Methods of Gathering Information-Using Domain Name System Zone Transfers .-Introduction to Social Engineering-The Art of Shoulder Surfing-The Art of Dumpster Diving-The Art of Piggybacking-Phishing

UNITIV-PORT SCANNING

Introduction to Port Scanning- Types of Port Scans - Port-Scanning Tools – Nmap- Unicorns can – Nessus and OpenVAS-Ping Sweeps - Fping - Hoping-Crafting IP Packets

UNITV-DESKTOP AND SERVEROS VULNERABILITIES

(9)

Windows OS Vulnerabilities-Windows File Systems-Remote Procedure Call—NetBIOS-Server Message Block-Common Internet File System-Null Sessions-Web Services-SQL Server-Buffer Overflows-Passwords and Authentication-Tools for Identifying Vulnerabilities in Windows-Best Practices for Hardening Windows Systems

TOTAL(L:45):45PERIODS

TEXTBOOKS:

1. Michael T. Simpson, Kent Backman, and James E. Corley, Hands-On Ethical Hacking and Network Defense, Course Technology, Delmar Cengage Learning, 2010.

- 1 Dr. John Smith, Dr. Emily Johnson, Dr. Mohammad Khan, A Survey of Ethical Hacking Techniques and Tools for Penetration Testing, 2020
- 2. The Basics of Hacking and Penetration Testing Patrick Engebretson, SYNGRESS, Elsevier, 2013.

				I	Маррі	ng of C	Cos wit	h POs	/PSOs					
		POs												
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3											3	3
2		3		3									3	3
3				З	3								3	3
4		3			3								3	3
5		2						3	3				3	3
CO (W.A)	3	2.7		3	3			3	3				3	3

22CIX33 - CYBER FORENSICS (Common to 22CCC16)

L	Т	Р	С
3	0	0	3

(9)

(9)

			3	0	0	3
PRE-R	EQUISITE: NIL					
Cours	Aware of fundamentals on cyber forens tools and enhance the knowledge on d currency. systems.		-	-		
		gnitive Level	in	ightag End S Exami	emest	ter
CO1	Explain the basic of Forensics investigation process.	Ар		20	0%	
CO2	Explain Linux forensics and file systems and the challenges in various devices.	An		20	0%	
СОЗ	Develop expertise network forensics, mastering techniques to investigate and analyze network activities for identifying security breaches and Threats effectively.	Ар		20	0%	
CO4	Explain forensic investigations in cloud environments, focusing on data retrieval, analysis.	Ар		20	0%	
CO5	Analyze the specialized skills in Bit coin forensics, Enabling the mtotrace transactions, investigate illicit activities.	An		20	0%	

UNIT I - INTRODUCTION TO COMPUTER FORENSICS	(9)
Introduction to Cyber forensics: Forensics investigation process –Forensics protocol– forensics standards– Digital evidence – Types of cybercrime – Notable data breaches– Case Challenges in Cyber security – Cyber forensics tools. Windows forensics: Digital Evidence systems – Time analysis–Challenges-Case Study.	study-

UNIT II – LINUX FORENSICS AND FILE SYSTEM

Linux forensics: Popular Linux– File systems –Process –Artifacts –Linux distribution used for forensics analysis –Challenges –Case study. Mac OS forensics: File systems– Process – Artifacts – Information to collect Mac book forensics investigation – Case study. Anti-forensics: Data wiping and shredding – Trial Obfuscation –Encryption–Data hiding–Anti-forensics detection technique.

UNIT III – NETWORK FORENSICS

Network forensics: OSI Model – Artifacts – ICPM Attack – Analysis tools. Mobile forensics: Android operating system – Mutual Extraction – Physical acquisition – Chip – off – Micro – read – Challenges –iOS operating system.

UNIT IV – CLOUD FORENSICS DATA

Cloud forensics: Cloud computing model – Server – side forensics – Client – side forensics – Challenges – Artifacts – use – Forensics as a Service. Malware forensics: Types – Analysis – Tools – Challenges – Malware as a Service. Web attack forensics: Web attack test – Intrusion forensics – Database forensics – Log Forensics – Content analysis – File metadata forensics

UNIT V - BITCOIN FORENSICS

Email sand email criminals: Protocols – Email criminals – Email forensics. Solid State device forensics: Components – Data wiping – Analysis. Bit coin forensics: Crypto currency – Block chain – Artifacts – Challenges.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

1.Niranjan Reddy , Practical Cyber Forensics: An Incident-Based Approach to Forensic Investigations, Apress, FirstEdition, 2019

2. CEH official Certified Ethical Hacking Review Guide, Wiley India Edition, 2015.

REFERENCES:

1.John Vacca, — Computer Forensics, Cengage Learning, 2005 Marjie Tabriz, —Computer Forensics and Cyber Crime: An Introduction, 3rdEdition, Prentice Hall, 2013.

2.Ankit Fadia — Ethical Hacking Second Edition, Mac millanIndia Ltd, 2006

- 3.Kenneth C. Brancik— Insider Computer Fraud Auerbach Publications Taylor & amp;
- Francis Group –2008.

	Mapping of COs with POs / PSOs														
						PC	Ds						PSOs		
COs															
1								3					3	3	
2	3										3		3	3	
3											3		3	3	
4			3								3		3	3	
5			3								3	3	3	3	
CO (W.A)	3		3					3			3	3	3	3	

(9)

			L	Т	Ρ	C		
			3	0	0	3		
PRE-R	EQUISITE : NIL	· · · ·			•			
Course	To focuses on understanding and add	u .				3I		
Objecti	networking platforms, including prote	cting user privacy, p	preven	ting c	yber			
	threats, and managing data security.							
_		Comitivo		-	htage			
	e Outcomes udent will be able to	Cognitive Level			in En	-		
The Su	dent will be able to	Lever	Semest Examina					
	I			EXali	iinau	on		
CO1	Apply network analysis and explore i applications.	ts Ap			20%			
CO2	Comprehend the role of ontologies in the Semantic Web, ontology-based knowledge representation.	Δ			20%			
CO3	Develop skills to extract the evolution of we communities	b C		20%				
CO4	Predict human behavior in social communitient through reality mining	es An		20%				
CO5	Visualizing social network on various technologies	An			20%			
UNIT			·			(9)		
Emerg - Key Electro	luction to Semantic Web: Limitations of current gence of the Social Web - Social Network analysis concepts and measures in network analysis - onic discussion networks, Blogs and online o cations of Social Network Analysis.	Development of Sc Electronic sources	ocial N for no	letwor etwork	k Anal c anal	lysis ysis:		
UNIT II	- MODELLING, AGGREGATING AND KNOWLEI	OGE REPRESENTAT	ION			(9)		
	ogy and their role in the Semantic Web: Onto	57	5	•				
	ogy languages for the Semantic Web: Resource	•				•••		
•	age - Modelling and aggregating social networ							
•	sentation - Ontological representation of social ir			•				
	relationships - Aggregating and reasoning	with social networ	rk da	ta -	Advan	iced		
	sentations.							

Extracting evolution of Web Community from a Series of Web Archive - Detecting communities in social networks - Definition of community - Evaluating communities - Methods for community detection and mining - Applications of community mining algorithms - Tools for detecting community's social network infrastructures and communities - Decentralized online social networks - multi-relational characterization of dynamic social network communities.

UNIT IV - PREDICTING HUMAN BEHAVIOUR AND PRIVACY ISSUES

Understanding and predicting human behaviour for social communities - User data management – Inference and Distribution – Enabling new human experiences-Reality Mining-Context- Awareness -Privacy in online social networks - Trust in online environment - Trust models based on subjective logic - Trust network analysis - Trust transitivity analysis - Combining trust and reputation - Trust derivation based on trust comparisons - Attack spectrum and countermeasures.

UNIT - V VISUALIZATION AND APPLICATIONS OF SOCIAL NETWORKS

(9)

(9)

Graph theory - Centrality - Clustering - Node-Edge Diagrams - Matrix representation – Visualizing online social networks, Visualizing social networks with matrix-based representations - Matrix and Node-Link Diagrams - Hybrid representations - Applications - Cover Networks-Community welfare - Collaboration networks - Co-Citation networks.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. PeterMika, —Social Networks and the Semantic Web||, First Edition, Springer2007.
- 2. Borko Furht, —Handbook of Social Network Technologies and Applications||,1stEdition, Springer, 2010.

- 1. Guandong Xu ,Yanchun Zhang and Lin Li, —Web Mining and Social Networking –Techniques and applications||, First Edition, Springer, 2011.
- 2. Dion Goh and Schubert Foo, —Social information Retrieval Systems: Emerging Technologies and Applications for Searching the Web Effectively||, IGI Global Snippet, 2008.
- 3. Max Chevalier, Christine Julien and Chantal Soulé-Dupuy, —Collaborative and Social Information Retrieval and Access: Techniques for Improved user Modelling||, IGI Global Snippet, 2009.

				Μ	lappin	g of C	Os witl	h POs /	/ PSOs					
						Ρ	Os						PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3										3	3	3
2	3	3			3							3	3	3
3			3									3	3	
4	3					3						3	3	3
5	3		3									3	3	3
CO (W.A)	3	3	3		3	3						3	3	3
00	1	-												

	(C	22CIX35 - BIOMETRIC SECURI ommon to 22CSX28,22ITX28,22AIX22 a		3)			
	ζ-			L	Т	Ρ	С
				3	0	0	3
PRE-I	REQUISITE : NII	L					
		• To provide students with a compreh	ensive unde	rstan	ding o	f	
Cours	e Objective:	biometric security systems, covering evaluation, and applications in vario	5	•		tation	'
					Weig	htage	of
Cours	e Outcomes		Cognitive	9	COs	in En	d
The St	udent will be ab	le to	Level			neste	
	1				Exan	ninatio	วท
CO1	and the under	iometric systems, their functionalities, rlying principles and their practical n real-world scenarios.	An			20%	
CO2	Apply the face methods.	recognition and face detection	Ар			20%	
CO3		ding and matching algorithms used to tive features from there is for urposes.	E			20%	
CO4		architecture and components involved in a from multiple biometric sources.	An			20%	
CO5	Research type interface level	es of attacks that can occur at the user I.	An			20%	

(9) **UNIT I - INTRODUCTION TO BIOMETRICS** Biometric functionalities - Biometric system errors - The design cycle of biometric systems -Applications of biometric systems - Security and privacy issues - Fingerprint recognition -Fingerprint acquisition – Feature extraction – Fingerprint indexing – Palmprint. (9) **UNIT II - FACE RECOGNITION** Introduction to face recognition – Image acquisition–Face detection–Feature extraction and matching. (9) **UNIT III – IRIS RECOGNITION** Introduction to iris recognition - Design of an iris recognition system - Iris segmentation - Iris normalization - Irisencodingandmatching-Irisquality-Biometrictraits-Handgeometry-Softbiometrics. **UNIT IV - MULTI-BIOMETRICS** (9)

Multi-biometrics – Sources of multiple evidence – Acquisition and processing architecture – Fusion levels.

(9)

UNIT V – SECURITY OF BIOMETRIC SYSTEMS

Adversary attack – Attacks at the user interface – Attacks on the biometric processing – Attacks on the template database.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Anil K Jain, Arun A Ross and Karthik Nandakumar, Introduction to Biometrics, Springer, First Edition, 2011.
- 2. Rachid Guerraoui and Franck Petit, Stabilization, Safety, and Security of Distributed Systems, Springer, FirstEdition, 2010.

- 1. Marcus Smith, Monique Mann and Gregor Urbas, Biometrics, Crime and Security, Taylor and Francis, FirstEdition, 2018.
- 2. Ravindra Das, The Science of Biometrics SecurityTechnologyfor Identity Verification, Taylor and Francis, FirstEdition,2018.

				М	appin	g of CC	Ds with	n POs /	/ PSOs					
						Ρ	os						PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	3	3	3	3								3	
2	3			3	3								3	2
3	3			3	3									
4	3	3	3	3	3									
5	3	3		3	3	3							3	
CO (W.A)	3	3	3	3	3	3							3	2

		(Common to 22AIX25 and 2	22CCX07)	L	т	Р	С
				3	0	0	3
PRE-RE	QUISITE : N	IL					•
	Objective:	 To focuses on the integration of physical processes, aiming to the analysis, and implementation of components interact. 	each students abo	out the	e desi	gn,	
	Dutcomes lent will be a	ble to	Cognitive Level		COs i Seme	tage o n End ester nation	
CO1		undational understanding of CPS, demarcating specific systems,	An		20	0%	
CO2	Able to an realities	nalysis information and its symbolic	Ар		20	0%	
CO3	5	nd development of various decision- echniques applicable to cyber- systems	E		20	0%	
CO4	wireless c of CPS, ar	kills in employing data networks and ommunications within the framework and grasp the practical applications of ntelligence and machine learning.	An		20	0%	
CO5	their pote	ht into upcoming technologies and ential applications across different ong with ethics.	An		20)%	
UNIT I -	INTRODUC	TION TO CYBER PHYSICAL SYSTEM	S			(9)	
Demarcat	tion of Speci hty- Uncerta	per-Physical Systems -Need for a fic Systems-Classification of Systems- N inty and Probability Theory-Random	Aaxwell's Demon	as a Sy	/stem	-Game	s and
UNIT II	- INFORMA	TION AND NETWORK				(9)	
		n- Information and Its Different Forms- Networks and Applications-Limitations	• • •	bolic	Realiti	es-Net	twork
UNIT III	- DECISION	IS AND ACTIONS				(9)	
Cyber-Ph	ysical Syster	Making-Optimization-Game Theory- Rins-Physical Layer, Measuring, and Sens ayer and Acting Processes-Layer Base	sing Processes-Da	ata Lay	/er an	d Infor	ming

UNIT IV - DYNAMICS OF CYBER-PHYSICAL SYSTEMS

Introduction to Dynamics of Cyber-Physical Systems-Failures and Layer-Based Attacks-Enabling Information and Communication Technologies- Data Networks and Wireless Communications-Artificial Intelligence and Machine Learning-Decentralized Computing and Distributed Ledger Technology

UNIT V – APPLICATIONS

Future Technologies: A Look at the Unknown Future-Cyber-Physical Industrial System-Cyber-Physical Energy System-Governance Models- Social Implications of the Cyber Reality-Case studies The Cyber Project

TOTAL (L:45) = 45 PERIODS

TEXTBOOKS:

1. Pedro H. J. Nardelli, Cyber-physical Systems, Released May 2022, Publisher(s): Wiley-IEEE Press, ISBN: 9781119785163.

REFERENCES:

1. Rajeev Alur, Principles of Cyber Physical Systems, 1st Edition, MIT Press 2015.

2. Raj Rajkumar, Dionisio de Niz, Mark Klein Cyber-Physical Systems, Released December 2016, Publisher(s): Addison-Wesley Professional. ISBN: 9780133416169

Mapping of COs with POs / PSOs														
COs	POs												PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3		3		3	3				3			3	3
2	3				3					3			3	3
3	3	3			3					3			3	3
4	3				3	3				3			3	3
5	3	3	3		3	3				3			3	3
CO (W.A)	3	3	3		3	3				3			3	3

(9)

		22CIX37 - MOBILE DEVICE S (Common to 22AIX26 and 2						
				L	Т	Ρ	С	
				3	0	0	3	
PRE-RE		NIL						
Course	Objectives	To equip students with the kno	wledge and skills	nece	ssary t	0		
Course	Objective:	protect mobile devices and the						
	Outcomes dent will be a	able to	Cognitive Level		COs ii Seme			
CO1	security pro	retical knowledge to solve real-world oblems and scenarios related to nmunication.	Ар	20%				
CO2	authenticat	ss control mechanisms and user ion techniques to ensure that only individuals can access device	Ар	20%				
CO3	vulnerabilit	curity testing results and y reports to prioritize and address -level security issues.	An	20%				
CO4	List the var application	ious types of threats for MANET s.	An		20)%		
CO5	Discuss sec mobile commerce	urity challenges and attacks over services.	An 20%					

UNIT I - SECURITY ISSUES IN MOBILE COMMUNICATION	(9)						
Mobile Communication History - Security – Wired Vs Wireless, Security Issues in Wireless and Mobil Communications, Security Requirements in Wireless and Mobile Communications, Security for Mobile Applications, Advantages and Disadvantages of Application-level Security.							
UNIT II - SECURITY OF DEVICE, NETWORK, AND SERVER LEVELS	(9)						
Mobile Devices Security Requirements - Mobile Wireless network level Security, Server Level Security;							
Application - Level Security in Wireless Networks - Application of WLANs, Wireless Threa	ats, Some						
Vulnerabilities and Attach Methods over WLANs, Security for 1G Wi-Fi Applications, Security	urity for GWi-						
Fi Applications, Recent Security Schemes for Wi-Fi Applications.							
UNIT III - APPLICATION-LEVEL SECURITY IN CELLULAR NETWORKS	(9)						
Generations of Cellular Networks - Security Issues and attacks in cellular networks - GSM	1 Security for						
applications - GPRS Security for applications - UMTS security for applications - 3G secur	ity for						
applications - Some of Security and authentication Solutions.							

UNIT IV- APPLICATION-LEVEL SECURITY IN MANETS	(9)						
MANETs-Applications of MANETs, MANET Features, Security Challenges in MANETs; Security Attacks on MANETs - External Threats for MANET applications, Internal threats for MANET Applications, Some of the Security Solutions; Ubiquitous Computing - Need for Novel Security Schemes for UC Security Challenges for UC, Security Attacks on UC networks, Some of the security solutions for UC.							
UNIT V - SECURITY FOR MOBILE COMMERCE APPLICATION							
M-commerce Applications - M-commerce Initiatives - Security Challenges in Mobile E-co	ommerce -						
Types of Attacks on Mobile E-commerce - A Secure M-commerce Model Based on Wirel	ess Local						
Area Network – Some of M - Commerce Security Solutions.							
τοται-							

TOTAL= 45 PERIODS

TEXTBOOKS:

1. Pallapa Venkata ram, Satish Babu, "Wireless and Mobile Network Security", 1st Edition, Tata McGraw Hill,2010.

2. Man Ho Au, Raymond Choo," Mobile Security and Privacy",1st Edition, Syngress Publisher,2016 **REFERENCES:**

1. Frank Adelstein, K.S.Gupta , "Fundamentals of Mobile and Pervasive Computing", 1st Edition, Tata McGraw Hill 2005.

2. Randall k. Nichols, Panos C. Lekkas, "Wireless Security Models, Threats and Solutions", 1st Edition, Tata McGraw Hill, 2006.

3. Bruce Potter and Bob Fleck, "802.11 Security", 1st Edition, SPD O'REILLY 2005.

4. James Kempf, "Guide to Wireless Network Security, Springer. Wireless Internet Security -

Architecture and Protocols", 1st Edition, Cambridge University Press, 2008.

	Mapping of COs with POs / PSOs													
		Pos										PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3		3	3	3	3				3			3	3
2	3	3	3	3	3	3				3			3	3
3	3		3	3	3					3			3	3
4	3		3	3	3					3			3	3
5	3	3	3	3	3	3				3			3	3
CO (W.A)	3	3	3	3	3	3				3			3	3

				L	Т	Р	0			
				3	0	0	3			
PRE-RE	QUISITE: N			- u et - u	din a	of how				
Course (Objective:	 To provide students with a con work, their implementation, ar 					V ID			
				1		tage o	of			
Course (Outcomes		Cognitive		COs i	n End				
The stud	lent will be al	ole to	Level	Semester						
				E	xami	natio	n			
CO1	•	actical skills in deploying and ring IDS in different environments.	An		2	0%				
CO2		tiate various IDS technologies and re a network using IDS tools.	An		2	0%				
CO3	-	re a server and its hosts for real-time n Detection	Ар	20%						
CO4	to secur	Select and install a IDS system such as Snort to secure the network.An				0%				
CO5	Snort ad	comprehensive reports summarizing ctivity, detected threats, and e actions.	С		2	0%	%			
UNIT I ·		TION					(9			
analysis specifica Detectic	schemes, A ation-based on, Stateful p	sion Detection – Intrusion detection .ttacks, Detection approaches –Misus detection – hybrid detection-method protocol analysis Types of IDS, Informa sed information sources.	se detection – a lologies-Signatur	inamo e & A	ly de Anoma	tectio aly ba	n – sed			
UNIT II	- THEORETI	CAL FOUNDATIONS OF DETECTION	TECHNOLOGIES	5			(9)			
Support v Network capabiliti	vector machi Architectures es, detection	v detection system – fuzzy logic – Baye ne - IDS TECHNOLOGIES: Components s Security capabilities - Information ga & prevention capabilities. Network pr	s & Architecture- thering capabilitie	Typica es, log	l com Iging	poner	nts,			
5	schemes. I - NETWOR	K BASED IDS					(9)			

UNIT IV - HOST BASED IDS

Components and Architecture-Typical components, Network architectures, Agent locations, host

architectures. Security capabilities-Logging, detection, prevention and other capabilities. Using & Integrating multiple IDPS technologies-Need for multiple IDPS technologies, Integrating different IDPS technologies-Other technologies with IDPS capabilities, Anti – malware technologies, Firewalls and Routers, Honeypots.

UNIT V - APPLICATIONS AND SNORT TOOLS

(9)

(9)

Tool Selection and Acquisition Process - Bro Intrusion Detection – Prelude Intrusion Detection – Cisco Security IDS - Snorts Intrusion Detection – NFR security - Introduction to Snort, Working with Snort Rules, Snort configuration, Snort with MySQL, Running Snort on Multiple Network Interfaces.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

1. Carl Endorf, Eugene Schultz and Jim Mellander" Intrusion Detection & Prevention", 1st Edition, Tata McGraw-Hill, 2006.

2. Ali A. Ghorbani, Wei Lu, "Network Intrusion Detection and Prevention: Concepts and Techniques", Springer, 2010.

REFERENCES:

1. Stephen Northcutt, Judy Novak: "Network Intrusion Detection", 3rd Edition, New Riders Publishing, 2002.

2. Paul E. Proctor, "The Practical Intrusion Detection Handbook ", Prentice Hall, 2001.

3. Rafeeq Rehman: "Intrusion Detection with SNORT, Apache, MySQL, PHP and ACID," 1st

Edition, Prentice Hall, 2003

	Mapping of COs with POs / PSOs													
COs	POs												PSOs	
	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3			2									3	
2													3	
3	3		3		3									
4			3			2								3
5	3													
CO (W.A)	3		3	2	3	2							3	3

22CIX41 DESIGN THINKING (Common to 22ITC08)

L	Т	Ρ	С
3	0	0	3

PRE-REQUISITE . INIL	
Course Objective:	To expose the student with state-of-the-art perspectives, ideas, concepts, and solutions related to the design and execution of projects using design thinking principles

	e Outcomes udents will be able to	Cognitive Level	Weightage of COs in End Semester Examination
CO1	Apply design thinking and its different phases for business process.	Ар	20%
CO2	Empathize with user situations and be able to define clear problem statement	An	20%
CO3	Create prototypes for clear understanding of the problem statement and Use the different ideation methods.	Ар	20%
CO4	Implement Plan through engage and evolve phase that will deliver/achieve the Big Idea/solution deduced from earlier phases	An	40%
CO5	Conceive, organize, lead and implement projects in interdisciplinary domain and address social concerns with innovative approaches	С	Internal Assessment

UNIT I – Introduction to design thinking

(9)

Introduction – Need for design thinking – Design and Business – The Design Process — Phases in design thinking process – Five stage mode- Design Brief –Visualization – Four Questions, Ten Tools – Explore – STEEP Analysis – Strategic Priorities – Activity System – Stakeholder Mapping – Opportunity Framing.

UNIT II - Empathize phase

Visualization – Mind Mapping – Empathize – Empathize with the users - Steps in empathize phase – Developing empathy towards people –Observations – Need Finding – User Personas.

UNIT-III Ideate phase and Prototype phase

(9)

(9)

(9)

What is ideation – Need for ideation – Uses of ideation – Ideation Methods- Brainstorming-Rules for brainstorming -Ideation games - Six Thinking Hats –Doodling – Use of doodling in expressing creative ideas- Idea refinement. Prototyping- Guidelines for prototyping –Types of prototyping- Importance of prototyping in design thinking.

UNIT IV – Engage phase

Assumption Testing-Rapid Prototyping – Engage – Story telling – Characteristics of good stories – Reaching users through stories-Storyboarding-Characteristics of good stories-Value proposition-Guidelines to write value proposition

UNIT V – Evolve phase	(9)
Customer Co-Creation Learning Launch – Leading Growth and Innovation – Evolve– Co	oncept Synthesis
- Strategic Requirements - Evolved Activity Systems- Quick Wins Agile Methodology -	-
Complementing agile with design thinking	
τοτΑ	L= 45 PERIODS

TEXT BOOKS: Lee Chong Hwa "Design Thinking The Guidebook", Design Thinking Master Trainers of Bhutan, 1st Edition, 2017 Eli Woolery, Design Thinking Handbook, Invision, 2019 Tim Brown, Change by Design: How Design Thinking Transforms Organizations and Inspires, 1stEdition, HarperCollins, 2009 REFERENCE:

1. Jeanne Liedtka, Tim Ogilvie, and Rachel Brozenske, "The Designing for Growth FieldBook: A Step-by-Step Project Guide", Columbia University Press, 2014

	Mapping of COs with POs / PSOs														
	POs												PSOs		
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3												3		
2		3											3		
3			3		3								3		
4				3										2	
5					3	3					2	2		2	
CO (W.A)	3	3	3	3	3	3					2	2	3	2	

Approved by Twelfth Academic Council

	22CIX42 - FUNDAMENTALS OF DATA SCIENCE (Common to 22ITC10)												
					L	Т	Р	С					
					3	0	0	3					
PRE-RE	QUISITE : NIL												
Course	Objective:	To provide insights fro	m data using c	lata science co	oncep	ts in p	ython						
	Outcomes lents will be ab	le to	Cognitive Level	e Weightage of COs in End Semest Examination									
CO1		undamental knowledge nce to solve real time	Ар	20									
CO2	-	visualize data for representation.	An			20							
CO3	Demonstrate analysis	e proficiency in data	Ар	30									
CO4		periments of data cepts in python	An	30									
CO5		utions for real world th standard datasets cience tools	с	Internal Assessment									

UNIT I - INTRODUCTION

Data Science: Benefits and uses – facets of data - Data Science Process: Overview – Defining research goals – Retrieving data – Data preparation - Exploratory Data analysis – build the model– presenting findings and building applications - Data Mining - Data Warehousing – Basic Statistical descriptions of Data

UNIT II - DESCRIBING DATA

Types of Data - Types of Variables -Describing Data with Tables and Graphs –Describing Data with Averages - Describing Variability - Normal Distributions and Standard (z) Scores

UNIT III - DESCRIBING RELATIONSHIPS

Correlation –Scatter plots –correlation coefficient for quantitative data –computational formula for correlation coefficient – Regression –regression line –least squares regression line – Standard error of estimate – interpretation of r2 –multiple regression equations –regression towards the mean.

(9)

(9)

UNIT IV - PYTHON LIBRARIES FOR DATA WRANGLING

Basics of Numpy arrays –aggregations –computations on arrays –comparisons, masks, boolean logic – fancy indexing – structured arrays – Data manipulation with Pandas – data indexing and selection – operating on data – missing data – Hierarchical indexing – combining datasets – aggregation and grouping – pivot tables.

UNIT V - DATA VISUALIZATION

Importing Matplotlib – Line plots – Scatter plots – visualizing errors – density and contour plots – Histograms – legends – colors – subplots – text and annotation – customization – three dimensional plotting - Geographic Data with Basemap - Visualization with Seaborn.

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- 1. David Cielen, Arno D. B. Meysman, and Mohamed Ali, "Introducing Data Science", Manning Publications, 2016. (Unit I)
- 2. Robert S. Witte and John S. Witte, "Statistics", Eleventh Edition, Wiley Publications, 2017. (Units II and III) 69
- 3. Jake VanderPlas, "Python Data Science Handbook", O'Reilly, 2016. (Units IV and V)

REFERENCE:

1. Allen B. Downey, "Think Stats: Exploratory Data Analysis in Python", Green Tea Press, 2014.

					Марр	ing of	COs w	ith PO	s / PSC)s				
COs	POs										PSOs			
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3													
2		3												
3			3										3	
4			3	3	3									
5			3	3	3				2	2				3
CO (W.A)	3	3	3	3	3				2	2			3	3

Approved by Twelfth Academic Council

	22CIX43 - AGILE METHO (Common to 22CSX51 and					
			L	Т	Р	С
			3	0	0	3
PRE-REQUIS	SITE : NIL					
Course Objective:	Estimate in an incremental and iterativeApply agile principles to a range of deci	51		cal techr	niques	
Course Outc Students will		Cognitive Le	evel	En	ntage o d Seme caminat	
CO1	Analyze the ethical considerations and team dynamics	An			20%	
CO2	Apply scrum practices in project management	Ар			30%	
CO3	Interpret and utilize agile metrics for informed decision-making	An			30%	
CO4	Conduct Effective Requirements Engineering in Agile	An			20%	
CO5	Apply agile testing practices to ensure high product quality.	Ар		Interr	nal Asse	ssment

UNIT I – AGILE METHODOLOGY

Theories for Agile Management – Agile Software Development – Traditional Model vs. Agile Model - Classification of Agile Methods – Agile Manifesto and Principles – Agile Project Management – Agile Team Interactions – Ethics in Agile Teams - Agility in Design, Testing – Agile Documentations – Agile Drivers, Capabilities and Values

UNIT II - AGILE PROCESSES

Need of scrum, Scrum practices –Working of scrum, Project velocity, Burn down chart, Sprint backlog, Sprint planning and retrospective, Daily scrum, Scrum roles– Product Owner, Scrum Master, Scrum Team. Extreme Programming- Core principles, values and practices. Kanban, Feature-driven development, Lean software development.

UNIT III - AGILITY AND KNOWLEDGE MANAGEMENT

Agile Information Systems – Agile Decision Making - Earl'S Schools of KM – Institutional Knowledge Evolution Cycle – Development, Acquisition, Refinement, Distribution, Deployment, Leveraging – KM in Software Engineering – Managing Software Knowledge – Challenges of Migrating to Agile Methodologies – Agile Knowledge Sharing – Role of Story-Cards – Story-Card Maturity Model (SMM)

(9)

(9)

UNIT IV - AGILITY AND REQUIREMENTS ENGINEERING

Overview of RE Using Agile – Managing Unstable Requirements – Requirements Elicitation – Agile Requirements Abstraction Model – Requirements Management in Agile Environment, Agile Requirements Prioritization – Agile Requirements Modeling and Generation – Concurrency in Agile Requirements Generation.

UNIT V - AGILE TESTING

(9)

The Agile lifecycle and its impact on testing, Test-Driven Development (TDD), xUnit framework and tools for TDD, Testing user stories - acceptance tests and scenarios, Planning and managing testing cycle, Exploratory testing, Risk based testing, Regression tests, Test Automation, Tools : Jira

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- 1. David J. Anderson and Eli Schragenheim, "Agile Management for Software Engineering: Applying the Theory of Constraints or Business Results", Prentice Hall, 2003
- 2. Ken Schawber, Mike Beedle, "Agile Software Development with Scrum", International Edition, Pearson, 2002.
- 3. Hazza and Dubinsky, "Agile Software Engineering, Series: Undergraduate Topics in Computer Science", Springer, 2009

REFERENCES:

- 1. Dingsoyr, Torgeir, Dyba, Tore, Moe, Nils Brede (Eds.), —Agile Software Development, Current Research and Future Directions, Springer-Verlag Berlin Heidelberg, 2010
- 2. Kevin C. Desouza, —Agile information systems: conceptualization, construction, and management, Butterworth-Heinemann, 2007.

				Ν	lappin	g of CC	Ds with	POs /	PSOs					
COs		POs										PS	SOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3										2			3
2			3		3			2	2		2			
3	3										2		3	3
4	3							2		2				
5			3		3						2			3
CO (W.A)	3		3		3			2	2	2	2		3	3

218 | Page

Approved by Twelfth Academic Council

		22CIX44 - CLOUD COMPU (Common to 22CSX41,22ITC15 a					
			-	L	Т	Ρ	С
				3	0	0	3
PRE-R	REQUISITE :NIL						
		Understand the fundamental ideas beh	nind Cloud Comp	uting,	the e	volutio	on
Course	e Objective:	of the paradigm, its applicability; bene	fits, as well as cur	rent a	nd fut	ure	
		challenges			• • •		
Course	e Outcomes		Cognitive		ightao End S	-	
The Stu	udent will be al	ble to	Level		End S Exami		
CO1		ncept of virtualization and Experiment zation of hardware resources and	Ар		40	0%	
CO2	-	ous cloud programming models and to solve problems on the cloud.	An		20	0%	
CO3	Develop and up a cloud e	l deploy services on the cloud and set nvironment	Ар		20	0%	
CO4	computing	e security issues related to cloud and handle the security threats and ferent cloud delivery design models	An		20	0%	
CO5	Build cloud s	solutions for the societal problems	An	Inte	ernal A	ssessi	nent

UNIT I CLOUD ARCHITECTURE MODELS AND INFRASTRUCTURE	(9)
Cloud Architecture: System Models for Distributed and Cloud Computing – NIST Cloud Compu	uting
Reference Architecture – Cloud deployment models – Cloud service models; Cloud Infrastructu	ure:
Architectural Design of Compute and Storage Clouds – Design Challenges	
UNIT II -VIRTUALIZATION BASICS	(9)
Virtual Machine Basics – Taxonomy of Virtual Machines – Hypervisor – Key Concepts – Virtualiz	zation
structure – Implementation levels of virtualization – Virtualization Types: Full Virtualization – Pa	ara
Virtualization – Hardware Virtualization – Virtualization of CPU, Memory and I/O devices.	
UNIT III -VIRTUALIZATION INFRASTRUCTURE AND DOCKER	(9)
Desktop Virtualization – Network Virtualization – Storage Virtualization – System-level of Oper Virtualization – Application Virtualization – Virtual clusters and Resource Management – Con- vs. Virtual Machines – Introduction to Docker – Docker Components – Docker Container – I	tainers

Images and Repositories

UNIT IV -CLOUD DEPLOYMENT ENVIRONMENT

Google App Engine – Amazon AWS – Microsoft Azure; Cloud Software Environments – Eucalyptus – OpenStack

UNIT V -CLOUD SECURITY

Virtualization System-Specific Attacks: Guest hopping – VM migration attack – hyperjacking. Data Security and Storage; Identity and Access Management (IAM) - IAM Challenges - IAM Architecture and Practice.

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- 1. Kai Hwang, Geoffrey C Fox, Jack G Dongarra, "Distributed and Cloud Computing, From Parallel Processing to the Internet of Things", Morgan Kaufmann Publishers, 2012.
- 2. James Turnbull, "The Docker Book", O'Reilly Publishers, 2014.
- 3. Krutz, R. L., Vines, R. D, "Cloud security. A Comprehensive Guide to Secure Cloud Computing", Wiley Publishing, 2010.

REFERENCES:

1. James E. Smith, Ravi Nair, "Virtual Machines: Versatile Platforms for Systems and Processes", Elsevier/Morgan Kaufmann, 2005.

2. Tim Mather, Subra Kumaraswamy, and Shahed Latif, "Cloud Security and Privacy: an enterprise perspective on risks and compliance", O'Reilly Media, Inc., 2009.

				N	lappin	g of C	Os witł	n POs /	/ PSOs					
						РС	Ds						PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3			3									3	
2	3	3											3	3
3			3											3
4				3									3	
5					3	3								3
CO (W.A)	3	3	3	3	3	3							3	3

220 | Page

(9)

		22CIX45 (Common to 22CSX42	- UI AND UX DE 2,22ITX42,22AIX		1)			
		`			Ĺ	Т	Ρ	С
					3	0	0	3
PRE-R	EQUISITE : NI	L						
Course	Objective:	To understand fundam applications.	ental concepts of	f UI/UX design ar	nd to c	levelo	p real	time
	Outcomes Ident will be al	ble to		Cognitive Level	in	End S	ge of (emest natior	ter
CO1	Apply UI of Applications	design concepts for	building user	Ар		2	0%	
CO2	Demonstrate application.	e UI Design of any	/ product or	An		2	0%	
CO3	Evaluate UX	Skills in product develo	pment.	Ар		2	0%	
CO4		frame and Prototype essful products through		An		4	0%	
CO5	Present th teamwork ar	neir web design nd reflective learning.	demonstrating	Ар	Inte	ernal A	ssessr	nent

UNIT I - FOUNDATIONS OF DESIGN	(9)
UI vs. UX Design - Core Stages of Design Thinking - Divergent and Converge	nt Thinking -
Brainstorming and Game storming - Observational Empathy.	
UNIT II - FOUNDATIONS OF UI DESIGN	(9)

UNIT II - FOUNDATIONS OF UI DESIGN

Visual and UI Principles - UI Elements and Patterns - Interaction Behaviors and Principles - Branding - Style Guides.

UNIT III - FOUNDATIONS OF UX DESIGN

Introduction to User Experience - Why You Should Care about User Experience - Understanding User Experience - Defining the UX Design Process and its Methodology - Research in User Experience Design - Tools and Method used for Research - User Needs and its Goals - Know about Business Goals- FIGMA tool

UNIT IV - WIREFRAMING, PROTOTYPING AND TESTING

Sketching Principles - Sketching Red Routes - Responsive Design – Wireframing - Creating Wireflows - Building a Prototype - Building High-Fidelity Mockups - Designing Efficiently with Tools Interaction Patterns - Conducting Usability Tests - Other Evaluative User Research Methods -Synthesizing Test Findings - Prototype Iteration.

UNIT V – RESEARCH, DESIGNING, IDEATING, & INFORMATION ARCHITECTURE

Identifying and Writing Problem Statements - Identifying Appropriate Research Methods - Creating Personas - Solution Ideation - Creating User Stories - Creating Scenarios - Flow Diagrams - Flow Mapping - Information Architecture.

(9)

(9)

TEXT BOOKS:

1. Joel Marsh, "UX for Beginners", O'Reilly , 2022.

2. Jon Yablonski, "Laws of UX using Psychology to Design Better Product & Services" O'Reilly 2021.

REFERENCES:

- 1. Jenifer Tidwell, Charles Brewer, Aynne Valencia, "Designing Interface" 3 rdEdition, O'Reilly 2020.
- 2. Steve Schoger, Adam Wathan "Refactoring UI", 2018.
- 3. Steve Krug, "Don't Make Me Think, Revisited: A Commonsense Approach to Web & Mobile", Third Edition, 2015.
- 4. https://www.nngroup.com/articles/
- 5. 5. https://www.interaction-design.org/literature.

				N	lappin	g of C	Os witl	1 POs /	PSOs					
						РС	Os						PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3												3	
2	3	3											3	
3		3	3		3									3
4				3						3			3	
5										3	3	3		3
CO (W.A)	3	3	3	3	3					3	3	3	3	3

		22CIX46 – DEV0 (Common to 22CSX43,22ITX43,22A		K4 6)			
		(L	Т	Ρ	С
				3	0	0	3
PRE-R	EQUISITE : NI	L					
Course	Objective:	To introduce DevOps terminology, define and configuration management.	nition & concepts	s, versi	on co	ntrol to	ools
	Outcomes Ident will be at	ble to	Cognitive Level	in	End S	ge of (emest natior	ter
CO1	,	ferent actions performed through rol tools like Git	An		2	0%	
CO2	Continuous	insfor Continuous Integration and Testing and Continuous Deployment automating test cases using Maven &	Ар		3	0%	
CO3	Design con using Ansible	figuration management application e	An		2	0%	
CO4		he configuration management using I leverage Cloud-based DevOps tools DevOps	An		3	0%	
CO5		e benefits and drive the adoption of Devops tools to solve real world	An	Inte	ernal A	ssessr	nent

UNIT I- INTRODUCTION TO DEVOPS	(9)
Devops Essentials - Introduction To AWS, GCP, Azure - Version control systems: Git and	Github.
UNIT II - COMPILE AND BUILD USING MAVEN & GRADLE	(9)
Introduction, Installation of Maven, POM files, Maven Build lifecycle, Build phases(c	ompile build,
test, package) Maven Profiles, Maven repositories(local, central, global), Maven plu	igins, Maven
create and build Artificats, Dependency management, Installation of Gradle, Understan	5
Gradle	J
UNIT III - CONTINUOUS INTEGRATION USING JENKINS	(9)
Install & Configure Jenkins, Jenkins Architecture Overview, Creating a Jenkins Job, (Configuring a
Jenkins job, Introduction to Plugins, Adding Plugins to Jenkins, Commonly used plugir	ns (Git Plugin,
Parameter Plugin, HTML Publisher, Copy Artifact and Extended choice parameters)	Configuring
Jenkins to work with java, Git and Maven, Creating a Jenkins Build and Jenkins workspa	ce.
UNIT IV - CONFIGURATION MANAGEMENT USING ANSIBLE	(9)
Ansible Introduction, Installation, Ansible master/slave configuration, YAML basics, Ans	ible modules,
Ansible Inventory files, Ansible playbooks, Ansible Roles, adhoc commands in ansible	

UNIT V – BUILDING DEVOPS PIPELINES USING AZURE	(9)
Create Github Account, Create Repository, Create Azure Organization, Create a new pip sample code, Modify azure-pipelines.yaml file	eline, Build a
TEXT BOOKS :	
1. Roberto Vormittag, "A Practical Guide to Git and GitHub for Windows Users: From Beg Expert in Easy Step-By-Step Exercises", Second Edition, Kindle Edition, 2016.	inner to
2. Jason Cannon, "Linux for Beginners: An Introduction to the Linux Operating System and Line", Kindle Edition, 2014	d Command

REFERENCES:

1. Hands-On Azure Devops: Cicd Implementation For Mobile, Hybrid, And Web Applications Using Azure Devops And Microsoft Azure: CICD Implementation for ... DevOps and Microsoft Azure (English Edition) Paperback – 1 January 2020

2. by Mitesh Soni

3. Jeff Geerling, "Ansible for DevOps: Server and configuration management for humans", First Edition, 2015.

4. David Johnson, "Ansible for DevOps: Everything You Need to Know to Use Ansible for DevOps", Second Edition, 2016.

5. MariotTsitoara, "Ansible 6. Beginning Git and GitHub: A Comprehensive Guide to Version Control, Project Management, and Teamwork for the New Developer", Second Edition, 2019.

6. https://www.jenkins.io/user-handbook.pdf

7. https://maven.apache.org/guides/getting-started/

	Mapping of COs with POs / PSOs													
	POs											PS	PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1		3											3	
2	3				3								3	
3			3											3
4				3	3								3	
5						3				3				3
CO (W.A)	3	3	3	3	3	3				3			3	3

		22CIX47 - SOCIAL AND INFORMAT (Common to 22CSX46,22ITX46,22AI)					
				L	Т	Р	С
				3	0	0	3
PRE-R	EQUISITE :NIL						
		To determine the theories and method	ods for analyzing	netw	ork da	ita,	
Course	Objective:	understanding network formation, an world problems.	nd applying netw	ork ar	al-		
	e Outcomes Ident will be ab	le to	Cognitive Level	in	End S	ge of (emest natior	ter
CO1	Apply vario visualizing ne	us techniques for analyzing and etwork data.	Ар				
CO2	2	efficiency of different measurements of social network.	An		2	5%	
CO3	Develop rea analysis in va	al-world applications of network rious domains.	Ар		2	5%	
CO4		he solutions for problems in case ated to social and information	An	25%			
CO5	-	ne norms of professional ethics in sharing in social networks.	Ар	Internal Assessme			

UNIT I- INTRODUCTION TO SOCIAL AND INFORMATION NETWORKS (9)

Overview of social and information networks - Basic terminology and concepts - Types of networks :Social networks, Information networks, Citation networks - Network Representations and Data Formats

UNIT II – NETWORK STRUCTURE AND PROPERTIES AND MODELS

Degree distribution and Power loss – Clustering Co-efficients – Small World Phenomenon – Network Motifs and Patterns. Random Graphs – Scale Free Networks – Exponential Random Graphs – Preferential attachment Models

UNIT III – INFORMATION DIFFUSION AND COMMUNITY DETECTION

Models of Information Diffusion – Influence Maximization – Contagion Models – Cascading behavior in networks – Community detection: Modularity and Community structure – Clustering algorithms : Louvain, Girvan-Newman – overlapping communities – Evaluation metrics for

Approved by Twelfth Academic Council

(9)

community detection

UNIT IV – ALGORITHMIC ASPECTS OF NETWORK ANALYSIS

Network resilience and Robustness: Vulnerability of networks to nodes and edge removal – Resilience strategies – Robustness metrics – Cascading failures and network collapse. Algorithmic Aspects of Network Analysis: Centrality measures: Degree centrality and Betweenness centrality – Page Rank Algorithm – Network Embedding Techniques – Graph Neural Networks

UNIT V – APPLICATIONS OF SOCIAL AND INFORMATION NETWORKS

(9)

(9)

Social media analysis – Recommender system – Epidemiology and disease spread modeling – Online advertising and viral marketing

TOTAL(L:45) = 45 PERIODS

TEXT E	BOOKS:
--------	--------

1. "Networks, Crowds, and Markets: Reasoning About a Highly Connected World" by David Easley and Jon Kleinberg, first edition, 2010

2. "Network Science" by Albert-Laszlo Barabasi, first edition, 2016

3. "Mining the Social Web: Data Mining Facebook, Twitter, LinkedIn, Instagram, GitHub, and More" by Matthew A. Russell, Second edition, O'Reilly Media , 2019

REFERENCES:

1. "Social Network Analysis: Methods and Applications" by Stanley Wasserman and Katherine Faust:

2."The Structure and Dynamics of Networks" by Mark Newman, This book covers the fundamental principles of network theory, including network structure, dynamics, and applications in various fields.

	Mapping of COs with POs / PSOs													
	POs												PS	Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3													3
2		3											3	
3			3										3	
4				3		3								3
5								3		3		3		3
CO (W.A)	3	3	3	3		3		3		3		3	3	3

226 | Page

	22CIX48 - MULTIMEDIA DATA COMPRESSION AND (Common to 22CSX48,22ITX48,22AIX48 and 22	 				
		L	Т	Ρ	С	
		3	0	0	3	
PRE-R	EQUISITE :NIL					
Course	 Objective: Apply data compression algorithms Explain Multimedia Information Sharing 					
	e Outcomes Cogniti ident will be able to Level	Weightage of CC in End Semester Examination				
CO1	Apply compression algorithms related tomultimediacomponentssuchasAptext,speech,audio,image and video.	20%				
CO2	Analyze the various image compression techniques and apply efficient technique for An multimedia content	20%				
CO3	Design a video using advanced video compression techniques and ensure efficient An disk placement.	40%				
CO4	Implement scheduling methods for request An streams	20%				
CO5	Submit a Multimedia presentation on assigned An topics related to course	Internal Assessm				

UNIT I- BASICS OF DATA COMPRESSION

MULTIMEDIA: Introduction-Uses of multimedia, Text, Images, Sound, Animation, Video—Lossless and LossyCompression– Basics of Huffmann coding- Arithmetic coding- Dictionary techniques-Context based compression – Applications

UNIT II - IMAGE COMPRESSION

Lossless Image compression – JPEG-CALIC-JPEG LS-Prediction using conditional averages Progressive Image Transmission – Lossless Image compression formats – Applications - Facsimile encoding

UNIT III - VIDEO COMPRESSION

Introduction – Motion Compensation – Video Signal Representation – H.261 – MPEG-1- MPEG-2-H.263.

UNIT IV - DATA PLACEMENT ON DISKS

Statistical placement on Disks – Striping on Disks – Replication Placement on Disks – Constraint allocation on Disks – Tertiary storage Devices – Continuous Placement on Hierarchical storage system - Statistical placement on Hierarchical storage systems – Constraint allocation on Hierarchical storage system.

227 | Page

Approved by Twelfth Academic Council

- (9)

(9)

(9)

UNIT V – DISK SCHEDULING METHODS

Scheduling methods for disk requests – Feasibility conditions of concurrent streams– Scheduling methods for request streams

TEXT BOOKS:

- 1. 1.KhalidSayood, Introduction to Data Compression, Morgan Kaufmann Series in Multimedia Information and Systems, 2018, 5th Edition.
- 2. Philip K.C.Tse, Multimedia Information Storage and Retrieval: Techniques and Technologies, 2008

REFERENCES:

- 1. David Salomon, A concise introduction to data compression, 2008.
- 2. Lenald Best, Best's Guide to Live Stream Video Broadcasting, BCB Live Teaching series, 2017.
- 3. Yun-Qing Shi, Image And Video Compression For Multimedia Engineering Fundamentals Algorithms And Standards, Taylor& Francis, 2019
- 4. Irina Bocharova, Compression for Multimedia, Cambridge University Press; 1st edition, 2009

	Mapping of COs with POs / PSOs													
	POs													Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3												3	
2		3											3	
3			3	3	3									3
4				3									3	
5										3				3
CO (W.A)	3	3	3	3	3					3			3	3

228 | Page

Approved by Twelfth Academic Council

		22CIX51-CLOUD SERVICES MA (Common to 22CCX42 and	_					
			-	L	Т	Ρ	С	
				3	0	0	3	
PRE-R	EQUISITE : N	IIL						
Course	e Objective:	Illustrate the benefits and drive the ac real world problems	loption of cloud	-based	servio	es to	solve	
	e Outcomes udent will be a	ble to	Cognitive Level	in		emest	er	
CO1	definition &	d Service Management terminology, concepts and predict benefits of cloud nagement with traditional IT service nt.	Ар		in End Semester Examination 20% 40%			
CO2	-	ategies to reduce risk and manage iated with adoption of cloud services	An		20%			
CO3		d-design skills to build and automate utions using cloud technologies.	Ар		20)%		
CO4	Demonstrate deploying a business en	ind running cloud-based services in a	An	20%				
CO5		ong theoretical foundation leading to and excitement towards adoption of I services	An	Inte	ernal A	ssessr	nent	

UNIT-I CLOUD SERVICE MANAGEMENT FUNDAMENTALS

Cloud Ecosystem-The Essential Characteristics-Basics of Information Technology Service Management and Cloud Service Management-Service Perspectives-Cloud Service Models-Cloud Service Deployment Models

UNIT-II CLOUD SERVICES STRATEGY

Cloud Strategy Fundamentals, Cloud Strategy Management Framework, Cloud Policy, Key Driver for Adoption, Risk Management, IT Capacity and Utilization, Demand and Capacity matching, Demand Queueing, Change Management, Cloud Service Architecture

UNIT-III CLOUD SERVICE MANAGEMENT

Cloud Service Reference Model-Cloud Service Life Cycle-Basics of Cloud Service Design-Dealing with Legacy Systems and Services-Benchmarking of Cloud Services-Cloud Service Capacity

(9)

(9)

Planning-Cloud Service Deployment and Migration-Cloud Marketplace-Cloud Service Operations Management.

UNIT- IV CLOUD SERVICE ECONOMICS

Pricing models for Cloud Services, Freemium, Pay Per Reservation, Pay per User, Subscription based Charging, Procurement of Cloud-based Services, Capex vs Opex Shift, Cloud service Charging, Cloud Cost Models

UNIT -V CLOUD SERVICE GOVERNANCE & VALUE

IT Governance Definition-Cloud Governance Definition-Cloud Governance Framework-Cloud Governance Structure-Cloud Governance Considerations-Cloud Service Model Risk Matrix-Understanding Value of Cloud Services- Measuring the value of Cloud Services- Balanced Scorecard-Total Cost of Ownership

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Cloud Service Management and Governance: Smart Service Management in Cloud Era by Enamul Hague, Enel Publications 2020.
- 2. Cloud Computing Design Patterns by Thomas Erl, Robert Cope, Amin Naserpour 2017.
- 3. Cloud Computing: Concepts, Technology & Architecture by Thomas Erl, Ricardo Puttini, Zaigham Mohammad 2013.

REFERENCES:

- 1. Economics of Cloud Computing by Praveen Ayyappa, LAP Lambert Academic Publishing 2020.
- 2. Mastering Cloud Computing Foundations and Applications Programming Rajkumar Buyya, Christian Vechhiola, S. Thamarai Selvi 2013.

	Mapping of COs with POs / PSOs													
	POs													Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3												3	
2		3											3	
3			3		3									3
4				3									3	
5										3		3		3
CO (W.A)	3	3	3	3						3		3	3	3

230 | Page

(9)

22CIX52 - SOFTWARE TESTING TOOLS AND TECHNIQUES (Common to 22CSX54,22ITX54,22AIX54 and 22CCX54)

37)			
L	Т	Р	С
3	0	0	3

PRE-REQUISITE : NIL

Course Objective:

• To equip students with the knowledge necessary to effectively utilize software testing tools and techniques in real-world software development environments.

(9)

(9)

(9)

(9)

Cours	e Outcomes	Cognitive	Weightage of COs in End
The st	udents will be able to	Level	Semester Examination
CO1	Apply the knowledge of software testing fundamentals to a real-world problem	Ар	30%
CO2	Analyze various software testing levels	An	20%
CO3	Make use of structured and analytical testing approaches to ensure thorough testing	Ар	30%
CO4	Identify quality testing processes and tools in projects	An	20%
CO5	Use WinRunner tool to perform automated testing	Ар	Internal Assessment

UNIT I – INTRODUCTION

Introduction – The Testing process – Measurement of Testing - Basic Terminology Related to Software Testing - Testing Life Cycle – Principles of Testing – Limitations of Testing – Testing tools, techniques and metrics.

UNIT II - LEVELS OF TESTING

Unit Testing – Integration Testing – System Testing – Acceptance Testing – Object Oriented Testing – Automated Testing.

UNIT III - STRUCTURED AND ANALYTICAL TESTING

Structure-Based Testing: Introduction - Condition Coverage - Decision Condition Coverage - Modified Condition/Decision Coverage (MC/DC) - Multiple Condition Coverage - Path Testing - APT Testing; Analytical Techniques: Static Analysis - Dynamic Analysis.

UNIT IV - QUALITY TESTING AND TOOLS

Quality Characteristics for technical testing: Security - Reliability - Efficiency – Maintainability - Portability - sample questionnaire; Test tools and Automation: Test automation project - Specific test tools: Fault Seeding and Fault Injection Tools – Performance Testing and Monitoring Tools – Tools for Web Testing.

UNIT V - SOFTWARE TESTING TOOL

(9)

Need for Automated Testing Tool - Performance Testing Tools – WinRunner: Testing an application using WinRunner – Test Script Language (TSL) – GUI MAP File – Synchronization of Test Cases – Data-Driven Testing – Rapid Test Script Wizard – Mapping Custom Object to a Standard Classes – Checking GUI Objects. Silk Test: Architecture – Testing an Application Using Silk Test – The 4Test Scripting Language – Checkpoints – Data-Driven Test Cases.

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- 1. Rajiv Chopra, Software Testing: A Self-Teaching Introduction, David Pallai, 2018.
- 2. Jamie L Mitchell, Rex Black, "Advanced Software Testing: Guide to the ISTQB Advanced Certification as an Advanced Technical Test Analyst", Second edition, Vol 3, 2015.

REFERENCE:

1. Dr.K.V.K.K Prasad, Software Testing Tools, Dream tech 2012.

				Ν	lappin	g of CC	Os with	POs /	PSOs						
60 -	POs													PSOs	
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3													3	
2		3													
3	3													3	
4		3												3	
5	3				3									3	
CO (W.A)	3	3			3									3	

Approved by Twelfth Academic Council

22CIX53 - SOFTWARE QUALITY ASSURANCE (Common to 22CSX55,22ITX55,22AIX56 and 22CCX56)

(Common to 22CSX55,2211X55,22AIX56 and 22CCX56)											
	L	Т	Ρ	С							
	3	0	0	3							
PRE-REQUISITE : NIL											

Course Objective:

 Acquire knowledge of software quality assurance principles, practices and standards

	e Outcomes udent will be able to	Cognitive Level	Weightage of COs in End Semester Examination
CO1	Evaluate the common challenges which affect software quality	An	20%
CO2	Apply the knowledge of SQA Components and Project Life Cycle	Ар	20%
CO3	EstablishSoftwareQualityInfrastructurethrough implementationof modern Engineering and IT tools	An	20%
CO4	Classify the various metrics used in quality management	An	20%
CO5	Apply SQA Standards, Certifications and Assessments	Ар	20%

UNIT I – INTRODUCTION TO SOFTWARE QUALITY & ARCHITECTURE

Need for Software quality – Quality challenges – Software quality assurance (SQA) – Definition and objectives – Software quality factors- McCall[®]s quality model – SQA system and architecture – Software Project life cycle Components – Pre project quality components – Development and quality plans.

UNIT II - SQA COMPONENTS AND PROJECT LIFE CYCLE_

Software Development methodologies – Quality assurance activities in the development process-Verification & Validation – Reviews – Software Testing – Software Testing implementations – Quality of software maintenance – Pre-Maintenance of software quality components – Quality assurance tools – CASE tools for software quality – Software maintenance quality – Project Management.

UNIT III - SOFTWARE QUALITY INFRASTRUCTURE

Procedures and work instructions - Templates - Checklists – 3S developmenting - Staff training and certification Corrective and preventive actions – Configuration management – Software change control – Configuration management audit -Documentation control – Storage and retrieval.

(9)

(9)

UNIT IV - SOFTWARE QUALITY MANAGEMENT & METRICS

Project process control – Computerized tools - Software quality metrics – Objectives of quality measurement – Process metrics – Product metrics – Implementation – Limitations of software metrics – Cost of software quality – Classical quality cost model – Extended model – Application of Cost model.

UNIT V - SQA STANDARDS, CERTIFICATIONS & ASSESSMENTS

Quality management standards – ISO 9001 and ISO 9000-3 – capability Maturity Models – CMM and CMMI assessment methodologies - Bootstrap methodology – SPICE Project – SQA project process standards – IEEE 1012 & 1028 – Organization of Quality Assurance – Department management responsibilities – Project management responsibilities – SQA units and other actors in SQA systems.

TOTAL (L:45) : 45 PERIODS

TEXT BOOK:

1. Daniel Galin, "Software Quality Assurance", Pearson Publication, 2009.

REFERENCES:

- 1. Alan C. Gillies, "Software Quality: Theory and Management", International Thomson Computer Press, 1997.
- 2. Mordechai Ben-Menachem "Software Quality: Producing Practical Consistent Software", International Thomson Computer Press, 1997.

	Mapping of COs with POs / PSOs													
60 -		POs											PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3													
2		3		3									3	
3					3				3					3
4						3								
5							3	3						
CO (W.A)		3		3	3	3	3	3	3				3	3

(9)

22CIX54 - SOFTWARE PROJECT MANAGEMENT (Common to 22CSX53,22ITX53,22AIX53 and 22CCX53)

					L 3	Т 0	P 0	C 3
PRE-RE	QUISITE : NIL							
Course	Objective: inc	uding project	nsight into deta evaluation, pla specially for softw	nning, est	imatic	•		
Course	Outcomes		Cognitive	-		e of C		
The stu	dents will be able to		Level	Sen	nestei	⁻ Exan	ninatio	on
CO1	Apply different teo monitoring and control of	hniques in of the project	Ар	30%				
CO2	Apply project estir evaluation techniques problems		Ар			20%		
CO3	Plan, schedule and s activities using various te		An	30%				
CO4	ldentify project risk, track project deadlines	monitor and	An	20%				
CO5	Managing people and teams while developin project		•					

UNIT I – SOFTWARE PROJECT MANAGEMENT

Project Definition – Importance – Activities – Overview of the project Planning – Software project economics – objectives – Project Life Cycle.

UNIT II - PROJECT ESTIMATION AND EVALUATION

An overview of project planning -project Evaluation –Selection Of Appropriate Project Objectives-Software Effort Estimation Techniques, Function Point Analysis-Object Point-COCOMO.

UNIT III - ACTIVITY PLANNING AND SCHEDULING

Sequencing and scheduling activities – Objectives of planning – Forward pass and backward pass – Scheduling – PERT techniques – CRM.

(9)

(9)

UNIT IV - RISK MANAGEMENT AND MONITORING

Creating Framework – Decision making – cost Monitoring – Types of Risk – Risk managing - Risk Planning and controlling.

UNIT V - MANAGING TEAM PROJECT

Team structure – Project tracking - Managing the contract – change control – Team management – Communication – Software Configuration Management-Case Study: PMBOK , Agile Development

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- 1. Bob Hughes, Mike Cotterell and Rajib Mall, "Software Project Management" Sixth Edition, Tata McGraw Hill, New Delhi, 2017.
- 2. Pressman R S & Bruce R Maxhim, "Software Engineering A Practitioner's Approach", Tata McGraw Hill- 9th Edition, 2023.

REFERENCES:

- 1. Robert K Wysocki "Effective Project Management, Traditional, Agile, Extreme, Hybrid", John Wiley & Sons Inc, 2019.
- 2. Hans-Bernd Kittlaus , Samuel A. Fricker, "Software Product Management: The ISPMA-Compliant Study Guide and Handbook", 2018.
- 3. Gopalaswamy Ramesh, "Managing Global Software Projects: How to Lead Geographically Distributed Teams, Manage Processes and Use Quality Models", 2017.

	Mapping of COs with POs / PSOs													
60 -		POs											PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3													3
2			3										3	
3		3												
4				3										
5	3								3		3			
CO (W.A)	3	3	3	3					3		3		3	3

Approved by Twelfth Academic Council

(9)

22CIX55 - IT OPERATIONS (Common to 22CSX57,22ITX57,22AIX55 and 22CCX55)

			L	Т	Ρ	С	
			3	0	0	3	
PRE-F	REQUISITE : NIL						
Cours	• To provide knowledge on IT Op Management.	eration M	anagem	ent an	d Serv	ce	
	tudent will be able to Cognitiv	ve N	Weighta Semest	-			
CO1	Analyze the fundamental components and processes involved in IT operations			30%			
CO2	Analyze existing health and safety regulations applicable to IT operations An environments			30%			
CO3	Apply organizational theories to evaluate and improve the structure and efficiencyApof IT operations within an organization			20%			
CO4	Analyze fundamental concepts and principles of information security in IT An environments			20%			
CO5	Develop strategies for leveraging Microsoft 365 to enhance productivity, collaboration, and efficiency within IT operations.		Internal Assessment				

UNIT I – IT OPERATIONS

IT Operation Definition - Roles & Responsibilities of IT Operations - IT Monitoring - IT operations Management - Responsibilities of IT operations Management. IT Service Management: IT Service Management Best Practices - The Service Life Cycle(Service Strategy - Service Design - Service Transition - Service Operation - Continual Service Improvement) Functions of IT Service Management (Incident Management, Event Management, Request fulfillment, Problem Management, Change Management, Availability Management - The Service Desk) - Escalation & Governance Management.

UNIT II - HEALTHY SAFE AND SECURE WORKING ENVIRONMENT & ETIQUETTE

(9)

(9)

Health and Safety Essentials - Control and Management Systems - Facilities Management and Ergonomics - Managing Equipment - Managing Material. Etiquette: Professionalism in Relationships - First Impressions - Conducting Yourself in a Working Environment - Make Your Work Place Healthy - Dinning Etiquette - Elevator Etiquette - Cafeteria Etiquette - Meeting Etiquette - Telephone Etiquette - Dealing with Difficult People and Conflicting Situations.

UNIT III - ITIL	(9)
Introduction – Understanding ITIL Guiding Principles in an Organization–Optimize and Four Dimensions of Service Management – Key Activities of the Service Value Chain	Automate –
UNIT IV - IT INFRASTRUCTURE & INFORMATION SECURITY	(9)
Definition - Components of IT Infrastructure (Hardware, Software, Network) - Types of IT in (Traditional, Cloud, Hyperconverged)- Risk, Response and Recovery: Risk Manage Information Security - The Risk Management Process - Business Continuity Management - Data and Applications - Incident Handling - Recovery From a Disaster.	ement and
UNIT V - AMS & TOOLS	(9)
Introduction – Support Models – Activities Type – Audits – Microsoft 365 – Domain Ma Licensing – Managing Teams – Meeting Policies – Messaging Policies	nagement –

TOTAL (L:45) : 45 PERIODS

REFERENCES:

- 1. John Sansbury, Ernest Brewster, Aidan Lawes, Richard Griffiths, "IT Service Management :Support for your ITSM Foundation Exam", March 2016.
- 2. Elearn ,"Managing Health, Safety and Working Environment ",Revised Edition(Management Extra), 1st Edition, 2017 .
- 3. Vivek Bindra ,"Everything About Corporate Etiquette" , Bloomsbury India,2015.
- 4. AXELOS, "ITIL: Foundation ITIL 4 Edition", 2019
- 5. David Kim, Michael G. Solomon,"Fundamentals of Information Systems Security", Jones & Bartlett Learning, 3rd Edition.
- 6. https://docs.microsoft.com/en-us/learn/m365

	Mapping of COs with POs / PSOs													
CO 2		POs											PS	SOs
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3													3
2		3				3								3
3	3													3
4		3					3							3
5	3							3			3			3
CO (W.A)	3	3				3	3	3			3			3

238 | Page

		Common to 22CSX45,22ITX45,22AIX			Т	Р	С
				3	0	0	3
PRE-R	EQUISITE : NII	-		1 1			
Course	Objective:	To build complex web application with	n using minimur	n code	•		
	Outcomes Ident will be ab	le to	Cognitive Level	in	End S	ge of C emest nation	er
CO1	Apply Node . and back-end	IS and NOSQL concepts for front end I design	Ар		40	0%	
CO2	-	various stacks available for web development and finds the best for tion.	An		20	0%	
CO3	5	ponsive pages using scripting and Mongo DB.	Ар		20	0%	
CO4	Implement in JS	nteractive web pages using Angular	An		20	0%	
CO5		ndependent study and aware of advances related to the course	An	Inte	ernal A	ssessn	nent
		ON TO NOSQL DATABASE				(9))
		of NoSQL Databases. Definition of the Fi	our Types of No	SQL D	ataba	•	
		es, Getting at Persistent Data, Concurr					
pplicat	ion and Integra	ation Databases, Attack of the Clusters,	The Emergence	of NoS	SQL, K	ey Poi	nts.
	- NODE JS				1	(0	9)

Introduction – Architecture – Features- Creating Web Servers with HTTP -Request - Response – Event Handling - GET and POST Methods –File Upload - Connect to NoSQL Database using Node JS – Implementation of CRUD operations.

UNIT III MONGO DB

Understanding NoSQL and MongoDB – Building MongoDB Environment – User accounts – Access control – Administering databases – Managing collections – Connecting to MongoDB from Node.js – simple applications

UNIT IV – TYPESCRIPT AND ANGULAR

TypeScript: Introduction – Features – Variables – Data types – Enum – Array – Tuples – Functions – OOP concepts – Interfaces. Angular : Introduction - Needs - Evolution – Features – Architecture - Setup and Configuration – Components and Modules –Templates - Controllers – Scope – Directives – Data Binding.

(9)

UNIT V - ANGULARJS FRAMEWORK	(9)
Pipes/Filters -DOM – Events - Routing - Services – HTTP – Ajax– Template Driven For	rms - Reactive
Forms – Form Validation – Basic Animations.	
TEXT BOOK:	
1.Brad Dayley, Brendan Dayley, Caleb Dayley, 'Node.js, MongoDB and Angular Web Deve	lopment',
Addison-Wesley, Second Edition, 2018	
REFERENCE:	
1.https://www.javatpoint.com	

	Mapping of COs with POs / PSOs													
		POs											PS	Os
COs	1	1 2 3 4 5 6 7 8 9 10 11 12										12	1	2
1	3												3	
2		3											3	
3			3		3									3
4				3	3								3	
5									2	3		3		3
CO (W.A)	3	3	3	3	3				2	3		3	3	3

Approved by Twelfth Academic Council

		22CIX57 - WEB MINII (Common to 22CSX47,22ITX47,22AI)		4)				
		-		L	Т	Ρ	С	
				3	0	0	3	
PRE-R	EQUISITE : N	IL						
Course	Objective:	To learn techniques for extracting know business decisions and applications.	ledge from Web	conte	nt as a	a basis	for	
	Outcomes Ident will be a	ble to	Cognitive Level	in	End S	ge of (emestion) nation	ter	
CO1		concepts of Web mining to discover nation from the World-Wide Web and tterns	Ар	25%				
CO2	Analyse th extract strut	e data on web using crawlers and ured data.	An	25%				
CO3	Compare v and its appli	arious methods of web data mining cations	Ар		2	5%		
CO4	Demonstrat analysis tech	e various pattern discovery and niques	An	25%				
CO5	Ability to re related to th	ead and comprehend research articles e course.	An	Inte	ernal A	ssessi	ment	

UNIT I- INTRODUCTION -WEBSEARCH

Basic Concepts - Information Retrieval Models - Evaluation Measures - Text and Web Page Preprocessing - Inverted Index and its compression - Latent Sematic Indexing - Web Search - Meta-Searching and CombiningMultipleRankings–WebSpamming.

UNIT II – WEB CRAWLING

BasicCrawlerAlgorithm–ImplementationIssues–UniversalCrawlers–FocusedCrawlers–TopicalCrawlers– Evaluation–CrawlerEthicsand Conflicts.

UNIT III - STRUCTURED DATA EXTRACTION

Structured Data Extraction –Wrapper Induction-Instance-Based Wrapper Learning –Automatic Wrapper Generation: Problems – String Matchingand Tree Matching – Multiple Alignment – Building DOM Trees -Extraction Based on a Single List Page -IntroductiontoSchemaMatching-Pre-ProcessingforSchemaMatching- Schema-LevelMatch- DomainandInstance-Level Matching

UNIT IV – WEB USAGE MINING

Web Usage Mining-Click stream Analysis-Log Files-Data Collection and Pre-Processing-Data Modeling for Web Usage Mining-The BIRCH Clustering Algorithm-Affinity Analysis and the A Priori Algorithm–Discretizing the Numerical Variable

(9)

- (9)
- (9)

UNIT V – OPINION MINING	(9)
The Problem of Opinion Mining – Document Sentiment Classification – Sentence S	ubjectivity and
Sentiment Classification – Opinion Lexicon Expansion – Aspect-Based Opinion Mir	ning – Mining
Comparative Opinions Search and Retrieval – Opinion SpamDetection.	
TEXT BOOKS :	
1. Bing Liu, " Web Data Mining: Exploring Hyperlinks, Contents, and Usage Data	(Data Centric
Systems and Applications)",Springer;2nd Edition2011for unitsI,II,III&V	
2. Zdravko Markov, DanielT.Larose, "Data Mining the Web: Uncovering Patternsin Web	Content,
Structure, and Usage", JohnWiley& Sons, Inc.,2010 for unit IV.	
REFERENCE:	
1. Anthony Scime, "Web Mining Applications and Techniques", IdeaGroupPub., 2005	

				М	apping	g of CC)s with	POs /	PSOs					
	POs													Os
COs	1 2 3 4 5 6 7 8 9 10 11 12											1	2	
1	3												3	
2		3											3	
3			3											3
4				3	3								3	
5										3		3		
CO (W.A)	3	3	3	3	3					3		3	3	3

22CIX58 - PRODUCT LIFE CYCLE MANAGEMENT (Common to 22CSX58,22ITX58,22AIX58 and 22CCX58)

			IIX50,EEAIX50		(30)					
					L	т	Р	С		
					3	0	0	3		
PRE-R	EQUISITE : NIL									
Course	e Objective:	 To comprehend integration with service-related inc 	product manag	-						
Course	e Outcomes		Cognitive	Weightage of COs in End						
The stu	udents will be at	ole to	Level	Sen	nester	Exam	inatio	n		
CO1	,	t Life Cycle Management integrate with lifecycle	Ар			30%				
CO2	Analyze glob product devel	al impacts of PLM on opment	An			20%				
CO3	Examine PLM decision-maki	deployment stages for ng	An			30%				
CO4	Interpret and	use PLM strategies for	٨n			20%				

An

Ap

Introduction to PLM, Fundamentals of PLM - Objective of PLM - Activities of PLM - Joined-up and Holistic Approach - Generic Product Lifecycle Phases, PLM Grid, Components of PLM Grid, Why PLM, How PLM.

UNIT I – INTRODUCTION TO PRODUCT LIFECYCLE MANAGEMENT

UNIT II - COMPLEX AND CHANGING ENVIRONMENT

enhancing productization

Develop a project using Scrum

Changes and Interconnections, Macroeconomic and Geopolitical Changes, Environmental and Social Changes, Corporate Changes, Technological Changes, Product Changes, The Result and the Requirements.

UNIT III - PLM DEPLOYMENT AND BUSINESS BENEFITS

Deployment Stages of PLM, PLM maturity model, Realization stage of the project, Accomplishing change, Business benefits of a PLM system - Factors leading to PLM, Benefits of the PLM system, Improving the productivity of labour, Costs of quality, PLM and data warehousing as a tool to support decision-making.

UNIT IV - SERVICE INDUSTRY AND PLM

Introduction to service, Further productization, Making a service, PLM in service business - PLM challenges in service business, Services modularized, Making items out of product functions, IT specifically variable product.

CO4

CO5

(9)

(9)

(9)

20%

Internal Assessment

UNIT V - PRODUCT AND PRODUCT MANAGEMENT STRATEGY AS A PART OF BUSINESS STRATEGY

(9)

Product lifecycle management as a business strategy tool, From changes in the business environment to product strategy, Making a product strategy, Product management strategy, Time to market, Time to react, Time to volume, Time to service, Electronic business and PLM, Case Study: Scrum Framework

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- John Stark, "Product Lifecycle Management: 21st Century Paradigm for Product Realisation", Springer Publisher, 2011 (2nd Edition).
- 2. Antti Saaksvuori and Anselmi Immonen, "Product Lifecycle Management", Springer Publisher, 2008 (3rd Edition).

REFERENCES:

- 1. Uthayan Elagovan, "Product Lifecycle Management (PLM): A Digital Journey Using Industrial Internet of Things (IIoT)", July 2020.
- Ivica Crnkovic, Ulf Asklund and Annita Persson Dahlqvist, "Implementing and Integrating ProductData Management and Software Configuration Management", Art ech House Publishers, 2003

				N	lappin	g of CC	Ds with	POs /	PSOs					
COs	POs													SOs
COS	1 2 3 4 5 6 7 8 9 10 11 12										1	2		
1	3													3
2		3											3	
3		3												
4			3											
5					3				2	3				
CO (W.A)	3	3	3		3				2	3			3	3

		22GEA02- PRINCIPLES OF MANAGEN	IENT				
			L		Ρ	С	
			3	0	0	3	
PRE-F	REQUISITE: NIL						
Course	e Objective:	 To provide with a foundational under and practices. To equip students with the knowledge and lead organizations effectively, frameworks and practical applications To learn about various planning too crucial for organizational success. To gain insights into human resource r To study effective communication information technology on communication lead to improved productivity and organization 	ge and skills understandi in manageme ls and decisi nanagement strategies ation and how	necessa ng bot nt. on-mak function and th v effecti ⁿ	ry to h the ing p s. e im ve cor	manage eoretical rocesses pact of	
	e Outcomes udent will be able	e to	Cognitive Level	CO Se	ghtag s in E meste minat	nd er	
CO1	world busines	nagement theories and practices to real- s scenarios, demonstrating the ability to nagement functions.	Ар	20%			
CO2			An		30%		
CO3	organizational communication technology i	tegic decisions and their impacts on performance, the effectiveness of n strategies and the use of information in facilitating efficient and effective n within organizations.	E		30%		
CO4	Create compre	ehensive strategic plans and organizational esign control systems to ensure continuous in productivity and organizational	С		20%		
CO5	develop highe effective mar	ependent study as a member of a team and er-order thinking skills that are crucial for nagement and leadership in complex settings with assignments or case studies.	Ар		nterna sessm		

UNIT I - INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS

Definition of Management - Science or Art - Manager Vs Entrepreneur - types of managers -managerial roles and skills - Evolution of Management - Scientific, human relations, system and contingency approaches - Types of Business organization- Organization culture and Environment - Current trends and issues in Management.

UNIT II - PLANNING

Nature and purpose of planning - planning process - types of planning - objectives - setting objectives - policies - Planning premises - Strategic Management - Planning Tools and Techniques - Decision making steps and process.

UNIT III - ORGANISING

Nature and purpose - Formal and informal organization - organization chart - organization structure - types - Line and staff authority - departmentalization -delegation of authority - centralization and decentralization -Job Design - Human Resource Management - HR Planning, Recruitment, selection, Training and Development, Performance Management, Career planning and management

UNIT IV - DIRECTING

Foundations of individual and group behaviour - motivation -motivation theories - motivational techniques - job satisfaction - job enrichment - leadership - types and theories of leadership -communication - process of communication - barrier in communication - effective communication -communication and IT.

UNIT V - CONTROLLING

System and process of controlling - budgetary and non-budgetary control techniques - use of computers and IT in Management control - Productivity problems and management - control and performance -direct and preventive control -reporting.

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- 1. Harold Koontz, Heinz Weihrich and Mark V. Cannice "Essentials of Management: An International, Innovation, and Leadership Perspective", 11th Edition, Tata McGraw-Hill Education, 2021.
- 2. J.A.F. Stoner, R.E. Freeman, and Daniel R. Gilbert "Management", 6th Edition, Pearson Education, 2018.

REFERENCES:

- 1. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.
- 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
- 3. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management", 7th Edition, Pearson Education, 2011.
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999.

(9)

(9)

(9)

(9)

				Μ	lappin	g of C	Os witł	n POs /	' PSOs					
		POs												Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3										3			
2		3									3			
3										3				
4			3							3				
5											3	3		
CO (W.A)	3	3	3							3	3	3		

		22GEA03- TOTAL QUALITY MA	NAGEMENT				
				L	Т	Ρ	С
		•		3	0	0	3
	EQUISITE : NI	 To Recognize the importance of in TQM. To Explore the elements and hither the teamwork, and recognition. To Implement continuous procement to Trilogy, PDSA Cycle, 5S, and Kather the teamwork of the team team team team team team team tea	storical developm nt through motiva ess improvement izen. understand the in 16949, TL 9000, IE	nent o ation, meth trodu	f TQN empo ods lil ction	1. werm ke Jura to oth	ent, an's er ISO
	Outcomes dent will be ab	le to	Cognitive Level	in	End S	ge of (emest natior	ter
CO1		e elements and principles of Total nagement (TQM).	Ар	30%			
CO2		nuous process improvement gies such as Juran's Trilogy, PDSA nd Kaizen.	Ар		2	0%	
CO3		us quality tools and techniques in acturing and service industry.	Ар		2	0%	
CO4	understand	trong supplier partnerships and supplier selection, rating and development.	An		2	0%	
CO5		ropriate quality standards and them in the respective industry App.	E		1	0%	

UNIT – I QUALITY CONCEPTS AND PRINCIPLES

Definition of Quality - Dimensions of Quality - Quality Planning - Quality Assurance and Control -Quality Costs with Case Studies - Elements / Principles of TQM - Historical Review – Leadership – Qualities / Habits - Quality Council - Quality Statements, Strategic Planning – Importance - Case Studies - Deming Philosophy - Barriers to TQM Implementation – Cases with TQM Success and Failures.

UNIT – II TQM-PRINCIPLES AND STRATEGIES

Customer Satisfaction - Customer Perception of Quality - Customer Complaints - Customer Retention, Employee Involvement – Motivation - Empowerment - Teams - Recognition and Reward -Performance Appraisal, Continuous Process Improvement - Juran's Trilogy - PDSA Cycle - 5S -Kaizen, Supplier Partnership - Partnering - Sourcing - Supplier Selection - Supplier Rating -Relationship Development, Performance Measures – Purpose – Methods - Cases.

(9)

UNIT – III CONTROL CHARTS FOR PROCESS CONTROL

Basic Seven Tools of Quality and its Role in Quality Control, Statistical Fundamentals - Measures of Central Tendency and Dispersion, Population and Sample - Normal Curve - Control Charts for Variables and Attributes - Process Capability - Case Study- Introduction to Six Sigma.

UNIT – IV TQM-MODERN TOOLS

New Seven Tools of Quality, Benchmarking - Need - Types and Process, Quality Function Deployment - House of Quality (HOQ) Construction - Case Studies, Introduction to Taguchi's Robust Design - Quality Loss Function - Design of Experiments (DOE), Total Productive Maintenance (TPM) -Uptime Enhancement, Failure Mode and Effect Analysis (FMEA) - Risk Priority Number (RPN) – Process - Case Studies.

UNIT – V QUALITY SYSTEMS

Need for ISO 9000 and Other Quality Systems - ISO 9000: 2015 Quality System – Elements -Implementation of Quality System - Documentation - Quality Auditing, Introduction to ISO 14000 -IATF 16949 - TL 9000-IEC 17025 - ISO 18000 - ISO20000 - ISO 22000 - ISO21001. Process of Implementing ISO - Barriers in ISO Implementation.

TOTAL (L:45) = 45 PERIODS

TEXT BOOK:

1. Besterfield Dale H., Besterfield Carol, Besterfield Glen H., Besterfield Mary, Urdhwareshe Hemant, UrdhwaresheRashmi "Total Quality Management", 5th Edition, Pearson Education, Noida, 2018.

REFERENCES:

- 1. Subburaj Ramasamy, "Total Quality Management", McGraw Hill Education, New Delhi, 2017.
- 2. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, Cengage Learning, 2012.
- 3. David Goetsch & Stanley Davis, "Quality Management for Organizational Excellence: Introduction to Total Quality", 8th Edition, Pearson, 2017.

				Μ	appin	g of CC	Os witł	n POs /	' PSOs					
		POs												
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3													
2	3													
3	3													
4		3												
5	3				2									
CO (W.A)	3	3			2									

(9)

(9)

		22GEA04- PROFESSIONAL	ETHICS					
				L	Т	Ρ	C	
				3	0	0	3	
PKEKE	EQUISITE : NIL		· · · · · · · · · · · · · · · · · · ·					
Course	• Objective:	 To develop students' ability to dilemmas in engineering comprofessional responsibility, interent of ethical principles and practice. To Familiarize students with frameworks that guide ethical of the ability to commune effectively with diverse stakehow the public. To Encourage students to upber in their professional activities, for the statement of the professional activities. 	ontexts, fosterin grity, and ethical nts with a compre- ses in the enginee key ethical the decision-making in unicate ethical co olders, including	g a decis ehens ring p eories n pro oncerr collea esty,	com ion-m iive ur profes s, prii fessio ns anc agues, and a	mitme aking. ndersta sion. nciple: nal pra d colla clien ccoun	ent to anding s, and actice. borate ts, and tability	
Course	Outcomes		Cognitive	Weightage of COs				
	ident will be ab	le to	Level	in End Semester Examination				
	Apply othical	reasoning to evaluate and resolve		Examinat			n	
CO1	these issues.	reasoning to evaluate and resolve	Ар		3	0%		
CO2		principles and reasoning to analyze e studies in engineering.	Ар		3	0%		
CO3	Analyze the i practice.	mportance of ethics in professional	An 20%					
CO4	-	ability to make informed and ethical ngineering practice.	An 10%					
CO5	5	e importance of continuous learning nal development in maintaining ethical	E		1	0%		

UNIT I: INTRODUCTION TO PROFESSIONAL ETHICS	(9)
Definition and Importance of Ethics, Ethical Theories and Principles, Ethics vs. Morals vs. Valu of Ethics in Engineering.	es, Role
UNIT II: PROFESSIONAL RESPONSIBILITY AND CODES OF CONDUCT	(9)
Professional Responsibility and Accountability, Codes of Conduct in Engineering (e.g., IEEE, N Conflicts of Interest and Whistleblowing, Case Studies.	ISPE),
UNIT III: ETHICAL DECISION-MAKING AND PROBLEM-SOLVING	(9)

Ethical Decision-Making Models, Tools and Frameworks for Ethical Analysis, Resolving Ethical

Dilemmas, Case Studies

UNIT IV: LEGAL AND REGULATORY ASPECTS

Legal Frameworks Governing Engineering Practice, Intellectual Property Rights, Health, Safety, and Environmental Regulations, Case Studies.

UNIT V: SOCIAL AND ENVIRONMENTAL RESPONSIBILITY

Social Responsibility of Engineers, Sustainable Engineering Practices, Impact of Engineering on Society and Environment, Case Studies.

TOTAL (L:45) = 45 PERIODS

(9)

(9)

TEXT BOOKS:

- 1. Charles E. Harris Jr., Michael S. Pritchard, and Michael J. Rabins, "Engineering Ethics: Concepts and Cases" 6th edition, 2018.
- 2. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering" 5th Edition 2010.
- 3. by M. Govindarajan, S. Natarajan, and V. S. Senthil Kumar,"Professional Ethics and Human Values", Ist Edition 2006.

REFERENCES:

- 1. Stephen H. Unger, "Engineering Ethics: Real-World Case Studies"
- 2. Online Ethics Center for Engineering and Science www.onlineethics.org
- 3. National Society of Professional Engineers (NSPE) <u>www.nspe.org</u>

				N	lappin	g of CO	Os witł	n POs /	' PSOs					
	POs													Os
COs	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3													
2	3													
3		3												
4		3												
5								3						
CO (W.A)	3	3						3						

