

(AUTONOMOUS) (Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai) ERODE – 638052 TAMIL NADU Email: <u>principal@nandhaengg.org</u> Mobile : 73737 12234

1.1.2 Details of Courses where syllabus revision was carried out

B.E.- Electronics and Communication Engineering

Course Code **Course Name** % of Change 5 22ECC13 Digital Signal Processing Analog and Digital 5 22ECC14 Communication Analog and Digital 22ECP06 10 **Communication Laboratory** Microprocessors and 30 22ECC13 Microcontroller Interfacing Data Communication 40 22ECC14 Networks . Microprocessors and 5 22ECP06 Microcontrollers Laboratory Data Communication 10 22ECP07 Networks Laboratory VLSI and Chip Design 70 22ECC15 Embedded Systems and IOT 100 22ECC16 Design 80 VLSI Design Laboratory 22ECC05 Embedded Systems and IOT 100 22ECP08 Design Laboratory Internship/ Industrial Training 100 22GED02 100 22ECX01 ASIC Design System on Chip Design 100 22ECX02 100 22ECX03 System Verilog VLSI Testing and Testability 100 22ECX04 Electronic System Design 100 22ECX05 Electronic Circuit Board 100 22ECX06 Design

R-22 Curriculum

(AUTONOMOUS)

(Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai) ERODE – 638052 TAMIL NADU Email: principal@nandhaengg.org Mobile : 73737 12234

Course Code	Course Name	% of Change
22ECX07	Semiconductor Device	100
	Modelling and Simulation	
-22ECX08	Electronic System Packaging	100
22ECX11	Mobile Communication	100
22ECX12	Satellite Communication	70
22ECX14	Information Theory and Coding	100
22ECX15	Radar Communication	70
22ECX16	Digital Communication receivers	100
22ECX17	Software Defined Radio	40
22ECX18	4G / 5G Communication Networks	100
· 22ECX21	Computer System and Hardware	100
22ECX22	Network Information Security	100
22ECX24	High Performance Communication Networks	40
22ECX25	Wireless Adhoc and Sensor Networks	100
22ECX26	Automotive Electronics and Networking	100
22ECX27	Neural Networks	100
22ECX28	Artificial Intelligence	100
22ECX32	Speech Signal Processing	80
22ECX34	Deep Learning	100
22ECX35		
22ECX36		
22ECX37	Soft Computing	100
22ECX38	Pattern Recognition	100

(AUTONOMOUS) (Approved by AICTE, New Delhi and Affiliated to Anna University, Chennai) ERODE – 638052 TAMIL NADU Email: <u>principal@nandhaengg.org</u> Mobile : 73737 12234

Course Code	Course Name	% of Change
22ECX41	Control Systems	40
22ECX42	Virtual Instrumentation	100
22ECX43	Wearable Devices	100
22ECX45	Internet Of Things & Its Applications	.80
· 22ECX46	IOT With Single Board Computers	100
22ECX47	Industrial IOT And Industry 4.0	100
22ECX48	Automation for Robotics	100
	Average	80.32

R . Aprille Dr. S. KAVITHA M.E., Ph.D

Professor and Head Department of ECE Vandha Engineering College (Autonomous) Erode-638 052

(An Autonomous Institution affiliated to Anna University Chennai and approved by AICTE, New Delhi) Erode-638 052, Tamilnadu, India, Phone: 04294 – 225585

Curriculum and Syllabi

for

B.E – Electronics and Communication Engineering [R22]

[CHOICE BASED CREDIT SYSTEM]

(This Curriculum and Syllabi are applicable to Students admitted from the Academic year 2024- 2025 onwards)

July 2024

NANDHA ENGINEERING COLLEGE (AUTONOMOUS), ERODE – 638 052

REGULATIONS – R22

CHOICE BASED CREDIT SYSTEM

B.E. ELECTRONICS AND COMMUNICATION ENGINEERING

		9	SEMESTER: I						
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
THEOR	RY & EMB	EDDED COURSES							
Ι	22EYA01	Professional Communication - I	HSMC	-	4	2	0	2	3
2	22MYB01	Calculus and Linear Algebra*	BSC	-	4	3	I	0	4
3	22CYB04	Engineering Chemistry	BSC	-	3	3	0	0	3
4	22CSC01	Problem Solving and C Programming	ESC	-	3	3	0	0	3
5	22ECC02	Basics of Electrical and Instrumentation Engineering	ESC	-	3	3	0	0	3
6	22GYA01	தமிழர் மரபு/Heritage of Tamils	HSMC	-	I	Ι	0	0	I
PRACT	ICALS								
7	22CSP01	Problem Solving and C Programming Laboratory*	ESC	-	4	0	0	4	2
8	22CYP01	Chemistry Laboratory*	BSC	-	2	0	0	2	I
9	22GEP01	Engineering Practices Laboratory	ESC	-	4	0	0	4	2
MAND	ATORY NO	ON CREDIT COURSES							
10	22MAN01	Induction Programme	MC	-	0	0	0	0	0
11	22MAN03	Yoga – I *	MC	-	I	0	0	I	0
			•	TOTAL	31	15	Ι	15	22

* Ratified by Eleventh Academic Council

		9	SEMESTER: II						
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE REQUISI TE	CONTACT PERIODS	L	т	Ρ	с
THEO	RY & EMBE	EDDED COURSES		1	1				
I	22EYA02	Professional Communication- II	HSMC	22EYA01	4	2	0	2	3
2	22MYB04	Transforms and Partial Differential Equations*	BSC	-	4	3	I	0	4
3	22PYB03	Solid State Physics	BSC	-	3	3	0	0	3
4	22CSC02	Data Structures using C*	ESC		3	3	0	0	3
5	22ECC04	Electronic Devices and Circuits (Theory + Lab)	PCC	-	5	3	0	2	4
6	22GYA02	தமிழரும் தொழில்நுட்பமும்/ Tamils and Technology	нѕмс	-	I	I	0	0	I
PRAC	CTICALS								•
7	22PYP01	Physics Laboratory*	BSC	-	2	0	0	2	Ι
8	22CSP02	Data Structures Laboratory*	ESC	-	4	0	0	4	2
9	22MEP01	Engineering Graphics Laboratory	ESC	-	4	0	0	4	2
MANE	DATORY N	ON CREDIT COURSES	•						<u>.</u>
10	22MAN02R	Soft /Analytical Skills - I	MC	-	3	I	0	2	0
11	22MAN05	Yoga - II*	MC	-	I	0	0	Ι	0
	II		1	TOTAL	33	16	I	I	23

* Ratified by Eleventh Academic Council

		S	SEMESTER: II	I						
S. NO.	COURSE CODE	COURSE TITLE	CATEGO RY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с	
THEO	THEORY & EMBEDDED COURSES									
I	22MYB06	Probability and Random Processes	BSC	-	4	3	Ι	0	4	
2	22ECC05	Digital Logic Design	PCC	-	3	3	0	0	3	
3	22ECC06	Signals and Systems	PCC	22MYB01, 22MYB04	3	3	0	0	3	
4	22ECC07	Analog Electronics	PCC	22ECC04	3	3	0	0	3	
5	22ECC08	Electromagnetic Waves	PCC	-	3	3	0	0	3	
6	22ITC04	Algorithms	ESC	-	3	3	0	0	3	

PRAC	PRACTICALS										
7	22ECP02	Digital Logic Design Laboratory	PCC	-	4	0	0	4	2		
8	22ECP03	Analog Electronics Laboratory	PCC	22ECC04	4	0	0	4	2		
MANE	DATORY NO	ON CREDIT COURSES				-					
9	22MAN04R	Soft / Analytical Skills - II	MC	-	3	Ι	0	2	0		
10	22MAN09	Indian Constitution	MC	-	Ι	Ι	0	0	0		
	·		•	TOTAL	31	20	I	10	23		

		SEN	1ESTER: IV						
S. NO.	COURSE CODE	COURSE TITLE	CATEGOR Y	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
THEOF	RY & EMBE	DDED COURSES							
I	22ITC06	Java Programming	ESC	-	3	3	0	0	3
2	22ECC09	Analog Circuit Design	PCC	22ECC04	3	3	0	0	3
3	22ECC10	Transmission Lines and RF Systems	PCC	22ECC08	3	3	0	0	3
4	22ECC11	Digital Signal Processing*	PCC	22ECC06	5	3	0	2	4
5	22ECC12	Analog and Digital Communication*	PCC	22ECC06	3	3	0	0	3
PRACT	ICALS								
6	22ITP04	Java Programming Laboratory	ESC	-	4	0	0	4	2
7	22ECP04	Analog Circuit Design Laboratory	PCC	22ECC04	4	0	0	4	2
8	22ECP05	Analog and Digital Communication Laboratory [*]	PCC	22ECC06	4	0	0	4	2
MAND	ATORY NO	N CREDIT COURSES							
9	22MAN07R	Soft/Analytical Skills - III	MC	-	5	3	0	2	0
10	22GED01	Personality and Character Development	MC	-	I	0	0	I	0
				TOTAL	35	20	0	15	22

* Ratified by Twelfth Academic Council

			SEMESTER: V						
S. NO.	COURSI CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTAC [®] PERIODS		Т	P	С
THEO	RY & EM	BEDDED COURSES							
I	22ECC13	Microprocessors and Microcontroller Interfacing	PCC	-	3	3	0	0	3
2	22ECC14	Data Communication Networks	PCC	-	3	3	0	0	3
3	22CYB06	Environmental Science and Sustainability	BSC	-	3	3	0	0	3
4	EI	Elective(PEC)	PEC	-	3	3	0	0	3
5	E2	Elective(PEC)	PEC	-	3	3	0	0	3
6	E3	Elective(PEC)	PEC	-	3	3	0	0	3
PRACT	ICALS								
7	22ECP06	Microprocessors and Microcontrollers Laboratory	PCC	-	4	0	0	4	2
8	22ECP07	, Data Communication Networks Laboratory	PCC	-	4	0	0	2	2
MANDATORY NON CREDIT COURSES									
9	22MAN08	R Soft/Analytical Skills - IV	MC	-	3	Ι	0	2	0
				TOTAL	29	19	0	11	22

			SEMESTER: V	/1					
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
THEOF	RY & EME	BEDDED COURSES							
I	22ECC15	VLSI and Chip Design	PCC	-	3	3	0	0	3
2	22ECC16	Embedded Systems and IOT Design	PCC	-	3	3	0	0	3
3	E4	Elective (PEC)	PEC	-	3	3	0	0	3
4	E5	Elective(PEC)	PEC	-	3	3	0	0	3
5	E6	Elective(PEC)	PEC		3	3	0	0	3
6	E7	Elective(OEC/PEC)	OEC/PEC	-	3	3	0	0	3
PRACT	ICALS				· · ·				
7		VLSI Design Laboratory	PCC	-	4	0	0	4	2
8	22ECP09	Embedded Systems and IOT Design Laboratory	PCC	-	4	0	0	4	2
				TOTAL	26	18	0	8	22

			SEMESTER:	VII					
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
THEOR	THEORY & EMBEDDED COURSES								
I	22GEA01	Universal Human Values	HSMC	-	2	2	0	0	2
2	EMI	Elective (Management)	HSMC	-	3	3	0	0	3
3	E8	Elective(OEC)	OEC	-	3	3	0	0	3
4	E9	Elective(OEC)	OEC		3	3	0	0	3
5	EIO	Elective(OEC)	OEC	-	3	3	0	0	3
PRACT	ICALS	·							
6	22GED02	Internship/ Industrial Training	EEC	-	-	0	0	0	2
7	22ECD01	Project Work - I	EEC	-	4	0	0	4	2
	<u>.</u>			TOTAL	23	15	0	8	18

	SEMESTER: VIII										
S. NO.	S. NO. COURSE COURSE TITLE CATEGORY PRE- REQUISITE CONTACT PERIODS L T P C										
PRACT	PRACTICALS										
I	I 22ECD02 Project Work - II EEC - 20 0 0 20 10										
	TOTAL 20 0 0 20 10										

(C) Pi	rogramme	Elective Courses (PEC)]
Vertic	al I: Semic	onductors							
s. no.	COURSE CODE	COURSE TITLE	CATEGORY	PREREQUISITE	CONTACT PERIODS	L	т	Ρ	С
١.	22ECX01	ASIC Design	PEC	-	3	3	0	0	3
2.	22ECX02	System on Chip Design	PEC	-	3	3	0	0	3
3.	22ECX03	System Verilog	PEC	-	3	3	0	0	3
4.	22ECX04	VLSI Testing and Testability	PEC	-	3	3	0	0	3
5.	22ECX05	Electronic System Design	PEC	-	3	3	0	0	3
6.	22ECX06	Electronic Circuit Board Design	PEC	-	3	3	0	0	3
7.	22ECX07	Semiconductor Device Modelling and Simulation	PEC	-	3	3	0	0	3
8.	22ECX08	Electronic System Packaging	PEC	-	3	3	0	0	3
Vertic	al 2: Com	nunication							
s. no.	COURSE CODE	COURSE TITLE	CATEGORY	PREREQUISITE	CONTACT PERIODS	L	т	Ρ	С
١.	22ECX11	Mobile Communication	PEC	-	3	3	0		3
2.	22ECX12	Satellite Communication	PEC	-	3	3	0		3
3.	22ECX13	Optical Communication	PEC	-	3	3	0		3
4.	22ECX14	Information Theory and Coding	PEC	-	3	3	0		3
5.	22ECX15	Radar Communication	PEC	-	3	3	0		3
6.	22ECX16	Digital Communication receivers	PEC	-	3	3	0		3
7.	22ECX17	Software Defined Radio	PEC	-	3	3	0		3
8.	22ECX18	4G / 5G Communication Networks	PEC	-	3	3	0		3
Vertio	al 3: Netwo	orks							
s. no.	COURSE CODE	COURSE TITLE	CATEGORY	PREREQUISITE	CONTACT PERIODS	L	Т	Ρ	С
١.	22ECX21	Computer System and Hardware	PEC	-	3	3	0	0	3
2.	22ECX22	Network Information Security	PEC	-	3	3	0	0	3
3.	22ECX23	Cryptography and Network Security	PEC	-	3	3	0	0	3
4.	22ECX24	High Performance Communication Networks	PEC	-	3	3	0	0	3
5.	22ECX25	Wireless Adhoc and Sensor Networks	PEC	-	3	3	0	0	3
6.	22ECX26	Automotive Electronics and Networking	PEC	-	3	3	0	0	3
7.	22ECX27	Neural Networks	PEC	-	3	3	0	0	3
8.	22ECX28	Artificial Intelligence	PEC	-	3	3	0	0	3

Vertica	al 4: Signal	and Image Processing							
s. no.	COURSE CODE	COURSE TITLE	CATEGORY	PREREQUISITE	CONTACT PERIODS	L	т	Ρ	С
Ι.	22ECX31	Digital Image Processing	PEC	-	3	3	0	0	3
2.	22ECX32	Speech Signal Processing	PEC	-	3	3	0	0	3
3.	22ECX33	Multimedia Compression Techniques	PEC	-	3	3	0	0	3
4.	22ECX34	Deep Learning	PEC	-	3	3	0	0	3
5.	22ECX35	Computer Vision	PEC	-	3	3	0	0	3
6.	22ECX36	Machine Learning	PEC	-	3	3	0	0	3
7.	22ECX37	Soft Computing	PEC	-	3	3	0	0	3
8.	22ECX38	Pattern Recognition	PEC	-	3	3	0	0	3
Vertica	al 5: Embe	dded and IOT				1			
s. no.	COURSE CODE	COURSE TITLE	CATEGORY	PREREQUISITE	CONTACT PERIODS	L	Т	Ρ	С
Ι.	22ECX4I	Control Systems	PEC	-	3	3	0	0	3
2.	22ECX42	Virtual Instrumentation	PEC	-	3	3	0	0	3
3.	22ECX43	Wearable Devices	PEC	-	3	3	0	0	3
4.	22ECX44	Real Time Embedded Systems	PEC	-	3	3	0	0	3
5.	22ECX45	Internet Of Things & Its Applications	PEC	-	3	3	0	0	3
6.	22ECX46	IOT With Single Board Computers	PEC	-	3	3	0	0	3
7.	22ECX47	Industrial IOT And Industry 4.0	PEC	-	3	3	0	0	3
8.	22ECX48	Automation for Robotics	PEC	-	3	3	0	0	3
(C) M/									
· /	22GEA02	Principles of Management	MEC	-	3	3	0	0	3
	22GEA03	Total Quality Management	MEC	-	3	3	0	0	3
	22GEA04	Professional Ethics and Human Values	MEC	-	3	3	0	0	3
(D) OF	PEN ELEC	TIVES				1	1	1	I
Ι.	22ECZ01	Fundamentals of IoT	OEC	-	3	3	0	0	3
2.	22ECZ02	Sensors and transducers	OEC	-	3	3	0	0	3
3.	22ECZ03	Principles of Communication	OEC	-	3	3	0	0	3
4.	22ECZ04	VLSI technology	OEC	-	3	3	0	0	3

(E) E	(E) Employability Enhancement Courses (EEC)													
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE REQUISITE	CONTACT PERIODS	L	Т	Ρ	С					
١.	22GED02	Internship/ Industrial Training	EEC	-	4	0	0	0	2					
2.	22ECD01	Project Work - I	EEC	-	4	0	0	4	2					
3.	22ECD02	Project Work - II	EEC	-	20	0	0	20	10					

Mine	or Courses								
Semi	Conducto	r Technologies							
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE REQUISITE	CONTACT PERIODS	L	т	Ρ	С
١.	22ECM01	Fundamentals of Semiconductor Devices	OEC	-	3	3	0	0	3
2.	22ECM01	Semiconductor devices and circuits	OEC	-	3	3	0	0	3
3.	22ECM01	Semiconductor Device Modelling and Simulation	OEC	-	3	3	0	0	3
4.	22ECM01	Basic Electronics	OEC	-	3	3	0	0	3
5.	22ECM01	Semiconductor Optoelectronics	OEC	-	3	3	0	0	3
6.	22ECM01	Micro Electro Mechanical Systems	OEC	-	3	3	0	0	3
7.	22ECM01	Electronic system Packaging	OEC	-	3	3	0	0	3
8.	22ECM01	System on a chip Design	OEC	-	3	3	0	0	3

S. No.	SUBJECT			CRED	ITS AS F	PER SEM	1ESTER			CREDITS
J . N U.	AREA	I	II		IV	V	VI	VII	VIII	TOTAL
Ι.	HSMC	4	4	0	0	0	0	5	0	13
2.	BSC	8	8	4	0	3	0	0	0	23
3.	ESC	10	7	3	5	0	0	0	0	25
4.	PCC	0	4	16	17	10	10	0	0	57
5.	PEC	0	0	0	0	9	9/12	0	0	18/21
6.	OEC	0	0	0	0	0	3	9	0	9/12
7.	EEC	0	0	0	0	0	0	4	10	14
CREDIT	S TOTAL	22	23	23	22	22	22	18	10	162
CRE	DITS %	8%	14.2%	35.2%	15.4%	8.6 %	13%	7.4%		
AICTE	CREDITS	12	25	48	24	15	24	12		160
AIC	CTE %	8%	16%	30%	15%	9 %	15%	8%		
CN			•							

SUMMARY

15 | Page

		22ECCII - DIGITAL SIGNAL P	ROCESSING				
				L	т	Р	C
				3	0	2	4
PRERI	EQUISITE: 2	2ECC06					
Cour	se Objective:	 To learn discrete Fourier transform properties. To know the characteristics of FIR filt filtering undesired signals. To understand Finite word length effect To understand the fundamental concertant applications 	ters and IIR filters	and d	esign (of filter	rs foi
Гhe Stu	dent will be able	Course Outcomes e to	Cognitive Level	in	End S	ge of (Semes inatio	ter
COI		nowledge of signal processing to solve roblems on Discrete Fourier Transform	Ap		3	0%	
	Apply transf						
CO2	Digital filters.	orm technique concepts in realizing	Ap		2	.0%	
CO2 CO3	Digital filters. Analyze the c multirate sign	orm technique concepts in realizing oncepts of finite word length effects and hal processing to minimize the errors the performance.	Ap An			.0%	
	Digital filters. Analyze the c multirate sig and improve	oncepts of finite word length effects and nal processing to minimize the errors			2		

UNIT I - FAST FOURIER TRANSFORMS (9) Introduction to DFT and IDFT, Properties of DFT, FFT Algorithm-Radix-2 - Decimation in Time (DIT)-Decimation in Frequency (DIF)Fast Convolution-Overlap Save method-Overlap Add Method. **UNIT II – DIGITAL IIR FILTERS** (9) Review of design techniques for analog low pass filter (Butterworth and Chebyshev type-I), Frequency transformation in Analogue domain, IIR filter Design: Bilinear and Impulse Invariant Techniques, Realization structures for IIR filters **UNIT III - DIGITAL FIR FILTERS** (9) Design characteristics of FIR filters with linear phase - Frequency response of linear phase FIR filters -Design of FIR filters using window functions (Rectangular, Hamming, Hanning, and Blackman) - Realization structures for FIR filters(Direct form I and II). **UNIT IV - FINITE WORD LENGTH EFFECTS** (9) Fixed point and floating point number representation - ADC - quantization - truncation and roundingquantization noise - input / output quantization - coefficient quantization error - product quantization error - overflow error - limit cycle oscillations due to product quantization and summation

UNIT V - MULTIRATE SIGNAL PROCESSING	(9)
Multirate signal processing: Decimation, Interpolation, Sampling rate conversion by a rational	factor I/D –
Implementation of sampling rate conversion : Polyphase filter Structures- Interchange c	of filters and
Downsamplers /Upsamplers –Application of Multirate signal processing.	

LIST OF PROGRAMS USING MATLAB (Laboratory Component):

- I. Implementation of DIT and DIF Algorithms.
- 2. Implementation of Low pass and high pass FIR filter for a given sequence.
- 3. Implementation of Low pass and high pass IIR filter for a given sequence.
- 4. Verification of Sampling Theorem.
- 5. Implementation of Decimation Process

TOTAL (L:45 P:30) : 75 PERIODS

TEXT BOOKS:

1. J.G.Proakis, D.G.Manolakis and D.Sharma, "Digital Signal Processing, Algorithms and Applications", Pearson Education, 2012.

- I. S. Salivahanan, A. Vallavaraj and G.Gnanapriya, "Digital Signal Processing", Tata McGraw-Hill Company Publication Limited, 21 st Reprint 2007.
- Oppenheim V.A.V and Schaffer R.W, "Discrete time Signal Processing", 2nd Edition, Prentice Hall, 2013.
- 3. S.K.Mitra, Digital Signal Processing, 4th Edition, TMH, 2010.
- 4. Lawrence R Rabiner and Bernard Gold, "Theory and Application of Digital Signal Processing", PHI 2010.

				1	Mappin	ng of C	Os wi	th POs	s / PSC	s					
							POs						PSOs		
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3												2	Ι	
2	3												I	2	
3		3											2	2	
4			3										I	2	
5					3				2	I			2	3	
CO (W.A)	3	3	3		3				2	I			2	2	

	22	ECC12 - ANALOG AND DIGITAL (COMMUNICATI	ON					
				L	т	Ρ	С		
				3	0	0	3		
PRERE	EQUISITE: 2	2ECC06				1			
 To provide knowledge on complete analysis of Amplitude and Amodulation schemes. To deliberate the performance of Pass band, base bandand spreat spectrum communication. To learn the concepts of information theory and basics of error coding. 									
The Stu	C dent will be able	Course Outcomes to	Cognitive Level	in	End S	ge of (emest natior	ter		
COI		concepts of theorems and Transforms ng parameters of Communication	Ар		2	0%			
CO2	modulation	ormance of different types of Analog Techniques and information theory a given set of parameters.	An		2	0%			
CO3	, ,	ormance of different types of Digital echniquesfor a given set of parameters.	An		4	0%			
CO4	• •	g and Digital Communicationsubsystems of specifications.	С		2	0%			
CO5	effectively, de	dependent/team learning, communicate velop a project that implement Analog Communication concepts and give oral	U	Int	Internal Assessme				

UNIT I - AMPLITUDE MODULATION

(9)

Functional block diagram of communication systems- Linear modulation schemes: Generation of AM: DSBFC using balanced modulator- Introduction to DSBSC, SSBSC and VSB Signals- Comparison of Amplitude Modulation Systems. Super heterodyne receivers- Noise in AM receivers - coherent detection, envelope detection.

UNIT II - ANGLE MODULATION

Frequency modulation and Phase modulation, Relation between FM and PM waves Narrowband FM, Wideband FM-Generation of FM: indirect method-FM demodulation: frequency discriminator-Non linear effects in FM systems-Noise in FM receivers-capture effect-pre emphasis and de-emphasis in FM.

UNIT III - INFORMATION THEORY AND CODING

(9)

(9)

Entropy and its properties-source coding theorem: Shanon-Fano coding, Discrete memory less channelmutual information and its properties-channel coding theorem-information capacity theorem; Hamming codes,

UNIT IV - PULSE MODULATION AND BASEBAND TRANSMISSION (9)

Sampling process-PAM, PPM, PWM-Quantization process-PCM-DPCM-Delta Modulation-Adaptive delta modulation-Classification of line coding and Decoding-Matched Filter –Error rate due to noise –Inter symbol Interference-Eye patterns - Nyquist criterion for distortion less base band Binary Transmission-Correlative level coding: Duo binary with and without precoder- Modified duo binary with and without precoder.

UNIT V - PASSBAND DATA AND SPREAD SPECTRUM MODULATION

(9)

Pass band Transmission model-Generation, detection ,signal space diagram, bit error probability and power spectra of Binary Modulation schemes (ASK,FSK,PSK), Quadrature Modulation schemes (QPSK,QAM) – Comparison of Binary and Quadrature modulation techniques. Spread Spectrum: PN sequence and its properties- Direct sequence spread spectrum-Frequency Hopping spread spectrum.

TOTAL (L:45): 45 PERIODS

TEXT BOOKS:

- I. Simon Haykin, "Communications Systems", Wiley Education, 5th Edition, 2009.
- 2. T L Singal, "Analog & Digital Communications", Tata McGraw-Hill Education, 4th Edition, 2012

REFERENCES:

- I. Taub H and Schilling D L, "Principles of Communication Systems", McGraw Hill, 4th Edition, 2017.
- 2. Wayne Tomasi, "Electronic Communications Systems–Fundamentals Through advanced", Pearson Education, 4th Edition, 2007.
- 3. Praokis J.G., "Digital Communications" 5th Edition, McGraw Hill, 2014.
- 4. Bernard Sklar, Pabitra Kumar Ray "Digital Communications: Fundamentals & Applications", Pearson Education, 2nd Edition, 2009.

	Mapping of COs with POs / PSOs														
COs		POs													
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
Ι	3												2		
2		3											2		
3		3											2		
4			3										3		
5									2	2	2	2	2		
CO (W.A)	3	3	3						2	2	2	2	2.2		

Ratified by Twelfth Academic Council

	22ECP05 -	ANALOG AND DIGITAL COMMUNICATION LA	BORA	TOR	Y							
			L	Т	Р	С						
			3	0	0	3						
PRERE	EQUISITE : 2	2ECC06										
Cours	 To demonstrate the concepts of generation and detection of AM and FM modulation schemes. To demonstrate the concepts of generation and detection of digital modulation and pulse modulation schemes. 											
The Stu	dent will be able	Course Outcomes to	Co	gnitiv	e Lev	el						
соі		oncepts of modulation, demodulation of AM,FM and communication systems		А	P							
CO2	,	concepts and related to Pre-emphasis and De-emphasis, tion schemes.		А	n							
CO3		eriments to demonstrate concepts related to Analog and nodulation using suitable electronic components.		E	Ē							
CO4	Use modern modulation sy	tools to design and analyze the Amplitude and Angle stems.		C	2							
CO5	Involve in Ind learning.	ependent/team learning effectively and engage in lifelong		E	Ē							

LIST OF EXPERIMENTS

- I. Generation and Detection of Amplitude modulation signals.
- 2. Generation and Detection of Frequency Modulation.
- 3. Generation and Detection of Amplitude modulation signals.
- 4. Generation and Detection of Frequency Modulation.
- 5. Response of Pre-Emphasis / De-emphasis Circuits.
- 6. Sampling process (PAM)
- 7. Generation of Pulse Modulation waveforms- PWM / PPM
- 8. Generation of Line Coding and Decoding techniques.
- 9. Generation and detection of digital modulation schemes- ASK, PSK, FSK.
- 10. Implementation of Error Control Coding using MATLAB

TOTAL : 60 PERIODS

				1	Mappir	ng of C	Os wit	th POs	s / PSC	s					
COs		POs													
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3												2	Ι	
2		2											I	2	
3					3								3		
4		2			2								2	2	
5									2			I	I	Ι	
CO (W.A)	3	2			2.5				2			I	1.8	1.5	

• Ratified by Twelfth Academic Council

	22ECC13 - MICROPROCESSOR AND MICROCONTROLLER	INTEF	RFAC	ING	
		L	Т	Р	С
		3	0	0	3
PRER	EQUISITE : NIL				
Cours	 To know the internal architecture, instruction principles of 8-bit Microprocessor, 8-bit Microsciated peripherals. To expertise in assembly language and high level la 8-bit Microprocessor and Microcontroller. To illustrate the methods and techniques for interf with microcontrollers and providing practical examples. 	rocontr nguage acing va	roller progr	and ammin	their g for
The Stu	Course OutcomesCognitiveIdent will be able toLevel	in	eighta End S Exam	Semes	ter
соі	Apply the Architectural concepts to operate and interface an 8-bit microprocessor, microcontroller, and its peripherals in various practical scenarios.Ap		20%		
CO2	ApplydiverseprogrammingtechniquesfordevelopingMicroprocessorandMicrocontrollerAPbased systems.		3	0%	
CO3	Analyzememoryandinput/outputsystemsforefficientdatahandlingandprocessinginAnMicroprocessorandMicrocontrollerenvironment.		3	0%	
CO4	Design Microprocessor and Microcontroller based C real time applications using modern engineering tools.		2	.0%	
CO5	Engage independently or collaboratively, demonstrate designs and deliver oral presentations on the applications of Microprocessor and Microcontroller based systems.	Int	ernal /	Assess	ment

UNIT I - 8 BIT MICROPROCESSOR & MEMORY ORGANIZATION	(9)
Origin and classification of Microprocessor - 8085 Architecture- Addressing mode – Instru	
Computer system Memory Overview- Cache Memory Principles – Elements of Cache Design.)
UNIT II - 8051 MICROCONTROLLER	(9)
8051 Microcontroller: Architecture– Signals – Memory Organization - Interrupts – Timer/	counter -
UNIT III - 8051 ASSEMBLY LANGUAGE PROGRAMMING	(9)
	(7)
8051 Addressing mode – Instruction Set – Programming 8051 Timers – Serial Port programming.	amming –
UNIT IV - HIGH LEVEL LANGUAGE PROGRAMMING	(9)
Data types and time delay in 8051 C – I/O Programming in 8051 C – Logical operations in	8051 C -
Accessing code ROM space in 8051 C - Timer programming in C - Serial port programmi	
Interrupt programming in C	
UNIT V- UNIT V-8051 EXTERNAL INTERFACING	(9)
LCD & Keyboard Interfacing - ADC, DAC & LM35 Temperature Sensor Interfacing - Externa	I Memory
Interface- Stepper Motor Interfacing	
TOTAL (L:45) : 45 P	ERIODS

TEXT BOOKS:

- 1. Mohamed Ali Mazidi, Janice GillispieMazidi, RolinMcKinlay, "The 8051 Microcontroller and Embedded Systems: Using Assembly and C", Second Edition, Pearson education, 2011
- 2. Ramesh S. Goankar, "Microprocessor Architecture: Programming and Applications with the8085", Sixth edition, Penram International, 2015 Reprint
- 3. William Stallings, "Computer organization and architecture Designing for Performance", Tenth Edition, Pearson Education, 2016.

- 1. Senthilkumar, Saravanan, Jeevanantham, Shan "Microprocessor & Interfacing", Oxford University press, 2012.
- 2. K.UmaRao. AndhePallavi, "The 8051 Microcontroller Architecture, Programming and Applications" Pearson Education 2011, Second Impression.

				M	apping	of CC) s with	POs /	PSO s					
						PC	Ds						PS	Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3												3	
3		3											3	
4			3								2			3
5				3	2				3	2		I		3
CO (W.A)	3	3	3	3	2				3	2	2	I	3	3

CNO.Ma

					т	Р	C
				L 3	0	P 0	3
PRERE	EQUISITE :NI	L		5	v	v	J
	se Objective:	 To understand the concepts of computing to study about multipleaccess technique. To get awareness about the performate technologies. 	ues, network pro			netwo	rking
The Stu	dent will be able	Course Outcomes	Cognitive Level	in	eightag End S Exami	emest	ter
COI		nmunication and Networking concepts to across computer networks.	Ар		2	0%	
CO2	,	data communication systems, including hitecture, Protocols and performance	An		3	0%	
CO3		etwork protocols and technologies to t data transfer.	An		3	0%	
CO4		nalyze the security and privacy aspects of nication systems including encryption, ccess control	E		2	0%	
CO5		resentation on recent technological in data communication and network	U	Int	ernal A	Assessn	nent
UNIT	I -FUNDAME	NTALS OF DATA COMMUNICATIO	N			(9))
		communication-network types – Connecti el-TCP/IP- Transmission Media: Guided and					
UNIT	II -DATA LIN	K LAYER				(9))
Hammi	ng Distance- pa	Link Control-Error Control: types of erro <mark>rity check codes</mark> – cyclic codes – Media 802.11 Project – Bluetooth					
UNIT	III –NETWOF	RK LAYER				(9))
Forwar	ding of IP Pack	es – Packet Switching –Network Layer pe tets- <mark>Next Generation Internet Protocol(II</mark> stance Vector Routing, Link State Routing, P	<mark>PV6)</mark> - Transitior	n fron			
UNIT	IV – TRANSPO	ORT LAYER				(9))
Contro	ort Layer Servic I Protocol (TCF oken Bucket and	ces- Transport Layer Protocols: – User Da ?) –SCTP- Quality of service – Data flow ch d Leaky Bucket	itagram Protocc aracteristics – F	ol (UD low co	PP) –Ti ontrol	ransmi to imp	ssior
UNIT	V- APPLICA	FION LAYER				(9))
Telnet	– SSH- Domair	rver Paradigm- Standard Applications: Wor Name System- Multimedia Data- Multime oduction –Confidentiality – Other aspects of	edia in the Inter				

TEXT BOOKS:

1. Behrouz A. Forouzan, "Data Communication and Networking", 6th India Edition, Tata McGraw-Hill, 2017.

- 1. Tanenbaum, Andrew S and David Wetherall, —Computer Networks, 5th Edition, PHI Learning, New Delhi,2010.
- 2. Kurose, James F. and Ross, Keith W., —Computer Networking: A Top-Down Approach Featuring the Internet,6th Edition, Pearson Education, New Delhi, 2012.

				M	lapping	g of CC	Os with	POs /	PSOs					
						PC	Ds						PSO	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3											3	
3			3										3	
4				3	3								3	
5							2		2				2	
CO (W.A)	3	3	3	3	3		2		2				2.8	

CN.Ma.

	22ECP06 - N	IICROPROCESSOR AND MICROCONTROLLER II LABORATORY	NTER	FACII	٩G	
			L	Т	Р	С
			0	0	4	2
PRERE	EQUISITE : N	IL				
Cours	se Objective:	 To enable the student to analyze various arithmetic, le transfer operations using 8085 Microprocessor. To provide the student with practice in the 8051 Mic Logical operations. To motivate the students to learn the I/O interfacing HLP. 	crocon	troller	arithm	
The Stu	dent will be able	Course Outcomes to	Co	ognitiv	ve Lev	el
COI		mbly language programming knowledge to operate and bit Microprocessor, Microcontroller, and its peripherals		A	NΡ	
CO2		verse programming techniques in Microprocessor and er based system development for various real-world		A	۸n	
CO3		unctionalities of arithmetic, logical, and control transfer rformed by 8-bit Microprocessors and Microcontrollers.			E	
CO4	Verify the op Microcontroll programming.	perational capabilities of different peripherals within a er environment through High level language			E	
CO5		e functionality of fundamental peripherals for various real- ions using modern engineering tools.			С	

LIST OF EXPERIMENTS :

- 1. Assembly language programming for 8/16 bit Arithmetic operators Using 8085.
- 2. Assembly language programming with control instructions Using 8085 (Increment / Decrement, Ascending / Descending order, Maximum / Minimum of numbers.
- 3. Assembly language programming for arithmetic and logical operations using 8051.
- 4. Interfacing and Programming of DC Motor Speed control using 8051.
- 5. Interfacing and Programming of Stepper Motor control using 8051.

High Level Language Programming:

The following programs have to be tested on 8051 Development board/equivalent using Embedded C Language on KEIL IDE or Equivalent.

- I. Program to toggle all the bits of Port PI continuously with delay.
- 2. Program to toggle P1.5 continuously with delay. Use Timer in mode 0, mode 1, mode 2 and mode 3 to create delay using 8051.
- 3. Program to interface 7 segments display to display a message on it using 8051.
- 4. Program to interface keypad. Whenever a key is pressed, it should be displayed on LCD using 8051.
- 5. Program to get analog input from Temperature sensor and display the temperature Value on LCD using ADC with 8051 Microcontroller.
- 6. Program to handle interrupts with 8051 Microcontroller.

TOTAL (P:60) = 60 PERIODS

				Μ	apping	g of CC	Os with	POs /	PSOs						
						PC	Os						PSOs		
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
Ι	3														
2	3												3		
3		3											3		
4				3										3	
5			3		2									3	
CO (W.A)	3	3	3	3	2								3	3	

CNO.MO.

	22ECP07 -	DATA COMMUNICATION AND NETWORKS LA	BOR	ΑΤΟΙ	۲Y	
	•		L	Т	Р	С
			0	0	4	2
PRERE	EQUISITE : N	IL				
		• To learn the various routing algorithms.				
		• To gain knowledge about the various open source sir	nulatic	on too	s for	
Cours	e Objective:	packet tracing and network design.				
		 To understand the peer to peer communication appl 	ication	using	differe	nt
		protocols.				
		Course Outcomes	Co	gnitiv	ve Lev	el
The Stu	dent will be able					
COI		working knowledge of computer hardware & stems, software and networking skills.		ι	J	
CO2	Design and s simulator mo	imulate simple networking models using the Network deling.		A	νp	
CO3		I analyze the concepts of protocols, network interfaces		A	n	
CO4	Troubleshoot professionalis	: and repair network problems demonstrating m, team work and adaptability.			E	
CO5	Develop and	test network applications using socket programming.		(C	

LIST OF EXPERIMENTS :

- 1. Implementation of Stop and Wait Protocol and sliding window.
- 2. Implementation and study of Go back-N and selective repeat protocols.
- 3. Create scenario Transfer of files from PC to PC using Windows socket processing.
- 4. Analyze the performance of CSMA/CD protocol through simulation.
- 5. Evaluate the performance of network with CSMA / CA protocol and compare with CSMA/CD protocols.
- 6. Implementation of distance vector routing algorithm.
- 7. Implementation of Link state routing algorithm.
- 8. Data encryption and decryption using Data Encryption Standard algorithm.
- 9. Implement and realize the Network Topology Star, Bus and Ring using NS2.
- 10. Implement and perform the operation of CSMA/CD and CSMA/CA using NS2.

TOTAL (P:60) = 60 PERIODS

				M	lapping	g of CC	Os with	POs /	PSOs					
						PC	Os						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	
2			3		3								3	
3			3										3	
4		3		2									3	
5									2				2	
CO (W.A)	3	3	3	2	3				2				3	

CNO.MO.

		22ECC15 - VLSI AND CHIP	DESIGN				
				L	Т	Ρ	С
				3	0	0	3
PRER	EQUISITE : N	IL					
Cour	se Objective:	 To understand the I-V and DC characteristic CMOS Circuits by means of stick diagram To study about the static and dynamic circuits using different logic styles To obtain knowledge about Intercontering HDL-modeling Concepts 	n mic CMOS comb	ination	al and	seque	ential
The Stu	dent will be able	Course Outcomes to	Cognitive Level	in	End S	ge of C emest nation	er
соі	electronics to	asic knowledge of digital and analog analyze MOS transistor characteristics and out of CMOS circuits.	Ар		2	0%	
CO2		ous combinational and sequential circuit alize different logic styles.	An		3	0%	
CO3		liverse static and dynamic combinational CMOS circuits using different logic styles	An		3	0%	
CO4		level physical design and implement the epts using modern software tools.	С		2	0%	
CO5		ndently to deliver oral presentations on s of VLSI systems.	U	Int	ernal A	ssessm	ent
UNIT	I - MOS TRAN	SISTORS AND FABRICATION				(9))
MOS 1	Fransistors - No	 Enhancement and Depletion Mode Trans Ideal I-V Effects - DC transfer characteristic and layout design rules. 					
	Ű	TIONAL CIRCUITS DESIGN				(9))
		c CMOS - Pseudo NMOS Logic - Clocke Dynamic Logic - Pass transistor Logic -Trans	•		o Logio	: - Cas	code
UNIT	III - <mark>SEQUEN</mark>	TIAL CIRCUITS DESIGN				(9))
Pulsed	latches - Reset	its - Circuit design of latches and flip-flops - table latches and flip-flops - enabled latche and flip-flops - Sequencing dynamic circuits					
					1	()	

UNIT IV - VLSI SUBSYSTEMS DESIGN AND MEMORIES

Bit Adders - Ripple Carry Adder - Carry look-ahead adder - Subtractor -One/Zero detectors - Comparators-Shifters - 2's complement array multipliers - Wallace tree multiplier - Series multiplier -Series and Parallel division - SRAM and Dynamic RAM

UNIT V- SYSTEM LEVEL PHYSICAL DESIGN AND MODELING CONCEPTS

(9)

(9)

Large Scale physical design - Interconnect delay modeling - cross talk - Interconnect scaling – Floor planning and routing – Power distribution and consumption - Low power design considerations - Overview of Verilog HDL-Modeling Concepts

TOTAL (L:45): 45 PERIODS

TEXT BOOKS:

- 1. Neil H.E.Weste, David Harris "CMOS VLSI Design A Circuits and Systems Perspective", Pearson Education, 4th Edition, 2015.
- 2. John P.Uyemura, "Introduction to VLSI Circuits and Systems", John Wiley & Sons, 2009.

- 1. Jan M. Rabaey, Anantha Chandrakasan, Borivoje Nikolic, "Digital Integrated Circuits A Design Perspective", Prentice Hallof India, 2nd Edition, 2012.
- 2. Eugene D.Fabricius," Introduction to VLSI Design", Tata McGraw Hill, 1st Edition, 1990.
- 3. Gary K. Yeap, "Practical Low Power Digital VLSI Design", Kluwer Academic Publishers, Boston, 1st Ediiton, 1998.
- 4. Neil H.E. Weste and Kamran Eshraghian, "Principles of CMOS VLSI Design: A System Perspective", Addison Wesley, New Delhi, 2nd Edition, 2009.
- 5. Charles H.Roth and Lizy Kurian John, "Digital System design using VHDL", John Wiley& Sons, 2nd Edition, 2013.

				M	lapping	g of CC	Os with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													2
2	3													
3		3											I	3
4			3										I	3
5									2	I				I
CO (W.A)	3	3	3						2	I			I	2

CN.Ma.

	22ECC16 - EMBEDDED SYSTEMS AND IOT	DESIGN			
		L	Т	Ρ	С
		3	0	0	3
PRER	EQUISITE : NIL				
Cour	 To gain knowledge about PIC Microcontrol To understand the embedded systems and 				
The Stu	Course Outcomes Cogni udent will be able to Lev	itive i	/eighta n End S Exam	emes	ter
COI	Apply knowledge of 16-bit microcontroller with necessary Input/Output and Memory Operations to A build an embedded processor.	·Ρ	2	.0%	
CO2	Analyze the combinational, sequential, and timing circuits in recognizing functional blocks of embedded systems A and their working mechanisms	'n	2	.0%	
CO3	Design simple programming modules in machine and higher-level programming language using simulators to develop logical skills and testing skills	νP	4	0%	
CO4	Select and implement appropriate IoT techniques to A provide valid conclusions.	'n	2	.0%	
CO5	Build simple Embedded Applications using Input and U U Output devices with IoT and a controller.	l ſ	nternal /	Assessr	nent
	· · · ·				
JNIT	I- PIC MICROCONTROLLER				(9)
	6F877 Microcontroller Architecture - Memory organization are/Capture/PWM modules (CCP) - Master Synchronous Serial Port			/Count	er
	II - EMBEDDED SYSTEMS				(9)

Processors – Memory System Mechanisms – CPU Performance.

Introduction – Multiple Tasks and Multiple Processes – Preemptive real time Operating systems – Priority based scheduling – Interprocess Communication Mechanisms– Design Example – Audio Player, Engine Control Unit and Video Accelerator.

UNIT IV – INTERNET OF THINGS

Introduction – Physical Design – Logical Design – IoT Enabling Technologies – Domain Specific IoTs: Retail, Logistics, Industry, Health and Lifestyle – IoT and M2M – IoT System Management with NETCONF-YANG – IoT Platform Design Methodology: IoT Level Specification, Domain Model.

UNIT V - IOT SYSTEM DESIGN

Basic building blocks of an IoT device – Raspberry Pi – Board – Linux on Raspberry Pi – Interfaces – Programming with Python – Case Studies: Home Automation, Smart Cities, Environment and Agriculture.

TOTAL (L:45) = 45 PERIODS

(9)

(9)

(9)

TEXT BOOKS:

- 1. John B Peatman, "Design with PIC Microcontrollers", Pearson Education Asia, 2013, Twenty third Impression
- 2. Marilyn Wolf, "Computers as Components Principles of Embedded Computing System Design", Third Edition, Morgan Kaufmann, 2012
- 3. Arshdeep Bahga, Vijay Madisetti, "Internet of- Things A Hands on Approach", Universities Press, 2015.

- 1. Mayur Ramgir, Internet of Things, Architecture, Implementation and Security, First Edition, Pearson Education, 2020.
- 2. Lyla B.Das, Embedded Systems: An Integrated Approach, Pearson Education 2013.
- 3. Jane.W.S .Liu, Real Time Systems, Pearson Education, 2003.

						PC	Os						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3													
2		3												2
3			2		2									3
4				2										
5					2									
CO (W.A)	3	3	2	2	2									3

CN.Ma.

		22ECP08 - VLSI DESIGN LABORATORY								
			L	Т	Ρ	С				
			3	0	0	3				
		PREREQUISITE : 22ECC05								
Cours	Circuits using Ha	 To design and simulate combinational logic and se using Verilog HDL. To implement the digital logic circuits using Xilinx 	•	0	circuit	5				
		To understand and design the CMOS logic circuit	s using ⁻	Tanner	⁻ softw	are.				
The Stu	dent will be able	Course Outcomes to	Co	ognitiv	ve Lev	el				
COI		wledge of digital design and develop code for digital logic Iardware Description Language.	Ар							
CO2		Ар								
CO3	Analyze the di	An								
CO4	Design and sim	nulate the CMOS blocks using EDA tool.		E	v					
CO5	Prepare an effe	ective record for all the experiments.		ι	J					

١.	Design an 8-bit Adder and 8-bit Subtractor and simulate using Xilinx software
2.	Design an ALU and simulate using Xilinx software.
3.	Simulation and Implementation of Encoder and Decoder using Xilinx.
4.	Simulation and Implementation of 4 * 4 Multiplier using Xilinx.
5.	Design T, JK and SR flipflops. Simulate and Implement using Xilinx.
6.	Design and implementation of Shift registers using Xilinx.
7.	Design 3-bit synchronous up/down counters. Simulate and implement using Xilinx.
8.	Design 4-bit Asynchronous up/down counter. Simulate and implement using Xilinx.
9.	Design and simulation of Frequency Dividers and implement using Xilinx.
10	. Design and simulation of CMOS Inverter using Tanner software.
11	. Design CMOS NAND and NOR Gates using PMOS and NMOS Transistors and simulate using
	Tanner software.
12	. Design and simulation of CMOS Latch using Tanner software.

				М	apping	g of CC	Os with	POs /	PSOs					
						PC	Os						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3								2					
2					3				2					2
3					3									
4			3		3									3
5								3	2	3		2		
CO (W.A)			3		3			3	2	3		2		2.5

CNO.MO.

	22ECP09	9 - EMBEDDED SYSTEMS AND IOT DESIGN LABC	ORAT	ORY				
			L	Т	Р	С		
			3	0	0	3		
		PREREQUISITE : NIL						
Cours	se Objective:	 To obtain a broad understanding of the emerging te system To gain knowledge about I/O models. 	chnolo	gies in	embec	lded		
The Stu	dent will be able	Course Outcomes to	Co	ognitiv	e Lev	el		
соі	Apply the ki platform.	Ap						
CO2	Analyze the vi	rtual circuits of digital devices using Proteus.	An					
CO3	Design and sy conduct the e	Ар						
CO4	Develop the h	An						
CO5	Involve in inc engage in life I	lependent / team learning, communicate effectively and ong learning.	С					

LIST OF EXPERIMENTS :

- I. Program to interface Traffic Light Controller using PIC Microcontroller.
- 2. Program to control the external devices using GPIO ports of PIC16FXX Microcontroller.
- 3. Program to Develop an IoT Dashboard for Sensors on Android Phone.
- 4. Program to Develop an IoT Camera System using Android Phones.
- 5. Program to control the external devices using GPIO ports of ARM Processor.
- 6. Program to interface the ADC using ARM Processor.
- 7. Program to interface the DAC using ARM Processor.
- 8. Program to interface the keyboard using ARM Processor.
- 9. Program to Design a Heart Beat sensor using Arduino controller.
- 10. Program to Design a fire detecting system using Arduino controller.

TOTAL (P:60) = 60 PERIODS

									PSOs								
						PC	Ds						PSOs				
COs	I	2	3	4	5	6	7	8	9	10	11	12	Ι	2			
I	3																
2		3												2			
3			3											2			
4			3														
5									2	2		I		2			
CO (W.A)	3	3	3						2	2		I		2			

CN.Ma.

		22GE	D	0	2-	IN	11	ΓEI	RI	NSI	HII	P/I	ΊN	IDI	US	TR	RIA	L٦	ΓR/		NG	;						
	•																					L	•	Т		Ρ	(С
																						0		0		4	2	2
PRERI	EQUISITE : N	NIL																										
Cours	se Objective:	•									ad ı dge					•			e em	ergii	ng te	echn	olo	ogies	in l	ndu	stry	,
The Stu	ident will be abl		С	0	urs	se	0	Dut	itc	om	nes	5										С	08	niti	ve l	Lev	el	
соі	Engage in Industrial activity which is a community service.								U																			
CO2	Prepare the p work.	project i	re	эÞ	ort	t, tł	hr	ree	e n	ninu	ute	e vio	ide	eo a	nd	the	e pc	oste	er c	f the				/	٩p			
CO3	Identify and specify an engineering product that can make their life comfortable.										An																	
CO4	Prepare a bu product, toge		•														the	e p	rop	osec		Ар						
CO5	Identify the community that shall benefit from the product.										efit f	fro	om	the	е р	rod	luct	t.				E						

During semester break, students are encouraged to engage in industrial training or undergo internship in an industry related to the field of study. The duration of the activity shall be of 4 to 6 weeks. The work carried out in the semester break is assessed through an oral seminar accompanied by a written report. It is expected that this association will motivate the student to develop simple Electronic (or other) products to make their life comfortable and convert new ideas into projects.

Every student is required to complete 12 to 16 weeks of internship (with about 40 hours per week), during the Summer/Winter semester breaks. The Internships are evaluated through Internship Reports and Seminars during the VI and VIII semesters. The internships can be taken up in an industry, government organization, a research organization or an academic institution, either in the country or outside the country, that include activities like:

- Successful completion of Internships/ Value Added Programs/Training
- Programs/ workshops organized by academic Institutions and Industries
- Soft skill training by the Placement Cell of the college
- Active association with incubation/ innovation /entrepreneurship cell of the institute
- Participation in Inter-Institute innovation related competitions like Hackathons
- Working for consultancy/ research project within the institutes
- Participation in activities of Institute's Innovation Council, IPR cell, Leadership Talks, Idea/ Design/ Innovation contests
- Internship with industry/ NGO's/ Government organizations/ Micro/ Small/ Medium enterprises
- Development of a new product/ business plan/ registration of a start-up

									/ PSO						
						PC	Ds						PSOs		
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
Ι						2									
2										3					
3		Ι													
4							2	3			2				
5						2									
CO (W.A)		I				2	2	3		3	2				

CNO.Ma.

22ECD01- PROJECT WORK - I

 T
 P
 C

 0
 0
 3

L 3

PREREQUISITE : NIL

The Stu	Course Outcomes dent will be able to	Cognitive Level	Weightage of COs in End Semester Examination
COI	Engage in independent study to research literature in the identified area and consolidate the literature search to identify and formulate the engineering problem.		10 % - First Review (Internal)
CO2	Prepare the Gantt Chart for scheduling the project, engage in budget analysis, and designate responsibility for every member in the team and identify the community that shall benefit through the solution to the identified research work and also demonstrate concern for environment	Ap, E	15 % - Second Review (Internal)
CO3	Identify, apply the mathematical concepts, science concepts, and engineering concepts necessary to implement the identified engineering problem, select the engineering tools /components required to reproduce the identified project.	Ap, An, C	15 % - Third Review (Internal)
CO4	Engage in effective written communication through the project report, the one-page poster presentation, and effective oral communication through presentation of the project work and demonstration of the project.	E	30 % - Final Review (External)
CO5	Perform in the team, contribute to the team and mentor/lead the team, demonstrate compliance to the prescribed standards/ safety norms and abide by the norms of professional ethics and clearly specify the outcome of the project work	Ap, An	30 % - Final Review (External)

DESCRIPTION

Project work may be allotted to a single student or to a group of students not exceeding 4 per group. The title of project work is approved by head of the department under the guidance of a faculty member and student(s) shall prepare a comprehensive project report after completing the work to the satisfaction of the guide. The Head of the department shall constitute a review committee for project work. There shall be three internal reviews and one external review during the semester by the committee to review the progress. Student(s) shall make presentation on the progress made by him / her / them before the committee and evaluation is done as per Rules and Regulations

TOTAL (P: 120) = 120 PERIODS

				M	apping	of CC) s with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I		3										3	3	3
2						3	3				3		3	3
3	3	3	3	3	3								3	3
4								3		3			3	3
5									3		3	3	3	3
CO (W.A)	3	3	3	3	3	3	3	3	3	3	3	3	3	3

CN.Ma.

	22ECD02- PROJECT WOR	K - II					
				L	Т	Р	С
PRER	EQUISITE : NIL			3	0	0	3
The Stu	Course Outcomes Ident will be able to	Cogni Lev		in	End S	ge of (emestination	ter
соі	Design, implement, analyze and interpret results of the implemented project and improvise the performance of the project.	Ap, A	An, C	10		rst Rev ernal)	view
CO2	Preparation of the four page IEEE format of the work, presentation of the project work and demonstration of the project in Project Expo, Presentation in International/ National Conferences, Conversion of project to start-up/ product/ research paper/ patent.	Ap, A	An, E	15 %		ond Re ernal)	eview
CO3	Design, implement, analyze and interpret results of the implemented project and improvise the performance of the project.	Ap, A	An, C	15		iird Re ernal)	view
CO4	Engage in effective written communication through the project report, the one-page poster presentation, and preparation of the video about the project and effective oral communication through presentation of the project work and demonstration of the project.	E	<u> </u>	30		nal Rev ernal)	view
CO5	Perform in the team, contribute to the team and mentor/lead the team, demonstrate compliance to the prescribed standards/ safety norms and abide by the norms of professional ethics and clearly specify the outcome of the project work.	Ap,	An	30		nal Rev ernal)	view

DESCRIPTION

Project work may be allotted to a single student or to a group of students not exceeding 4 per group. The title of project work is approved by head of the department under the guidance of a faculty member and student(s) shall prepare a comprehensive project report after completing the work to the satisfaction of the guide. The Head of the department shall constitute a review committee for project work. There shall be three internal reviews and one external review during the semester by the committee to review the progress. Student(s) shall make presentation on the progress made by him / her / them before the committee and evaluation is done as per Rules and Regulations

TOTAL (P:300) = 300 PERIODS

				Μ	apping	of CC) s with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I		3										3	3	3
2						3	3				3		3	3
3	3	3	3	3	3								3	3
4								3		3			3	3
5									3		3	3	3	3
CO (W.A)	3	3	3	3	3	3	3	3	3	3	3	3	3	3

CNO.Ma

	22ECX01 - ASIC DESI	GN				
	<u> </u>		L	Т	Ρ	C
			3	0	0	3
PRER	EQUISITE : NIL					
Cour	 To understand ASICs, CMOS Logic, To identify, apply and design a methodologies such as Full custom a To apply industry standard CAD too 	a system using and Semi-custom ap	differe oproacl	nt V nes.		
The Stu	Course Outcomes udent will be able to	Cognitive Level	in E	Ind S	ge of C emest ination	er
соі	Apply the knowledge of VLSI to design digital integrated circuits.	Ар		2	0%	
CO2	Ability to identify, apply and design a system using different VLSI design methodologies such as Full custom and Semi-custom approaches.	An		3	0%	
CO3	Ability to apply industry standard CAD tools for designing VLSI systems.	An		3	0%	
CO4	Ability to analyze and investigate the performance of VLSI systems.	E		2	0%	
CO5	Understand ASICs, CMOS Logic, ASIC Library and Programmable ASICs.	U	Inte	rnal A	Assessm	nent
Progr	ammable ASICs			ign,	(9)	
Progr Types		resistors - Transis				tano
Progr Fypes - Logio	ammable ASICs of ASICs - Design flow – CMOS transistors- Transistor as	resistors - Transis				tand
Progr Types - Logic JNIT Actel A	ammable ASICs of ASICs - Design flow – CMOS transistors- Transistor as cal effort-Antifuse - Static RAM - EPROM and EEPROM tec	timing model, criti	tor pa	rasitic th, sp	capaci (9) eed gra	adin
Progr Fypes - Logic JNIT Actel A worst & AC i	ammable ASICs of ASICs - Design flow – CMOS transistors- Transistor as cal effort-Antifuse - Static RAM - EPROM and EEPROM tec II - Programmable ASICs, logic cells and I/O Cells ACT: Multiplexer Logic,ACT2 and ACT3 Logic Modules, case timing,Actel logic module analysis, Xilinx LCA:XC300	timing model, criti 00CLB, XC4000, X	tor pa	rasitic th, sp	capaci (9) eed gra	adin
Progr Types - Logic UNIT Actel & AC i UNIT Actel	ammable ASICs of ASICs - Design flow – CMOS transistors- Transistor as cal effort-Antifuse - Static RAM - EPROM and EEPROM tec II - Programmable ASICs, logic cells and I/O Cells ACT: Multiplexer Logic,ACT2 and ACT3 Logic Modules, case timing,Actel logic module analysis, Xilinx LCA:XC300 inputs and outputs – Clock & power inputs.	timing model, criti 00CLB, XC4000, X esis	ical pat	rasitic th, sp), Xili	eed grann CLE	adin 3, D
Progr Types - Logic UNIT Actel A worst & AC i UNIT Actel multipl	ammable ASICs of ASICs - Design flow – CMOS transistors- Transistor as cal effort-Antifuse - Static RAM - EPROM and EEPROM tec II - Programmable ASICs, logic cells and I/O Cells ACT: Multiplexer Logic,ACT2 and ACT3 Logic Modules, case timing,Actel logic module analysis, Xilinx LCA:XC300 inputs and outputs – Clock & power inputs. III - Programmable Interconnects and Logic Synth ACT – Xilinx LCA – Design synthesis:Xilinx, Actel, A	timing model, criti 00CLB, XC4000, X esis	ical pat	rasitic th, sp), Xili	eed grann CLE	adin 3, D
Types - Logic UNIT Actel & worst & AC i UNIT Actel multipl UNIT	ammable ASICs of ASICs - Design flow – CMOS transistors- Transistor as cal effort-Antifuse - Static RAM - EPROM and EEPROM tec III - Programmable ASICs, logic cells and I/O Cells ACT: Multiplexer Logic,ACT2 and ACT3 Logic Modules, case timing,Actel logic module analysis, Xilinx LCA:XC300 inputs and outputs – Clock & power inputs. III - Programmable Interconnects and Logic Synth ACT – Xilinx LCA – Design synthesis:Xilinx, Actel, A exers, Case statement, decoders, arithmetic and Sequentia	timing model, criti 00CLB, XC4000, X esis	ical pat (C5200 esis,Co	rasitic th, sp), Xilin mbina	c capaci (9) eed granx CLE (9) ntional	adin 3, D Iog
Progr Fypes - Logic JNIT Actel Worst & AC i JNIT Actel multipl JNIT Physica Constr	ammable ASICs of ASICs - Design flow – CMOS transistors- Transistor as cal effort-Antifuse - Static RAM - EPROM and EEPROM tec II - Programmable ASICs, logic cells and I/O Cells ACT: Multiplexer Logic,ACT2 and ACT3 Logic Modules, case timing,Actel logic module analysis, Xilinx LCA:XC300 inputs and outputs – Clock & power inputs. III - Programmable Interconnects and Logic Synth ACT – Xilinx LCA – Design synthesis:Xilinx, Actel, A exers, Case statement, decoders, arithmetic and Sequentia IV - Partitioning, Floorplanning and Placement al design flow -System partitioning - FPGA partitioning:	timing model, criti 00CLB, XC4000, X esis	ical pat (C5200 esis,Co	rasitic th, sp), Xilin mbina	c capaci (9) eed granx CLE (9) ntional	adin 3, D log

1. I. Smith M.J.S, "Application Specific Integrated Circuits", 12th Edition, Pearson Education Pvt. Ltd, New Delhi, 2013.

- 1. Wayne Wolf, "FPGA-Based System Design", 1st Edition, PHI, New Delhi, 2009.
- 2. Erik larson, "Introduction to Advanced System-on-Chip Test Design and Optimization", 1st Edition, Springer, USA, 2005.
- 3. Farzad Nekoogar and Faranak Nekoogar, From ASICs to SOCs: A Practical Approach, Prentice Hall PTR, 2003
- 4. R. Rajsuman, System-on-a-Chip Design and Test. Santa Clara, CA: Artech House Publishers, 2000.
- 5. F. Nekoogar. Timing Verification of Application-Specific Integrated Circuits (ASICs).Prentice Hall PTR, 1999.

						PO	S						P	SOs
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													3
2	3													3
3		2	2											3
4			2											3
5												I		3
CO (W.A)	3	2	2									I		3

CNO.Ma.

		22ECX02- SYSTEM ON CHI	P DESIGN				
				L	_	Ρ	С
PRERE	QUISITE :Ni			3	0	0	3
	e Objective:	 To understand the system architectul To study about system level design a To get awareness about the implementation 	and co design o	concepts		-	1.
The Stud	C dent will be able	Course Outcomes to	Cognitive Level		eighta) n End S Exami	emes	ter
соі	Apply SoC te	sting techniques.	Ар		2	.0%	
CO2	Discern syste concepts.	m level interconnection and co-design	An		3	0%	
CO3	Compare syst	em level design and interconnection.	An		3	0%	
CO4	Illustrate the o	co-design concepts.	E		2	.0%	
CO5	Understand s system design	ystem architectures and components in	U	I	nternal A	Assessn	nent
Introdu Versus	ction to system Performance, P	RCHITECTURE Architecture, Components of a system, rocessor Architectures, Memory and Add sign, System Architecture and Complexity	Iressing, Syster				bility
		EVEL DESIGN				(9))
Instruct	ion Handing-Ro	oncepts in Processor Architecture: Instru- obust processors: Vector processor, VL n processors, Custom-Designed processo	IW, Superscal	ar, CISC	c, risc-	–Proce	essor
	III - SYSTEM-	LEVEL INTERCONNECTION				(9))
Connec	t, Wishbone, A	ct Architecture, On-chip Buses: basic an valon-Network-on-chip – Architecture – ol, quality-of-service - Reconfigurability in	topologies - s	witching	strategi		
UNIT	IV - CO-DESI	GN CONCEPTS				(9))
design-	Co-design space	software- quest for energy efficiency- o e-Dualism of Hardware design and Softw lelism- Hardware Software tradeoffs- Intro	vare design - I	Modeling	g Abstra		
UNIT	V- SOC IMPL	EMENTATION AND TESTING				(9))
compor develop	nents, High-der ment kit. Manu	RISC processor - Real-time operating s nsity FPGAs-Introduction to tools use facturing test of SOC: Core layer, system Fest Automation (STAT).	d for SOC	design:	Xilinx S	SOC t	based
			тот	AL (L:4	5) = 45	PERIC	ODS

I. Michael J.Flynn, Wayne Luk, "Computer system Design: System-on-Chip", Wiley- India, 2012.

- 1. Patrick Schaumont "A Practical Introduction to Hardware/Software Co-design", 2nd Edition, Springer, 2012.
- 2. Lin, Y-L.S. (ed.), "Essential issues in SOC design: designing complex systems-on- chip", Springer, 2006
- 3. SudeepPasricha, NikilDutt, "On Chip Communication Architectures: System on Chip Interconnect", Morghan Kaufmann Publishers, 2008
- 4. W.H.Wolf, "Computers as Components: Principles of Embedded Computing System Design", Elsevier, 2008.

				M	apping	of CC	Ds with	POs /	PSO s	ł				
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3													3
2	3													3
3		3	3											3
4				I	3									3
5												2		3
CO (W.A)	3	3	2	I	3							2		3

CN.Ma.

		To apply the fundamentals of digital electronics Dijective: To apply object oriented programming To create the test benches to analysis to To implement the advanced design usin To enhance their design skill through lif Course Outcomes The Student will be able to Apply object oriented programming concepts for VLSI lesigns. Create the test benches to analysis the designs. Apply object oriented programming concepts for VLSI lesigns. Create the test benches to analysis the designs. Create the test design skill through lifelong learning. Create the advanced design using modern tools. cont ot data types, Built-in Data Types, Fixed-Size Arrays, inked Lists, Array Methods, choosing a Storage Type, Creatined Structures,		L 3	Т 0	P 0	
	EQUISITE : 22ECC05 se Objective: • To apply the fundamental: designs. • To apply object oriented • To reate the test benches • To implement the advance • To enhance their design s Course Outcomes The Student will be able to Apply the fundamentals of digital electronics ar through programming the designs. Apply object oriented programming concepts the designs. Create the test benches to analysis the designs Implement the advanced design using modern Enhance their design skill through lifelong learn I-VERIFICATION GUIDELINES rection, The Verification Process, The Verification nch Functionality, Directed Testing, Methodolo ge, Testbench Components, Layered Testing ment Phases, Maximum Code Reuse, Testbench II - DATA TYPES rection to data types, Built-in Data Types, Fixed Linked Lists, Array Methods, choosing a Storage refined Structures, Enumerated Types, Constalation methods, Array querying functions, Queu II - PROCEDURAL STATEMENTS AND rection, Procedural Statements, Tasks, Functions e Arguments, Returning from a Routine, Loca .			3	U	U	
PRER							
Cours	se Objective:	 designs. To apply object oriented programm To create the test benches to analys To implement the advanced design of 	ing concepts for VL sis the designs using modern tools.	_SI de:	signs.		
			Cognitive Level	in	End S	ge of (Semes inatio	tei
COI			Ap		2	25%	
CO2		riented programming concepts for VLSI	Ap		2	25%	
CO3	Create the tes	t benches to analysis the designs.	С		3	80%	
CO4	Implement the	advanced design using modern tools.	D		2	20%	
CO5	Enhance their o	design skill through lifelong learning.	U	Int	ernal A	Assessr	nei
Introdu Testber Coverag	ction, The Verif nch Functionality ge, Testbench	fication Process, The Verification Plan, Th y, Directed Testing, Methodology Basics, Components, Layered Testbench, Bu	Constrained-Randoilding a Layered	om St	timulus	lanual, s, Func	tio
Introdu Testber Coveraş Environ UNIT I	ction, The Verif nch Functionality ge, Testbench ment Phases, M II - DATA TYI	fication Process, The Verification Plan, Th y, Directed Testing, Methodology Basics, Components, Layered Testbench, Bu aximum Code Reuse, Testbench Performa PES	Constrained-Rand ilding a Layered ance.	om St Testl	bench,	lanual, s, Func Simu	Ba tio lat
Introdu Testber Coverag Environ UNIT Introdu Arrays, User-D	ction, The Verif nch Functionality ge, Testbench ment Phases, M II - DATA TYI ction to data ty Linked Lists, Ar efined Structure	fication Process, The Verification Plan, Th y, Directed Testing, Methodology Basics, Components, Layered Testbench, Bu aximum Code Reuse, Testbench Performa PES ypes, Built-in Data Types, Fixed-Size Arr rray Methods, choosing a Storage Type, C es, Enumerated Types, Constants, Strin	Constrained-Rand ilding a Layered ance. ays, Dynamic Arra Creating New Type	om St Testl ys, Q s with	ueues,	lanual, s, Func Simu (9 Assoc	Ba tio lati
Introdu Testber Covera; Environ UNIT Introdu Arrays, User-D manipul	ction, The Verif nch Functionality ge, Testbench ment Phases, M II - DATA TYI ction to data ty Linked Lists, An efined Structury lation methods,	fication Process, The Verification Plan, Th y, Directed Testing, Methodology Basics, Components, Layered Testbench, Bu aximum Code Reuse, Testbench Performa PES ypes, Built-in Data Types, Fixed-Size Arr rray Methods, choosing a Storage Type, C es, Enumerated Types, Constants, Strin Array querying functions, Queue.	Constrained-Rand ilding a Layered ance. ays, Dynamic Arra Creating New Type gs, Expression Wi	om St Testl ys, Q s with	ueues,	lanual, s, Func Simu (9 Assoc lef, Cro ypes.	Ba tio lati
Introdu Testber Covera; Environ UNIT Introdu Arrays, User-D manipul UNIT Introdu	ction, The Verif nch Functionality ge, Testbench ment Phases, M II - DATA TYI ction to data ty Linked Lists, Ar efined Structure lation methods, III - PROCEDI ction, Procedure e Arguments, R	fication Process, The Verification Plan, Th y, Directed Testing, Methodology Basics, Components, Layered Testbench, Bu aximum Code Reuse, Testbench Performa PES ypes, Built-in Data Types, Fixed-Size Arr rray Methods, choosing a Storage Type, C es, Enumerated Types, Constants, Strin Array querying functions, Queue. JRAL STATEMENTS AND ROUTIN al Statements, Tasks, Functions, and Void	Constrained-Rand ilding a Layered ance. ays, Dynamic Arra Creating New Type gs, Expression Wi IES d Functions, Task a	om St Testl ys, Q s with idth, I	ueues, Net T	lanual, s, Func Simu (9 Associ lef, Cro ypes. (9 (9	Ba tio lati lati ?) ciat eat Arr ?)
Introduc Testber Covera; Environ UNIT Introduc Arrays, User-D manipul UNIT Introduc Routine control.	ction, The Verif nch Functionality ge, Testbench ment Phases, M II - DATA TYI ction to data ty Linked Lists, An efined Structure lation methods, III - PROCEDI ction, Procedure e Arguments, R	fication Process, The Verification Plan, Th y, Directed Testing, Methodology Basics, Components, Layered Testbench, Bu aximum Code Reuse, Testbench Performa PES ypes, Built-in Data Types, Fixed-Size Arr rray Methods, choosing a Storage Type, C es, Enumerated Types, Constants, Strin Array querying functions, Queue. JRAL STATEMENTS AND ROUTIN al Statements, Tasks, Functions, and Voic eturning from a Routine, Local Data St	Constrained-Rand ilding a Layered ance. ays, Dynamic Arra Creating New Type gs, Expression Wi IES d Functions, Task a	om St Testl ys, Q s with idth, I	ueues, Net T	lanual, s, Func Simu (9 Associ lef, Cro ypes. (9 n Over and pr	Ba tio llati llati 2) Ciat eat Arr 2)
Introduc Testber Covera; Environ UNIT Introduc Arrays, User-D manipul User-D manipul User-D Manipul Unit Unit Introduc Creatin Routine	ction, The Verifich Functionality ge, Testbench ment Phases, M II - DATA TYI ction to data ty Linked Lists, Ar efined Structure lation methods, III - PROCEDI ction, Procedure e Arguments, R IV - BASIC OC ction, Think of g New Objects es, Defining Ro tanding Dynami	fication Process, The Verification Plan, Th y, Directed Testing, Methodology Basics, Components, Layered Testbench, Bu aximum Code Reuse, Testbench Performa PES ypes, Built-in Data Types, Fixed-Size Arr rray Methods, choosing a Storage Type, C es, Enumerated Types, Constants, Strin Array querying functions, Queue. JRAL STATEMENTS AND ROUTIN al Statements, Tasks, Functions, and Void eturning from a Routine, Local Data St OPS Nouns, not Verbs, Your First Class, Wh s, Object Deallocation, Using Objects, S utines Outside of the Class, Scoping	Constrained-Randa ilding a Layered ance. ays, Dynamic Arra Creating New Type gs, Expression Wi IES d Functions, Task a orage, Time Value ere to Define a Cl tatic Variables vs. Rules, Using One	om St Testl ys, Q s with idth, I and Fu s. Pro Globa Class	ueues, typed Net T unctior ocess a DOP T al Vari s Insic	lanual, s, Func Simu Simu (9 Associ lef, Cro ypes. (9 n Over and pr (9 ermino iables, de Ano	Ba tio llati 2) ciat eat Arri 2) ciat eat Arri 2) colo Cli oth
Introduc Testber Covera; Environ UNIT Introduc Arrays, User-D manipul User-D manipul Unit Introduc Control. UNIT Introduc Creatin Routine Underst Testber	ction, The Verif nch Functionality ge, Testbench ment Phases, M II - DATA TYI ction to data ty Linked Lists, An efined Structure lation methods, III - PROCEDU ction, Procedure e Arguments, R V - BASIC OC ction, Think of g New Objects as, Defining Ro tanding Dynami nch.	fication Process, The Verification Plan, Th y, Directed Testing, Methodology Basics, Components, Layered Testbench, Bu aximum Code Reuse, Testbench Performa PES ypes, Built-in Data Types, Fixed-Size Arr rray Methods, choosing a Storage Type, C es, Enumerated Types, Constants, Strin, Array querying functions, Queue. JRAL STATEMENTS AND ROUTIN al Statements, Tasks, Functions, and Void eturning from a Routine, Local Data St OPS Nouns, not Verbs, Your First Class, Wh s, Object Deallocation, Using Objects, S utines Outside of the Class, Scoping ic Objects, Copying Objects, Public vs.	Constrained-Rand ilding a Layered ance. ays, Dynamic Arra Creating New Type gs, Expression Wi IES d Functions, Task a orage, Time Value ere to Define a Cl tatic Variables vs. Rules, Using One Private Straying	om St Testl ys, Q s with idth, I and Fu s. Pro Globa Class	ueues, typed Net T unctior ocess a DOP T al Vari s Insic	lanual, s, Func Simu Simu (9 Associ lef, Cro ypes. (9 n Over and pr (9 ermino iables, de Ano	Ba tio llati 2) ciat eat Arri 2) ciat eat Arri 2) colo Cli oth
Introduce Testber Coverage Environ UNIT Introduce Arrays, User-De manipul UNIT Introduce Control. UNIT Introduce Creating Routine Underst Testber UNIT	ction, The Verifich Functionality ge, Testbench ment Phases, M II - DATA TYI ction to data ty Linked Lists, An efined Structure lation methods, III - PROCEDU ction, Procedur e Arguments, R V - BASIC OC ction, Think of g New Objects es, Defining Ro tanding Dynami nch. V- CONNECT ction, Separatin Interface Drivin	fication Process, The Verification Plan, Th y, Directed Testing, Methodology Basics, Components, Layered Testbench, Bu aximum Code Reuse, Testbench Performa PES ypes, Built-in Data Types, Fixed-Size Arr rray Methods, choosing a Storage Type, C es, Enumerated Types, Constants, Strin, Array querying functions, Queue. JRAL STATEMENTS AND ROUTIN al Statements, Tasks, Functions, and Void eturning from a Routine, Local Data St OPS Nouns, not Verbs, Your First Class, Wh s, Object Deallocation, Using Objects, S utines Outside of the Class, Scoping to Objects, Copying Objects, Public vs. TING THE TEST BENCH AND DESI	Constrained-Randa ilding a Layered ance. ays, Dynamic Arra Creating New Type gs, Expression Wi IES d Functions, Task a orage, Time Value ere to Define a Cl tatic Variables vs. Rules, Using One Private Straying GN face Construct, vin ther, Top-Level Sco	om St Testl ys, Q s with idth, I and Fu s. Pro Globa Class Off C Class	interfac	lanual, s, Func Simu (9 Associ lef, Cre ypes. (9 n Over and pr (9) ce, Stii m – M	Ba tio lati lati P) ciat Arr P) olo Cla oth ling mu od

1. Chris Spear, Greg Tumbush, "System Verilog for Verification: A Guide to Learning the Test bench Language Features", 3rd Edition, Springer, US, 2012.

- 1. Stuart Sutherland, Simon Davidmann, "System Verilog for design: a guide to using System Verilog for hardware design and modeling", Springer, 2004.
- 2. Palnitkar Samir, "Verilog HDL: Guide to Digital Design and synthesis", 2nd Edition, Pearson Education, New Delhi, 2017.

				1	Mappir	ng of C	COs wi	th POs	: / PSC)s					
COs		POs													
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3													3	
2	3													3	
3		2	3											3	
4					2									3	
5												2		3	
CO (W.A)	3	2	3		2							2		3	

CN.Ma.

	22ECX04 – VLSI TESTING AND	TESTABILITY				
			L	т	Ρ	С
			3	0	0	3
PRER	QUISITE : 22ECC05					
Cours	 To apply the various techniques to To analysis the faults presence at To design testable digital circuit l To design the self checking system To develop new fault diagnosing 	nd investigate syste by testability techni ms.	m leve iques.	el faults	5.	
The Stu	Course Outcomes dent will be able to	Cognitive Level	in	End S	ge of (emes inatio	ter
COI	Apply the various techniques to diagnosis fault in digital circuit.	Ap		2	5%	
CO2	Analysis the faults presence and investigate system level faults.	Ар		2	5%	
CO3	Design testable digital circuit by testability techniques.	С		3	0%	
CO4	Design the self checking systems.	E		2	0%	
CO5	Develop new fault diagnosing algorithms through lifelong learning.	E	Int	ernal A	Ssessr	nent
UNIT	I - FAULT MODELLING AND SIMULATION				(9)
detecti Logic	ction to Testing - Faults in digital circuits - Modeling on- Fault location - Fault dominance – Single stuck fau Simulation- Types of simulation - Delay models - C ion Techniques Serial, Parallel and Deductive	It model and mult	iple s	tuck fa	ult mo	odel -
	II - TESTING FOR SINGLE STUCK AT FAULTS				(9)
PODE	eneration algorithms for combinational circuits – Fault 1 - Fault independent ATG - Random Test generation - erative array models- Random Test Generation.					
UNIT	III - DELAY TEST				(9)
circuit	est problem – Path delay test – Test generation for Co Transition fault – Delay test methodologies-Slow cloc scan sequential test, Variable- clock Non-scan sequent	k combinational te	est, Er	hance	d scan	test,
UNIT	IV- DESIGN FOR TESTABILITY				(9)
observ	lity- Controllability and observability, Ad-hoc design for bility by means of scan registers- Storage cells for scan scan using I-Paths – Boundary scan standards.					
UNIT	V-FAULT DIAGNOSIS				(9)
•	Level Diagnosis – Diagnosis by UUT reduction – Fault I g design – System Level Diagnosis.	Diagnosis for Coml				

- 1. Parag K. Lala "An Introduction to Logic Circuit Testing" Springer International Publishing, 2022.
- Abramovici, M., Brever, A., and Friedman, D., "Digital Systems Testing and Testable Design", Jaico Publishing House, 2002.

- 1. Michael L Bushnell and Vishwani D Agarwal, "Essentials of Electronic Testing for Digital, Memory and Mixed Signal Circuits", Springer, verlag 2000.
- 2. Parag K Lala, "Fault Tolerant and Fault Testable Hardware Design" BS Publications, 2002
- 3. Sebastian Huhn, Rolf Drechsler "Design for Testability, Debug and Reliability", Springer International Publishing, 2021.

				I	Марріі	ng of C	COs wi	th POs	s / PSC	s				
60 -							POs						PS	SOs
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													3
2		3												3
3			3											3
4			3											3
5												2		3
CO (W.A)	3	3	3									2		3

CN.Ma

		22ECX05 – ELECTRONIC SYS	TEM DESIGN				
				L	т	Ρ	С
				3	0	0	3
PRER	EQUISITE: 2	2ECC04					
Cour	se Objective:	 To apply design rules for PCB desig To perform various analysis on the To design the layouts of PCB includ To design the PCB using different P To Utilize the SPICE tool to design 	designed circuits. ling R, L, C spacing CB technology.			•	rements
	-	ourse Outcomes Student will be able to	Cognitive Level		eighta End S Exam	•	ster
COI	Apply design ru	les for PCB designing of circuits.	Ap			20%	
CO2	Perform variou	s analyses on the designed circuits.	An		,	20%	
CO3	Design the layo spacing require	uts of PCB including R, L, C, spacing and ments.	D			20%	
CO4	Design the PCE	B using different PCB technology.	D			20%	
CO5	Utilize the SPIC electronic circu	E tool to design and analysis the its.	Ap		:	20%	

UNIT I – BASIC ANALYSIS OF CIRCUITS	(9)
Introduction to Or CAD capture – DC bias point analysis – DC analysis- AC analysis – St Transient Analysis –Convergence problems and Error Messages - Transformers.	imulus Editor –
UNIT II – ADVANCED ANALYSIS OF CIRCUITS	(9)
Monte Carlo analysis – Worst case analysis – Performance analysis – Noise Analysis – Temp – Transmission lines – Digital simulation – Mixed simulation.	erature analysis
UNIT III - PRINTED CIRCUIT BOARD	(9)
Layout planning: General considerations - PCB sizes - Layout approaches - Layout, Ge parameters: Resistance, capacitance, inductance, conductor spacing, cooling requiremen density, layout check.	
UNIT IV- DESIGN RULES FOR DIGITAL & ANALOG CIRCUIT PCB's	(9)
UNIT IV- DESIGN RULES FOR DIGITAL & ANALOG CIRCUIT PCB's Digital circuit PCB: Introduction – Reflection - Cross talk - Around and supply line noise - interference from pulse type EM fields. Analog circuit PCB: Component placing - Signal con and ground conductors.	Electromagnetic
Digital circuit PCB: Introduction – Reflection - Cross talk - Around and supply line noise - interference from pulse type EM fields. Analog circuit PCB: Component placing - Signal component place	Electromagnetic
Digital circuit PCB: Introduction – Reflection - Cross talk - Around and supply line noise - interference from pulse type EM fields. Analog circuit PCB: Component placing - Signal con and ground conductors.	Electromagnetic iductor - Supply (9) ti wire board -

- 1. Dennis Fitzpatrick "Analog Design and Simulation using OrCAD Capture and PSpice" Elsevier Science Publication, 2017
- 2. Reinhold Luduig and PavelBretchko, "RF Circuit Design Theory and Applications", Pearson Education, USASecond Edition, 2012.
- 3. Walter C.Bosshart, "Printed circuit Boards Design and Technology", Tata McGraw-Hill, New Delhi, SecondEdition, 2012.
- 4. Douglas Brooks, Johannes Adam "PCB Design Guide to Via and Trace Currents and Temperatures" Artech House, 2021

- 1. Keith H.Billings, "Handbook of Switched Mode Power Supplies" McGraw-Hill Publishing Co., New Delhi, ThirdEdition 2011.
- 2. Michael Jacob, "Applications and Design with Analog Integrated Circuits", PHI, New Delhi, Second Edition, 1999.
- 3. F.H.Mitchell, "Introduction to Electronic Design", Prentice Hall of India, New Delhi, Second Edition, 1992.
- 4. Sydney Soclof, "Design of Applications of Analog Integrated Circuits", Prentice Hall of India, New Delhi, Second Edition 1997.

Mapping of COs with POs / PSOs														
COs							POs						PSOs	
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	3
2		3											2	3
3			3										2	
4			3										2	
5					3									
CO (W.A)	3	3	3		3								2	3

CNO.MO.

	22ECX06 - ELECTR	ONIC CIRCUIT B	BOARD DESIG	Ν					
				L	Т	Ρ	С		
				3	0	0	3		
PRER	EQUISITE : NIL								
Cour	rse Objective: • To acquire knowl • To expertise in ba	es of electro-magnet edge in basics of PCI sics of electrical par nethods and effects i	B and partitioning ameters	g and t	races				
The Stu	Course Outcomes Ident will be able to		Cognitive Level	in	End S	ge of (emes inatio	ter		
соі	Apply the concepts on fundamental co electro magnetics to the solution of Pe router topology		Ap 20%						
CO2	Apply techniques to minimize crosstal reliable circuit operation.	and ensure	Ap		3	0%			
CO3	Analyze the combined effects of parall circuit performance.	el capacitors on	An		3	0%			
CO4	Design and implement grounded heat PCB layouts.	inks effectively in	E		2	0%			
CO5	Communicate effectively as an individu team during oral presentations	al and as a part of	U	Int	ernal A	Assessr	nent		

UNIT I - FUNDAMENTALS

Electromagnetic Compatibility, Electromagnetic Interference, Radio Frequency (RF). Immunity-types-Elements of the electromagnetic environment-Nature of interference-EMC analysis-Standards-Classification of ITE Products-Immunity requirements -Printed circuit board basics-Hidden RF characteristics of passive components

UNIT II - ROUTING TOPOLOGY CONFIGURATIONS

Microstrip, stripline, Layer stackup assignment, Single-sided assembly, Double-sided assembly, Four-layer stackup, Six-layer stackup, Eight-layer stackup, Radial migration, Common-mode and differential-mode currents, RF current density distribution, Grounding methodologies, Single-point grounding-Multipoint grounding, Ground and signal loops, Functional partitioning

UNIT III - BYPASSING AND DECOUPLING

Review of resonance- Series resonance, Parallel resonance, Parallel C-Series RL resonance -Physical Characteristics-Impedance, Capacitor types, Energy storage, Resonance, Capacitors in parallel, Power and ground planes, Selecting a capacitor, Power and ground planes-Calculating power and ground plane capacitance, Combined effects of planar and Discrete capacitors

UNIT IV - CLOCK CIRCUITS, TRACE ROUTING, AND TERMINATIONS

(9)

(9)

Topology configurations, Component placement- Calculating trace lengths (electrically long traces), Trace routing, Routing layers, Crosstalk, Trace separation, Partitioning, Isolation and partitioning (moating), Filtering and grounding, Local Area Network I/O layout, Electrostatic discharge protection, Design techniques for ESD protection, Guard band implementation

(9)

UNIT V - DESIGN TECHNIQUES

Localized decoupling, Capacitor implementation, 20-H rule, Trace routing for corners, selecting ferrite components, Grounded heatsinks, Lithium battery circuits, BNC connectors, Creepage and clearance distances current, Carrying capacity of copper traces, Film, Footprint Design for High-Speed Boards-Component Footprint Shapes, Pad Shapes for High-Speed PCB Design, Best Routing Practices for High Speed Routing

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

I. Mark I. Montrose and Edward M. Nakauchi. "Printed Circuit Board Design Techniques for EMC Compliance", 2nd Edition 2004.

REFERENCES:

1. Amit Bahl "High-Speed PCB Design Guide" Sierra Circuits Inc 2020.

							Ds with							
						PC	Ds						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3													
2	3												3	
3		3											3	
4			3											3
5									3	2				3
CO (W.A)	3	3	3	3					2	2			3	3

CNO.Ma

				L	Т	Ρ	С
				3	0	0	3
PRER	EQUISITE : N	IL					
Cour	se Objective:	 To know the basics of Si based nano To acquire knowledge in fundamenta Apply principles of metal-semicondu To understand the semiclassical transmit 	als of density of sta ctor contacts to d	ites esign	simula	ation to	ools.
The Stu	dent will be able	to	Cognitive Level	in	eightag End S Exami	emes	ter
COI	Apply the conce nanoscale devic	ept of nanoscale devices to model es	Ар		2	0%	
CO2	'	racteristics of semiconductor devices ign for engineering problem	An		3	0%	
CO3		mechanical models relevant to modern devices and technologies.	Ар		3	0%	
CO4	Design and use semiclassical tra	modern tools to provide solutions in insport theory	E		2	0%	
CO5	Communicate e devices as indiv	effectively about modern semiconductor idual and team	U	Int	ernal A	ssessr	nent

UNIT I - SI BASED NANOELECTRONICS

Si-Based Nanoelectronics and Device Scaling, Beyond Conventional Silicon-Nanoscale and Heterostructure Devices, Modeling of Nanoscale Devices, Crystal structure - Classification of Crystals-Miller Indices, Doping, Band Structure, Effective Mass - density of states.

UNIT II - SEMICONDUCTOR THEORY

Diode - Electron Mobility, Semiconductor Statistics- Fermi - Dirac function and carrier concentration calculation, PN junction under equilibrium, I-V Characteristics-derivation of I-V relation, Minority carrier diffusion equation, Zener diode characteristics, Breakdown - Applications of Zener diode.

UNIT III - BIPOLAR JUNCTION TRANSISTOR

Transistor configuration-Ebers-Moll model, Non-idealities in BJT, Gummel Poon Model, HBT, BJT Transient and small signal behaviour, Metal-Semiconductor contact (Schottky Barrier/Diode, Ohmic Contacts) and capacitance characteristics, Thermionic emission current flow and fermi-level pinning, Field Effect Transistors (JFET, MESFET, HEMT), MOS Band diagram and C-V characteristics, Threshold voltage and Interface charges, MOSFET I-V characteristics.

UNIT IV - SEMICLASSICAL TRANSPORT THEORY

Distribution Function, Boltzmann Transport Equation (BTE), Relaxation-Time Approximation (RTA), Drift-Diffusion Model Derivation - Normalization and Scaling Linearization of Poisson's Equation- Scharfetter -Gummel Discretization of the Continuity Equation Newton's Method

(9)

(9)

(9)

UNIT V - QUANTUM TRANSPORT MODELS

Tunnelling, Stationary states for a free particle, Potential step, Tunnelling through a single barrier. Transfer matrix approach - Basic description of the method - Piecewise constant potential barrier tool-Quantum mechanical corrections to standard approach. simulation tools, Models for DD, Hydrodynamic simulations, Mobility and G-R models.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. D Vasileska, SM. Goodnick, G Klimeck, "Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation," CRC Press 2010.
- 2. G. Streetman, and S. K. Banerjee, "Solid State Electronic Devices," 7th edition, Pearson, 2014.

REFERENCES:

- 1. S.Salivahanan, N. Suresh kumar and A. Vallavanraj, —Electronic Devices and CircuitsII, Tata McGraw Hill Third Edition (2013).
- D Vasileska, SM. Goodnick, G Klimeck, "Computational Electronics: Semiclassical and Quantum Device Modeling and Simulation", CRC Press ,2017
- 3. https://onlinecourses.nptel.ac.in/noc23_ee35/preview

				M	lapping	g of CC) s with	POs /	PSO s						
						РС	Ds						PSOs		
COs I	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3														
2		3											3		
3	3												3		
4			3		3									3	
5									3	2					
CO (W.A)	3	3	3		3				3	2			3	3	

		22ECX08 - ELECTRONIC SYSTEM	1 PACKAGING	1			
				J L	т	Р	С
				3	0	0	3
PRER	EQUISITE : N	IIL				1	
Cours	se Objective:	 To know the concepts of IC Packagin technologies To gain comprehensive knowledge a management To expertise in various types of pack To illustrate the methods and techni 	bout failure mechar aging techniques	nism a	ind the	ermal	sses
The Stu	C dent will be able	Course Outcomes to	Cognitive Level	in	End S	ge of (Semes inatio	ter
COI		n principles for reliability, thermal and electronic cooling methods	Ар		2	.0%	
CO2		dge to conduct life-cycle assessments to mance of microsystems	Ар		3	0%	
CO3		properties and characteristics of ems relevant to microsystems.	An		3	0%	
CO4	the limitation	tools for PWB design and understand s and processes involved in standard board assembly.	E		2	.0%	
CO5		e effectively about electronic packaging individual and team	U	Int	ernal A	Assessr	nent

UNIT I - INTRODUCTION TO PACKAGING SYSTEM

Introduction to Microsystems - microsystem technologies-microsystem packaging, Importance of micropackaging - System level microsystem technologies - Future trends-Role of packaging in microelectronics - Microelectronic devices - Semiconductor road map-IC packaging challenges

UNIT II - FAILURE MECHANISM AND THERMAL MANAGEMENT

Microsystems failure and failure mechanism - Fundamentals of design for reliability - Thermo Mechanically-Induced Failures – Electrically Induced Failures – Chemically Induced Failures - Future trends - Thermal Management - Cooling Requirements for Microsystems - Thermal Management Fundamentals - Electronic Cooling Methods

UNIT III - SINGLE CHIP AND MULTICHIP PACKAGING

Functions of Single Chip Packages, Types of Single Chip Packages, Fundamentals of Single Chip Packaging Materials, Processes, and Properties - Characteristics of Single Chip Packages Multichip Module Functionality - Multichip Module Advantages- Multichip Modules at the System Level - Types of Multichip Module Substrates –Multichip Module Design –Multichip Module Technology Comparisons

UNIT IV - SYSTEM LEVEL PWB TECHNOLOGIES

System Level Printed Wiring Board - Types of Printed Wiring Boards -Anatomy of a Printed Wiring Board -Fundamentals of Printed Wiring Boards - CAD Tools for Printed Wiring Board Design-Printed Wiring Board Materials - Standard Printed Wiring Board Fabrication - Limitations in Standard Printed Wiring Board - Process - Microvia Boards - Fundamentals of board assembly - Surface Mount Technology-Through - Hole Assembly.

(9)

(9)

(9)

UNIT V - PACKAGING MATERIALS AND PROCESSES

The Role of Materials in Microsystems Packaging - Packaging Materials and Properties - Materials Processes -Future Trends-Electrical Testing- Anatomy of System - Level Electrical Testing - Fundamentals of Electrical Tests - Interconnection Tests -Active Circuit Testing - Design for Testability- Life - Cycle Assessment

TOTAL (L:45) = 45 PERIODS

(9)

TEXT BOOKS:

I. Rao R. Tummala, Fundamentals of Microsystems Packaging, The McGraw-Hill (2001)

REFERENCES:

1. The Electronic Packaging Handbook Ed. Blackwell, G.R.Boca Raton: CRC Press LLC, 2000

				M	lapping	g of CC	Os witł	POs /	PSO s					
						РС	Os						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3												3	
3		3											3	
4			3		3									3
5									3	2		I		
CO (W.A)	3	3	3		3				3	2		I	3	3

VERTICAL 2: COMMUNICATION

		22ECX11 - MOBILE COMMUI	NICATION						
				L	Т	Ρ	С		
				3	0	0	3		
PRER	EQUISITE : N	IL							
		 To understand the mobile radio com adopted in cellular systems and investigation 							
Cour	se Objective:	• To explore the concept of Equalizers	and Diversity tech	niques					
		• To analyze the different multiple acce design the modern wireless networks		eless co	ommu	nicatio	n and		
The Stu	C udent will be able	Course Outcomes to	Cognitive Level	in	eighta; End S Exami	emes	ter		
соі		wledge of communication techniques to e different cellular technology and solve	Ap	30%					
CO2	Analyze the giv models of wire	en parameters for different propagation less networks.	An	30%					
CO3		chitecture of software radio and develop cording to the needs.	An		2	0%			
CO4		performance of Equalizers and diversity I design components to adapt modern rks.	An	20%					
CO5	effective oral related to Netw	eam to prepare a report and make an presentation of the study on topics works protocols, contribution of cellular society and its effect on environment.	U	Int	ernal A	Assessi	nent		

UNIT I - CELLULAR CONCEPT

Introduction to wireless communication systems - Modern wireless communication systems: 2G/3G/4G cellular networks - Cellular concept: Frequency reuse - channel assignment - hand off -interference & system capacity – trunking & grade of service - Coverage and capacity improvement - Basics of 5G technology: requirements.

UNIT II - MOBILE RADIO PROPAGATION

Free space propagation model - Three basic propagation mechanisms: Reflection - Two-Ray model -Diffraction - Knife-edge diffraction model - Scattering - Log-normal shadowing - Okumara model - Hata model - Log-distance path loss model - Small-scale multipath propagation - Parameters of mobile multipath channels -Types of small scale fading - Rayleigh and Rician distributions.

UNIT III - MULTIPLE ACCESS SCHEMES AND DIVERSITY

FDMA, TDMA, CDMA, SDMA and CSMA, OFDMA. Diversity Techniques – Frequency diversity, Time diversity, Code diversity, Antenna diversity –RAKE Receiver - SIMO, MISO, MIMO, MIMO-OFDM Technique.

(9)

(9)

UNIT IV - CAPACITY OF WIRELESS CHANNELS

AWGN channel capacity – capacity of flat fading channels , Frequency- selective fading channels, Multiuser capacity, Downlink channel capacity, Uplink channel capacity, Outage capacity.

UNIT V - MODERN WIRELESS NETWORKS

IEEE 802.11a/b/g/n/ac wireless local area networks - 60 GHz millimeter wave gigabit wireless networks -Vehicular wireless networks - Wireless protocols for Internet of Things including Bluetooth, BLE, 802.15.4, Zigbee, LoRA and SigFox.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. Rappaport S. Theodore, "Wireless Communications", Pearson Education, 2nd Edition, 2010.
- 2. Erik Dahlman, Stefan Parkvall and Johan Skold, "4G, LTE-Advanced Pro and The Road to 5G", Elsevier, 3rd Edition, 2016. Rao R. Tummala, Fundamentals of Microsystems Packaging, The McGraw-Hill (2001)

REFERENCES:

- I. W.C.Y.Lee, "Mobile Communications Engineering: Theory and applications", McGraw-Hill International, 2nd Edition, 2009.
- 2. Martin Sauter, "From GSM to LTE–Advanced Pro and 5G: An Introduction to Mobile Networks and Mobile Broadband", Wiley-Blackwell, 2016".
- 3. Erik Dahlman, Stefan Parkvall and Johan Skold, "5G NR: The Next Generation Wireless Access Technology", Elsevier, 1st Edition, 2018

Mapping of COs with POs / PSOs														
COs		POs												
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													2
2		3											3	
3		3											3	3
4		3											2	3
5							2	2	2					I
CO (W.A)	3	3					2	2	2				2.6	2

(9)

		22ECX12 - SATELLITE COMM	UNICATION				
				L	Т	Ρ	С
				3	0	0	3
PRER	EQUISITE : N	L					
Cour	se Objective:	 To understand the orbital mechanic system. To recognize the satellite power detection of the satellite power detection. 				icatior	1
		 To gain knowledge about different r communication 	nultiplexing techni	iques fo	r satell	ite	
The Stu	C udent will be able	Course Outcomes to	Cognitive Level	in	ightag End S Exami	emest	ter
COI		lamental concepts of satellite orbits to orbital parameters of different satellite	Ap		20	0%	
CO2	,	bsystems of uplink & downlink satellite systems and earth station systems	An		3(0%	
CO3	Analyze the l calculations	ink design for signal to noise ratio	An		20	0%	
CO4	Design a sa multiplexing teo	tellite system that utilizes various chniques	E		20	0%	
CO5		ontributions of satellite communication of or various applications	E		10	0%	

UNIT I - SATELLITE ORBITS AND TRAJECTORIES

Orbital Mechanics: Orbit Equations, Kepler's Laws, Orbital Period, Orbit types - Look angle determination -Orbital effects on communication system performance - Satellite Launch.

UNIT II - SATELLITE AND EARTH STATION SUBSYSTEMS

Satellite Subsystems: Power, Transponders, Antennas - AOCS, TTC&M - Control - Effects of earth -Perturbation, sun transit, moon transit - Satellite power design, Reliability - MTBF Basic Equations - System Noise and G/T ratio - Earth Station subsystems Uplink, Downlink and Design for a specified C/N ratio with GEO and LEO examples

UNIT III - LINK DESIGN, MODULATION AND ERROR CONTROL

Single link design - Double link design aspects - PAM, Baseband processing - Digital Modulation for satellite links: BPSK, QPSK and QAM - TDM standards for satellite systems - Error control for satellite link: Requirements, ARQ, Concatenated Codes, Interleaving, Turbo codes.

UNIT IV - MULTIPLE ACCESS FOR SATELLITE COMMUNICATIONS

(9)

(9)

(9)

(9)

FDM - FM-FDMA - TDMA - <mark>Structure and system design, Onboard Processing system</mark>s <mark>- DAMA and PAMA - CDMA system design and capacity</mark>

UNIT V- APPLICATIONS

Remote sensing - Navigation - Scientific and military application - VSAT<mark>: Network architecture, Access</mark> Control protocols and techniques, VSAT Earth stations - Satellite Mobile Telephony - Global star - DBS/DTH Television - GPS - Weather satellites

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. T.Pratt, C. Bostian and J.Allnutt, "Satellite Communications", John Wiley and Sons, 3rd Edition, 2021.
- 2. Dennis Roddy, "Satellite Communications", Mc Graw Hill, 4th Edition, 2017

REFERENCES:

- 1. W.L.Pritchard, H G Suyderhoud and R A Nelson, "Satellite Communication System Engineering", 2nd Edition, PrenticeHall, 2013.
- 2. Tri. T. Ha, "Digital Satellite Communications", McGraw Hill, 2nd Edition, 2017.
- 3. Manojit Mithra ,"Satellite Communication", Prentice Hall,2005.
- 4. M. Richharia, "Satellite systems for Personal Applications", John Wiley, 2010

				Μ	apping	g of CC	Os with	POs /	PSOs					
COs						PC	Ds						PS	Os
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	
2		3											2	
3		3											2	
4			3										2	
5			3		2		3							
CO (W.A)	3	3	3		2		3						2	

C NO. MQ.

	22ECX13 - OPTICAL COMMUNICATION					
			L	Т	Ρ	С
			3	0	0	3
PRER	EQUISITE : NIL					
Cour	 To learn and understand the basic concepts in optic To gain knowledge on different losses in fiber optic To know about optical sources, coupling mechanism optical measurement standards. 	cable.	•		ks and	
The Stu	Course Outcomes Cognitive Level	1	in	ightaş End S Exami	emest	er
COI	Apply field theory concepts in optical signal, optical sources and detectors.			3	0%	
CO2	Apply the modal concepts in different mode fibers and determine the losses encountered in optical cable Ap			3	0%	
CO3	Use the optical equipments to measure the Ap			2	0%	
CO4	Analyze analog and digital links using link design and rise time budget analysis for a given Optical Fiber An communication link.			2	0%	
CO5	Give an oral presentation of developments in Optical Fiber Communication with respect to standards, U applications, challenges and impacts.		Int	ernal A	ssessn	nent

UNIT I - OPTICAL FIBERS - STRUCTURE

Evolution of Fiber Optic Systems, Elements of an Optical fiber Transmission link, Basic laws and definitions, Optical fiber modes and configurations, Mode theory of circular waveguides - Overview of modes, Key modal concepts, Linearly Polarized waves, Single Mode and Multi Mode Fibers, Graded Index Fiber Structure.

JNIT II - ATTENUATION AND DISPERSION

Attenuation, Signal dispersion in fibers - Modal Delay, Group delay, Material dispersion, Wave Guide dispersion, Dispersion in single mode fibers, Polarization mode dispersion, RI profile and cut off wavelength, Dispersion Management, Dispersion Shifted Fibers.

UNIT III - OPTICAL SOURCES

LED's - Surface and Edge emitters, Modulation of LED, LASER Diodes - Fabry-Perot Lasers , Distributed Feedback (DFB) Lasers, Modulation of LASER diodes, Power Launching and Coupling - Source to fiber power launching, Lensing Schemes for Coupling improvement, LED coupling to single mode fibers, Fiber connectors, Fiber splicers.

UNIT IV - PHOTODETECTOR AND OPTICAL RECEIVER OPERATION

(9)

PIN Photo detector, Avalanche Photodiodes, Photodetector noise - Detector response time, Avalanche multiplication of Noise, Fundamental Receiver operation-Error sources, Front End Amplifiers, Digital Receiver Performance- Probability of error, Quantum limit, Point to point link systems considerations -Link Power budget, Rise time budget.

(9)

(9)

UNIT V- OPTICAL NETWORKS AND PERFORMANCE MEASUREMENTS

(9)

Operational principles of WDM, EDFA, Solitons, Basic concepts of SONET/SDH, Performance Measurement- Measurement standards, Test Equipments, Power Measurements, Attenuation Measurements, Dispersion Measurements, OTDR.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

1. Gerd Keiser, "Optical Fiber Communications", McGraw-Hill Education, 5th Edition, 2017.

- I. John M. Senior, "Optical Fiber Communications", Pearson Education, 3rd Edition, 2014.
- 2. Govind P.Agrawal, "Fiber-optic Communication Systems", A John Wiley & Sons, 3rd Edition, 2015.
- 3. R.P.Khare, "Fiber Optics and Optoelectronics", Oxford University, 2004.

				۲	lapping	g of CC	Os with	POs /	PSOs					
COs						PC	Ds						PS	Os
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3	2												
3	3	2											3	
4		3											2	
5								3	2	3		2		
CO (W.A)	3	2.6						3	2	3		2	2.5	

CNO.Ma

				L	Т	Р	С
				3	0	0	3
PRERE	EQUISITE : N	IIL .					
Cours	se Objective:	 To enable the student to investigate audio and video. To make the students to analyze the To make the students to investigate of the students to invest the students to investigate of the students to invest the students to inves	different block cod	ing tec	hnique	•	ı text
The Stu	dent will be abl	Course Outcomes e to	Cognitive Level	in	End S	ge of (emes inatio	ter
COI		ts will be able to apply the coding nd design a channel.	Ap		2	.0%	
CO2		s will be able to analyze and implement source coding techniques.	An		2	.0%	
CO3		s will be able to analyze and solve the nnel coding techniques.	An		2	.0%	
CO4		s will be able to apply different block iques and design.	Ap		2	.0%	
CO5	The students codes.	s will be able to design the convolutional	С		2	.0%	
υνιτ ι	- INFORMA	TION THEORY					(9)
theorem	n Shannon Far	ion rate - Entropy – Classification of codes no coding - Huffman coding - Extended rmation Discrete memory less channels:	Huffman coding	– joi	nt and	d cond	dition
υνιτ ι		CODING					(9)
techniqu TI F, BM	ies, psychoacou	an coding, arithmetic coding and latex fo ustic model, MPEG audio layers - I,II & III - CIF & QCIF – Image compression: JPEG –	Dolby AC3 – Imag	ge and	video	format	ts: Gl
υνιτ ι	II - CHANNE	EL CODING					(9)
Informat	tion capacity t	ech signals - Quantization techniques – Ch heorem – Implication of the information – Rate distortion theory - Data compressio	capacity theorem				
	V - BLOCK C	CODES					(9)

UNIT V- CONVOLUTIONAL CODES

Convolutional codes – Code tree, trellis, state diagram - Encoding - Decoding: Sequential search and Viterbi algorithm - Principle of turbo coding – Other codes: RS code, Gola y code and Burst error correcting code.

TOTAL (L:45) = 45 PERIODS

(9)

TEXT BOOKS:

- 1. R. Bose, Information Theory, Coding and Cryptography, Tata McGraw Hill, New Delhi, Third Edition, 2016
- I. Fred Halsall, Multimedia Communications: Applications, Networks, Protocols and Standards, Pearson Education Asia, Fourth Edition, 2009.

- I. K.Sayood, Introduction to Data Compression, Elsevier, Netherlands, Fifth Edition, 2017.
- 2. S.Gravano, Introduction to Error Control Codes, Oxford University Press, England, First Edition, 2007.
- 3. Amitabha Bhattacharya, Digital Communications, Tata McGraw Hill, New Delhi, First Edition, 2013.
- 4. Theodore Rappaport, Wireless Communications Principles and Practice, Pearson Education, Bengaluru, Second Edition, 2012.

				M	lapping	g of CC	Ds with	POs /	PSOs					
COs						PC	Ds						PSOs	
	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	
2		3											2	
3		3											2	
4			3										3	
5									2	2	2	2	2	
CO (W.A)	3	3	3						2	2	2	2	2.2	

CN.Ma.

		22ECX15 - RAD		NICATION				
					L	Т	Р	С
					3	0	0	3
PRERE	EQUISITE : N							
		To enable the stud detectors.	ent to explor	e the concep	ot RADA	R trai	nsmitte	ers and
Cours	se Objective:	To make the studer applications.	nts to analyze	the different	antenna	s used	for F	RADAR
		To make the student and Doppler concepts		understand the	e differen	t types	of RA	DAR
The Stu	dent will be able	urse Outcomes		Cognitive Level		eighta End S Exam	Semes	ter
COI		ill be able to discuss an munication principles.	d summarize	Ар		2	20%	
CO2		vill be able to analyze I calculate the amount		An		2	20%	
CO3		II be able to design RAD for specified application		An		2	20%	
CO4		vill be able to constr ous RADAR applications.		С		2	0%	
CO5		vill be able to design ppler concepts.	RADAR by	С		2	.0%	

UNIT I - INTRODUCTION TO RADAR

Basics of RADAR, EM Waves & properties- applications of RADAR, RADAR frequencies- RADAR block diagram, RADAR Coordinates, Radar equation for hard targets and the SNR- RADAR cross section of targets, RADAR Resolution Elements, Pulse, CW and FMCW RADARS –configurations, transmitter power- pulse repetition frequency, Duty Ratio, Pulse Compression, Coding

UNIT II - DETECTION OF SIGNALS IN NOISE AND RADAR WAVEFORMS

Probability density functions – probabilities of detection and false alarm-matched filter receiver-detection criteria – integration of radar pulses - constant-false alarm rate receivers - RADAR Waveforms, Pulse Compression, Ambiguity Diagram.

UNIT III - RADAR TRANSMITTER AND RECEIVER

Introduction- Types of Transmitters - linear-beam power tubes- solid-state RF power sources- magnetron-Klystron, crossed-filed amplifier- RADAR receiver- receiver noise figure- super heterodyne receiver, Digital Receivers, duplexers and receiver protectors- RADAR displays-Human Machine Interface(HMI)

UNIT IV - RADAR ANTENNA

Functions of RADAR antenna- antenna parameters- antenna radiation pattern and aperture illumination - reflector antennas- electronically steered phased array antennas- phase shifters – frequency - scan arrays-- architectures for phased arrays, radiators for phased arrays- mechanically steered planar array antennas-radiation pattern synthesis -effect of errors on radiation patterns - low side lobes antennas.

(9)

(9)

(9)

UNIT V- MTI AND PULSE DOPPLER RADAR

Introduction to Doppler and MTI RADAR - delay -line cancellers- staggered pulse repetition frequenciesdoppler filter banks- digital MTI processing - Moving target detector- limitations to MTI performance pulse Doppler radar- MTD, Tracking radar- mono pulse tracking- conical scan and sequential lobing- comparison of trackers. Tracking accuracy- low-angle tracking- Atmospheric & Weather RADARS: Precipitation RADAR, Doppler Weather RADAR, Polarimetric RADAR, Clear Air RADARS.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- I. Merril I Skolnik, "Introduction to Radar Systems", Mc Graw-Hill, 2017.
- Peebles P Z, "Radar Principles", Wiley, 2016. 2.

REFERENCES:

- I. Richard J Doviak, Dusan S Zrnic, "Doppler Radar and Weather Observations", Academic Press, 2014.
- 2. Bringi V N, Chandrasekar V, "Polarimetric Doppler Weather Radar", Cambridge University Press, 2012.
- 3. Richards M A, Scheer J A and Holm W A, "Principles of Modern Radar", Scitech Publishing, 2014.
- Levanon N, "Radar Signals", Wiley-IEEE Press, 2012. 4.

				M	lapping	g of CC	Os with	POs /	PSOs					
COs						PC	Ds						PS	Os
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	
2		3											2	
3		3											2	
4			3										3	
5									2	2	2	2	2	
CO (W.A)	3	3	3						2	2	2	2	2.2	

	2	22ECX16 - DIGITAL COMMUNICA	FION RECEIVER	RS			
				L	Т	Ρ	C
				3	0	0	3
PRER	EQUISITE : N	IL	· · ·				
		• To provide knowledge on complete a	inalysis of synchron	izatio	n techr	iques.	
Cours	se Objective:	• To deliberate the performance of Pas communication.	s band, base band a	and sp	read sp	pectrur	n
		• To learn and design the fading channe	els.				
The Stu	C dent will be able	Course Outcomes to	Cognitive Level	in	End S	ge of (emestination	ter
COI	The students transmission a	will be able to describe Baseband data and reception.	Ap		2	0%	
CO2		will be able to analyze the performance ass band data transmission, reception	An		2	0%	
CO3		s will be able to compare the of synchronization algorithms .	An		4	0%	
CO4	The students of synchronize	will be able to analyze the performance ers.	An		2	0%	
CO5	The students fading channel	will be able to design the receivers of s.	U	Internal Assessment			

UNIT I - BASEBAND COMMUNICATION

Baseband PAM, Clock Synchronizers - Error tracking and spectral line generating synchronizers, Squaring synchronizers, Mueller and Muller synchronizers.

UNIT II - PASSBAND COMMUNICATION

Pass band Transmission, Receivers for PAM, Sufficient Statistics for Reception in Gaussian Noise, Optimum ML receivers - Synchronized detection, Digital matched filter.

UNIT III - SYNCHRONIZATION ALGORITHMS

ML synchronization algorithms – Estimator Structures for Slowly Varying Synchronization Parameters, Non-Data Aided and Data Aided algorithms. Timing parameter and carrier phase estimation, Phasor Locked Loop.

UNIT IV - PERFORMANCE ANALYSIS OF SYNCHRONIZERS

Tracking Performance of Carrier and Symbol Synchronizers, Feedback and feed forward synchronizers. Cycle slipping, Acquisition of carrier phase and symbol timing.

UNIT V- RECEIVERS FOR FADING CHANNELS

Characterization of Fading channels, Detection and parameter synchronization on Fading channels, Receiver structures for fading channels – Outer and Inner receivers, parameter synchronization for flat fading and selective fading channels.

TOTAL(L:45) = 45 PERIODS

(9)

(9)

(9)

(9)

- I. H.Meyer, M. Moeneclaey, S. A. Fechtel, "Digital Communication Receivers", Wiley, 2015.
- 2. U.Mengali, A.N.D.Andrea , "Synchronization Techniques for Digital Receivers", Kluwer, 2014.

- I. Proakis J G, Salehi M , "Digital communications", Tata McGraw Hill, New York, 2018.
- 2. Rohde U L, Whitaker J C, Zahnd H , "Communications Receivers", McGraw-Hill, 2017.
- 3. Bernard Sklar , "Digital Communications- Fundamentals and applications", Prentice Hall, 2017.
- 4. Lathi B P, "Modern Digital and Analog communication Systems", Oxford University Press, 2017.

COs						PO	Os						PSOs	
003	I 2 3		3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	
2		3											2	
3		3											2	
4			3										3	
5									2	2	2	2	2	
CO (W.A)	3	3	3						2	2	2	2	2.2	

CN.Ma.

			22ECX17 - SOFTWARE DEFIN	IED RADIO				
					L	т	Р	С
					3	0	0	3
PRERE	EQUISITE : N	IL						
6		•	To learn and understand the concept investigate the essential functional of Defined Radio.				0,	
Cours	se Objective:	•	To comprehend the concepts, are knowledge and design considerations of			s, rad	io pro	cedure
		•	To explore the concepts of next gener	ration wireless ne	etwork	5.		
The Stu	dent will be able		rse Outcomes	Cognitive Level	in	End S	ge of (Semes inatio	ter
соі	to the systen to function	ns ro ano	ts of analog and digital technologies equired by a software-defined radio d the trade-offs and limitations e design of a software-defined radio	Ар		3	0%	
CO2	Apply the cos a cognitive ra		ve radio design concepts to develop environment.	Ap		3	0%	
CO3	,		hitecture of software radio and ure according to the needs.	An		2	.0%	
CO4			eration wireless network with the ctrum management techniques	E		2	.0%	
CO5			nents using simulation tools to mplementation of Cognitive Radio.	U	Int	ernal /	Assessr	nent

UNIT I - SDR EVOLUTION

Definitions and potential benefits - software radio architecture evolution - foundations - technology tradeoffs and architecture implications - Antenna for Cognitive Radio.

UNIT II - SDR ARCHITECTURE

Essential functions of the software radio - architecture goals - quantifying degrees of programmability - top level component topology - computational properties of functional components - <mark>interface topologies among</mark> plug and play modules – architecture partitions.

UNIT III - INTRODUCTION TO COGNITIVE RADIOS

Marking radio self-aware - cognition cycle - organization of cognition tasks - structuring knowledge for cognition tasks – <mark>Enabling location and environment awareness in cognitive radios - concepts - architecture -</mark> design considerations.

UNIT IV - COGNITIVE RADIO ARCHITECTURE

(9)

(9)

(9)

(9)

Primary Cognitive Radio functions - Behaviors - Components - A-Priori Knowledge taxonomy - observe phase data structures - Radio procedure knowledge encapsulation - components of orient - plan - decide phases - act phase knowledge representation - design rules

UNIT V - NEXT GENERATION (XG) WIRELESS NETWORKS

(9)

The XG Network architecture - spectrum sensing - spectrum management - spectrum mobility - spectrum sharing - upper- layer issues - cross-layer design.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Alexander M. Wyglinski, Maziar Nekovee, and Y. Thomas Hou, "Cognitive Radio Communications and Networks Principles and Practice", Elsevier Inc., 2010.
- 2. Huseyin Arslan , "Cognitive Radio, Software Defined Radio and Adaptive wireless system, Springer, 1st Edition, 2007.

- I. Bruce A Fette, "Cognitive Radio Technology", Academic Press, 2009.
- 2. E. Biglieri, A.J. Goldsmith., L.J. Greenstein, N.B. Mandayam, H.V. Poor, "Principles of Cognitive Radio", Cambridge University Press, 2013.
- 3. Kwang- Cheng Chen and Ramjee Prasad, "Cognitive Radio Networks", John Wiley & Sons, Ltd, 2009.
- 4. Khattab, Ahmed, Perkins, Dmitri, Bayoumi, Magdy, "Cognitive Radio Networks From Theory to Practice", Springer Series: Analog Circuits and Signal Processing, 2009.

				Μ	apping	g of CC) s with	POs /	PSOs					
COs						PC	Ds						PS	Os
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3												3	
3		3											3	
4			3										2	
5					3			2	2				2	
CO (W.A)	3	3	3		3			2	2				2.5	

CNO.MO.

		22ECX18 - 4G / 5G COMMUNICATI	ON NETWORK	S			
				L	Т	Р	С
				3	0	0	3
PRERE	QUISITE : N	L					
Course	e Objective:	 To familiar with evolution of wireless To acquire knowledge on spectrum s associated with 5G architecture. To understand the security features in 	haring, spectrum tr				
The Stud	C lent will be able	Course Outcomes to	Cognitive Level	in	End S	ge of (emes inatio	ter
соі		wledge of communication in finding the spectrum management.	Ap		3	0%	
CO2	Apply the cond through its arc	cepts of wireless networks in 5G hitecture.	Ap		2	0%	
CO3	Determine the	specifications of 5G components.	Ap		3	0%	
		nt network architecture, security areats in 5G networks.	An		2	0%	
CO5	presentation o	eam to prepare an effective oral n topics related to 5G concepts, ng and trading.	U	Int	ernal A	Assessr	nent

UNIT I - EVOLUTION OF WIRELESS NETWORKS

Networks evolution: 2G, 3G, 4G, evolution of radio access networks, need for 5G. 4G versus 5G, Next Generation core (NG-core), visualized Evolved Packet Core (vEPC).

UNIT II - 5G CONCEPTS AND CHALLENGES

Fundamentals of 5G technologies, overview of 5G core network architecture, 5G new radio and cloud technologies, Radio Access Technologies (RATs), EPC for 5G.

UNIT III - NETWORK ARCHITECTURE AND THE PROCESSES

5G architecture and core, network slicing, Multi Access Edge Computing (MEC), visualization of 5G components, end-to-end system architecture, service continuity, relation to EPC, edge computing. 5G protocols: 5G NAS, NGAP, GTP-U, IPSec and GRE.

UNIT IV - DYNAMIC SPECTRUM MANAGEMENT AND MM-WAVES

Mobility management, Command and control, spectrum sharing and spectrum trading, cognitive radio based on 5G, millimeter waves.

UNIT V- SECURITY IN 5G NETWORKS

Security features in 5G networks, network domain security, user domain security, flow based QoS framework, mitigating the threats in 5G.

TOTAL (L:45) = 45 PERIODS

(9)

(9)

(9)

(9)

- 1. Stephen Rommer, "5G Core networks: Powering Digitalization", Academic Press, 2019
- 2. Saro Velrajan, "An Introduction to 5G Wireless Networks: Technology, Concepts and Use cases", First Edition, 2020.

- I. Jyrki. T.J.Penttinen, "5G Simplified: ABCs of Advanced Mobile Communications", Copyrighted Material.
- 2. Wan Lee Anthony, "5G system Design: An end to end Perspective", Springer Publications, 2019.

COs	POs												PSO s	
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3													2
3	3													2
4	2	3												3
5								2	3	3		2		
CO (W.A)	2.3	3						2	3	3		2		2.6

CN.Ma.

		VERTICAL 3: NETWO	RKS				
	2	22ECX21 - COMPUTER SYSTEMS A	ND HARDWAR	RE			
				L	т	Р	С
				3	0	0	3
PRER	EQUISITE : N	L	I				
		• To understand the concepts of comp	uter hardware and	mothe	erboar	ds.	
		• To provide an adequate knowledge of	f processors and m	emor	<i>ı</i> .		
Cour	se Objective:	• To accord basic knowledge in obtaining concepts of various storage devices.	ng the features, wo	rking	and ins	tallatic	n
		• To learn the concepts of the type, fea input and output devices	tures, specification	, work	ing of	variou	S
The Stu	dent will be able	Course Outcomes to	Cognitive Level	in	End S	ge of (emes inatio	ter
COI		wledge of effective troubleshooting and hardware components.	Ар		2	0%	
CO2	,	evelopmental stages and architectural and memory to solve related hardware	An		3	0%	
CO3		wledge ofelaborate features, installation, ce of input and output devices.	Ap		3	0%	
CO4	systems, ensur	ole, and configure complete computer ing proper installation of components, ms, and device drivers.	E		2	0%	
CO5	teamwork, and	ntation on self-learning, collaborate in ethically assemble hardware systems to ex technical challenges.	U	Int	ernal A	Assessr	nent

UNIT I - HARDWARE AND MOTHERBOARDS

(9)

(9)

(9)

Basic computer hardware structure - Hardware and software - Different type of computers- Features of computer systems: Features of desktop system, Features of server computer, Features of laptops, Features of tablets - Motherboards: Features, components, processor support, controller, BIOS -Trouble shooting and maintenance of motherboards.

UNIT II - PROCESSING UNIT AND MEMORY

Processor features - Developmental stages of CPU - Towards multiple core processors - Processor architectural details -Processor specifications – Installing and uninstalling CPU – CPU overheating issues – Memory: Features, types, working, memory map, installing and uninstalling memory modules, troubleshooting and maintenance of memory.

UNIT III -STORAGE DEVICES

Storage Devices, Hard Disks: Details, working, feature, installation, selection, specifications, partitioning and formatting, maintenance and troubleshooting – optical storage devices features, working of optical storage drives, installing optical drives, troubleshooting and maintenance.

UNIT IV - INPUT AND OUTPUT DEVICES

LCD monitors: Installing, specification, maintenance and troubleshooting of LCD monitors – LED monitors and touchscreens – Keyboard: Types and features, interfaces, installing, maintenance and troubleshooting – Mouse: types, working, features, interfaces, maintenance and troubleshooting

UNIT V - ASSEMBLING AND CONFIGURING COMPUTERS

Assembling and configuring: Caution and safety, Setting up the cabinet - Installing heat sink and cooling fan – Installing memory module - Mounting motherboard – Installing hard disk – Connecting motherboard -Connecting to front panel – Connecting mouse, keyboard and monitor – Switching on the computer – Configuring – BIOS Installing operating system – Installing device drivers –Installing add-on cards.

TOTAL (L:45) = 45 PERIODS

(9)

(9)

TEXT BOOKS:

- 1. K. L. James, "Computer Hardware: Installation, Interfacing, Troubleshooting and Maintenance", PHI Learning, Delhi, 1st edition, 2013.
- 2. B. Govindarajalu, "IBM PC and Clones Hardware, Troubleshooting and Maintenance", Tata McGraw-Hill, NewDelhi, Ist edition, 2002..

- 1. Jean Andrews, "Guide to Hardware Managing, Maintaining and Troubleshooting", Cengage Learning (Course Technology), Noida, 9th Edition, 2016.
- Craig Zacker and John Rourke, "PC Hardware: The Complete Reference, McGraw-Hill, New Delhi, 1st edition2017.
- 3. Michael W. Graves, "A+ Guide to PC Hardware Maintenance and Repair", Cengage Learning, Noida, Ist edition, 2004.
- 4. Scott M. Mueller, "Upgrading and Repairing PCs", Que Publishing, Ahmedabad, 22nd Edition, 2015.

COs						PC	Os						PSOs	
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	
2		3											2	
3	3												2	
4			3										2	
5							2	I	2				2	
CO (W.A)	3	3	3				2	I	2				2	

	22ECX22 - NETWORK INFORMATION SECURIT	Y			
		L	Т	Ρ	С
		3	0	0	3
PRERE	QUISITE : NIL				
Cours	 To understand the different security model. To study about risk management 				
The Stu	Course Outcomes Cognitive dent will be able to Level	in	eighta; End S Exami	emes	ter
соі	Apply the knowledge of network security to protect Ap		2	0%	
CO2	Analyze the threat factors in the network system An		2	0%	
CO3	Analyze the security technology in information An theory		4	0%	
CO4	Develop skills in securing communication protocols. An		2	0%	
CO5	Oral presentation on the application of network U Security	Int	ernal A	Assessr	nent

UNIT I - INTRODUCTION TO INFORMATION SECURITY

The History of Information Security- Critical Characteristics of Information - CNSS Security Model Components of an Information System - Balancing Information Security and Access - The Systems Development Life Cycle - The Security Systems Development Life Cycle.

UNIT II - RISK MANAGEMENT

Introduction - An Overview of Risk Management - Risk Identification -Risk Assessment - Risk Control Strategies - Selecting a Risk Control Strategy - Risk Management Discussion Points- Recommended Practices in Controlling Risk.

UNIT III - PLANNING FOR SECURITY

Introduction - Information Security Policy, Standards and Practices - The Information Security Blueprint: The ISO 27000 Series, NIST Security Models, Design of Security Architecture - Security Education, Training and Awareness Program - Continuity Strategies.

UNIT IV - SECURITY TECHNOLOGY

167 | Page

Introduction - Intrusion Detection and Prevention Systems: IDPS Terminology, Use of IDPS, Strengths and Limitations of IDPS - Honey Pots, Honey Nets, and Padded Cell Systems - Scanning and Analysis Tools Biometric Access Controls.

UNIT V - IMPLEMENTING INFORMATION SECURITY

Introduction - Information Security Project Management - Technical Aspects of Implementation Nontechnical Aspects of Implementation - Information Systems Security Certification and Accreditation.

TOTAL(L:45) = 45 PERIODS

(9)

(9)

- (9)
- (9)

TEXT BOOKS:

1. Michael E Whitman and Herbert J Mattord, "Principles of Information Security", Course Technology, New Delhi, Seventh Edition, 2021 Reprint.

- Nina Godbole, "Information Systems Security-Security Management, Metrics, Frameworks and Best Practices", Wiley India Pvt. Ltd., New Delhi, First Edition, 2009. (Biometric Controls, Security of Wireless Networks, Laws and Legal Framework)
- 2. Thomas R.Peltier, "Information Security Fundamentals", Auerbach Publications, Second Edition, 2013.
- 3. Micki Krause and Harold F.Tipton, "Information Security Management Handbook", Auerbach Publications, Sixth Edition, 2008.
- 4. Mark Merkow and Jim Breithaupt," Information Security Principles & Practices", Second Edition, Pearson Education, 2014.

CO						Р	Os						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3											2	
3		2											2	
4			3											
5										2				
со	3	3	3							2			2	

C NJ. MQ.

	226	ECX	23 - CRYPTOGRAPHY AND NE		RITY	1		
					L	т	Р	С
					3	0	0	3
PRER	EQUISITE : N	IL						
		•	To learn and understand the concept attacks in computing and various Net					Ind
Cour	se Objective:	•	To investigate Symmetric Cryptograp Algorithms.	hy, its types and Pu	ıblic K	ey Cry	ptogra	phy
		•	To analyze the Message Authenticatic HMAC.	on algorithms like H	IASH	functio	n and	
The Stu	dent will be able		rse Outcomes	Cognitive Level	in	End S	ge of (emes inatio	ter
соі	examine the va	ariou	dge of mathematics to cryptography, is system security schemes and apply mmunication networks.	Ар		3	0%	
CO2			and techniques of Block and Stream problems in simple substitution	An		3	0%	
CO3		key	cepts of message integrity, digital management schemes to improve nism.	An		2	0%	
CO4			ous system security schemes and of communication networks.	Е		2	0%	
CO5			ation in teams on a case study of a applied in network platforms.	U	Int	ernal A	Assessr	nent

UNIT I – SECURITY IN COMPUTING

Security services- Attacks- Mechanism- Points of Security Vulnerability - Methods of Defense- Controls, Effectiveness of Control- Introduction to Cryptography and Steganography- Plan of attack - Attack on Encryption – Standards: Standard Setting Organizations - IEC 62443, ISO 27001.

UNIT II – SYMMETRIC CRYPTOGRAPHY

Encryption and Decryption- Substitution- Transposition- Traditional Block Cipher Structure- Data Encryption Standard- Advance Encryption Standard- Triple DES, Stream Ciphers, RC4 Ciphers.

UNIT III – PUBLIC KEY CRYPTOGRAPHY

Introduction to Number Theory-Requirements of Public Key Cryptography - Rivest-Shamir-Adleman(RSA) algorithm - Key Management – Diffie - Hellman Key Exchange - Elliptic Curve Cryptography.

UNIT IV – MESSAGE AUTHENTICATION

Hash functions –Secure Hash algorithm- Message Authentication Requirements, Functions - HMAC- Digital signatures.

(9)

(9)

(9)

UNIT V – NETWORK AND SYSTEM SECURITY

Authentication applications - E-mail Security - IP security - Web security – Malicious Software - Intruders -Firewalls- Art cyber security- Defense in depth.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

1. William Stallings, "Cryptography & Network Security: Principles & Practices", 7th Edition, Pearson Education, New Delhi, 2017.

REFERENCES:

- 1. Behrouz A Forouson, "Cryptography & Network Security", Tata McGraw Hill, New Delhi, 2010.
- 2. Charles P Pleeger, "Security in Computing", Prentice Hall, New Delhi, 2011.
- 3. Paul C Van Oorschot and Scott A Vanstone, "Handbook of Applied Cryptography", CRC Press.

Mapping of COs with POs / PSOs														
COs						PC	Ds						PSOs	
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3											3	
3		3											3	
4			3										2	
5							2	2	2				2	
CO (W.A)	3	3	3				2	2	2				2.5	

	22ECX2	4 - HIGH PERFORMANCE COMMU		rwo	RKS	1	
				L	Т	Р	С
				3	0	0	3
PRER	EQUISITE : N	IL					
Cour	se Objective:	 To understand the concept of net networks. To study about different types pro- 				-	-
Cour	se objective.	disciplines and differentiated services		Г		-/ 1-	0
		• To explore connection-oriented serv	vices with referenc	e to M	1PLS &	VPN	
The Stu	C Ident will be able	Course Outcomes to	Cognitive Level	in	ightag End S Exami	emes	ter
COI		ing concepts to configure, troubleshoot, etwork systems and protocols.	Ap		2	0%	
CO2		inciples and concepts of high speed rformance computing.	An		3	0%	
CO3	,	is networking technologies, protocols, or their effectiveness in meeting specific rements.	An		3	0%	
CO4	'	lyze the different levels of quality of conditions of the condition of the	E		2	0%	
CO5		individual or in team, prepare a report n-oriented services and give oral	U	Int	ernal A	Assessr	nent

UNIT I - NETWORK CONCEPTS	(9)
Introduction - Principles - Applications - Services: Network Types- Network architectures - architecture: layered network - Limitations	<mark>Layere</mark> d
UNIT II - HIGH SPEED NETWORKS	(9)
Frame Relay Networks – Asynchronous transfer mode – ATM Protocol Architecture,– ATM Categories – AAL, High Speed LANs: Fast Ethernet, Gigabit Ethernet, Fiber Channel – Wireless applications, requirements – Architecture of 802.11	
UNIT III - PROTOCOLS FOR QOS SUPPORT	(9)
RSVP – Goals & Characteristics, Data Flow, RSVP operations, Protocol Mechanisms – Multiprotoco Switching – Operations, Label Stacking, Protocol details – RTP – Protocol Architecture.	ol Label
UNIT IV - INTEGRATED AND DIFFERENTIATED SERVICES	(9)
services - Queuing discipline: Fair queuing, processor sharing, bit round fair queuing, generalized pr sharing, weighted fair queuing - Random early detection - Differentiated services.	ocessor
UNIT V- ADVANCED NETWORK CONCEPTS	(9)
VPN: Remote access, site-to-site, tunneling and point to point protocol - Security in VPN - Operation, routing, tunneling and use of FEC, traffic engineering and MPLS based VPNs - Peer	

connection.

TOTAL(L:45) = 45 PERIODS

TEXT BOOK:

1. Jean Warland, Pravin Varaiya, "High Performance Communication Networks", Morgan Kaufmann Publishers, San Francisco ,2nd edition, 2011.

- 1. Lenon Garcia Widjaja, "Communication Networks", Tata McGraw-Hill, New Delhi, 2nd edition, 2007.
- 2. Ranier Handel Manfred N Huber, Stefan Schroder, "ATM Networks Concepts, Protocols Applications", Addison Wesley, New York, 3rd edition, 2006.
- 3. Irvan Pepelnjk, Jim Guichard& Jeff Apcar, "MPLS and VPN Architecture", Volume 1 and 2, Cisco Press, 2007.

Mapping of COs with POs / PSOs														
COs						PC	Ds						PSOs	
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3												
3		3												3
4			3											2
5						2			2		2			
CO (W.A)	3	3	3			2			2		2			2.5

C NJ. MQ.

	22E	CX25 - WIRELESS ADHOC AND SE		ORKS			
				L	т	Ρ	C
				3	0	0	3
PRER	EQUISITE : N	L			1	ľ	
Cour	se Objective:	 To understand the concept of networ To study about different types sensor To study about sensor network secur 	networks.				
The Stu	C dent will be able	to	Cognitive Level	in	End S	ge of C emest nation	er
COI		allenges and considerations of various cols to design routing protocols for ad	Ap		2	0%	
CO2		se attack concepts to propose solutions threats such as jamming and tampering.	Ap		3	0%	
CO3		energy consumption factors of sensor cuss strategies for energy optimization.	An		3	0%	
CO4	measures, and	us routing and MAC protocols, security d platform tools to make informed d on network requirements.	E		2	0%	
CO5	energy efficient	ions for real-world problems related to ency, security, and performance and hoc and sensor networks and give on as an individual or in groups.	С	Inte	ernal A	ssessm	nent

UNIT I - AD HOC NETWORKS – INTRODUCTION AND ROUTING PROTOCOLS (9)

Elements of Ad hoc Wireless Networks, Ad hoc wireless Internet, Issues in Designing a Routing Protocol for Ad Hoc Wireless Networks, Classifications of Routing Protocols, Table Driven Routing Protocols – Destination Sequenced Distance Vector (DSDV)–Ad hoc On–Demand Distance Vector Routing (AODV).

UNIT II - SENSOR NETWORKS – INTRODUCTION & ARCHITECTURES

Challenges for Wireless Sensor Networks, Enabling Technologies for Wireless Sensor Networks, Single-Node Architecture – Hardware Components, Energy Consumption of Sensor Nodes, Network Architecture –, Transceiver Design Considerations, Optimization Goals and Figures of Merit.

UNIT III - WSN NETWORKING CONCEPTS AND PROTOCOLS

MAC Protocols for Wireless Sensor Networks– S-MAC, The Mediation Device Protocol, PAMAS, Schedule based protocols –IEEE 802.15.4 MAC protocol, Routing Protocols- Energy Efficient Routing, Challenges and Issues in Transport layer protocol.

UNIT IV - SENSOR NETWORK SECURITY

Network Security Requirements,-Network Security Attacks, Layer wise attacks in wireless sensor networks, possible solutions for jamming, tampering, -Key Distribution and Management, Secure Routing – SPINS, reliability requirements in sensor networks

(9)

(9)

UNIT V- SENSOR NETWORK PLATFORMS AND TOOLS

Sensor Node Hardware - Berkeley Motes, Programming Challenges, Node-level software platforms -TinyOS, CONTIKIOS, Node-level Simulators -TOSSIM, Programming beyond individual nodes - State centric programming.

TOTAL(L:45) = 45 PERIODS

(9)

TEXT BOOKS:

- I. C. Siva Ram Murthy and B. S. Manoj, "Ad Hoc Wireless Networks Architectures and Protocols", Prentice Hall, PTR, 2004.
- 2. Holger Karl , Andreas willig, "Protocol and Architecture for Wireless Sensor Networks", John Wiley publication, Jan 2006.

- 1. Feng Zhao, Leonidas Guibas, "Wireless Sensor Networks: an information processing approach", Elsevier publication, 2004
- 2. Charles E. Perkins, "Ad Hoc Networking", Addison Wesley, 2000.
- 3. I.F. Akyildiz, W. Su, Sankarasubramaniam, E. Cayirci, "Wireless sensor networks: a survey", Computer Networks, Elsevier, 2002

Mapping of COs with POs / PSOs														
COs						PC	Ds						PSOs	
003	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3												3	
3		3											3	
4					3									3
5									3	2		I		
CO (W.A)	3	3			3				3	2		I	3	3

.

CNO.MO.

	22EC)	(26 - AUTOMOTIVE ELECTRONICS A	AND NETWO	RKIN	IG		
				L	т	Ρ	С
				3	0	0	3
PRERE	EQUISITE : N	IL					
		• To apply fundamentals and innovative co industry					
Cours	se Objective:	• To analyze the ignition system and enhar		ew teo	hnique	es	
		 To develop the electronic control for ve To evaluate the physical parameters of a 		m usir	a a dua	need e	
		 To design a advanced automotive comm 	•		ig auva	inced s	ensor
The Stu	dent will be able	Course Outcomes to	Cognitive Level	in	End S	ge of (emest inatior	ter
COI	Apply fundam the automotiv	entals and innovative concept to optimize re industry	Ар		2	0%	
CO2	Analyze the ig techniques	nition system and enhance them with new	An		2	0%	
CO3	Develop the e	electronic control for vehicle system	С		2	0%	
CO4	Evaluate the using advance	physical parameters of automobile system d sensors	E		2	0%	
CO5	Design a adva	nced automotive communication network	С		2	0%	

UNIT I - FUNDAMENTALS OF AUTOMOTIVE ELECTRONICS

Automobile systems: Engine and its control - Ignition systems - Steering systems - Control systems: proportion controller, Proportional Integral controller and Proportional Integral differential controller.

UNIT II - AUTOMOTIVE SENSORS

Sensor basics & its Functions - Air mass flow sensor- Crankshaft angular position sensor - Throttle valve sensor - Eddy

UNIT III - AUTOMOTIVE ACTUATORS

Fuel Injectors - Exhaust gas recirculation Actuator - Electronic Ignition sub-systems - Digital Engine control systems: Speed density method - Idle speed control method- EGR control - Distributor-less Ignition control

UNIT IV - VEHICULAR ELECTRONICS ARCHITECTURE

Intelligent Power distribution module - Supplemental restraint systems - Body control module – Engine control modules - Automatic drive positioned control unit - Driver seat control module - Front air control unit and transmission control unit

UNIT V- AUTOMOTIVE NETWORKING

Networking basics topologies - Addressing - Control mechanisms: Event control & Timer control - Network topologies for new generation vehicles - Bus systems: CAN Bus, High speed CAN, LIN bus, MOST bus, Bluetooth: Piconet and scatternet.

TOTAL(L:45) = 45 PERIODS

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. Konrad Reif, "Automotive Mechatronics Automotive Networking, Driving Stability Systems, Electronics", Vieweg-Teubner Verlag (2015).
- 2. Najamuz Zaman (auth.), "Automotive Electronics Design Fundamentals", Springer International Publishing (2015)

- I. Robert Bosch GmbH, Bosch, "Automotive Electrics and Automotive Electronics Systems and Components, Networking and Hybrid Drive", Springer Vieweg (2014)
- 2. William Ribbens, "Understanding Automotive Electronics, Fifth Edition-Newnes (1998).
- 3. W.H.Crouse, "Automobile Electrical Equipment", McGraw-Hill, 1996.
- 4. P.L.Kholi, "Automotive Electrical Equipment", Tata McGraw-Hill, 1995.

CO -						PC	Os						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3												3	
2		3											3	
3			2										3	2
4				3									3	2
5				3									3	
CO (W.A)	3	3	2	3									3	2

C NJ. MQ.

	22ECX27 - NEURAL NETW	ORKS				
			L	т	Ρ	C
			3	0	0	3
PRER	EQUISITE : NIL					
Cour	 To understand artificial neural model at To study about to develop learning algorithms To learn about the application areas of 	orithms of neura	netwo		orks	
The Stu	Course Outcomes Ident will be able to	Cognitive Level	in	eightag End S Exami	emes	ter
COI	Apply neural network concepts through analysis and implementation of neural network models	Ap		2	0%	
CO2	Apply the steps needed to improve performance of the selected neural network.	Ap		2	0%	
CO3	Analyze vector quantization and self organization feature maps.	An		2	0%	
CO4	Design appropriate neural networks to specific application.	E		2	0%	
CO5	Develop neural network models for complex real-world problems, considering societal impacts and ethics.	E		2	0%	

UNIT I – ARCHITECTURE

Biological Neuron- Artificial Neural Model- Types of activation functions- Feedforward and Feedback-Convex Sets- Convex Hull and Linear Separability- Non-Linear Separable Problem- XOR Problem-Multilayer Networks- Convolutional Neural Networks- Backpropagation Neural Network

UNIT II - SUPERVISED LEARNING

Perceptron learning and Non Separable sets- Least Mean Square Learning- MSE Error surface- Steepest Descent Search- JL-LMS approximate to gradient descent- Application of LMS to Noise Cancelling- Multi-layered Network Architecture

UNIT III - SUPPORT VECTOR MACHINES

Statistical Learning Theory- Support Vector Machines- SVM application to Image Classification- Radial Basis Function Regularization theory- Generalized RBF Networks- Learning in RBFNs- RBF application to face recognition.

UNIT IV - ATTRACTOR NEURAL NETWORKS

Associative Learning- Attractor Associative Memory- Linear Associative memory- Hopfield Networkapplication of Hopfield Network- Brain State in a Box neural Network- Simulated Annealing- Boltzmann Machine- Bidirectional Associative Memory.

UNIT V- VECTOR QUANTIZATION

Maximal Eigenvector Filtering- Extracting Principal Components- Generalized Learning Laws- Vector Quantization- Self organization Feature Maps- Application of SOM- Growing Neural Gas

TOTAL(L:45) = 45 PERIODS

(9)

(9)

(9)

(9)

TEXT BOOKS:

 Satish Kumar, "Neural Networks A Classroom Approach", McGraw Hill Education Pvt. Ltd, 2nd Edition, 2017

- 1. J.M. Zurada," Introduction to Artificial Neural Systems", Jaico Publications, 1994.
- 2. B. Yegnanarayana, "Artificial Neural Networks", 2nd Edition, Pearson Education / PHI, 2004.
- 3. S. Sivanandam," Introduction to Artificial Neural Networks", 1st Edition, Sangam Ltd, 2003.

COs						PC	Os						PS	Os
003	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3												2	
2	3												2	
3		3												
4			3										3	
5			3			2		2						
CO W.A)	3	3	3			2		2					2.3	

C NJ. Ma.

		22ECX28 - ARTIFICIAL						
					L	Т	Ρ	С
					3	0	0	3
PRERE	EQUISITE : N							
		 To understand the core con logical reasoning, and method Bayes' Rule. 						
Cours	se Objective:	 To master informed and unin various AI problems effectively 		n techniques	, apply	ing th	em to	solve
		 To gain proficiency in classical planning graphs, for effective p 			ng state	e space	e searc	h and
The Stu	dent will be able	Course Outcomes o		Cognitive Level	in	ightag End S Exami	emes	ter
COI	Apply AI demonstrating and key comp	undamentals to real-world an understanding of its history, nents.	scenarios, definitions,	Ар		2	0%	
CO2	solve AI and	ormed and informed search st constraint satisfaction problem and searching with partial inform	ns, avoiding	An		3	0%	
CO3	agents and	reasoning systems using know rst-order logic to solve prob uncertain information.		An		3	0%	
CO4		l solve planning problems usi hms and graph-based methods.	ng classical	Ap		2	0%	
CO5		pendent learning to stay updat and continuously improve prot		E	Int	ernal A	Assessr	nent

UNIT I - FUNDAMENTALS OF ARTIFICIAL INTELLIGENCE

Introduction–Definition – History of AI - Intelligence, Knowledge, and Human artifice -Future of Artificial Intelligence – Characteristics of Intelligent Agents–Typical Intelligent Agents – Problem Solving Approach to Typical AI problems- Searching for solutions -Un-informed search strategies –Avoiding repeated states -Searching with partial information.

UNIT II - INFORMED SEARCHING TECHNIQUES

Informed search and search strategies -Heuristic function -Local search algorithms and optimistic problems –Constraint Satisfaction Problems (CSP) -Backtracking search -Structure of problems.

UNIT III - LOGICAL REASONING

Logical agents: Knowledge-based agents – The Wumpus world. Logic – Propositional logic: A very simple logic Propositional theorem proving. First order logic: Representation – Syntax and semantics of first order logic –Inference in first order logic: Propositional versus first order inference– Unification and lifting – Forward chaining – Backward chaining – Resolution.

(9)

(9)

UNIT IV - PLANNING AND DECISION MAKING

Classical Planning: Definition – Algorithms for planning as state space search- Planning graphs –classical planning approaches. Making simple Decisions-Combining beliefs and desires under Uncertainty-Utility theory, Utility functions-Multi attribute utility functions-Decision networks- The value of information-Decision theoretic expert systems.

UNIT V- LEARNING

Quantifying uncertainty: Acting under uncertainty - Probability basics – Bayes' Rule. Probabilistic reasoning: Representing knowledge in uncertain domain- The semantics of Bayesian networks. Forms of learning - Supervised learning - Learning decision trees.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Stuart Russell and Peter Norvig, 'Artificial Intelligence –A Modern Approach', 3rd Edition, Pearson Education, 2016.
- 2. Deepak Khemani, 'Artificial Intelligence', Tata McGraw Hill Education, 2013

REFERENCES:

- I. Kevin Night and Elaine Rich, Nair B., 'Artificial Intelligence (SIE)', 3rd Edition, McGraw Hill,2008.
- 2. Dan W. Patterson, 'Introduction to AI and ES', 3rd Edition, Pearson Education, 2007.
- 3. Peter Jackson, 'Introduction to Expert Systems', 3rd Edition, Pearson Education, 2007.
- 4. Nils J. Nilsson, 'Artificial Intelligence: A new Synthesis', Harcourt Asia Pvt. Ltd., 2000.

COs						PC	Os						PS	Os
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3	2	I										2	
2	3			3	2									2
3		3	3		2								2	2
4	3		3								I		I	
5									2		3		I	
CO (W.A)	3	2.5	2.3	3	2				2		2		1.5	2

(9)

VERTICAL 4: SIGNAL AND IMAGE PROCESSING

		VERTICAL 4: SIGNAL AND IMAGE					
		22ECX31 - DIGITAL IMAGE PRO	DCESSING				
				L	Т	Ρ	С
				3	0	0	3
		PREREQUISITE : NIL	•				
6		• To gain knowledge about different image	processing techn	iques.			
Cours	se Objective:	• To understand use of various transform	s for different typ	oes of	images		
The Stu	dent will be able	Course Outcomes to	Cognitive Level	in	ightag End S Exami	emes	ter
COI		orm-domain representation of images t transformation techniques.	Ap		2	0%	
CO2	,	ous techniques in image enhancement in quency domain.	An		2	0%	
CO3	Implement th videos.	e compression techniques for images and	Ap		4	0%	
CO4	Design var representatio	5 5	С		2	0%	
CO5	Apply the co color data	ncepts of image processing in gray and	U	Int	ernal A	ssessn	nent

UNIT I - DIGITAL IMAGE FUNDAMENTALS

Elements of digital image processing systems - Elements of visual perception -Brightness-Contrast-Hue-Saturation-Mach band effect - Image sampling-Quantization-Basic relationship between pixels - Zooming and Shrinking of Digital Images - Color image fundamentals- RGB-HSI models.

UNIT II - IMAGE TRANSFORMS

2D transforms-DFT-DCT-Discrete Sine, Walsh-Hadamard, Slant-Haar, KL transforms and SVD -properties of all transforms.

UNIT III - IMAGE ENHANCEMENT AND RESTORATION

Spatial Domain enhancement: gray level transformations-histogram equalization-Image averaging-Spatial filtering: Smoothing, Sharpening filters- Frequency domain filters: Smoothing-Sharpening filters-Homomorphic filtering. Image Restoration: Degradation model-Unconstrained and Constrained restoration-Inverse filtering-Wiener filtering.

UNIT IV - IMAGE COMPRESSION

Need for data compression-Error free compression-Variable length coding-Bit-Plane coding-Lossless and Lossy Predictive coding, JPEG and MPEG Compression Standards.

UNIT V - IMAGE SEGMENTATION AND REPRESENTATION

Point- Line and edge detection- Thresholding – Region based segmentation: Region splitting and merging. Image representation: chain codes-polygonal approximations-signatures-boundary segments-skeletons

TOTAL (L:45) = 45 PERIODS

(9)

(9)

(9)

(9)

TEXT BOOKS:

I. Rafael C. Gonzales, Richard E. Woods, "Digital Image Processing", Pearson Education, 4th Edition, 2018.

- Rafael C. Gonzalez, Richard E. Woods, Steven L. Eddins, "Digital Image Processing Using MATLAB", Tata McGraw Hill Pvt. Ltd., 3rd Edition, 2011.
- 2. Anil Jain K. "Fundamentals of Digital Image Processing", PHI Learning Pvt. Ltd., Second Edition, 2004.
- 3. William K Pratt, "Digital Image Processing", Willey India Pvt Ltd., Fourth Edition, 2010.

				M	apping	g of CC	Os with	POs /	PSOs					
						PC	Ds						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I		3												
2			2										2	
3			2										2	
4					3									
5							2							
CO (W.A)		3	2		3		2						2	

CN.Ma.

		22ECX32 - SPEECH SIGNAL PR	OCESSING				
				L	Т	Ρ	С
				3	0	0	3
PRER	EQUISITE : N	IL					
		• To understand the speech production techniques and speech models.	mechanism and t	ne vari	ous sp	eech ai	nalysis
Cour	se Objective:	 To acquire concepts of the speech con coding. 	npression techniq	ues an	d linea	r predi	ctive
		• To study the speaker recognition and t	ext to speech sy	nthesis	techni	ques.	
The Stu	ident will be able	Course Outcomes e to	Cognitive Level	in	ightaş End S Exami	emes	ter
COI	Apply knowled optimize speed	lge of speech production mechanisms to h processing.	Ар		2	0%	
CO2	Apply speech modulation me	compression techniques using various thods.	Ap		2	0%	
CO3	Analyze Hidde techniques	n Markov Model using speech recognition	An		2	0%	
CO4	Analyze speal synthesis syste	ker recognition and text to speech ms.	An		3	0%	
CO5	•	ch signal processing systems with or environmental sustainability	E		I	0%	

UNIT I - SPEECH SIGNAL CHARACTERISTICS & ANALYSIS

Speech production process - Speech sounds and features- - Phonetic representation of speech - Representing- speech in time and frequency domains - Short-Time Analysis of Speech - Short-Time Energy and Zero-Crossing Rate - Short-Time Fourier Transform(STFT) - Speech Spectrum- Cepstrum - Mel-Frequency Cepstrum Coefficients - Hearing and Auditory Perception

UNIT II - SPEECH COMPRESSION

Sampling and Quantization of Speech (PCM) - Adaptive differential PCM - Delta Modulation -Vector Quantization- Linear predictive coding (LPC) - Code excited Linear predictive Coding(CELP)

UNIT III - SPEECH RECOGNITION

LPC for speech recognition- Hidden Markov Model (HMM)- training procedure for HMM- subword unit model based on HMM- language models for large vocabulary speech recognition – Overall recognition system based on subword units - Context dependent subword units

UNIT IV - SPEAKER RECOGNITION

Acoustic parameters for speaker verification- Feature space for speaker recognition-similarity measures-Text dependent speaker verification-Text independent speaker verification techniques

(9)

(9)

(9)

UNIT V- TEXT TO SPEECH SYNTHESIS	(9)
Text to speech synthesis(TTS)- Concatenative and waveform synthesis methods, sub-word units for intelligibility and naturalness-role of prosody- Natural Language Processing	or TTS,
TOTAL(L:45) = 45 PEI	RIODS

TEXT BOOKS:

- 1. L. R. Rabiner and R. W. Schafer, "Introduction to Digital Speech Processing", Vol. I, Now publishers inc, 2007.
- 2. Ben Gold and Nelson Morgan "Speech and Audio signal processing : processing and perception of speech and music", John Wiley and sons 2011

- 1. Lawrence Rabiner, Biiing and– Hwang Juang and B.Yegnanarayana, "Fundamentals of Speech Recognition", Pearson Education, 2009.
- 2. Claudio Becchetti and Lucio Prina Ricotti, "Speech Recognition", John Wiley and Sons, 1999.
- 3. Donglos O shanhnessy, "Speech Communication: Human and Machine ", 2nd Ed. University press 2001.

				M	lapping	g of CC	Os with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	I 2 3 4 5 6 7 8 9 10 11 12												
I	3													
2	3												2	
3		3											2	
4		3			2								2	
5			2				3	2						
CO (W.A)	3	3	2		2		3	2					2	

C NJ. MQ.

	22ECX33 - MULTIMEDIA COMPRESSION TECHNIC	QUES			
		L	Т	Ρ	С
		3	0	0	3
PRERE	EQUISITE : NIL				
Cours	 To gain deep knowledge about various compression te To learn the representations, perceptions and applications 	•		edia.	
The Stu	Course Outcomes Cognitive dent will be able to Level	in	End S	ge of C emest natior	er
соі	Apply different compression techniques for text files.		2	0%	
CO2	Analyze the different audio compression coding and An speech compression techniques.		2	0%	
CO3	Implement the different compression approaches, C C C		4	0%	
CO4	Analyze the techniques used for video compressions. An		2	0%	
CO5	Apply the concepts of information theory, models and Ap coding.	Int	ernal A	ssessn	nent

UNIT I - INTRODUCTION

Overview of Information theory-models and coding- rate distortion theory-scalar quantization-vector quantization structured vector quantizes.

UNIT II - TEXT COMPRESSION

Compaction techniques - Static Huffman coding - Dynamic Huffman coding - Arithmetic coding - Lempel-Ziv coding - Lempel-Ziv Welsh coding.

UNIT III-AUDIO AND SPEECH COMPRESSION

Audio compression techniques – frequency domain and filtering - Basic sub band coding - Application to speech coding - G.722 - Application of audio coding: MPEG audio - Silence compression – Speech compression techniques.

UNIT IV -IMAGE COMPRESSION

Approaches to image compression - Predictive techniques - PCM, DPCM, JPEG, Quad tree DCT coding-EZW coding- SPIHT coding- JPEG 2000 standards.

UNIT V- VIDEO COMPRESSION

Video signal representation - Video compression techniques - MPEGI, 2, 4 - Motion estimation - H.26I, H.263, and H.264 - Overview of wavelet based compression- Real time compression.

TOTAL(L:45) = 45 PERIODS

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. I Sayood Khaleed, "Introduction to Data Compression", Morgan Kauffman, 4th Edition, Morgan Kaufmann publishers2014.
- 2. Fred Halsall, James F. Kurose, "Multimedia communication Applications, Networks, Protocols and standards", Pearson Education Limited, 2004

- I. I David Solomon, "Data Compression the complete reference", Springer, 4th Edition, 2007.
- 2. Jerry D. Gibson, "Multimedia Communications: Directions and Innovations", Morgan Kaufmann, 2nd Edition, 2001.

				M	lapping	g of CC	Ds with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι			3										Ι	3
2					2									
3					2								Ι	
4				2										
5												2		
CO (W.A)			3	2	2							2	Ι	3

CNO.Ma.

		22ECX34 - DEEP LEARNIN	١G				
				L	Т	Ρ	C
				3	0	0	3
PRERE	EQUISITE : N	IL					
		• To equip students with a comprehen learning concepts, including backpropa training neural networks.		•			
Cours	se Objective:	 To enable students to apply regularization tuning strategies to improve model performance 		and dive	erse hy	perpara	amet
		 To empower students to practically im (CNN) and recurrent neural networks (to speech and computer vision. 					
The Stu	dent will be able	Course Outcomes to	Cognitive Level	in	End S	ge of C emest natior	er
COI		ne learning concepts such as overfitting, and hyper parameter tuning to improve ithms.	Ap		2	0%	
CO2	learning fun	ient-based learning techniques and deep damentals, including back propagation, , and optimization algorithms.	An		3	0%	
CO3	techniques	imization strategies using advanced ke momentum-based gradient descent, dient descent, and learning rate schedulers.	An		3	0%	
CO4	like vanishing neural netwo	gularization methods to address challenges g and exploding gradients, and optimize rk performance using techniques such as patch normalization.	Ар		2	0%	
CO5		nced architectures like CNNs, RNNs, and , and apply them to vision and speech	E	Int	ernal A	ssessn	nent

UNIT I -INTRODUCTION TO MACHINE LEARNING

Machine learning Basics: Learning algorithms - Overfitting - Underfitting -digital camera and lightning, Hyper parameters Estimators - Validation - Maximum Likelihood estimation - Bayesian Statistics -Challenges in Machine Learning

UNIT II - DEEP LEARNING FUNDAMENTALS

Gradient based learning - Hidden Units - Architectural design - Back - propagation for MLP - Regularization - Parameter Regularization - Data Augmentation - Dropout - Optimization algorithms - Adaptive learning rates.

UNIT III - OPTIMIZATION

Introduction to Optimization – Convex Optimization - Drawback of Gradient Descent – Momentum based GD - Nesterov Accelerated GD – Stochastic GD- mini batch GD-learning rate schedulers.

(9)

(9)

UNIT IV - REGULARIZATION(9)Vanishing and exploding gradients-Activation functions (tanh, relu ,leaky relu)-bias-variance tradeoff – L2-
Regularization- Batch Normalization –Dropout- Initialization Strategies.(9)UNIT V- ADVANCED ARCHITECTURES(9)CNN-Basic of Convolution – Cross entropy loss – Architectures: LeNet - AlexNet .Resnet, RNN: BPTT
– LSTM - GRU–Transformers. Applications to vision and speech.(9)

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Ian Goodfellow, YoshuaBengio, Aaron Courville, "Deep Learning", MIT Press, USA, 2016.
- 2. Adam Gibson, Josh Patterson , "Deep Learning A practitioner's approach", O'Reilly, USA, 2016

- 1. Yusuke Sugomori , "Deep Learning: Practical Neural Networks with Java", Packt Publisher, New York, 2016.
- 2. Jeff Heaton , "Artificial Intelligence for Humans: Deep Learning and Neural Networks", Lightning Source Inc, Tennessee, 2015

				M	lapping	g of CO	Os witł	n POs /	PSO s					
						P	Os						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3				2						I		2	
2		3		3	2									2
3			3		2				2					2
4	3		3								I		2	
5											2	3		I
CO (W.A)	3	3	3	3	2				2		1.3	3	2	1.6

CN.Ma.

			22ECC35 – COMPUTER V	VISION					
						L	т	Ρ	C
						3	0	0	3
PRER	EQUISITE : N								
			equip students with fundamental cessing, as well as feature detecti	•			0	mation	i and
			gain a comprehensive understar		-			ent mo	otior
Cours	se Objective:		mation, and 3D reconstruction p	•			•		
			del-based reconstruction.	•	0			•	
		• To	become familiar with image-base	d rendering	and re	cognit	ion.		
		Course (Dutcomes	Cognit	ive			ge of C	
The Stu	dent will be able			Leve				emest nation	
соі	transformation	ns, photo	ng techniques like geometric ometric image formation, and ons to solve computer vision	Ap			20	0%	
CO2	,		on, matching, and segmentation ificant image features.	An			30)%	
CO3	• •	ent, pose	notion estimation systems using estimation, and optical flow to ata.	An			3()%	
CO4	Implement 3D 3D models fro		ruction techniques to recover data.	Ap			20)%	
CO5	advancements	in i	learning to stay updated with mage-based rendering and computer vision systems.	E		Inte	ernal A	ssessm	nent

UNIT I - IMAGE PROCESSING FOUNDATIONS

Computer Vision - Geometric primitives and transformations - Photometric image formation – Thedigital camera - Point operators - Linear filtering - Neighborhood operators - Pyramids and wavelets - Geometric transformations - Global optimization.

UNIT II - FEATURE DETECTION, MATCHING AND SEGMENTATION

(9)

(9)

(9)

Points and patches - Edges - Lines - Segmentation - Active contours - Split and merge - Mean shiftand mode finding - Normalized cuts - Graph cuts and energy-based methods.

UNIT III - FEATURE-BASED ALIGNMENT & MOTION ESTIMATION

2D and 3D feature-based alignment - Pose estimation - Geometric intrinsic calibration - Triangulation-Two-frame structure from motion - Factorization - Bundle adjustment - Constrained structure and 123 motion - Translational alignment - Parametric motion - Spline-based motion - Optical flow – Layeredmotion.

UNIT IV - 3D RECONSTRUCTION

(9)

Shape from X - Active rangefinding - Surface representations - Point-based representationsVolumetric representations - Model-based reconstruction - Recovering texture maps

UNIT V- IMAGE-BASED RENDERING AND RECOGNITION	(9)
Interpolation Layered depth images - Light fields and Lumigraphs - Environment mattes	-Video-based
rendering-Object detection - Face recognition - Instance recognition - Categoryrecognition -	Context and

scene understanding- Recognition databases and test sets.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Richard Szeliski, Computer Vision: Algorithms and Applications, Springer- Texts in Computer Science, Second Edition, 2022
- 2. Computer Vision: A Modern Approach, D. A. Forsyth, J. Ponce, Pearson Education, Second Edition, 2015.

- 1. D. L. Baggio et al., Mastering OpenCV with Practical Computer Vision Projects II, Packt Publishing, 2012.
- 2. Simon J. D. Prince, —Computer Vision: Models, Learning, and Inferencell, Cambridge University Press, 2012

			M	lapping	g of CC	Os with	POs /	PSO s						
					PC	Ds						PS	Os	
I	2	3	4	5	6	7	8	9	10	11	12	I	2	
3				2						1		2		
	3		3	2									2	
		3		2				2					2	
3		3								1		2		
										2	3		1	
3	3	3	3	2				2		1.3	3	2	1.6	
	3	3 3	3 3 3 3 3 3 3 3	I 2 3 4 3	I 2 3 4 5 3	I 2 3 4 5 6 3 3 3 3 3 3	I 2 3 4 5 6 7 3 3 3 3 3 3 3 4 3 4 4 5 4	I 2 3 4 5 6 7 8 3	I 2 3 4 5 6 7 8 9 3 .	POs I 2 3 4 5 6 7 8 9 10 3	POs I 2 3 4 5 6 7 8 9 10 11 3	POs I 2 3 4 5 6 7 8 9 10 11 12 3 1 3 1 3 .	POs PS 1 2 3 4 5 6 7 8 9 10 11 12 1 3 1 </td	

C NJ. Ma.

		22ECX36 - MACHINE LEA	ARNING					
					L	Т	Ρ	0
					3	0	0	
PRER	EQUISITE : N	IL						
		• To understand the Machine Learning	Concepts.					
Cour	se Objective:	To obtain knowledge about reinforce		-	•	and its	s applic	atic
		• To get awareness Graphical Model a	nd Ensembl	e method	S			
The Stu	C Ident will be able	Course Outcomes e to	Cognit Leve		in	End S	ge of (emestination	ter
соі	Apply appropria	ate techniques for classification and	Ap	,			0%	
CO2	Analyze basic c	oncepts of Machine Learning	Ar	1		3	0%	
CO3	Evaluate and ar graphical mode	nalyze various learning algorithms for the el.	Ar	1		3	0%	
CO4	Design and imp	plement various unsupervised models.	E			2	0%	
CO5	learning algor	e developments of various machine ithms in real time applications and ort for the same.	E		Int	ernal A	Assessr	nent
UNIT	I – INTRODU	ICTION TO MACHINE LEARNING					(9)
gener	<i>,</i> ,	of Machine Learning – Supervised eralization bound – approximation-gene				•		
UNIT	II – SUPERVI	SED LEARNING					(9)
Percep	otrons- Large ma	Bayesian regression- Regression with argin classification- Kernel methods- Supp ression Trees, Radial Basis Functions.						
-	III - UNSUPE	RVISED LEARNING AND DIMENS	IONALIT	ſ			(9)
		nodels - K means - hierarchical cluste linear discriminant analysis- factor Analys						
UNIT	IV - GRAPHI	CAL MODEL AND ENSEMBLE MET	THODS				(9)
Netwo	orks-Markov Ra	nte Carlo Methods – Sampling - ndom Fields- Hidden Markov Models - ods, Random Forest.						
UNIT	V- REINFOR	CEMENT LEARNING					(9)
0								por

TOTAL (L:45)= 45 PERIODS

TEXT BOOK:

I. Ethem Alpaydin, 'Introduction to Machine Learning', 4th Edition, MIT Press, 2020.

- 1. Tom M Mitchell, 'Machine Learning', 1st Edition, McGraw Hill Education, 2017.
- 2. Peter Flach, 'Machine Learning: The art and science of algorithms that make sense of data', Cambridge University Press, 2012.
- 3. K. P. Murphy, 'Machine Learning: A probabilistic perspective', MIT Press, 2012..
- 4. Christopher M. Bishop, Pattern Recognition and Machine Learning , Springer, 2014.
- 5. Stephen Marsland, Machine Learning: An Algorithmic Perspective, 2nd Edition, 2014

						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3													
2		3											3	
3		3											3	
4			3										3	
5			3					2		2				
CO (W.A)	3	3	3					2		2			3	

CN.Ma.

		22ECX37 - SC		TING					
						L	Т	Р	С
						3	0	0	3
PRERI	EQUISITE : NIL								
Cours	se Objective:	To understand Artificia To obtain knowledge a applications. To get awareness gene	bout Hybrid Sol		, .			:s	
The Stu	Cour dent will be able to	se Outcomes		Cogr Le	nitive vel	in	End S	ge of (emest inatior	ter
COI	Apply various soft	computing frame works	5.	A	λp		2	0%	
CO2	Analyze various N	eural Networks training	algorithms.	ŀ	An		3	0%	
CO3	Develop systems u	sing fuzzy logic.			E		3	0%	
CO4	Evaluate and anal Hybrid Soft Comp	yze various genetic al uting techniques	gorithm and		E		2	0%	
CO5		tion as an individual or developments of various	•		U	Int	ernal A	Assessn	nent

UNIT I - ARTIFICIAL NEURAL NETWORK & FUZZY LOGIC

Artificial neural network: Introduction, characteristics- learning methods - taxonomy - Evolution of neural networks- basic models- important technologies - applications.

Fuzzy logic: Introduction - crisp sets- fuzzy sets - crisp relations and fuzy relations: cartesian product of relation - classical relation, fuzzy relations, tolerance and equivalence relations, non-iterative fuzzy sets.

UNIT II - NEURAL NETWORKS

McCulloch-Pitts neuron - linear separability - hebb network - supervised learning network: perceptron networks - adaptive linear neuron, multiple adaptive linear neuron, BPN, RBF, TDNN- associative memory network: auto-associative memory network, hetero-associative memory network, BAM, hopfield networks, iterative autoassociative memory network & iterative associative memory network - unsupervised learning networks: Kohonen self organizing feature maps, LVQ - CP networks, ART network.

UNIT III - FUZZY SYSTEMS

Membership functions: features, fuzzification, methods of membership value assignments-Defuzzification: lambda cuts - methods- fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - extension principle - fuzzy measures - measures of fuzziness -fuzzy integrals - fuzzy rule base and approximate reasoning : truth values and tables, fuzzy propositions, formation of rules-decomposition of rules, aggregation of fuzzy rules, fuzzy reasoning-fuzzy inference systems-overview of fuzzy expert system-fuzzy decision making.

UNIT IV - GENETIC ALGORITHM

Genetic algorithm and search space - general genetic algorithm - operators - Generational cycle - stopping condition - constraints- classification - genetic programming - multilevel optimization - real life problemadvances in GA

(9)

(9)

(9)

UNIT V- HYBRID SOFT COMPUTING TECHNIQUES & APPLICATIONS

(9)

Neuro-fuzzy hybrid systems - genetic neuro hybrid systems - genetic fuzzy hybrid and fuzzy genetic hybrid systems - simplified fuzzy ARTMAP - Applications: A fusion approach of multispectral images with SAR, optimization of traveling salesman problem using genetic algorithm approach, soft computing based hybrid fuzzy controllers

TOTAL(L:45) = 45 PERIODS

TEXT BOOK:

I. S.N.Sivanandam and S.N.Deepa, "Principles of Soft Computing", Wiley India Pvt Ltd, 2011.

- 1. J.S.R.Jang, C.T. Sun and E.Mizutani, "Neuro-Fuzzy and Soft Computing", PHI / Pearson Education 2004.
- 2. S.Rajasekaran and G.A.Vijayalakshmi Pai, "Neural Networks, Fuzzy Logic and Genetic Algorithm: Synthesis & Applications", Prentice-Hall of India Pvt. Ltd., 2006.
- 3. George J. Klir, Ute St. Clair, Bo Yuan, "Fuzzy Set Theory: Foundations and Applications", Prentice Hall, 1997.
- 4. David E. Goldberg, "Genetic Algorithm in Search Optimization and Machine Learning" Pearson Education India, 2013.
- 5. Simon Haykin, "Neural Networks Comprehensive Foundation" Second Edition, Pearson Education, 2005.

				M	lapping	g of CC	Os with	POs /	PSO s					
						PC	Os						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3												
3			3										3	
4			3										3	
5						2			2			2	2	
CO (W.A)	3	3	3			2			2			2	2.6	

C NJ. MQ.

			22ECX38 - PA	TTERN RECO	GNITION				
						L	Т	Ρ	С
						3	0	0	3
PRERE	EQUISITE : N	IL							
Cours	se Objective:		o gain knowledge a o understand use o	•		gorithm.			
The Stu	C dent will be able		Outcomes		Cognitive Level	in	eightag End S Exami	emes	ter
COI	Apply the c learning and cl		g concepts in ion.	unsupervised	Ар		2	0%	
CO2	Apply approp analyzing struc		lgorithms and t tterns.	echniques for	Ар		2	0%	
CO3	Implement the analyze the typ		pts of pattern ro ttern given.	ecognition and	An		4	0%	
CO4	Implement var different types		ature extraction	algorithms for	С		2	0%	
CO5			cools in patter ects, or case stud		U	Int	ernal A	Assessr	nent

UNIT I – PATTERN CLASSIFIER

Overview of pattern recognition - Discriminant functions - Supervised learning - Parametric estimation - Maximum likelihood estimation - Bayesian parameter estimation - Perceptron algorithm - LMSE algorithm - Problems with Bayes approach - Pattern classification by distance functions - Minimum distance pattern classifier.

UNIT II - UNSUPERVISED CLASSIFICATION

Clustering for unsupervised learning and classification - Clustering concept - C-means algorithm - Hierarchical clustering procedures - Graph theoretic approach to pattern clustering - Validity of clustering solutions.

UNIT III-STRUCTURAL PATTERN RECOGNITION

Elements of formal grammars - String generation as pattern description - Recognition of syntactic description -Parsing - Stochastic grammars and applications

UNIT IV - FEATURE EXTRACTION AND SELECTION

Entropy minimization - Karhunen - Loeve transformation - Feature selection through functions approximation -Binary feature selection.

(9)

(9)

(9)

UNIT V- NON-METRIC METHODS FOR PATTERN CLASSIFICATION AND APPLICATIONS

(9)

Non-numeric data or nominal data. Decision trees: Classification and Regression Trees (CART), Applications: Face recognition - preprocessing, face detection algorithms, selection of representative patterns, classification algorithms.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- I. O.Duda, P.E.Hart and D.G.Stork, "Pattern Classification", John Wiley, 2009.
- 2. S.Theodoridis and K.Koutroumbas, "Pattern Recognition", 4th Edition, Academic Press, 2009.

- I. C.M.Bishop, "Pattern Recognition and Machine Learning", Springer, 2006.
- 2. P.A Devijver and J. Kittler, "Pattern Recognition: A Statistical Approach", Prentice-Hall International, EnglewoodCliffs, NJ, 1980
- 3. K. Fukunaga, "Introduction to Statistical Pattern Recognition", 2nd Edition, Academic Press, New York, 1990.

				Μ	lapping	g of CC	Os with	POs /	PSOs					
COs						PC	Ds						PS	Os
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	2													
2		2											I	
3			3										I	
4			3		3									
5									2					
CO (W.A)	2	2	3		3				2				I	

CN.Ma.

			22ECX41 - CONTROL S	STEMS					
						L	Т	Ρ	С
						3	0	0	3
PRERI	EQUISITE : N	IIL							
		•	To understand the concepts of math diagram reduction techniques, and si			Insfer	functic	ons, blc	ock
Cour	se Objective:	•	To provide adequate knowledge of s	systems in th	e time d	lomair	า.		
Court	se Objective.	•	To accord basic knowledge in obtair responses of systems.	ing the oper	n loop ai	nd clo	sed loc	op freq	uency
		•	To learn the concepts of stability and	alysis in the t	time dor	nain.			
The Stu	dent will be able		se Outcomes	Cognit Leve		in	eightag End S Exami	emes	ter
COI			dge of the elements of control npact on system performance.	Ap	•		3	0%	
CO2			chniques and, root locus method to system stability	Ap	•		2	0%	
CO3	,		e equations, and interpret plot rollability and observability.	An	I		2	0%	
CO4	•		using various methods such as PID, on, and state feedback.	E			2	0%	
CO5	understanding	g of	tation on a comprehensive control systems, incorporating cal advancements and practical	U		Int	ernal A	Assessr	nent

UNIT I - CONTROL SYSTEM MODELLING

Basic elements in control systems – Open and closed loop systems -Mathematical modelling of physical systems: Transfer function model of Mechanical and Electrical systems- Block diagram reduction techniques – Signal flow graphs.

UNIT II - TIME RESPONSE ANALYSIS

Standard test signals - Type and order of systems -Time domain study of first and second order feedback control systems – Time domain specifications - Steady state errors - Error constants- Introduction to P, PI and PID Controllers.

UNIT III - FREQUENCY RESPONSE ANALYSIS

Frequency response - Frequency domain specifications - Bode plot- Polar plot - Gain Margin - Phase Margin - Introduction to Compensators - Lead, Lag, and Lag- Lead Compensators.

UNIT IV - STABILITY ANALYSIS

Concepts of stability - Location of roots on S-plane for stability - Necessary conditions for stability- Routh Hurwitz criterion-Root locus concept-Guidelines for sketching root locus-Nyquist stability criterion.

(9)

(9)

(9)

UNIT V- CONTROL SYSTEM ANALYSIS USING STATE VARIABLE METHODS

State variable representation-Conversion of state variable models to transfer functions-Conversion of transfer functions to canonical state variable models-Solution of state equations-state transition matrix - Kalman test for Controllability and Observability.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- I.J. Nagrath& M. Gopal, "Control Systems Engineering", 6th Edition, New Age International Publishers, 2018.
- 2. M.Gopal, "Control Systems, Principles & Design", 4th Edition, Tata McGraw Hill, 2012.

REFERENCES:

- 1. I. Norman S.Nise, "Control Systems Engineering", 8th Edition, Wiley, 2019.
- 2. K.Ogata, "Modern Control Engineering", 5th Edition, Pearson Education India, 2015
- 3. Benjamin.C. Kuo, FaridGolnaraghi, "Automatic Control Systems", 10th Edition, McGraw-Hill Education, 2017.
- 4. S.K.Bhattacharya, "Control System Engineering", Pearson, 3rd Edition, 2013.

Mapping of COs with POs / PSOs														
COs	POs													
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													2
2	3													2
3		3											2	2
4			3										2	2
5							2	I	2					I
CO (W.A)	3	3	3				2	I	2				2	2

CN.Ma.

	22ECX42 - VIRTUAL INSTRU	IMENTATION											
			L	Т	Ρ	C							
			3	0	0	3							
PRERI	EQUISITE : NIL												
	To make students to gain knowle software for instrumentation.	• To make students to gain knowledge on various traditional instrumentation an software for instrumentation.											
	To make the students to understan	• To make the students to understand basic data acquisition systems.											
Cours	se Objective: • To enable the student to acquire k	• To enable the student to acquire knowledge on IMAQ Vision.											
	 To make the students to gain know 	• To make the students to gain knowledge on real time control systems.											
	 To motivate the students to acc systems. 	uire knowledge on	Hardw	/are &	Oper	rating							
The Stu	Course Outcomes Ident will be able to	Cognitive Level	in	End S	ge of (emes inatio	ter							
COI	Apply virtual instrumentation concepts using modula programming	r Ap	20%										
CO2	Apply A/D, D/A Converters with timers and counter for data acquisition system	s Ap	20%										
CO3	Apply PC hardware and operating system for virtual instrumentation	l Ap	20%										
	Analyze the given images using different imag	e An	20%										
CO4	processing tools	7.11											

UNITI- INTRODUCTION

Virtual Instrumentation- Comparison with Traditional Instrumentation - Definition and Flexibility -Architecture - software for Virtual Instrumentation - Modular Programming, Loop and Charts, Arrays, Clusters and Graphs, Case and Sequence Structures, Formula nodes, String and File Input / Output.

UNIT II - DATA ACQUISITION

A/D and D/A converters, Plug-in Analog Input / Output cards – Digital Input and Output Cards, Organization – Performing analog input and analog output – Scanning multiple analog channels – Issues involved in selection of Data acquisition cards – Data acquisition modules with serial communication – Design of digital voltmeter with transducer input –Timers and Counters

UNIT III - IMAQ VISION

Vision basics- Image processing and analysis, particle analysis – Machine vision, Hardware modules, Building machine vision system - Image processing tools, Acquisition and implementation using NI- Driver software- Applications.

UNIT IV - REAL TIME CONTROL

Designs using VI Software – ON/OFF controller – Proportional controller – Modeling and basic control of level and reactor processes – Case studies on development of HMI, SCADA in VI.

(9)

(9)

(9)

UNIT V- HARWARE & OPERATING SYSTEM OVERVIEW

ELVIS – Transducers – power, speed and timing considerations.

TEXT BOOKS:

- 1. Jovitha Jerome, "Virtual Instrumentation using LABVIEW", PHI Learning, New Delhi, 2010.
- 2. Gary W. Johnson and Richard Jennings, "LabVIEW Graphical Programming", 4th edition, McGraw-Hill Professional Publishing, 2011.

PC architecture, operating system requirements, PC based instrumentation, analog and digital interfaces-PXI and SCXI main frame - modular instruments-Real time I/O and compact RIO-Introduction to NI-

REFERENCES:

- I. Barry Paton, "Sensor, transducers and Lab view", Prentice Hall of India 2000.
- 2. Buchanan, W. "Computer buses", CRC Press 2000.
- 3. Lisa K Wells, "Lab view for Everyone", Prentice Hall of India, 1996.

				M	lapping	g of CC	Os with	POs /	PSOs					
	POs										PSOs			
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3													
3	3													2
4		3												
5		3	I									-	2	
CO (W.A)	3	3	I	-	-	-	-	-	-	-	-	-	2	2

CN.Ma.

(9)

TOTAL(L:45) = 45 PERIODS

	22ECX43 - WEARABLE D	EVICES				
			L	Т	Р	С
			3	0	0	3
PRER	EQUISITE : NIL					
Cour	 To make students to gain knowledge To make students to signal processing To enable the student to wireless heat To make the students to Smart Textil To motivate the students to application 	g and energy harve Ith systems. e.	esting f			levices.
The Stu	Course Outcomes dent will be able to	Cognitive Level	in	End S	ge of (emestination	ter
соі	Develop skills in signal acquisition, processing, and analysis specific to wearable devices	Ap		2	0%	
CO2	Apply the concept of reactive sensors employed for real life applications	Ap		2	0%	
CO3	Design and implement wearable devices for health monitoring	Ap		2	0%	
CO4	Analyze taxonomy of the wearable devices and its design constraints for measuring physical and biological signals.	An		2	0%	
CO5	Analyze special purpose sensors and the need for developing smart sensors	An		2	0%	

UNIT I - INTRODUCTION TO WEARABLE SYSTEMS AND SENSORS

(9)

Wearable Systems- Introduction, Need for Wearable Systems, Drawbacks of Conventional Systems for Wearable Monitoring, Applications of Wearable Systems, Types of Wearable Systems, Components of wearable Systems. Sensors for wearable systems-Inertia movement sensors, Respiration activity sensor, Impedance plethysmography, Wearable ground reaction force sensor.

UNIT II - SIGNAL PROCESSING AND ENERGY HARVESTING FOR WEARABLE DEVICES

Wearability issues -physical shape and placement of sensor, Technical challenges - sensor design, signal acquisition, sampling frequency for reduced energy consumption, Rejection of irrelevant information. Power Requirements- Solar cell, Vibration based, Thermal based, Human body as a heat source for power generation, Hybrid thermoelectric photovoltaic energy harvests, Thermopiles.

UNIT III - WIRELESS HEALTH SYSTEMS

Need for wireless monitoring, Definition of Body area network, BAN and Healthcare, Technical Challenges- System security and reliability, BAN Architecture – Introduction, Wireless communication Techniques.

UNIT IV - SMART TEXTILE

Introduction to smart textile- Passive smart textile, active smart textile. Fabrication Techniques-Conductive Fibres, Treated Conductive Fibres, Conductive Fabrics, And Conductive Inks. Case studysmart fabric for monitoring biological parameters - ECG, respiration.

(9)

(9)

Medical Diagnostics, Medical Monitoring-Patients with chronic disease, Hospital patients, Elderly patients, neural recording, Gait analysis, Sports Medicine.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- I. Annalisa Bonfiglo and Danilo De Rossi, Wearable Monitoring Systems, Springer, 2011
- 2. Zhang and Yuan-Ting, Wearable Medical Sensors and Systems, Springer, 2013
- 3. Edward Sazonov and Micheal R Neuman, Wearable Sensors: Fundamentals, Implementation and Applications, Elsevier, 2014
- 4. Mehmet R. Yuce and JamilY.Khan, Wireless Body Area Networks Technology, Implementation applications, Pan Stanford Publishing Pte.Ltd, Singapore, 2012

REFERENCES:

- 1. Sandeep K.S, Gupta, Tridib Mukherjee and Krishna Kumar Venkatasubramanian, Body Area Networks Safety, Security, and Sustainability, Cambridge University Press, 2013.
- 2. Guang-Zhong Yang, Body Sensor Networks, Springer, 2006
- 3. NPTEL Course "https://onlinecourses.nptel.ac.in/noc23_ee95/preview"

						PC	Os						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	П	12	I	2
Ι	3													
2	3													
3	3		I											2
4		3												
5		3											3	
CO (W.A)	3	3	1										3	2

CN.Ma.

		22ECX44 - REAL TIME EMBEDD	ED SYSTEMS				
				L T 3 0 RM processor. rm design and ana perating system. orks for embedde olutions Weightage in End Ser Examina 209 209 309	Ρ	С	
				3	0	0	3
PRERE	EQUISITE: 2	2ECC13					
Cours	se Objective:	 To Learn the architecture and pro To familiar with the embedded co To exposed to the basic concepts To Learn the system design techn systems. To make the students to develop 	omputing platform s of real time Ope niques and networ	desigr rating ks for	n and a system	n.	
The Stu	C dent will be able	to	Cognitive Level	in	End S	emest	ter
COI	Apply knowle system archite	dge of functional blocks in embedded cture.	Ар		20	0%	
CO2		iction set and Assembly Language in ARM Processors.	Ap		20	0%	
CO3		cepts of embedded systems and explain al time Operating system design.	Ар		30	0%	
CO4	Analyze archit	ecture of different ARM processor cores.	An		2	0%	
CO5	Develop and o	lebug applications on an RTOS platform	Е		10	0%	

UNIT I - ARCHITECTURE OF EMBEDDED SYSTEMS

Categories of Embedded Systems- Characteristics of Embedded system -Recent trends in Embedded Systems Hardware Architecture - Software Architecture - Communication software - Process of generation of executable image development / testing tools

UNIT II - THE ARM RISC ARCHITECTURE

The Reduced Instruction Set Computer –Embedded System Design Process - The ARM programmers model - ARM Development Tools.-ARM organization and implementation: 3 stage and 5 stage pipeline ARM organization-ARM instruction execution- ARM processor cores: ARM7 TDMI- Comparison of ARM8 TDMI-ARM9 TDMI.

UNIT III - ARM INSTRUCTION AND ASSEMBLY LANGUAGE PROGRAMMING

(9)

(9)

(9)

Exceptions-Conditional execution-Branch and branch with link and exchange - Software interrupt-Data processing Instructions - Single word and unsigned byte data transfer and half word and signed byte data transfer instructions Multiple Register transfer instructions - Swap instructions - The thumb instruction set - Thumb applications.

UNIT IV - RTOS CONCEPTS

(9)

Architecture of the Kernel-task and task scheduler-Interrupt Service Routines-Semaphores-Mutex-Mailboxes- Message Queues - Event Registers – Pipes -Signals-Timers- Memory Management – Priority Inversion Problem.

CNO.MO.

UNIT V- RTOS IMPLEMENTATION

Off the shelf operating system - embedded operating system - Real time operating system: VX works-Micro C/OS-II hand held operating system : Palm OS- Symbian OS - Case study of coding for an Automatic Chocolate Vending Machine using MUCOS -RTOS- Case study of an Embedded system for an Adaptive Cruise Control Systems in a Car- Case study of an Embedded Systems for a Smart Card.

TOTAL (L:45) = 45 PERIODS

(9)

TEXT BOOKS:

- 1. Dr.K.V.K.K Prasad "Embedded Real-Time systems: concept, design & programming", Dream tech Reprint, 2010.
- 2. Steve furber "ARM system on Chip Architecture", Pearson 16th Edition 2013.

- 1. Rajkamal, "Embedded Systems Architecture Programming and Design", 2nd edition TMH, 2010.
- 2. Wayne Wolf, "Computers as Components Principles of Embedded Computer System Design", Morgon Kaufmann Publisher, 2nd Edition 2006.

				Μ	apping	g of CC) s with	POs /	PSO s					
	POs												PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3													
3	3													3
4		3												
5									2			3	3	
CO (W.A)	3	3							2			3	3	3

	22ECX45 - INTERNET OF THINGS & ITS APPLICAT	IONS	1		
		L	L T 3 0 lethodology manageme olications Weightag in End S Exami 2 3 3	Р	С
		LTP300entals of IoT, M2M and IoT Design Methodology rent IoT components and network management proto ng Arduino/ Raspberry Pi bus IoT case studies and industrial applicationsCognitive LevelWeightage of CC in End Semeste Examinationorks based on g various IoT to facilitate IoTAp20%requirements, ork management, F sensors andAn30%or Raspberry Pi mming.E20%	3		
PRERE	EQUISITE : NIL				
Cours	 To study the fundamentals of IoT, M2M and IoT Design To learn about different IoT components and network interfacing of IoT using Arduino/ Raspberry Pi To study about various IoT case studies and industrial 	ork mar	nageme		otocols,
The Stu		in	End S	emes	ter
соі	fundamental principles incorporating various IoT		2	.0%	
CO2	Analyze the necessity of software-defined networking (SDN) and network function virtualization (NFV) in the An design methodology of IoT.		3	0%	
CO3	communication modules for IoT network management,		3	0%	
CO4	Design an IoT system using Arduino or Raspberry Pi platforms, employing Python for programming.		2	.0%	
CO5	Collaborate in team-based learning environments, effectively communicate concepts, and adopt continuous learning to develop foundational IoT applications.	Int	ernal /	Assessr	nent

UNIT I - FUNDAMENTALS OF IoT

Introduction-Definition and Characteristics of IoT- Physical design- IoT Protocols-Logical design - IoT communication models, IoT Communication APIs- Enabling technologies - Wireless Sensor Networks, Cloud Computing, Big data analytics, Communication protocols, Embedded Systems, IoT Levels and Templates

UNIT II - M2M AND IoT DESIGN METHODOLOGY

IoT and M2M- difference between IoT and M2M - Software defined networks, network function virtualization– Needs IoT design methodology – SDN-NFV for IOT- software defined networking – Network function virtualization.

UNIT III - IoT COMPONENTS AND NETWORKS

IoT System Management- Simple Network Management Protocol – Network operator requirement – NETCONF Sensors and actuators - Communication modules – Zigbee- Architecture – Zigbee and 802.15.4 – protocol layers – Introduction to RFIDs- Wi-Fi- Power sources.

(9)

(9)

UNIT IV - BUILDING IoT WITH HARDWARE PLATFORMS	(9)
Logical Design using Phython – Data types & structures – control flow – functions- modules - P Arduino/Raspberry Pi- Physical devices - Interfaces - Programming – Serial- SPI – I2C	latform -
UNIT V- CASE STUDIES	(9)
Various Real time applications of IoT- Home automation-Automatic lighting <mark>-Home intrusion d</mark> Cities-Smart parking-Environment-Weather monitoring system- Agriculture- Smart irrigation	etection-
TOTAL(L:45) = 45 PI	RIODS

TEXT BOOKS:

- David Hanes, Gonzalo Salgueiro, Patrick Grossetete, Rob Barton and Jerome Henry, "IoT Fundamentals: Networking Technologies, Protocols and Use Cases for Internet of Things", Cisco Press, 2017
- 2. Arshdeep Bahga, Vijay Madisetti, "Internet of Things A hands-on approach", Universities Press, 2015
- 3. Rajkamal, "Internet of Things: Architecture, Design Principles And Applications", McGraw Hill Higher Education

- 1. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things Key applications and Protocols", Wiley Publications 2012.
- 2. Olivier Hersent, David Boswarthick, Omar Elloumi, "The Internet of Things: Key applications and Protocols", Wiley Publications 2nd edition, 2013.
- 3. Manoel Carlos Ramon, "Intel Galileo and Intel Galileo Gen 2: API Features and Arduino Projects for LinuxProgrammers", Apress, 2014.
- 4. Marco Schwartz, "Internet of Things with the Arduino Yun", Packt Publishing, 2014.
- 5. Adrian McEwen, Hakim Cassimally, "Designing the Internet of Things", Wiley Publications, 2012.

				Μ	lapping	g of CC	Ds witł	n POs /	PSOs					
COs						PC	Ds						PSOs	
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3												2	
2		3											2	
3		3											2	2
4			3											
5									I	I		I	2	
CO (W.A)	3	3	3						I	I		I	2	2

		22ECX46 - IOT WITH SINGLE BO	ARD COMPUTE	RS			
				L	Т	Ρ	С
				3	0	0	3
PRERI	EQUISITE : N	L					
		• To describe the concepts of IoT alo	ng with its application	ns and	variou	is sens	ors
Cours	se Objective:	• To Identify different technologies us a prototype using Arduino Uno and		unicati	on Pro	tocols	, Build
		• To Design an IoT application to inte	eract with Django.				
The Stu	ident will be able	Course Outcomes to	Cognitive Level	in	End S	ge of (emes inatio	ter
соі		lamentals by deploying various ers in conjunction with sensors and	Ар		2	0%	
CO2		ent IoT protocols and technologies plementing diverse applications.	An		3	0%	
CO3	Analyze the va with interfacir	rious Arduino prototypes that integrate g devices.	An		3	0%	
CO4	•	ysical devices and endpoints using Linux Pi, incorporating interfacing devices.	E		2	0%	
CO5	and commit to	eam learning, effectively communicate, lifelong learning to develop basic blications with Raspberry Pi and Arduing	U p.	Int	ernal A	Assessr	nent

UNIT I - INTRODUCTION TO IOT

Microprocessor, Microcontroller, Embedded System, Definition of IoT, Characteristics of IoT, Physical design of IoT, Logical design of IoT, IoT Enabling Technologies, IoT levels & Deployment Templates, IoT Applications. Sensors and Actuators- Introduction, Sensor, Types of Sensors, Actuators, classification of Actuators

UNIT II – IOT TECHNOLOGIES

Bluetooth, Bluetooth Low Energy (BLE), WiFi, LiFi, Cellular Networks, Z-Wave, ZigBee, LoRaWAN, 6LowPAN, LPWAN, RFID and NFC, WSN. COMMUNICATION PROTOCOLS: CoAP, MQTT, XMPP, HTTP

UNIT III - IOT WITH ARDUINO

Introduction to the Arduino-Types of Arduino, Creating an Arduino program Using the Arduino IDE, Using Libraries, Working with Digital Interfaces, Interfacing with Analog devices, Adding Interrupts, Communicating with devices- sensors, DC Motor, Servo motor, LCD

UNIT IV - IOT WITH RASPBERRY PI

IoT physical devices & endpoints: Architecture of Raspberry Pi, Linux on Raspberry Pi, Raspberry Pi Interfaces, Programming Raspberry Pi with Python, Controlling LED with Raspberry Pi, Interfacing an LED and Switch with Raspberry Pi, Interfacing a Light Sensor (LDR) with Raspberry Pi

(9)

(9)

(9)

UNIT V- IOT PHYSICAL SERVERS & CLOUD OFFERINGS

(9)

Python Packages for IoT, WAMP - AutoBahn for IoT, Python Web Application Framework – Django, Amazon Web Services for IoT, SkyNet IoT messaging platform

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Vijay Madisetti and Arshdeep Bahga, "Internet of Things (A Hands-on-Approach)", 1st Edition, VPT, 2016.
- 2. Richard Blum, "Arduino Programming in 24 Hours, Sams Teach Yourself", Pearson Education, 2017.
- 3. Jain, Prof. Satish, Singh, Shashi," Internet of Things and its Applications", 1st Edition, BPB, 2020.

- 1. 11.Donald Norris, "Internet of things do-it-yourself projects with Arduino, Raspberry Pi, and Beagle Bone Black", 1st Edition, McGraw-Hill,2015.
- 2. Adeal Javed Lake Zurich, Illinois, "Building Arduino Projects for the Internet: Experiments with Real-World Applications", 1st Edition, USA, A press, 2016.
- 3. Yashavant Kanetkar, Shrirang Korde, "21 IOT Experiments", 1st Edition, BPB Publications, 2018.
- 4. 4. Dr. Rajesh Singh, Dr. Anita Gehlot, Dr. Lovi Raj Gupta, Navjot Rathour, Mahendra Swain, Bhupendra Singh, "IoT based Projects Realization with Raspberry Pi, NodeMCU and Arduino", 1 st Edition, BPB Publications, 2020.

				M	lapping	g of CC	Ds with	POs /	PSOs					
COs						PC	Ds						PSOs	
CO 3	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	
2		3											2	
3		3											2	2
4			3											
5									I	I		I	2	
CO (W.A)	3	3	3						I	I		I	2	2

CNO.MO.

		22ECX47 - INDUSTRIAL IOT AND I	NDUSTRY 4.0)			
				L	Т	Ρ	С
				3	0	0	3
PRERE	EQUISITE : N	IL					
Cours	se Objective:	 To impart basic idea in Industry 4.0. and To study about Big Data Analytics and S development of smart grid To provide students with good depth of Sustaine for various application 	oftware Defined	Netw	vorks,	C	
The Stu	dent will be able	Systems for various application Course Outcomes to	Cognitive Level	in	End S	ge of (emest ination	ter
соі		ndational principles of Industrial Internet of and Industry 4.0 across diverse applications.	Ap		2	0%	
CO2	sensors to str	Physical Systems (CPS) and advanced engthen the security of Augmented Reality Ial Reality (VR) environments.	Ap		3	0%	
CO3	and fog com	tilization of machine learning, data science, puting in IoT networks, focusing on R and data management with Hadoop	An		3	0%	
CO4	•	evelop industrial IoT applications for smart ng their associated challenges.	E		2	0%	
CO5	ideas, and fundamental le	m-based learning, proficiently communicate embrace lifelong learning to cultivate of applications tailored for diverse sectors ood industry, healthcare, power plants and	U	Int	ernal /	Assessn	nent

UNIT I - INTRODUCTION TO INDUSTRY 4.0

Introduction to Industry 4.0 -Historical Context, General framework- Sensing & actuation- Globalization and Emerging Issues, The Fourth Revolution- LEAN Production Systems,-Smart and Connected Business Perspective- Application areas, Dissemination of Industry 4.0, Artificial intelligence, Additive manufacturing, Robotization and automation, Current situation of Industry 4.0, Industry 5.0 Advances

UNIT II - INDUSTRY 4.0 AND CYBER PHYSICAL SYSTEM

Introduction to Cyber Physical Systems (CPS) and Next Generation Sensors, Architecture of CPS-Components, Data science and technology for CPS, Emerging applications in CPS in different fields. Collaborative Platform and Product Lifecycle Management- Augmented Reality and Virtual Reality

UNIT III - BIG DATA ANALYTICS AND SOFTWARE DEFINED NETWORKS

(9)

(9)

(9)

Introduction to Big Data Analytics and Software Defined Networks, Artificial Intelligence, Big Data and Advanced Analysis ,Introduction- Machine Learning and Data Science, R Programming, Data Management with Hadoop. Data Center Networks, Security and Fog Computing: Cloud Computing in IIoT

UNIT IV - SMART GRID(9)Smart grid definition - Smart Grid development, Smart grid solutions, Design challenges of smart grid and
Industry 4.0Industry 4.0UNIT V- Industrial IoT- Smart applications(9)Understanding smart appliances, Smart operation, Smart monitoring and maintenance, Factories and
Assembly Line, Food Industry. Healthcare, Power Plants, Inventory Management & Quality Control, Plant
Safety and Security (Including AR and VR safety applications), Case study- Google's Self-Driving Car, Milk

Processing and Packaging Industries

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Jean-Claude André, "Industry 4.0", Wiley- ISTE, July 2019, ISBN: 781786304827, 2019.
- 2. Diego Galar Pascual, Pasquale Daponte, Uday Kumar, "Handbook of Industry 4.0 and SMART Systems", Taylor and Francis, 2020.
- 3. S. Misra, C. Roy, and A. Mukherjee, "Introduction to Industrial Internet of Things and Industry 4.0", CRC Press.

- I. S. Misra, A. Mukherjee, and A. Roy, 2020. Introduction to IoT. Cambridge University Press.
- 2. Pengwei Du and Ning Lu, —Energy storage for smart grids: planning and operation for renewable and variable energy resources VERs II, Academic Press, 2018, Reprint edition.
- 3. Hossam A. Gabbar, —Smart Energy Grid Engineeringll, Academic Press, 2017.

				M	lapping	g of CC	Ds with	POs /	PSOs					
COs						PC	Os						PSOs	
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	
2	3												2	
3		3											2	2
4			3											
5									I	I		I	2	2
CO (W.A)	3	3	3						I	I		I	2	2

CN.Ma.

		22ECX48 – AUTOMATION FO	R ROBOTICS				
				L	Т	Р	С
				3	0	0	3
PRER	EQUISITE : N	IIL					
		• To make the students to understand	l the concept of r	obotic	5.		
		• To facilitate the students to study at	out technologies	applica	ıble for	robo	tics.
Cour	se Objective:	• To know about different sensing dev	rices of robot.				
		• To study the algorithms applicable for	or robotics.				
		• To encourage the students to develo	op 4-axis and 6-ax	is robo	ot.		
The Stu	C Ident will be able	Course Outcomes to	Cognitive Level	in	eighta End S Exam	emes	ter
COI		cepts of motion and potential functions ontrol robot movements.	Ар		2	.0%	
CO2		robot navigation techniques to real- s and applications.	Ар		3	0%	
CO3		on systems for pattern detection and d integrate these systems into robotic	Ар		3	0%	
CO4		enhance images by implementing edge ithms and digital filtering techniques.	An		2	.0%	
CO5	Develop 4-ax Applications.	is and 6-axis robot for Various	С	Int	ternal A	Assessi	nent

UNIT I - INTRODUCTION TO ROBOTICS

Motion - Potential function -Representing Position and Orientation - Cell decomposition sensor and sensor planning - Kinematics - types- Transformation matrix - Inverse kinematics - Geometric methods and algebraic methods - Varying Pose –Applications.

UNIT II - COMPUTER VISION

Optics, projection on the Image plane and radiometry - Image processing - Connectivity - Images - - Blob filling – Thresholding - Convolution - Digital convolution and filtering and Masking techniques - Edge detection - Mono and stereo vision - Face detection.

UNIT III - MOBILE ROBOT VEHICLES

Introduction to various Mobile Robot Vehicles- Flying Robots - Navigation – Map-Based Planning - Dead Reckoning - Creating a Map - Rao-Blackwellized SLAM - Pose Graph SLAM - Carlo Localization – Applications.

UNIT IV -TYPES OF ROBOTICS

Arm -Type Robots - Forward Kinematics -Inverse Kinematics - Jacobian Condition and Manipulability -Resolved-Rate Motion Control - Computing the Manipulator Jacobian Using Twists - Independent Joint Control - RigidBody Dynamics Compensation.

UNIT V- INTEGRATION TO ROBOT

Building of 4 axis or 6 axis robot - Vision system for pattern detection - Sensors for obstacle detection - Decision making.

TOTAL (L:45) = 45 PERIODS

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. Stuart Russell and Peter Norvig, "Artificial Intelligence-A Modern Approach", Pearson Education Series in Artificial Intelligence, London, 3rd Edition, 2016.
- 2. Robert Schilling and Craig, "Fundamentals of Robotics, Analysis and control", PHI, New Delhi, 3rd Edition, 2015.
- 3. Kevin M. Lynch and Frank C. Park, "Modern Robotics: Mechanics, Planning, and Control", Cambridge University Press, 2017.

- I. S K Saha, Introduction To Robotics, 2nd Ed., McGraw-Hill, 2014
- 2. Forsyth. and Ponce., "Computer Vision, A modern Approach", Pearson Education, London, 2nd Edition, 2011.
- 3. Mallot., "Computational Vision Information Processing in Perception and Visual Behavior", MIT Press, Cambridge, 2nd Edition, 2000.
- 4. Duda. Hart. and Stork., "Pattern Recognition", Wiley-Inter science, UK, 2nd Edition, 2000.

	Mapping of COs with POs / PSOs													
COs	POs													
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3													
2	3													
3	3													
4		3											3	
5				3	2				I			I	I	
CO (W.A)	3	3		3	2				I			I	2	

CNO.Ma

		22GEA02 - PRINCIPLES OF MANA	GEMENT										
				L	Т	Ρ	С						
				3	0	0	3						
PRERE	EQUISITE : N	IL											
		 To provide with a foundational understan practices. 	ding of manage	ment	concep	ots and							
Course Objective:		• To equip students with the knowledge and skills necessary to manage and lead organizations effectively, understanding both theoretical frameworks and practical applications in management.											
Cours	se Objective:	 To learn about various planning tools and decision-making processes crucial for organizational success. 											
		• To gain insights into human resource management functions.											
		• To study effective communication strategies and the impact of information technology on communication and how effective control can lead to improved productivity and organizational performance.											
The Stu	dent will be able	Course Outcomes e to	Cognitive Level	in	End S	ge of (emestination	ter						
COI	world busines	anagement theories and practices to real- ss scenarios, demonstrating the ability to nagement functions.	Ар		2	0%							
CO2	how recruitm	n resource management practices, evaluating nent, training, performance appraisal, and tions contribute to organizational success.	An	30%									
CO3	organizational communicatio technology	ategic decisions and their impacts on performance, the effectiveness of n strategies and the use of information in facilitating efficient and effective n within organizations.	E	E 30%									
CO4		rehensive strategic plans and organizational esign control systems to ensure continuous in productivity and organizational	С	20%									
CO5	develop highe effective ma	ependent study as a member of a team and er-order thinking skills that are crucial for nagement and leadership in complex settings with assignments or case studies.	II Internal Assessme										

UNIT I -INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS

(9)

(9)

Definition of Management - Science or Art - Manager Vs Entrepreneur - types of managers -managerial roles and skills - Evolution of Management - Scientific, human relations, system and contingency approaches - Types of Business organization-Organization culture and Environment - Current trends and issues in Management.

UNIT II -PLANNING

Nature and purpose of planning - planning process - types of planning - objectives - setting objectives - policies - Planning premises - Strategic Management - Planning Tools and Techniques - Decision making steps and process.

UNIT III -ORGANISING

Nature and purpose - Formal and informal organization - organization chart - organization structure - types -Line and staff authority - departmentalization -delegation of authority - centralization and decentralization -Job Design - Human Resource Management - HR Planning, Recruitment, selection, Training and Development, Performance Management, Career planning and management

UNIT IV - DIRECTING

Foundations of individual and group behaviour - motivation -motivation theories - motivational techniques job satisfaction - job enrichment - leadership - types and theories of leadership -communication - process of communication - barrier in communication - effective communication -communication and IT.

UNIT V - CONTROLLING

System and process of controlling - budgetary and non-budgetary control techniques - use of computers and IT in Management control - Productivity problems and management - control and performance -direct and preventive control -reporting.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Harold Koontz, Heinz Weihrichand Mark V. Cannice, "Essentials of Management: An International, Innovation, and Leadership Perspective", 11th Edition, Tata McGraw-Hill Education, 2021.
- 2. J.A.F. Stoner, R.E. Freeman, and Daniel R. Gilbert "Management", 6th Edition, Pearson Education, 2018

REFERENCES:

- I. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.
- 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
- 3. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management", 7th Edition, Pearson Education, 2011.
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999.

	Mapping of COs with POs / PSOs													
COs			PSOs											
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3										3			
2		3									3			
3										3				
4			3							3				
5											3	3		
CO (W.A)	3	3	3							3	3	3		

C NO. MQ.

(9)

(9)

			22GEA03 - TOTAL QUALITY M	ANAGEMENT									
					L	Т	Ρ	С					
					3	0	0	3					
PRERE	EQUISITE : N	IL											
		•	To recognize the importance of qualit	y councils and stra	tegic p	lanning	in TQ	M.					
			To explore the elements and historica	al development of T	ΓQM.								
		•	To foster employee involvement thro and recognition.	oster employee involvement through motivation, empowerment, teamwork, recognition.									
Cours	se Objective:	•	To implement continuous process imp PDSA Cycle, 5S, and Kaizen.	nplement continuous process improvement methods like Juran's Trilogy, A Cycle, 5S, and Kaizen.									
		•	To Conduct quality audits and understand the introduction to other ISO standards like ISO 14000, IATF 16949, TL 9000, IEC 17025, ISO 18000, ISO 20000, ISO 22000, and ISO 21001.										
The Stu	Course Outcomes The Student will be able to				Cognitive Level Weightage of Co in End Semeste Examination								
соі	Describe the Management (nents and principles of Total Quality M).	Ap 30%									
CO2			process improvement methodologies logy, PDSA Cycle, 5S, and Kaizen.	Ap 20%									
CO3			ality tools and techniques in both I service industry.	Ap 20%									
CO4		•	upplier partnerships and understand ion, rating, and relationship										
CO5			te quality standards and implement ctive industry Applications.	E	10%								

UNIT I - QUALITY CONCEPTS AND PRINCIPLES

Definition of Quality - Dimensions of Quality - Quality Planning - Quality Assurance and Control - Quality Costs with Case Studies - Elements / Principles of TQM - Historical Review – Leadership – Qualities / Habits - Quality Council - Quality Statements, Strategic Planning – Importance - Case Studies - Deming Philosophy - Barriers to TQM Implementation – Cases with TQM Success and Failures.

UNIT II -TQM-PRINCIPLES AND STRATEGIES

Customer Satisfaction - Customer Perception of Quality - Customer Complaints - Customer Retention, Employee Involvement – Motivation - Empowerment - Teams - Recognition and Reward - Performance Appraisal, Continuous Process Improvement - Juran's Trilogy - PDSA Cycle - 5S - Kaizen, Supplier Partnership - Partnering - Sourcing - Supplier Selection - Supplier Rating - Relationship Development, Performance Measures – Purpose – Methods - Cases.

JNIT III - CONTROL CHARTS FOR PROCESS CONTROL

(9)

(9)

(9)

Basic Seven Tools of Quality and its Role in Quality Control, Statistical Fundamentals - Measures of Central Tendency and Dispersion, Population and Sample - Normal Curve - Control Charts for Variables and Attributes - Process Capability - Case Study- Introduction to Six Sigma.

UNIT IV - TQM-MODERN TOOLS

New Seven Tools of Quality, Benchmarking - Need - Types and Process, Quality Function Deployment -House of Quality (HOQ) Construction - Case Studies, Introduction to Taguchi's Robust Design - Quality Loss Function - Design of Experiments (DOE), Total Productive Maintenance (TPM) - Uptime Enhancement, Failure Mode and Effect Analysis (FMEA) - Risk Priority Number (RPN) – Process - Case Studies.

UNIT V - QUALITY SYSTEMS

(9)

(9)

Need for ISO 9000 and Other Quality Systems - ISO 9000: 2015 Quality System - Elements - Implementation of Quality System - Documentation - Quality Auditing, Introduction to ISO 14000 - IATF 16949 - TL 9000-IEC 17025 - ISO 18000 - ISO20000 - ISO 22000 - ISO21001. Process of Implementing ISO - Barriers in ISO Implementation.

TOTAL(L:45) = 45 PERIODS

TEXT BOOK:

1. Besterfield Dale H., Besterfield Carol, Besterfield Glen H., Besterfield Mary, UrdhwaresheHemant, UrdhwaresheRashmi "Total Quality Management", 5th Edition, Pearson Education, Noida, 2018.

- I. Subburaj Ramasamy, "Total Quality Management", McGraw Hill Education, New Delhi, 2017.
- 2. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, Cengage Learning, 2012.
- 3. David Goetsch & Stanley Davis, "Quality Management for Organizational Excellence: Introduction to Total Quality", 8thEdition, Pearson, 2017.

	Mapping of COs with POs / PSOs													
COs	POs													
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3													
2	3													
3	3													
4		3												
5	3													
CO (W.A)	3	3												

CNO.MO.

		22GEA04 - PROFESSIONAL	ETHICS								
				L	Т	Ρ	С				
				3	0	0	3				
PRERI	EQUISITE : N	IL									
		• To develop students' ability to identify, analyse, and resolve ethical dilemmas in engineering contexts, fostering a commitment to professional responsibility, integrity, and ethical decision-making.									
		• To provide engineering students with a comprehensive understanding of ethical principles and practices in the engineering profession.									
Cours	se Objective:	• To familiarize students with key ethical theories, principles, and frameworks that guide ethical decision-making in professional practice.									
		• To foster the ability to communicate ethical concerns and collaborate effectively with diverse stakeholders, including colleagues, clients, and the public.									
		• To encourage students to uphold int professional activities, fostering a culture	• • •			ility in	their				
The Stu	dent will be able	Course Outcomes e to	Cognitive Level	Weightage of COs in End Semester Examination			ter				
COI	Apply ethical issues.	reasoning to evaluate and resolve these	Ap	0%							
CO2		principles and reasoning to analyze real- udies in engineering.	Ap 30%								
CO3	Analyze the practice.	importance of ethics in professional	An		2	0%					
CO4		ability to make informed and ethical ngineering practice.	An I0%								
CO5	Recognize the professional standards.	e importance of continuous learning and development in maintaining ethical									

UNIT I - INTRODUCTION TO PROFESSIONAL ETHICS

(9)

(9)

(9)

Definition and Importance of Ethics, Ethical Theories and Principles, Ethics vs. Morals vs. Values, Role of Ethics in Engineering.

UNIT II - PROFESSIONAL RESPONSIBILITY AND CODES OF CONDUCT

Professional Responsibility and Accountability, Codes of Conduct in Engineering (e.g., IEEE, NSPE), Conflicts of Interest and Whistle blowing, Case Studies.

UNIT III - ETHICAL DECISION-MAKING AND PROBLEM-SOLVING

Ethical Decision-Making Models, Tools and Frameworks for Ethical Analysis, Resolving Ethical Dilemmas, Case Studies

UNIT IV - LEGAL AND REGULATORY ASPECTS

Legal Frameworks Governing Engineering Practice, Intellectual Property Rights, Health, Safety, and Environmental Regulations, Case Studies.

UNIT V: SOCIAL AND ENVIRONMENTAL RESPONSIBILITY

(9)

Social Responsibility of Engineers, Sustainable Engineering Practices, Impact of Engineering on Society and Environment, Case Studies.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Charles E. Harris Jr., Michael S. Pritchard, and Michael J. Rabins, "Engineering Ethics: Concepts and Cases", 6th edition, 2018.
- 2. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering", 5thEdition 2010.
- 3. by M. Govindarajan, S. Natarajan, and V. S. SenthilKumar, "Professional Ethics and Human Values", 1st Edition 2006.

- 1. Stephen H. Unger, "Engineering Ethics: Real-World Case Studies"
- 2. Online Ethics Center for Engineering and Science www.onlineethics.org
- 3. National Society of Professional Engineers (NSPE) www.nspe.org

	Mapping of COs with POs / PSOs													
COs			PSOs											
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3													
3		3												
4		3												
5								3						
CO (W.A)	3	3						3						

CN.Ma.