

## (Autonomous)

Affiliated to Anna University Chennal & Approved by AICTE & Accredited by NBA - New Delhi Pitchandampalayam (P.O), Vaikkalmedu, Erode - Perundurai Road, Erode - 638 052 Phone : 04294 - 225585, 223711, 223722, 226393 Mobile : 73737 23722 Fax : 04294 - 224787 Website : www.nandhaengg.org E.mail : info@nandhaengg.org

1.1.2 Details of Courses where syllabus revision was carried out

### **B.E.-** Electrical and Electronics Engineering

#### **R-22** Curriculum

| <b>Course Code</b> | Course Name                                     | % of Change |
|--------------------|-------------------------------------------------|-------------|
| 22EEC14            | Power System Analysis                           | 5           |
| 22EEC15            | Control Systems                                 | 5           |
| 22EEC16            | Power Electronics                               | 20          |
| 22EEP07            | Control and Instrumentation Laboratory          | 10          |
| 22EEP08            | Power Electronics Laboratory                    | 10          |
| 22EEC17            | Power System Protection and switch gear         | 80          |
| 22EEC18            | Electric drives and Control                     | 50          |
| 22EEP09            | Power System Simulation Practices<br>Laboratory | 5           |
| 22GEA01            | Universal Human Values                          | 100         |
| 22GED02            | Internship/Industrial training                  | 80          |
| 22EED01            | Project Work                                    | -           |
| 22EEX01 .          | Power Switching Converters                      | 100         |
| 22EEX02            | Special Electrical Machines                     | 5           |
| 22EEX03            | Design Of Electrical Machines                   | 10          |



## (Autonomous)

Affiliated to Anna University Chennal & Approved by AICTE & Accredited by NBA - New Delhi Pitchandampalayam (P.O), Vaikkalmedu, Erode - Perundurai Road, Erode - 638 052 Phone : 04294 - 225585, 223711, 223722, 226393 Mobile : 73737 23722 Fax : 04294 - 224787

Website : www.nandhaengg.org

E.mail: info@nandhaengg.org

| 22EEX04   | Analysis Of Inverters                                         | 100 |
|-----------|---------------------------------------------------------------|-----|
| 22EEX05   | Wind And Solar Energy Systems                                 | 100 |
| 22EEX06 . | IOT For Smart Systems                                         | 100 |
| 22EEX07   | Modern Power Electronic Converters                            | 100 |
| 22EEX11   | High Voltage Engineering                                      | 15  |
| 22EEX12   | HVDC Transmission Systems                                     | 100 |
| 22EEX13   | Power Quality                                                 | 20  |
| 22EEX14   | Power System Operation and Control                            | 10  |
| 22EEX15   | Fundamentals of electric Power<br>utilization                 | 100 |
| 22EEX16   | Energy Auditing, Conservation and<br>Management               | 20  |
| 22EEX17   | Re structured power system                                    | 100 |
| 22EEX18   | Fundamentals of Fibre Optics and Laser<br>Instrumentation     | -   |
| 22EEX21   | Fundamentals of Electric Vehicles                             | 100 |
| 22EEX22   | Battery pack modeling and Charging of Electric Vehicle        | 100 |
| 22EEX23   | Hybrid Electric Vehicles                                      | 100 |
| 22EEX24   | Testing and Electric Vehicle Policy                           | 100 |
| 22EEX25   | EV Intelligent System                                         | 100 |
| 22EEX26   | Electrical Vehicles in Smart grid                             | 100 |
| 22EEX27   | Design of motor and power<br>converters for Electric Vehicles | 100 |
| 22EEX28   | Electric Vehicle Architecture                                 | 100 |
| 22EEX31   | Embedded System design                                        | 100 |
| 22EEX32 · | Signals and Systems                                           | 100 |
| 22EEX33   | Embedded control system                                       | 100 |



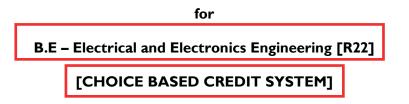
## (Autonomous)

Affiliated to Anna University Chennal & Approved by AICTE & Accredited by NBA - New Delhi Pitchandampalayam (P.O), Vaikkalmedu, Erode - Perundurai Road, Erode - 638 052 Phone : 04294 - 225585, 223711, 223722, 226393 Mobile : 73737 23722 Fax : 04294 - 224787

Website : www.nandhaengg.org

E.mail: info@nandhaengg.org

|           | Average                                        | 71.12 |
|-----------|------------------------------------------------|-------|
| 22EEX38   | MEMS and NEMS                                  | 100   |
| 22EEX37 . | Embedded System for Automotive<br>Applications | 100   |
| 22EEX36   | Embedded Networking                            | 100   |
| 22EEX35   | Embedded IoT                                   | 100   |
| 22EEX34   | Signal Processing                              | 100   |


Dr.G.RAMANI, M.E., Ph D ,

Professor & Head Department of EEE Nandha Engineering College (Autonomous) Erode - 638 052

(An Autonomous Institution affiliated to Anna University Chennai and approved by AICTE, New Delhi) Erode-638 052, Tamilnadu, India, Phone: 04294 – 225585



Curriculum and Syllabi



[This Curriculum and Syllabi are applicable to Students admitted from the Academic year 2024-2025 onwards]

#### JULY 2024

|         | INSTITUTE VISION AND MISSION                                                                                                                          |  |  |  |  |  |  |  |  |  |
|---------|-------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| VISION  | • To be an Institute of excellence providing quality Engineering, Technology and Management education to meet the ever changing needs of the society. |  |  |  |  |  |  |  |  |  |
|         | • To provide quality education to produce ethical and competent professionals with social Responsibility                                              |  |  |  |  |  |  |  |  |  |
| MISSION | • To excel in the thrust areas of Engineering, Technology and Entrepreneurship by solving real- world problems.                                       |  |  |  |  |  |  |  |  |  |
|         | • To create a learner centric environment and improve continually to meet the changing global needs.                                                  |  |  |  |  |  |  |  |  |  |

|                                    | <b>B.E – ELECTRICAL AND ELECTRONICS ENGINEERING</b>                                                                                                                   |
|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VISION                             | • To foster academic excellence imparting knowledge in Electrical, Electronics and allied disciplines to meet the changing needs of the society.                      |
|                                    | • To equip the students with leadership qualities for accepting the challenges in various engineering sectors                                                         |
| MISSION                            | • To excel in the thrust areas of Electrical and Electronics Engineering to solve real world problems                                                                 |
|                                    | • To empower the students to adapt the latest technologies by providing innovative learning environment                                                               |
|                                    | The graduates of Electrical and Electronics Engineering will be                                                                                                       |
| PROGRAMME                          | <b>PEOI: Core Competency:</b> A Successful professional with domain knowledge in Electrical and Electronics Engineering using emerging techniques.                    |
| EDUCATIONAL<br>OBJECTIVES<br>(PEO) | <b>PEO2: Research, Innovation and Entrepreneurship:</b> Able to demonstrate multi-<br>disciplinary skills through innovation and research to meet the societal needs  |
| ()                                 | <b>PEO3: Ethics, Human values and Life-long learning:</b> Able to demonstrate ethical practices and managerial skills through continual learning.                     |
|                                    | The students of Electrical and Electronics Engineering will be able to                                                                                                |
| PROGRAMME<br>SPECIFIC              | <ul> <li>Analyze, design and validate processes, products by applying knowledge and skills in<br/>Power system, Electrical Machines and Power Electronics.</li> </ul> |
| OUTCOMES<br>(PSO)                  | <ul> <li>Design and analyze the processes of smart grid and renewable energy systems using<br/>appropriate tools and techniques</li> </ul>                            |
|                                    |                                                                                                                                                                       |

#### **PROGRAM OUTCOMES:**

At the end of this programme the students will be able to

| a-l | GRADUATE ATTRIBUTES                    | PO<br>No. | PROGRAMME OUTCOMES                                                                                                                                                                                                                                                                                |
|-----|----------------------------------------|-----------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| а   | Engineering Knowledge                  | POI       | Apply the knowledge of mathematics, science, engineering<br>fundamentals, and an engineering specialization to the<br>solution of complex engineering problems.                                                                                                                                   |
| b   | Problem Analysis                       | PO2       | Identify, formulate, review research literature, and analyze<br>complex engineering problems reaching substantiated<br>conclusions using first principles of mathematics, natural<br>sciences, and engineering sciences.                                                                          |
| с   | Design and Development of<br>Solutions | PO3       | Design solutions for complex engineering problems and<br>design system components or processes that meet the<br>specified needs with appropriate consideration for the<br>public health and safety, and the cultural, societal, and<br>environmental considerations.                              |
| d   | Investigation of Complex<br>Problems   | PO4       | Use research-based knowledge and research methods<br>including design of experiments, analysis and<br>interpretation of data, and synthesis of the information to<br>provide valid conclusions                                                                                                    |
| e   | Modern Tool Usage                      | PO5       | Create, select, and apply appropriate techniques,<br>resources, and modern engineering and IT tools including<br>prediction and modeling to complex engineering activities<br>with an understanding of the limitations.                                                                           |
| f   | The Engineer and Society               | PO6       | Apply reasoning informed by the contextual knowledge<br>to assess societal, health, safety, legal and cultural issues<br>and the consequent responsibilities relevant to the<br>professional engineering practice.                                                                                |
| g   | Environment and Sustainability         | PO7       | Understand the impact of the professional engineering<br>solutions in societal and environmental contexts, and<br>demonstrate the knowledge of, and need for sustainable<br>development.                                                                                                          |
| h   | Ethics                                 | PO8       | Apply ethical principles and commit to professional ethics<br>and responsibilities and norms of the engineering practice                                                                                                                                                                          |
| i   | Individual and Team Work.              | PO9       | Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings                                                                                                                                                                              |
| j   | Communication                          | PO10      | Communicate effectively on complex engineering<br>activities with the engineering community and with<br>society at large, such as, being able to comprehend and<br>write effective reports and design documentation, make<br>effective presentations, and give and receive clear<br>instructions. |
| k   | Project Management and<br>Finance      | POII      | Demonstrate knowledge and understanding of the<br>engineering and management principles and apply these<br>to one's own work, as a member and leader in a team, to<br>manage projects and in multidisciplinary environments.                                                                      |
| I   | Lifelong Learning                      | PO12      | Recognize the need for, and have the preparation and<br>ability to engage in independent and life-long learning in<br>the broadest context of technological change.                                                                                                                               |

#### MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES WITH PROGRAMME OUTCOMES

A broad relation between the Programme Educational Objectives and the outcomes is given in the following table

| PROGRAMME                 | PROGRAMME OUTCOMES |   |   |   |   |   |   |   |   |   |   |   |
|---------------------------|--------------------|---|---|---|---|---|---|---|---|---|---|---|
| EDUCATIONAL<br>OBJECTIVES | A                  | В | с | D | E | F | G | н | I | J | к | L |
| I                         | 3                  | 3 | 3 | 3 | 3 | 2 | 2 | I | 2 | 2 | 3 | 2 |
| 2                         | 2                  | 3 | 3 | 2 | 3 | 3 | 2 | 2 | 3 | 2 | 3 | 2 |
| 3                         | 3                  | 2 | I | I | 2 | 2 | 2 | 3 | 3 | 3 | 2 | 3 |

#### MAPPING OF PROGRAM SPECIFIC OUTCOMES WITH PROGRAMME OUTCOMES

A broad relation between the Program Specific Objectives and the outcomes is given in the following table

| PROGRAM              | PROGRAMME OUTCOMES |   |   |   |   |   |   |   |   |   |   |   |
|----------------------|--------------------|---|---|---|---|---|---|---|---|---|---|---|
| SPECIFIC<br>OUTCOMES | Α                  | В | С | D | E | F | G | Н | I | J | к | L |
| I                    | 3                  | 3 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 2 | 3 |
| 2                    | 3                  | 3 | 2 | 3 | 3 | 2 | 2 | 2 | 2 | 2 | 2 | 3 |

Contribution

I: Reasonable

2: Significant

3: Strong

|        |                |                                                    | SEMESTER:      | I                  |                    |    |   |    |    |
|--------|----------------|----------------------------------------------------|----------------|--------------------|--------------------|----|---|----|----|
| S. NO. | COURSE<br>CODE | COURSE TITLE                                       | CATEGORY       | PRE -<br>REQUISITE | CONTACT<br>PERIODS | L  | т | Р  | с  |
| Ι      | 22MAN01        | Induction<br>Programme                             | MC             | -                  | -                  | -  | - | -  | -  |
| THEOP  | RY             |                                                    |                |                    |                    |    |   |    |    |
| 2      | 22EYA01        | Professional<br>Communication - I                  | HSMC           | -                  | 4                  | 2  | 0 | 2  | 3  |
| 3      | 22MYB01        | Calculus and Linear<br>Algebra*                    | BSC            | -                  | 4                  | 3  | I | 0  | 4  |
| 4      | 22CYB04        | Engineering Chemistry                              | BSC            | -                  | 3                  | 3  | 0 | 0  | 3  |
| 5      | 22CSC01        | Problem Solving and C<br>Programming               | ESC            | -                  | 3                  | 3  | 0 | 0  | 3  |
| 6      | 22MEC01        | Engineering Graphics                               | ESC            | -                  | 4                  | 2  | 0 | 2  | 3  |
| 7      | 22GYA01        | தமிழர் மரபு <sub>/</sub><br>Heritage of Tamils*    | HSMC           | -                  | I                  | I  | 0 | 0  | I  |
|        |                |                                                    | PRACTICAL      |                    |                    |    |   |    |    |
| 8      | 22GEP01        | Engineering Practices<br>Laboratory                | ESC            | -                  | 4                  | 0  | 0 | 4  | 2  |
| 9      | 22CSP01        | Problem Solving and<br>C Programming<br>Laboratory | ESC            | -                  | 4                  | 0  | 0 | 4  | 2  |
| 10     | 22CYP01        | Chemistry<br>Laboratory*                           | BSC            | -                  | 2                  | 0  | 0 | 2  | I  |
|        | ļ              | Mandato                                            | ory Non Credit | t Courses          |                    |    |   |    |    |
| 11     | 22MAN03        | Yoga - I*                                          | MC             | -                  | I                  | 0  | 0 | I  | 0  |
|        |                |                                                    |                | ΤΟΤΑΙ              | 30                 | 14 | I | 15 | 22 |

\*Ratified by Eleventh Academic council

|        |                |                                                            | SEMESTER: II |                    |                    |    |   |    |    |
|--------|----------------|------------------------------------------------------------|--------------|--------------------|--------------------|----|---|----|----|
| S. NO. | COURSE<br>CODE | COURSE TITLE                                               | CATEGORY     | PRE -<br>REQUISITE | CONTACT<br>PERIODS | L  | т | Р  | с  |
| THEORY |                |                                                            |              |                    |                    |    |   |    |    |
| I      | 22EYA02        | Professional<br>Communication- II                          | HSMC         | 22EYA01            | 4                  | 2  | 0 | 2  | 3  |
| 2      | 22MYB03        | Statistics and<br>Numerical methods*                       | BSC          | -                  | 4                  | 3  | I | 0  | 4  |
| 3      | 22PYB03        | Solid State Physics                                        | BSC          | -                  | 3                  | 3  | 0 | 0  | 3  |
| 4      | 22CSC02        | Data structures using C*                                   | ESC          | 22CSC01            | 3                  | 3  | 0 | 0  | 3  |
| 5      | 22EEC03        | Electric Circuit<br>Theory                                 | PCC          | -                  | 3                  | 2  | I | 0  | 3  |
| 6      | 22GYA02        | தமிழரும்<br>தொழில்நுட்பமும் /<br>Tamils and<br>Technology* | HSMC         | -                  | I                  | I  | 0 | 0  | I  |
|        |                | I                                                          | PRACTICAL    |                    |                    |    |   |    |    |
| 7      | 22CSP02        | Data Structures<br>Laboratory*                             | ESC          | 22CSP01            | 4                  | 0  | 0 | 4  | 2  |
| 8      | 22PYP01        | Physics Laboratory                                         | BSC          | -                  | 2                  | 0  | 0 | 2  | I  |
| 9      | 22EEP01        | Electric Circuits<br>Laboratory                            | PCC          | -                  | 4                  | 0  | 0 | 4  | 2  |
|        | ·              | Mandator                                                   | y Non Credit | Courses            |                    |    |   |    |    |
| 10     | 22MAN02        | Soft /Analytical Skills<br>- I                             | МС           | -                  | 3                  | I  | 0 | 2  | 0  |
| 11     | 22MAN05        | Yoga - II*                                                 | MC           | -                  | I                  | 0  | 0 | I  | 0  |
|        |                |                                                            |              | TOTAL              | 32                 | 15 | 2 | 15 | 22 |

\* Ratified by Eleventh Academic Council

|                                       |                |                                                  | SEMESTER: I    | 11                 |                    |    |   |         |    |
|---------------------------------------|----------------|--------------------------------------------------|----------------|--------------------|--------------------|----|---|---------|----|
| S. NO.                                | COURSE<br>CODE | COURSE TITLE                                     | CATEGORY       | PRE -<br>REQUISITE | CONTACT<br>PERIODS | L  | т | Р       | с  |
| THEOR                                 | Y              |                                                  |                |                    |                    |    |   |         |    |
| I                                     | 22MYB07        | Probability and<br>Complex functions             | BSC            | -                  | 4                  | 3  | I | 0       | 4  |
| 2                                     | 22EEC05        | Electronic Devices<br>and Circuits               | PCC            | -                  | 3                  | 3  | 0 | 0       | 3  |
| 3                                     | 22EEC06        | Electrical Machines-I                            | PCC            | 22EEC03            | 3                  | 3  | 0 | 0       | 3  |
| 4                                     | 22EEC07        | Electromagnetic<br>Fields                        | PCC            | -                  | 3                  | 3  | 0 | 0       | 3  |
| 5                                     | 22ITC06        | Java Programming                                 | ESC            | -                  | 3                  | 3  | 0 | 0       | 3  |
| 6                                     | 22EEC08        | Digital Logic Circuits                           | PCC            | -                  | 3                  | 3  | 0 | 0       | 3  |
| I                                     |                |                                                  | PRACTICAL      | l                  |                    |    |   | <b></b> |    |
| 7                                     | 22EEP02        | Electronic Devices<br>and Circuits<br>Laboratory | PCC            | -                  | 4                  | 0  | 0 | 4       | 2  |
| 8                                     | 22EEP03        | Electrical Machines-I<br>Laboratory              | PCC            | -                  | 4                  | 0  | 0 | 4       | 2  |
| 9                                     | 22ITP04        | Java Programming<br>Laboratory                   | ESC            | -                  | 4                  | 0  | 0 | 4       | 2  |
|                                       |                | Mandato                                          | ory Non Credit | Courses            |                    |    |   |         |    |
| 10                                    | 22MAN04R       | Soft / Analytical Skills<br>- II                 | MC             |                    | 3                  | I  | 0 | 2       | 0  |
| 11                                    | 22MAN09        | Indian Constitution                              | MC             |                    | I                  | I  | 0 | 0       | 0  |
| · · · · · · · · · · · · · · · · · · · |                |                                                  |                | TOTAL              | 35                 | 20 | Ι | 14      | 25 |

|        |                |                                                         | SEMESTER: I    | v                  |                        |    |   |    |    |
|--------|----------------|---------------------------------------------------------|----------------|--------------------|------------------------|----|---|----|----|
| S. NO. | COURSE<br>CODE | COURSE TITLE                                            | CATEGORY       | PRE -<br>REQUISITE | CONTAC<br>T<br>PERIODS | L  | т | Р  | с  |
| THEOR  | Y              |                                                         |                |                    |                        |    |   |    |    |
| Ι      | 22EEC09        | Electrical Machines-II                                  | PCC            | 22EEC06            | 3                      | 3  | 0 | 0  | 3  |
| 2      | 22EEC10        | Analog Integrated circuits                              | PCC            | 22EEC05            | 3                      | 3  | 0 | 0  | 3  |
| 3      | 22EEC11        | Power Generation,<br>Transmission<br>and Distribution   | PCC            | 22EEC03            | 3                      | 3  | 0 | 0  | 3  |
| 4      | 22EEC12        | Measurements and<br>Instrumentation                     | PCC            | -                  | 3                      | 3  | 0 | 0  | 3  |
| 5      | 22EEC13        | Microprocessor and<br>Microcontroller                   | PCC            | 22EEC08            | 3                      | 3  | 0 | 0  | 3  |
| 6      | 22CYB06        | Environmental<br>Science and<br>Sustainability          | BSC            | -                  | 3                      | 3  | 0 | 0  | 3  |
|        |                |                                                         | PRACTICAL      |                    |                        |    |   |    |    |
| 7`     | 22EEP04        | Electrical Machines-II<br>Laboratory                    | PCC            | 22EEP03            | 4                      | 0  | 0 | 4  | 2  |
| 8      | 22EEP05        | Analog and Digital<br>Integrated Circuits<br>Laboratory | PCC            | 22EEP02            | 4                      | 0  | 0 | 4  | 2  |
| 9      | 22EEP06        | Microprocessor and<br>Microcontroller<br>Laboratory     | PCC            | -                  | 4                      | 0  | 0 | 4  | 2  |
|        |                | Mandato                                                 | ory Non Credit | Courses            | · · ·                  |    |   |    |    |
| 10     | 22MAN07R       | Soft/Analytical Skills -<br>III                         | MC             | -                  | 3                      | I  | 0 | 2  | 0  |
| 11     | 22GED01        | Personality and<br>Character<br>Development             | EEC            | -                  | 0                      | 0  | 0 | I  | 0  |
|        |                |                                                         |                | TOTAL              | 33                     | 19 | 0 | 15 | 24 |

| SEMESTER: V                  |                |                                              |           |                     |                        |    |   |    |    |  |  |  |
|------------------------------|----------------|----------------------------------------------|-----------|---------------------|------------------------|----|---|----|----|--|--|--|
| S. NO.                       | COURSE<br>CODE | COURSE TITLE                                 | CATEGORY  | PRE -<br>REQUISITE  | CONTAC<br>T<br>PERIODS | L  | т | Р  | с  |  |  |  |
| THEOR                        | Y              |                                              |           |                     |                        |    |   |    |    |  |  |  |
| I                            | 22EEC14        | Power System<br>Analysis                     | PCC       | 22EEC11             | 4                      | 3  | I | 0  | 4  |  |  |  |
| 2                            | 22EEC15        | Control Systems                              | PCC       | 22EEC06,<br>22EEC09 | 4                      | 3  | I | 0  | 4  |  |  |  |
| 3                            | 22EEC16        | Power Electronics                            | PCC       | 22EEC05             | 3                      | 3  | 0 | 0  | 3  |  |  |  |
| 4                            | EI             | Elective (PEC)                               | PEC       | -                   | 3                      | 3  | 0 | 0  | 3  |  |  |  |
| 5                            | E2             | Elective (PEC)                               | PEC       | -                   | 3                      | 3  | 0 | 0  | 3  |  |  |  |
| 6                            | E3             | Elective (PEC)                               | PEC       | -                   | 3                      | 3  | 0 | 0  | 3  |  |  |  |
|                              |                |                                              | PRACTICAL | -                   | ·                      |    |   | •  |    |  |  |  |
| 7`                           | 22EEP07        | Control and<br>Instrumentation<br>Laboratory | PCC       | 22EEP03,<br>22EEP04 | 4                      | 0  | 0 | 4  | 2  |  |  |  |
| 8                            | 22EEP08        | Power Electronics<br>Laboratory              | PCC       | 22EEP02             | 4                      | 0  | 0 | 4  | 2  |  |  |  |
| Mandatory Non Credit Courses |                |                                              |           |                     |                        |    |   |    |    |  |  |  |
| 9                            | 22MAN08R       | Soft/Analytical Skills -<br>IV               | MC        | -                   | 3                      | I  | 0 | 2  | 0  |  |  |  |
|                              |                |                                              |           | TOTAL               | 31                     | 19 | 2 | 10 | 24 |  |  |  |

|        |                |                                                    | SEMESTER: V | /1                  |                            |    |   |   |    |  |  |  |  |  |
|--------|----------------|----------------------------------------------------|-------------|---------------------|----------------------------|----|---|---|----|--|--|--|--|--|
| S. NO. | COURSE<br>CODE | COURSE TITLE                                       | CATEGORY    | PRE -<br>REQUISITE  | CONTA<br>CT<br>PERIO<br>DS | L  | т | Р | с  |  |  |  |  |  |
| THEOR  | Y              |                                                    |             |                     |                            |    |   |   |    |  |  |  |  |  |
| I      | switch gear    |                                                    |             |                     |                            |    |   |   |    |  |  |  |  |  |
| 2      | 22EEC18        | Electric drives and<br>Control                     | PCC         | 22EEC06,<br>22EEC09 | 3                          | 3  | 0 | 0 | 3  |  |  |  |  |  |
| 3      | E4             | Elective (PEC)                                     | PEC         | 22EEC16             | 3                          | 3  | 0 | 0 | 3  |  |  |  |  |  |
| 4      | E5             | Elective (PEC)                                     | PEC         | -                   | 3                          | 3  | 0 | 0 | 3  |  |  |  |  |  |
| 5      | E6             | Elective (PEC)                                     | PEC         | -                   | 3                          | 3  | 0 | 0 | 3  |  |  |  |  |  |
| 6      | E7             | Elective (OEC)                                     | OEC         | -                   | 3                          | 3  | 0 | 0 | 3  |  |  |  |  |  |
|        |                |                                                    | PRACTICAL   |                     |                            |    |   |   |    |  |  |  |  |  |
| 7      | 22EEP09        | Power System<br>Simulation Practices<br>Laboratory | PCC         | 22EEC11,<br>22EEC14 | 4                          | 0  | 0 | 4 | 2  |  |  |  |  |  |
|        |                |                                                    | 1           | TOTAL               | 22                         | 18 | 0 | 4 | 20 |  |  |  |  |  |

|                                            | SEMESTER: VII  |                                   |          |                    |                            |    |   |   |    |  |  |  |  |
|--------------------------------------------|----------------|-----------------------------------|----------|--------------------|----------------------------|----|---|---|----|--|--|--|--|
| S.<br>NO.                                  | COURSE<br>CODE | COURSE TITLE                      | CATEGORY | PRE -<br>REQUISITE | CONTA<br>CT<br>PERIO<br>DS | L  | т | Р | с  |  |  |  |  |
| THEO                                       | RY             |                                   |          |                    |                            |    |   |   |    |  |  |  |  |
| I 22GEA01 Universal Human HSMC - 2 2 0 0 2 |                |                                   |          |                    |                            |    |   |   |    |  |  |  |  |
| 2                                          | E8             | Elective (OEC)                    | OEC      | -                  | 3                          | 3  | 0 | 0 | 3  |  |  |  |  |
| 3                                          | E9             | Elective (OEC)                    | OEC      | -                  | 3                          | 3  | 0 | 0 | 3  |  |  |  |  |
| 4                                          | EIO            | Elective (OEC)                    | OEC      | -                  | 3                          | 3  | 0 | 0 | 3  |  |  |  |  |
| 5                                          | EMI            | Elective (Management)             | HSMC     | -                  | 3                          | 3  | 0 | 0 | 3  |  |  |  |  |
| PRAC                                       | TICAL          |                                   |          |                    |                            |    |   |   |    |  |  |  |  |
| 6                                          | 22GED02        | Internship/Industrial<br>training | EEC      | -                  | -                          | 0  | 0 | 0 | 2  |  |  |  |  |
|                                            |                |                                   | _        | TOTAL              | 14                         | 14 | 0 | 0 | 16 |  |  |  |  |

|        | SEMESTER: VIII |               |          |                    |                            |   |   |    |    |  |  |  |
|--------|----------------|---------------|----------|--------------------|----------------------------|---|---|----|----|--|--|--|
| S. NO. | COURSE<br>CODE | COURSE TITLE  | CATEGORY | PRE -<br>REQUISITE | CONTA<br>CT<br>PERIO<br>DS | L | т | Ρ  | с  |  |  |  |
|        |                |               | PRACTICA | L                  |                            |   |   |    |    |  |  |  |
| I      | 22EED01        | Project Work* | EEC      | -                  | 20                         | 0 | 0 | 20 | 10 |  |  |  |
|        |                |               |          | TOTAL              | 20                         | 0 | 0 | 20 | 10 |  |  |  |

\* Ratified by Eleventh Academic Council

|        | HS, BS, ES, PC, EEC and Mandatory Courses |                                                        |              |                       |                    |   |   |   |   |  |  |  |  |
|--------|-------------------------------------------|--------------------------------------------------------|--------------|-----------------------|--------------------|---|---|---|---|--|--|--|--|
| (a) H  | (a) Humanities and Social Sciences (HS)   |                                                        |              |                       |                    |   |   |   |   |  |  |  |  |
| S. NO. | COURSE<br>CODE                            | COURSE TITLE                                           | CATEG<br>ORY | PRE-<br>REQUISIT<br>E | CONTACT<br>PERIODS | L | т | Р | с |  |  |  |  |
| ١.     | 22EYA01                                   | Professional<br>Communication - I                      | HSMC         | -                     | 4                  | 2 | 0 | 2 | 3 |  |  |  |  |
| 2.     | 22GYA01                                   | தமிழர் மரபு/ Heritage<br>of Tamils                     | HSMC         | -                     | I                  | I | 0 | 0 | I |  |  |  |  |
| 3.     | 22EYA02                                   | Professional<br>Communication- II                      | HSMC         | 22EYA01               | 4                  | 2 | 0 | 2 | 3 |  |  |  |  |
| 4.     | 22GYA02                                   | தமிழரும்<br>தொழில்நுட்பமும் /<br>Tamils and Technology | HSM<br>C     | -                     | I                  | Ι | 0 | 0 | I |  |  |  |  |
| 5.     | 22GEA01                                   | Universal Human Values                                 | HSMC         |                       | 2                  | 2 | 0 | 0 | 2 |  |  |  |  |
| 6.     | EMI                                       | Elective (Management)                                  | HSMC         | -                     | 3                  | 3 | 0 | 0 | 3 |  |  |  |  |

| (b       | (b) Basic Sciences (BS) |                                             |              |                       |                            |   |   |   |   |  |  |  |  |
|----------|-------------------------|---------------------------------------------|--------------|-----------------------|----------------------------|---|---|---|---|--|--|--|--|
| S.<br>NO | COURSE<br>CODE          | COURSE TITLE                                | CATEGOR<br>Y | PRE-<br>REQUISI<br>TE | CONTA<br>CT<br>PERIOD<br>S | L | т | Р | с |  |  |  |  |
| ١.       | 22MYB01                 | Calculus and Linear<br>Algebra              | BSC          | -                     | 4                          | 3 | I | 0 | 4 |  |  |  |  |
| 2.       | 22CYB04                 | Engineering<br>Chemistry                    | BSC          | -                     | 3                          | 3 | 0 | 0 | 3 |  |  |  |  |
| 3.       | 22CYP01                 | Chemistry<br>Laboratory                     | BSC          | -                     | 2                          | 0 | 0 | 2 | I |  |  |  |  |
| 4.       | 22MYB03                 | Statistics and<br>Numerical methods         | BSC          | -                     | 4                          | 3 | I | 0 | 4 |  |  |  |  |
| 5.       | 22PYB03                 | Solid State Physics                         | BSC          | -                     | 3                          | 3 | 0 | 0 | 3 |  |  |  |  |
| 6.       | 22PYP01                 | Physics Laboratory                          | BSC          | -                     | 2                          | 0 | 0 | 2 | I |  |  |  |  |
| 7.       | 22MYB07                 | Probability and<br>Complex functions        | BSC          |                       | 4                          | 3 | I | 0 | 4 |  |  |  |  |
| 8.       | 22CYB06                 | Environmental Science<br>and Sustainability | BSC          | -                     | 3                          | 3 | 0 | 0 | 3 |  |  |  |  |

| (c) I     | (c) Engineering Sciences (ES) |                                                    |              |                       |                            |   |   |   |   |  |  |  |  |
|-----------|-------------------------------|----------------------------------------------------|--------------|-----------------------|----------------------------|---|---|---|---|--|--|--|--|
| S.<br>NO. | COURSE<br>CODE                | COURSE TITLE                                       | CATEGOR<br>Y | PRE-<br>REQUISI<br>TE | CONTA<br>CT<br>PERIOD<br>S | L | т | Ρ | с |  |  |  |  |
| ١.        | 22CSC01                       | Problem Solving and C<br>Programming               | ESC          | -                     | 3                          | 3 | 0 | 0 | 3 |  |  |  |  |
| 2.        | 22MEC01                       | Engineering Graphics                               | ESC          | -                     | 4                          | 2 | 0 | 2 | 3 |  |  |  |  |
| 3.        | 22GEP01                       | Engineering Practices<br>Laboratory                | ESC          | -                     | 4                          | 0 | 0 | 4 | 2 |  |  |  |  |
| 4.        | 22CSP01                       | Problem Solving and C<br>Programming<br>Laboratory | ESC          | -                     | 4                          | 0 | 0 | 4 | 2 |  |  |  |  |
| 5.        | 22CSC02                       | Data structures using<br>C                         | ESC          | 22CSC01               | 3                          | 3 | 0 | 0 | 3 |  |  |  |  |
| 6.        | 22CSP02                       | Data Structures<br>Laboratory                      | ESC          | 22CSP01               | 4                          | 0 | 0 | 4 | 2 |  |  |  |  |
| 7.        | 22ITC06                       | Java Programming                                   | ESC          | -                     | 3                          | 3 | 0 | 0 | 3 |  |  |  |  |
| 8.        | 22ITP04                       | Java Programming<br>Laboratory                     | ESC          | -                     | 4                          | 0 | 0 | 4 | 2 |  |  |  |  |

| (d)       | (d) Employability Enhancement Courses (EEC) |                                          |              |                       |                        |   |   |    |    |  |  |  |
|-----------|---------------------------------------------|------------------------------------------|--------------|-----------------------|------------------------|---|---|----|----|--|--|--|
| S.<br>NO. | COURSE<br>CODE                              | COURSE TITLE                             | CATEGOR<br>Y | PRE-<br>REQUISI<br>TE | CONTAC<br>T<br>PERIODS | L | т | Р  | с  |  |  |  |
| ١.        | 22GED01                                     | Personality and<br>Character Development | EEC          | -                     | 0                      | 0 | 0 | I  | 0  |  |  |  |
| 2.        | 22GED02                                     | Internship/Industrial<br>training        | EEC          | -                     | 0                      | 0 | 0 | 0  | 2  |  |  |  |
| 3.        | 22EED01                                     | Project Work                             | EEC          | -                     | 20                     | 0 | 0 | 20 | 10 |  |  |  |

| (e)       | Programme      | Core Courses (PC)                                       |          |                       |                        |   |   |   |   |
|-----------|----------------|---------------------------------------------------------|----------|-----------------------|------------------------|---|---|---|---|
| S.<br>NO. | COURSE<br>CODE | COURSE TITLE                                            | CATEGORY | PRE-<br>REQUISI<br>TE | CONTAC<br>T<br>PERIODS | L | т | Р | с |
| ١.        | 22EEC03        | Electric Circuit Theory                                 | PCC      | -                     | 3                      | 2 | I | 0 | 3 |
| 2.        | 22EEP01        | Electric Circuits Laboratory                            | PCC      | -                     | 4                      | 0 | 0 | 4 | 2 |
| 3.        | 22EEC05        | Electronic Devices and<br>Circuits                      | PCC      | -                     | 3                      | 3 | 0 | 0 | 3 |
| 4.        | 22EEC06        | Electrical Machines-I                                   | PCC      | 22EEC03               | 3                      | 3 | 0 | 0 | 3 |
| 5.        | 22EEC07        | Electromagnetic Fields                                  | PCC      | -                     | 3                      | 3 | 0 | 0 | 3 |
| 6.        | 22EEC08        | Digital Logic Circuits                                  | PCC      | -                     | 3                      | 3 | 0 | 0 | 3 |
| 7.        | 22EEP02        | Electronic Devices and<br>Circuits Laboratory           | PCC      | -                     | 4                      | 0 | 0 | 4 | 2 |
| 8.        | 22EEP03        | Electrical Machines-I<br>Laboratory                     | PCC      | -                     | 4                      | 0 | 0 | 4 | 2 |
| 9.        | 22EEC09        | Electrical Machines-II                                  | PCC      | 22EEC06               | 3                      | 3 | 0 | 0 | 3 |
| 10.       | 22EEC10        | Analog Integrated circuits                              | PCC      | 22EEC05               | 3                      | 3 | 0 | 0 | 3 |
| 11.       | 22EEC11        | Power Generation,<br>Transmission<br>and Distribution   | PCC      | 22EEC03               | 3                      | 3 | 0 | 0 | 3 |
| 12.       | 22EEC12        | Measurements and<br>Instrumentation                     | PCC      | -                     | 3                      | 3 | 0 | 0 | 3 |
| 13.       | 22EEC13        | Microprocessor and<br>Microcontroller                   | PCC      | 22EEC08               | 3                      | 3 | 0 | 0 | 3 |
| 14.       | 22EEP04        | Electrical Machines-II<br>Laboratory                    | PCC      | 22EEP03               | 4                      | 0 | 0 | 4 | 2 |
| 15.       | 22EEP05        | Analog and Digital<br>Integrated Circuits<br>Laboratory | PCC      | 22EEP02               | 4                      | 0 | 0 | 4 | 2 |
| 16.       | 22EEP06        | Microprocessor and<br>Microcontroller Laboratory        | PCC      | -                     | 4                      | 0 | 0 | 4 | 2 |
| 17.       | 22EEC14        | Power System Analysis                                   | PCC      | 22EEC11               | 4                      | 3 | I | 0 | 4 |
| 18.       | 22EEC15        | Control Systems                                         | PCC      | 22EEC06,<br>22EEC09   | 4                      | 3 | 1 | 0 | 4 |
| 19.       | 22EEC16        | Power Electronics                                       | PCC      | 22EEC05               | 3                      | 3 | 0 | 0 | 3 |
| 20.       | 22EEP07        | Control and<br>Instrumentation Laboratory               | PCC      | 22EEP03,<br>22EEP04   | 4                      | 0 | 0 | 4 | 2 |
| 21.       | 22EEP08        | Power Electronics                                       | PCC      | 22EEP02               | 4                      | 0 | 0 | 4 | 2 |

|     |         | Laboratory                                      |     |                     |   |   |   |   |   |
|-----|---------|-------------------------------------------------|-----|---------------------|---|---|---|---|---|
| 22. | 22EEC17 | Power System Protection<br>and switch gear      | PCC | 22EEC11             | 3 | 3 | 0 | 0 | 3 |
| 23. | 22EEC18 | Electric drives and Control                     | PCC | 22EEC06,<br>22EEC09 | 3 | 3 | 0 | 0 | 3 |
| 24. | 22EEP09 | Power System Simulation<br>Practices Laboratory | PCC | 22EEC11,<br>22EEC14 | 4 | 0 | 0 | 4 | 2 |

| (f)       | (f) Mandatory Non Credit Courses(MC) |                               |              |                       |                        |   |   |   |   |  |  |  |  |  |
|-----------|--------------------------------------|-------------------------------|--------------|-----------------------|------------------------|---|---|---|---|--|--|--|--|--|
| S.<br>NO. | COURSE<br>CODE                       | COURSE TITLE                  | CATEGO<br>RY | PRE-<br>REQUISI<br>TE | CONTAC<br>T<br>PERIODS | L | т | Р | с |  |  |  |  |  |
| 1         | 22MAN01                              | Induction Programme           | MC           | -                     | -                      | - | - | - | - |  |  |  |  |  |
| 2         | 22MAN03                              | Yoga - I                      | MC           | -                     | I                      | 0 | 0 | I | 0 |  |  |  |  |  |
| 3         | 22MAN02                              | Soft /Analytical Skills - I   | MC           | -                     | 3                      | I | 0 | 2 | 0 |  |  |  |  |  |
| 4         | 22MAN05                              | Yoga - II                     | MC           | -                     | I                      | 0 | 0 | I | 0 |  |  |  |  |  |
| 5         | 22MAN04R                             | Soft / Analytical Skills - II | MC           | -                     | 3                      | I | 0 | 2 | 0 |  |  |  |  |  |
| 6         | 22MAN09                              | Indian Constitution           | MC           | -                     | I                      | I | 0 | 0 | 0 |  |  |  |  |  |
| 7         | 22MAN07R                             | Soft/Analytical Skills - III  | MC           | -                     | 3                      | Ι | 0 | 2 | 0 |  |  |  |  |  |
| 8         | 22MAN08R                             | Soft/Analytical Skills - IV   | MC           | -                     | 3                      | Ι | 0 | 2 | 0 |  |  |  |  |  |

|                         |              | PROGE           | RAMME ELECTIVE COURSE                | S            |                  |                            |   |   |   |   |
|-------------------------|--------------|-----------------|--------------------------------------|--------------|------------------|----------------------------|---|---|---|---|
| ſ                       | L.<br>N<br>D | COURS<br>E CODE | COURSE TITLE                         | CATEGO<br>RY | PRE-<br>RQUISITE | CONTA<br>CT<br>PERIOD<br>S | L | т | Р | с |
|                         |              |                 |                                      | VERTCAL 0    |                  |                            |   |   |   |   |
| (CONVERTERS AND DRIVES) |              |                 |                                      |              |                  |                            |   |   | 1 |   |
|                         | ١.           | 22EEX01         | Power Switching Converters           | PEC          | -                | 3                          | 3 | 0 | 0 | 3 |
|                         | 2.           | 22EEX02         | Special Electrical Machines          | PEC          | -                | 3                          | 3 | 0 | 0 | 3 |
| Π                       | 3.           | 22EEX03         | Design of Electrical Machines        | PEC          | -                | 3                          | 3 | 0 | 0 | 3 |
|                         | 4.           | 22EEX04         | Analysis of inverters                | PEC          | -                | 3                          | 3 | 0 | 0 | 3 |
|                         | 5.           | 22EEX05         | Wind and Solar Electrical<br>Systems | PEC          | -                | 3                          | 3 | 0 | 0 | 3 |
|                         | 6.           | 22EEX06         | IoT for smart grid                   | PEC          | -                | 3                          | 3 | 0 | 0 | 3 |

| i.                |                               | Madaun Davian di stussis                                            | 1                       |            |             |             |       | —— |         |
|-------------------|-------------------------------|---------------------------------------------------------------------|-------------------------|------------|-------------|-------------|-------|----|---------|
| 7.                | 22EEX07                       | Modern Power electronic converters                                  | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 8.                | 22EEX08                       | Bio Medical Instrumentation<br>and Its Applications                 | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
|                   |                               | (POWER S                                                            | VERTCAL I<br>YSTEM ENG  | INEERING)  |             | •           |       |    |         |
| 9.                | 22EEX11                       | High Voltage Engineering                                            | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 10.               | 22EEX12                       | HVDC Transmission Systems                                           | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 11.               | 22EEX13                       | Power Quality                                                       | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 12.               | 22EEX14                       | Power System Operation and<br>Control                               | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 13.               | 22EEX15                       | Fundamentals of electric<br>Power utilization                       | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 14.               | 22EEX16                       | Energy Auditing, Conservation<br>and<br>Management                  | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 15.               | 22EEX17                       | Re structured power system                                          | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 16.               | 22EEX18                       | Fundamentals of Fibre Optics and Laser Instrumentation              | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
|                   |                               | (ELE                                                                | VERTCAL 2<br>CTRIC VEHI | CLE)       |             |             |       |    |         |
| 17.               | 22EEX21                       | Fundamentals of Electric<br>Vehicles                                | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 18.               | 22EEX22                       | Battery pack modeling and<br>Charging of Electric Vehicle           | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 19.               | 22EEX23                       | Hybrid Electric Vehicles                                            | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 20.               | 22EEX24                       | Testing and Electric Vehicle<br>Policy                              | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 21.               | 22EEX25                       | EV Intelligent System                                               | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 22.               | 22EEX26                       | Electrical Vehicles in Smart<br>grid                                | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 23.               | 22EEX27                       | Design of motor and power<br>converters for Electric<br>Vehicles    | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 24.               | 22EEX28                       | Electric Vehicle Architecture                                       | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
|                   |                               | (EMBEDDED                                                           | VERTCAL 3<br>SYSTEM EN  | GINEERING) |             |             |       |    |         |
| 25.               | 22EEX31                       | Embedded System design                                              | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 26.               | 22EEX32                       | Signals and Systems                                                 | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 27.               | 22EEX33                       | Embedded control system                                             | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 28.               | 22EEX34                       | Signal Processing                                                   | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 29.               | 22EEX35                       | Embedded IoT                                                        | PEC                     | -          | 3           | 3           | 0     | 0  | 3       |
| 26.<br>27.<br>28. | 22EEX32<br>22EEX33<br>22EEX34 | Signals and Systems<br>Embedded control system<br>Signal Processing | PEC<br>PEC<br>PEC       | -          | 3<br>3<br>3 | 3<br>3<br>3 | 0 0 0 |    | 0 0 0 0 |

| 30. | 22EEX36 | Embedded Networking                            | PEC | - | 3 | 3 | 0 | 0 | 3 |
|-----|---------|------------------------------------------------|-----|---|---|---|---|---|---|
| 31. | 22EEX37 | Embedded System for<br>Automotive Applications | PEC | - | 3 | 3 | 0 | 0 | 3 |
| 32. | 22EEX38 | MEMS and NEMS                                  | PEC | - | 3 | 3 | 0 | 0 | 3 |

|               | MANAG           | EMENT ELECTIVES          |              |                  |                        |   |   |   |   |
|---------------|-----------------|--------------------------|--------------|------------------|------------------------|---|---|---|---|
| SL.<br>N<br>O | COURS<br>E CODE | COURSE TITLE             | CATEGO<br>RY | PRE-<br>RQUISITE | CONTAC<br>T<br>PERIODS | L | т | Ρ | с |
| THE           | ORY             |                          |              |                  |                        |   |   |   |   |
| ١.            | 22GEA02         | Principles of Management | HSMC         | -                | 3                      | 3 | 0 | 0 | 3 |
| 2.            | 22GEA03         | Total Quality Management | HSMC         | -                | 3                      | 3 | 0 | 0 | 3 |
| 3.            | 22GEA04         | Professional Ethics      | HSMC         | -                | 3                      | 3 | 0 | 0 | 3 |

|               | OPEN E          | LECTIVES                          |              |                  |                            |   |   |   |   |
|---------------|-----------------|-----------------------------------|--------------|------------------|----------------------------|---|---|---|---|
| SL.<br>N<br>O | COURS<br>E CODE | COURSE TITLE                      | CATEG<br>ORY | PRE-<br>RQUISITE | CONTA<br>CT<br>PERIOD<br>S | L | т | Р | с |
| THE           | ORY             |                                   |              |                  |                            |   |   |   |   |
| ١.            | 22EEZ01         | Smart Grid                        | OEC          | -                | 3                          | 3 | 0 | 0 | 3 |
| 2.            | 22EEZ02         | Renewable Energy Technology       | OEC          | -                | 3                          | 3 | 0 | 0 | 3 |
| 3.            | 22EEZ03         | Electric Vehicle                  | OEC          | -                | 3                          | 3 | 0 | 0 | 3 |
| 4.            | 22EEZ04         | Energy Management and<br>Auditing | OEC          | -                | 3                          | 3 | 0 | 0 | 3 |

|               | MINIOR          | DEGREE                                     |              |                  |                            |   |   |   |   |
|---------------|-----------------|--------------------------------------------|--------------|------------------|----------------------------|---|---|---|---|
|               |                 | EL                                         | ECTRICAL S   | SYSTEMS          |                            |   |   |   |   |
| SL.<br>N<br>O | COURS<br>E CODE | COURSE TITLE                               | CATEGO<br>RY | PRE-<br>RQUISITE | CONTA<br>CT<br>PERIOD<br>S | L | т | Р | с |
| THE           | ORY             |                                            |              |                  |                            |   |   |   |   |
| ١.            | 22EEM01         | Electric Circuits                          | OEC          | -                | 3                          | 3 | 0 | 0 | 3 |
| 2.            | 22EEM02         | Solid State Devices                        | OEC          | -                | 3                          | 3 | 0 | 0 | 3 |
| 3.            | 22EEM03         | Power Semiconductor devices                | OEC          | -                | 3                          | 3 | 0 | 0 | 3 |
| 4.            | 22EEM04         | Electrical measurements and<br>Instruments | OEC          | -                | 3                          | 3 | 0 | 0 | 3 |
| 5.            | 22EEM05         | Basics of Electrical Machines              | OEC          | -                | 3                          | 3 | 0 | 0 | 3 |
| 6.            | 22EEM06         | Electric Drives                            | OEC          | -                | 3                          | 3 | 0 | 0 | 3 |

| 7. | 22EEM07 | Power Systems            | OEC | - | 3 | 3 | 0 | 0 | 3 |
|----|---------|--------------------------|-----|---|---|---|---|---|---|
| 8. | 22EEM08 | Renewable Energy Systems | OEC | - | 3 | 3 | 0 | 0 | 3 |

|       |                                                                                           |      |         |     | SUMI | MARY |    |    |    |     |      |  |  |  |
|-------|-------------------------------------------------------------------------------------------|------|---------|-----|------|------|----|----|----|-----|------|--|--|--|
|       | B.E- ELECTRICAL AND ELECTRONICS ENGINEERING                                               |      |         |     |      |      |    |    |    |     |      |  |  |  |
| S. No | S. No SUBJECT CREDITS AS PER SEMESTER TOTAL<br>AREA               V   V   V   V   CREDITS |      |         |     |      |      |    |    |    |     |      |  |  |  |
|       | AREA                                                                                      | VIII | CREDITS | (%) |      |      |    |    |    |     |      |  |  |  |
| I     | HSMC                                                                                      | 4    | 4       |     |      |      |    | 5  |    | 13  | 7.9  |  |  |  |
| 2     | BSC                                                                                       | 8    | 8       | 4   | 3    |      |    |    |    | 23  | 14.1 |  |  |  |
| 3     | ESC                                                                                       | 10   | 5       | 5   |      |      |    |    |    | 20  | 12.2 |  |  |  |
| 4     | PCC                                                                                       |      | 5       | 16  | 21   | 15   | 8  |    |    | 65  | 39.8 |  |  |  |
| 5     | PEC                                                                                       |      |         |     |      | 9    | 9  |    |    | 18  | 11   |  |  |  |
| 6     | OEC                                                                                       |      |         |     |      |      | 3  | 9  |    | 12  | 7.3  |  |  |  |
| 7     | EEC                                                                                       |      |         |     |      |      |    | 2  | 10 | 12  | 7.3  |  |  |  |
|       | TOTAL<br>CREDITS                                                                          | 22   | 22      | 25  | 24   | 24   | 20 | 16 | 10 | 163 | 100  |  |  |  |



|        |                                         | 22EEC14 - POWER SYSTEM                                                                                                                                                                                                                                                                                        | ANALYSIS                                                          |                              |                              |                            |                |
|--------|-----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------|------------------------------|------------------------------|----------------------------|----------------|
|        |                                         |                                                                                                                                                                                                                                                                                                               |                                                                   | L                            | Т                            | Ρ                          | С              |
|        |                                         |                                                                                                                                                                                                                                                                                                               |                                                                   | 3                            | I                            | 0                          | 4              |
| PRE-R  | REQUISITE : 2                           | 22EEC11                                                                                                                                                                                                                                                                                                       |                                                                   |                              |                              |                            |                |
| Course | e Objective:                            | <ul> <li>Impact knowledge on need for<br/>analysis to obtain reactance diagr</li> <li>To understand and apply iterative</li> <li>To model of carry out short of<br/>symmetrical fault.</li> <li>To model of carry out short of<br/>unsymmetrical faults</li> <li>To study about the various method</li> </ul> | am<br>techniques for po<br>ircuit studies fo<br>ircuit studies fo | ower flo<br>r powe<br>r powe | ow ana<br>er syst<br>er syst | lysis.<br>:em du<br>:em du | uring<br>uring |
|        | e <b>Outcomes</b><br>Ident will be able | e to                                                                                                                                                                                                                                                                                                          | Cognitive<br>Level                                                | in                           | ightag<br>End S<br>Exami     | emest                      | ter            |
| COI    |                                         | natical techniques to find per unit diagram<br>ent in power system.                                                                                                                                                                                                                                           | Ap                                                                |                              | 2                            | 0%                         |                |
| CO2    | ,                                       | , power flow and stability using complex transformations in power system.                                                                                                                                                                                                                                     | An                                                                |                              | 3                            | 0%                         |                |
| CO3    | Estimate the<br>Thevenin's the          | fault currents in power system using<br>eorem.                                                                                                                                                                                                                                                                | An                                                                |                              | 2                            | 0%                         |                |
| CO4    |                                         | er flow algorithms, swing equation and power system.                                                                                                                                                                                                                                                          | Ap                                                                |                              | 3                            | 0%                         |                |
| CO5    | skills, teamy<br>interactions w         | dustrial visit to develop communication<br>work, and professionalism through<br>vith industry professionals and observing<br>namics and make an oral presentation and                                                                                                                                         | Ар                                                                |                              | ernal A<br>ninar, 7          |                            |                |

#### UNIT I - INTRODUCTION

report on the visit.

Need for system planning and operational studies – Structure of a power system - Power system components, Representation-Single line diagram – Per unit analysis: P.U. impedance diagram, P.U. reactance diagram, Network graph Theory - Construction of Y-bus matrix using inspection method-Formation of Z - bus matrix.

#### UNIT II - POWER FLOW ANALYSIS

Classification of buses – Development of power flow model in complex variable form – Solution of power flow equation using Gauss-Seidel method –Introduction to Newton Raphson method and Fast decoupled method.

(12)

(12)

#### UNIT III - FAULT ANALYSIS – SYMMETRICAL FAULT ANALYSIS

(12)

(12)

(12)

Importance of short circuit study –IEEE standards for short circuit studies-Assumptions in fault analysis – Analysis using Thevenin's theorem – Computation of short circuit parameters – Symmetrical fault analysis through bus impedance matrix.

#### UNIT IV - FAULT ANALYSIS – UNSYMMETRICAL FAULT ANALYSIS

Introduction to symmetrical components – Sequence impedances – Sequence circuits of synchronous machine, transformer and transmission lines – Sequence networks- Analysis of single line to ground, line to line and double line to ground faults using Thevenin's theorem.

#### UNIT V-STABILITY ANALYSIS

Importance of stability analysis in power system planning and operation –Classification of power system stability –Voltage stability –Swing equation – Equal area criterion – Determination of critical clearing angle and time-solution of swing equation by modified Euler method and Runge-Kutta method.

#### TOTAL (L:45,T:15) = 60 PERIODS

#### **TEXT BOOKS**:

- I. Nagrath I.J. and Kothari D.P., "Modern Power System Analysis", Tata McGraw-Hill, 5th ed., 2022.
- 2. John J. Grainger and W.D. Stevenson Jr., "Power System Analysis", Tata McGraw-Hill, 2017.

#### **REFERENCES**:

- 1. Hadi Saadat, "Power System Analysis", Tata McGraw Hill Education Pvt. Ltd., New Delhi, 2015.
- 2. C.L.Wadhwa, "Electrical Power Systems", New Age International (P) Ltd., 2010.
- 3. Olle. I. Elgerd, "Electric Energy Systems Theory An Introduction, Tata McGraw Hill Publishing Company Limited, New Delhi, Second Edition, 2017.

|             |   |   |   | ۲ | lapping | g of CC | Ds with | POs / | PSOs |    |   |    |     |    |
|-------------|---|---|---|---|---------|---------|---------|-------|------|----|---|----|-----|----|
|             |   |   |   |   |         | PO      | s       |       |      |    |   |    | PSC | Ds |
| COs         | I | 2 | 3 | 4 | 5       | 6       | 7       | 8     | 9    | 10 | П | 12 | I   | 2  |
| Ι           | 3 |   |   |   |         |         |         |       |      |    |   |    | 2   |    |
| 2           |   | 3 |   |   |         |         |         |       |      |    |   |    | 3   |    |
| 3           |   | 3 |   |   |         |         |         |       |      |    |   |    | 3   |    |
| 4           |   |   | 3 |   |         |         |         |       |      |    |   |    | 2   | I  |
| 5           |   |   |   |   |         |         |         |       | 2    | 2  |   | 2  |     |    |
| CO<br>(W.A) | 3 | 3 | 3 |   |         |         |         |       | 2    | 2  |   | 2  | 2.5 | I  |



|        |                                         | 22EEC15 - CONTROL SYS                                                                                                                                                                                                                                                                    | STEMS                                                               |                                                      |                                                     |                                                     |                                             |                          |
|--------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------|------------------------------------------------------|-----------------------------------------------------|-----------------------------------------------------|---------------------------------------------|--------------------------|
|        |                                         |                                                                                                                                                                                                                                                                                          | JI LINS                                                             |                                                      |                                                     | -                                                   | В                                           | <b>^</b>                 |
|        |                                         |                                                                                                                                                                                                                                                                                          |                                                                     |                                                      | L<br>3                                              | Т                                                   | P<br>0                                      | C<br>4                   |
|        |                                         |                                                                                                                                                                                                                                                                                          |                                                                     |                                                      | 3                                                   |                                                     | U                                           | -                        |
| PRE-R  | EQUISITE: 2                             | 2EEC06 & 22EEC09                                                                                                                                                                                                                                                                         |                                                                     |                                                      |                                                     |                                                     |                                             |                          |
| Course | e Objectives:                           | <ul> <li>To equip students with the known concepts for deriving transfer fullinear time-invariant systems in both to develop students' ability to or various compensators and interprive.</li> <li>To foster independent learning and and explaining technological advantage.</li> </ul> | inctions a<br>oth time a<br>design sta<br>ret system<br>I effective | and analy<br>nd frequ<br>ble line<br>respon<br>commu | yzing t<br>iency d<br>ar con<br>ses usii<br>nicatio | he per<br>lomain:<br>itrol sy<br>ng moo<br>n skills | formai<br>s.<br>/stems<br>Jern to<br>by exp | using<br>ols.<br>oloring |
|        | e <b>Outcomes</b><br>Ident will be able | to                                                                                                                                                                                                                                                                                       | Cogni<br>Lev                                                        |                                                      | in                                                  | End S                                               | ge of (<br>Semes<br>inatio                  | ter                      |
| COI    |                                         | owledge of mathematical concepts to function of various systems.                                                                                                                                                                                                                         | A                                                                   | P                                                    |                                                     | 4                                                   | 5%                                          |                          |
| CO2    | ,                                       | performance of linear time invariant<br>/ frequency response.                                                                                                                                                                                                                            | A                                                                   | n                                                    |                                                     | 2                                                   | .5%                                         |                          |
| CO3    | Design stab<br>compensators             | / 8                                                                                                                                                                                                                                                                                      | C                                                                   | 2                                                    |                                                     | I                                                   | 0%                                          |                          |
| CO4    | Interpret the r<br>tools.               | response of a linear system using modern                                                                                                                                                                                                                                                 | A                                                                   | n                                                    |                                                     | 2                                                   | .0%                                         |                          |
| CO5    |                                         | ological advances and applications of<br>ms through independent learning and<br>ntation.                                                                                                                                                                                                 | L                                                                   | J                                                    |                                                     |                                                     | Assessr<br>ar, Qu                           |                          |

#### **UNIT I – SYSTEMS AND REPRESENTATION** (12)Basic elements of Control Systems: Open and Closed-loop Control Systems - Transfer functions of Mechanical Translation and Rotational Systems – Electric Analogy of Mechanical Systems – Block Diagram **Reduction Techniques** – Signal Flow Graphs. **UNIT II - TIME DOMAIN ANALYSIS** (12)Typical Test Signals – Time Response of First Order and Second Order Systems for Unit Step Test Signals - Time Domain Specifications - Steady State Response - Static Error and Error Constants - Concept of stability – Root Locus. (12)**UNIT III - FREQUENCY DOMAIN ANALYSIS AND DESIGN** Frequency Domain Specifications - Bode Plot - Polar Plot - Nyquist Stability Criterion - Correlation

between Frequency Domain and Time Domain Specifications.

#### UNIT IV - STABILITY AND COMPENSATOR DESIGN

Stability of Linear Control Systems – Stability and Location of the Roots of the Characteristic Equation – Routh-Hurwitz Criterion – Design of Lag, Lead, Lag-lead, and Lead-Lag Compensator Design using Bode Plots Construction – Effects of P, Pl, PID modes of Feedback Control.

#### UNIT V - STATE SPACE ANALYSIS

Concept of State Variables – State Models for Linear and Time-Invariant Systems – Solution of State and Output Equation in Controllable Canonical Form – Concepts of Controllability and Observability – State space to Transfer Function.

#### TOTAL (L:45)(T:15) = 60 PERIODS

#### **TEXT BOOKS**:

- I. Nagrath I J and Gopal M, "Control System Engineering", 7<sup>th</sup> ed, New Age International, New Delhi, 2021.
- 2. Farid Golnaraghi and Benjamin C Kuo, "Automatic Control Systems", 10<sup>th</sup> ed, McGraw-Hill, New Delhi, 2017.

#### **REFERENCES:**

- 1. Ogata K, "Modern Control Engineering", Prentice Hall of India, New Delhi, 2012.
- 2. Norman S Nise, "Control System Engineering", John Wiley & Sons, 6<sup>th</sup> ed, New Delhi, 2012.
- 3. Gopal M, "Control Systems Principles and Design", 4th ed, Tata McGraw-Hill, New Delhi, 2012.

|             |   |   |   | M | apping | g of CC | <b>)</b> s with | POs / | PSOs |    |    |    |    |    |
|-------------|---|---|---|---|--------|---------|-----------------|-------|------|----|----|----|----|----|
|             |   |   |   |   |        | PC      | Ds              |       |      |    |    |    | PS | Os |
| COs         | I | 2 | 3 | 4 | 5      | 6       | 7               | 8     | 9    | 10 | 11 | 12 | I  | 2  |
| Ι           | 3 |   |   |   |        |         |                 |       |      |    |    |    | 3  |    |
| 2           |   | 3 |   |   |        |         |                 |       |      |    |    |    | 3  |    |
| 3           |   |   | 3 |   |        |         |                 |       |      |    |    |    | 3  |    |
| 4           |   |   | 3 |   | 2      |         |                 |       |      |    |    |    |    |    |
| 5           |   |   |   |   | 2      |         |                 |       | 3    | 3  |    |    |    | 2  |
| CO<br>(W.A) | 3 | 3 | 3 |   | 2      |         |                 |       | 3    | 3  |    |    | 3  | 2  |



(12)

(12)

|        |                                         |                   | 22EEC16- POWER ELECT                                                                                                                      | RONICS                                       |                               |                   |        |                                   |     |
|--------|-----------------------------------------|-------------------|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------|-------------------------------|-------------------|--------|-----------------------------------|-----|
|        |                                         |                   |                                                                                                                                           |                                              |                               | L                 | Т      | Ρ                                 | С   |
|        |                                         |                   |                                                                                                                                           |                                              |                               | 3                 | 0      | 0                                 | 3   |
| PRE-R  | REQUISITE : 2                           | 22EEC05           |                                                                                                                                           |                                              |                               |                   |        |                                   |     |
| Course | e Objective:                            | • T<br>• T<br>• T | o understand the characteristics<br>o understand the operation of A<br>o understand the operation of D<br>o understand the operation of D | C-DC power c<br>C-DC power c<br>C-AC power c | onverte<br>onverte<br>onverte | ers<br>ers<br>ers | device | S                                 |     |
|        | e <b>Outcomes</b><br>Ident will be able | 1                 | o understand the operation of A                                                                                                           | C-AC power c<br>Cognitive<br>Level           |                               | Nei<br>in E       | End S  | ge of <b>C</b><br>emest<br>natior | ter |
| COI    |                                         |                   | f various power semiconductor<br>sions and controls based on their                                                                        |                                              |                               |                   | 3      | 0%                                |     |
| CO2    | Analyze the op<br>different types o     |                   | and performance parameters of converters.                                                                                                 | An                                           |                               |                   | 4      | 0%                                |     |
| CO3    |                                         | d rectifie        | wer electronic circuits including<br>rs, DC-DC converters, inverters                                                                      |                                              |                               |                   |        | 0%                                |     |
| CO4    |                                         |                   | controlling power flow and wer electronic systems.                                                                                        | Ap                                           |                               |                   | 2      | 0%                                |     |
| CO5    |                                         |                   | in a team or independent and presentation and record them.                                                                                | С                                            |                               |                   |        | lssessn<br>Project                |     |

#### UNIT I- POWER SEMICONDUCTOR DEVICES

Steady state operation and static V-I characteristics of SCR, TRIAC and IGBT- Switching characteristics of SCR, TRIAC, GTO, BJT, MOSFET and IGBT – Design of gate drive and snubber circuits – <mark>Wide band gap (SiC an</mark>d <mark>GaN) power devices.</mark>

#### UNIT II – AC-DC CONTROLLED CONVERTERS

Single phase half and fully controlled converters with R, RL (with and without Freewheeling diode), RLE loads -Three phase half and fully controlled converters – <u>Performance parameters</u> – <u>Effect of source inductance</u> – Dual converters – <u>Principle of operation of PWM rectifier</u> – <u>Applications: Renewable energy systems.</u>

#### UNIT III – DC-DC CONVERTERS

Step-down and step-up chopper-control strategy– Types of choppers – Four quadrant operation - Switched mode regulators- Buck, Boost, Buck- Boost regulator - Applications: Battery operated vehicles.

#### UNIT IV – DC-AC CONVERTERS

Single phase bridge inverters- Three phase voltage source inverters (both120 degree mode and180 degree mode) – Voltage control using PWM techniques: Single PWM, Multiple PWM, Sinusoidal PWM and Modified sinusoidal PWM - Introduction to space vector modulation - Single phase current source inverter - Applications: Induction heating and UPS.

(9)

(9)

(9)

(9)

#### UNIT V – AC-AC CONVERTERS

Principle operation of AC voltage controller (phase control) – Control Strategy (Integral cycle control) – Single Phase AC Voltage Controllers – Introduction to Matrix converter – Applications: Welding.

#### TOTAL (L:45) = 45 PERIODS

#### **TEXT BOOKS**:

- 1. "Power Electronics" by Dr.P.S. Bimbhra, 7th Edition, Khanna Publishing, 1st January 2022.
- 2. "Power Electronics: Circuits Devices and Applications" by Muhammad H. Rashid, 4th Edition, Pearson Education, 28<sup>th</sup> November 2017.

#### **REFERENCES:**

- "Power Electronics" by M.D Singh and K Khanchandani, 2<sup>nd</sup> Edition, McGraw-Hill Education, 1<sup>st</sup> July 2017.
- 'Power Electronics: Converters, Applications and Design' by Robbins Mohan, Undeland, 3<sup>rd</sup> Edition, Wiley Publisher, 1<sup>st</sup> Jan 2007.

|             | Mapping of COs with POs / PSOs |     |   |   |   |   |   |   |   |    |    |    |   |   |
|-------------|--------------------------------|-----|---|---|---|---|---|---|---|----|----|----|---|---|
|             |                                | POs |   |   |   |   |   |   |   |    |    |    |   |   |
| COs         | I                              | 2   | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | I | 2 |
| I           | 3                              |     |   |   |   |   |   |   |   |    |    |    | 3 |   |
| 2           |                                | 3   |   |   |   |   |   |   |   |    |    |    |   | 2 |
| 3           |                                |     | 3 |   |   |   |   |   |   |    |    |    |   |   |
| 4           | 3                              |     | 3 |   |   |   |   |   |   |    |    |    |   | 2 |
| 5           |                                |     |   |   |   |   |   |   | 3 | 3  |    | 3  |   |   |
| CO<br>(W.A) | 3                              | 3   | 3 |   |   |   |   |   | 3 | 3  |    | 3  | 3 | 2 |



119 | Page

(9)

|        | 22EEP                                  | 07 - CONTROL AND INSTRUMENTATION LABOR                                                                                                                                                                                                                               | ATO                | RY     |       |       |  |  |  |
|--------|----------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|--------|-------|-------|--|--|--|
|        |                                        |                                                                                                                                                                                                                                                                      | L                  | Т      | Ρ     | С     |  |  |  |
|        |                                        |                                                                                                                                                                                                                                                                      | 0                  | 0      | 4     | 2     |  |  |  |
| PRE-R  | EQUISITE: N                            | IIL                                                                                                                                                                                                                                                                  |                    |        |       |       |  |  |  |
| Course | e Objective:                           | <ul> <li>To provide knowledge on analysis and design of co<br/>basics of instrumentation.</li> <li>To conduct experiments for determining the tran<br/>electromechanical systems.</li> <li>To provide practical knowledge on the application<br/>bridges.</li> </ul> | nsfer fu           | Inctio | n mod | el of |  |  |  |
|        |                                        | <ul> <li>To provide knowledge on the linear variable different</li> </ul>                                                                                                                                                                                            | ntial transformer. |        |       |       |  |  |  |
|        |                                        | • To study the procedure of transducers, calibration.                                                                                                                                                                                                                |                    |        |       |       |  |  |  |
|        | e <b>Outcomes</b><br>dent will be able | e to                                                                                                                                                                                                                                                                 | Cognitive Level    |        |       |       |  |  |  |
| соі    |                                        | edge of mathematics and physics to obtain the results of<br>ol systems and controllers.                                                                                                                                                                              |                    | A      | Ŋр    |       |  |  |  |
| CO2    | Analyze the ti                         | me response of linear invariant systems.                                                                                                                                                                                                                             |                    | A      | \n    |       |  |  |  |
| CO3    | conduct expe<br>systems using          |                                                                                                                                                                                                                                                                      | A                  | Ŋр     |       |       |  |  |  |
| CO4    | Conduct inves                          | stigations and analyze the performance of different bridges.                                                                                                                                                                                                         | S. An              |        |       |       |  |  |  |
| CO5    | Perform indivi<br>and document         | idually in a team to demonstrate open ended experiments<br>the same.                                                                                                                                                                                                 |                    | (      | C     |       |  |  |  |

#### LIST OF EXPERIMENTS:

- I. Design and verify the performance of an open and closed loop control system using Simulink.
- 2. Analyze the response of given first and second order system with step and impulse inputs.
- 3. Design and verify the performance of P, PI and PID controllers using MATLAB.
- 4. Effect of Addition of Poles and Zeros on System Stability using MATLAB.
- 5. Determination of the transfer function of an armature-controlled D.C. motor.
- 6. Measurement of Medium resistance using Wheatstone bridge.
- 7. Measurement of Low resistance using Kelvin's double bridge.
- 8. Measurement of inductance using Anderson bridge.
- 9. Measurement of capacitance using Schering bridge.
- 10. Measurement of displacement using LVDT.

#### ADDITIONAL EXPERIMENTS:

- I. Logic Implementation for traffic control Application.
- 2. Measurement of the self-inductance using Maxwell's bridge in a virtual lab.

TOTAL (P:60) = 60 PERIODS

|             |     |   |   | M | apping | g of CC | <b>)</b> s with | POs / | PSOs |    |    |    |   |      |  |
|-------------|-----|---|---|---|--------|---------|-----------------|-------|------|----|----|----|---|------|--|
|             | POs |   |   |   |        |         |                 |       |      |    |    |    |   | PSOs |  |
| COs         | I   | 2 | 3 | 4 | 5      | 6       | 7               | 8     | 9    | 10 | 11 | 12 | I | 2    |  |
| I           | 3   |   |   |   |        |         |                 |       |      |    |    |    | 3 |      |  |
| 2           |     | 3 |   |   |        |         |                 |       |      |    |    |    | 3 |      |  |
| 3           |     | 3 | 3 |   | 3      |         |                 |       |      |    |    |    | 3 |      |  |
| 4           |     | 3 |   |   | I      |         |                 |       |      |    |    |    |   | 2    |  |
| 5           |     |   |   |   |        |         |                 |       | 3    | 3  |    |    |   | 2    |  |
| CO<br>(W.A) | 3   | 3 | 3 |   | 2.3    |         |                 |       | 3    | 3  |    |    | 3 | 2    |  |

G. 8 1

|        |                                    | 22EEP08 - POWER ELECTRONICS LABORATOR                                                                             | Y                           |                  |        |    |  |
|--------|------------------------------------|-------------------------------------------------------------------------------------------------------------------|-----------------------------|------------------|--------|----|--|
|        |                                    |                                                                                                                   | L                           | Т                | Ρ      | С  |  |
|        |                                    |                                                                                                                   | 0                           | 0                | 4      | 2  |  |
| PRE-F  | REQUISITE : 2                      | 2EEP02                                                                                                            |                             |                  |        |    |  |
| Course | e Objective:                       | R, TRI/<br>and MC<br>onics cc<br>onics cc                                                                         | DSFET<br>onverte<br>onverte | rs (AC<br>rs (DC | C-DC   |    |  |
|        |                                    | various loads.                                                                                                    |                             |                  |        |    |  |
|        | e Outcomes<br>Jdent will be able   | to                                                                                                                | Co                          | ognitiv          | ve Lev | el |  |
| COI    | Implement star<br>electronic circu | ndard laboratory procedures to build and test power<br>its.                                                       | Ap                          |                  |        |    |  |
| CO2    | Interpret data c<br>and performanc | ollected from experiments to understand circuit behavior<br>e.                                                    |                             | A                | 'n     |    |  |
| CO3    |                                    | pact of circuit parameters such as output voltage, switching<br>duty cycle on the performance of power electronic |                             |                  |        |    |  |
| CO4    | Design and test                    | the power electronics circuits and interpret the data.                                                            | С                           |                  |        |    |  |
| CO5    | Troubleshoot a modern tools.       | nd debug power electronic circuits and systems by use of                                                          |                             | I                | E      |    |  |

#### LIST OF EXPERIMENTS :

- I. Experimental determination of VI characteristics of SCR & TRIAC.
- 2. Experimental determination of VI characteristics of MOSFET & IGBT.
- 3. Experimental determination of switching characteristics of SCR and MOSFET.
- 4. Experiment on Single-phase half and fully controlled Rectifiers with R and RL load.
- 5. Experimental verification on buck and boost converter circuit using power MOSFET.
- 6. Experiment on Single phase IGBT based PWM Inverter.
- 7. Experiment on Single phase AC voltage controllers.
- 8. Simulation of single phase and three phase AC-DC converters with R and RL loads in MATLAB.
- 9. Simulation of three phase Inverter in 180 degree conduction mode with R load in MATLAB.
- 10. Design of gate drive circuit for DC- DC converter.

#### **ADDITIONAL EXPERIMENTS:**

- I. Experiment on Three phase half and fully controlled bridge converter.
- 2. Experimental study of Series Resonant DC to DC converter.

#### TOTAL (P:60) = 60 PERIODS

|             | Mapping of COs with POs / PSOs |   |   |   |   |   |   |   |   |    |    |    |   |    |
|-------------|--------------------------------|---|---|---|---|---|---|---|---|----|----|----|---|----|
|             | POs                            |   |   |   |   |   |   |   |   |    |    |    |   | Os |
| COs         | I                              | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | I | 2  |
| I           | 3                              |   |   |   |   |   |   |   |   |    |    |    |   |    |
| 2           |                                | 3 | 3 |   |   |   |   |   |   |    |    |    |   |    |
| 3           |                                |   |   |   |   |   |   |   |   |    |    |    | 2 |    |
| 4           |                                |   |   | 3 |   |   |   |   |   |    |    |    |   | I  |
| 5           |                                |   |   |   | 3 |   |   |   | 3 |    |    | 3  |   |    |
| CO<br>(W.A) | 3                              | 3 | 3 | 3 | 3 |   |   |   | 3 |    |    | 3  | 2 | I  |



|        |                                         | 22MAN08R - SOFT/ANALYTICA<br>(Common to All Brancl                                                             |                    |                                             |   |        |    |  |
|--------|-----------------------------------------|----------------------------------------------------------------------------------------------------------------|--------------------|---------------------------------------------|---|--------|----|--|
|        |                                         |                                                                                                                |                    | L                                           | Т | Ρ      | С  |  |
|        |                                         |                                                                                                                |                    | Ι                                           | 0 | 2      | 0  |  |
| PRER   | EQUISITE : N                            | il                                                                                                             |                    |                                             |   |        |    |  |
| Course | e Objective:                            | <ul> <li>To enhance the ability to commacross contexts</li> <li>To develop quantitative aptitude ar</li> </ul> |                    |                                             |   | tively |    |  |
|        | e <b>Outcomes</b><br>Ident will be able | to                                                                                                             | Cognitive<br>Level | Weightage of<br>in Continuo<br>Assessment 7 |   |        | IS |  |
| соі    |                                         | ency to communicate accurately, fluently,<br>ely in various academic, professional and                         |                    |                                             |   |        |    |  |
| CO2    | Solve quantita<br>confidence.           | itive aptitude problems with more                                                                              | Ар                 | Ap 30%                                      |   |        |    |  |
| CO3    | Draw valid co<br>problems.              | onclusions, identify patterns, and solve                                                                       | An                 |                                             | 3 | 0%     |    |  |

| UNIT I – VERBAL ABILITY                                                                                                                                                                                                   | (15)               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| <b>Grammar</b> - Sentence Completion – Sentence Improvement - Error Spotting - <b>Listenin</b><br>Practice Tests - <b>Speaking</b> – Interview Skills - <b>Reading</b> - GRE Reading Passages - <b>Writin</b><br>Writing. | 0 0                |
| UNIT II – APTITUDE                                                                                                                                                                                                        | (15)               |
| Probability - Permutations and Combinations - Data Interpretation on Multiple Charts -<br>Shapes, Perimeter - Races and Games.                                                                                            | Mensuration - Area |
| UNIT III - REASONING                                                                                                                                                                                                      | (15)               |
| Data Sufficiency - Mathematical Operations - Pattern Completion - Cubes - Embedded Im                                                                                                                                     | nages.             |
| TOTAL(L:45                                                                                                                                                                                                                | 5) = 45 PERIODS    |

| REFERENCES: |                                                                                                                    |  |  |  |  |  |  |  |  |  |
|-------------|--------------------------------------------------------------------------------------------------------------------|--|--|--|--|--|--|--|--|--|
| ١.          | Rizvi, M.Ashraf. Effective Technical Communication. Tata McGraw-Hill Education, 2017.                              |  |  |  |  |  |  |  |  |  |
| 2.          | Aggarwal R S. <i>Quantitative</i> Aptitude for Competitive Examinations. S.Chand Publishing Company Ltd(s)., 2022. |  |  |  |  |  |  |  |  |  |
| 3.          | Sharma, Arun. How to Prepare for Quantitative Aptitude for the CAT. Tata McGraw – Hill Publishing, 2022.           |  |  |  |  |  |  |  |  |  |
| 4.          | Praveen R V. Quantitative Aptitude and Reasoning. PHI Learning Pvt. Ltd., 2016.                                    |  |  |  |  |  |  |  |  |  |

|             | Mapping of COs with POs / PSOs |   |   |   |   |   |   |   |   |    |    |    |   |    |
|-------------|--------------------------------|---|---|---|---|---|---|---|---|----|----|----|---|----|
|             | POs                            |   |   |   |   |   |   |   |   |    |    |    |   | Os |
| COs         | I                              | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | I | 2  |
| I           |                                |   |   |   |   |   |   |   | 2 | 3  |    |    |   |    |
| 2           |                                | 2 |   | 2 |   |   |   |   |   |    |    |    |   |    |
| 3           |                                | 2 |   | 2 |   |   |   |   |   |    |    |    |   |    |
| CO<br>(W.A) |                                | 2 |   | 2 |   |   |   |   | 2 | 3  |    |    |   |    |



|        | 22EEC17 P                                 | OWER SYSTEM PROTECTION<br>(For EEE Branch only                                         |                    | IGEA   | R                                       |          |   |  |  |
|--------|-------------------------------------------|----------------------------------------------------------------------------------------|--------------------|--------|-----------------------------------------|----------|---|--|--|
|        |                                           |                                                                                        | ,                  | L      | т                                       | Ρ        | С |  |  |
|        |                                           |                                                                                        |                    | 3      | 0                                       | 0        | 3 |  |  |
| PRE-R  | EQUISITE : 22EEC                          | H                                                                                      |                    |        |                                         |          |   |  |  |
| Course | •<br>• Objective:<br>•                    | eed for protective<br>otection of Gener<br>circuit breakers an                         | rators             | , Tran | smissic                                 | on line, |   |  |  |
|        | e <b>Outcomes</b><br>dent will be able to |                                                                                        | Cognitive<br>Level | End S  | ntage of COs<br>d Semester<br>umination |          |   |  |  |
| соі    |                                           | e schemes for generator, motor,<br>smission line protections.                          | Ap                 | 40%    |                                         |          |   |  |  |
| CO2    |                                           | and applications of switchgear<br>kers, fuses and relays.                              | An                 | An 20% |                                         |          |   |  |  |
| CO3    | Analyze the pheno restriking voltages.    | menon of arc, interruption and                                                         | An                 |        | I                                       | 5%       |   |  |  |
| CO4    |                                           | v appropriate switchgear and<br>r various power system.                                | An                 | An 25% |                                         |          |   |  |  |
| CO5    |                                           | rent type of Fuses and circuit<br>ces in a team and give an oral<br>evant applications |                    |        |                                         |          |   |  |  |

| UNIT I- INTRODUCTION                                                                                                                                                                                          | (0)       |  |  |  |  |  |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------|--|--|--|--|--|--|--|
|                                                                                                                                                                                                               | (9)       |  |  |  |  |  |  |  |
| Protection Schemes : Need for Protection – Zones of Protection – Power System Earthing –                                                                                                                      | Types of  |  |  |  |  |  |  |  |
| Earthing - Relays : Classification of Relays, Electromagnetic Relays, Over Current Relays - Distance                                                                                                          | ce Relay: |  |  |  |  |  |  |  |
| Impedance, Reactance, Mho Relay – Differential Relays – Negative Phase Sequence Relay                                                                                                                         |           |  |  |  |  |  |  |  |
| UNIT II – EQUIPMENTS PROTECTION                                                                                                                                                                               | (9)       |  |  |  |  |  |  |  |
| Transformer protection: Differential protection and Buchholz's relay - Alternator protection: Differential protection, Earth fault protection and Negative sequence protection. Bus bars protection: Frame    |           |  |  |  |  |  |  |  |
| protection and Differential circulating current protection. Transmission line protection: Dista Differential protection, Carrier protection                                                                   |           |  |  |  |  |  |  |  |
| UNIT III – THEORY OF CIRCUIT INTERRUPTION                                                                                                                                                                     | (9)       |  |  |  |  |  |  |  |
| Physics of arc Phenomena and arc Interruption – Methods of arc Extinction – Theories of arc Interr                                                                                                            | uption –  |  |  |  |  |  |  |  |
| Arc Voltage – Restriking Voltage and Recovery Voltage – Expression for Restriking Voltage and Rate                                                                                                            | e of Rise |  |  |  |  |  |  |  |
| of Restriking Voltage – Current Chopping – Interruption of Capacitive Currents – Resistance Switch                                                                                                            | ning      |  |  |  |  |  |  |  |
| UNIT IV – FUSES AND CIRCUIT BREAKER                                                                                                                                                                           | (9)       |  |  |  |  |  |  |  |
| Fuses: Types - HRC Fuses – Characteristics and Applications. Circuit Breakers - Types – Air, oil, SF6 and Vacuum circuit breakers- Comparative Merits of Different Circuit Breakers-Rating of circuit Brakers |           |  |  |  |  |  |  |  |
|                                                                                                                                                                                                               |           |  |  |  |  |  |  |  |

#### **UNIT V – STATIC RELAYS AND NUMERICAL PROTECTION**

(9)

Static Relays – Phase, Amplitude Comparators – Synthesis of Various Relays using Static Comparators – Block Diagram of Numerical Relay – Numerical Over Current Protection – Numerical Transformer Differential Protection – Numerical Distance Protection of Transmission Line – Arc Flash Relays – Shielded Solid Insulation Switchgear – Green Switchgear.

#### TOTAL (L:45) = 45 PERIODS

#### **TEXT BOOKS**:

- Badri Ram & Vishwakarma D.N, "Power System Protection and Switchgear", 2<sup>nd</sup> Edition, Tata McGraw Hill, New Delhi, 2017.
- 2. Gupta J.B, "A Course in Power Systems", 11th Edition, S.K.Kataria & Sons, New Delhi, 2021.

#### **REFERENCES:**

- 1. Uppal, "Electrical Power" Khanna Publisher, 13th Edition., 2008.
- 2. Y.G Paithankar and S.R Bhide, "Fundamentals of power system protection", Prentice Hall of India, 2<sup>nd</sup> ed., Learning private limited, 2010.

|             | Mapping of COs with POs / PSOs |   |   |   |   |   |   |   |   |    |    |    |   |    |
|-------------|--------------------------------|---|---|---|---|---|---|---|---|----|----|----|---|----|
|             | POs                            |   |   |   |   |   |   |   |   |    |    |    |   | Os |
| COs         | I                              | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | I | 2  |
| I           | 3                              |   |   |   |   |   |   |   |   |    |    |    |   |    |
| 2           | 3                              |   |   |   |   |   |   |   |   |    |    |    | 3 |    |
| 3           |                                | 2 |   |   |   |   |   |   |   |    |    |    | 3 |    |
| 4           | 3                              |   |   |   |   |   |   |   |   |    |    |    |   |    |
| 5           |                                |   |   |   |   |   |   |   | 3 |    | 3  | 3  |   |    |
| CO<br>(W.A) | 3                              | 2 |   |   |   |   |   |   | 3 |    | 3  | 3  | 3 |    |

1. Ri

|                                      |                                              | 22EEC18 - ELECTRIC DRIVES AI                                                                                                                                                                                                                                                                                                                                |                                                                                                     |                                      |                                       |                                        |                                        |
|--------------------------------------|----------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------|--------------------------------------|---------------------------------------|----------------------------------------|----------------------------------------|
|                                      |                                              |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     | L                                    | Т                                     | Ρ                                      | С                                      |
|                                      |                                              |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                     | 3                                    | 0                                     | 0                                      | 3                                      |
| PRE-REQUISI                          | TE: 22                                       | 2EEC06, 22EEC09                                                                                                                                                                                                                                                                                                                                             |                                                                                                     |                                      |                                       |                                        |                                        |
| Course Object                        | ive:                                         | <ul> <li>To provide knowledge on the p<br/>various electrical drive systems to</li> <li>To Apply power electronic conve</li> <li>To give exposure to understand<br/>converter topologies for induction</li> <li>To acquire knowledge on digitatindustrial drive applications.</li> <li>To understand Transfer function<br/>and speed controllers</li> </ul> | o the students.<br>rters to control th<br>the various spee<br>n motor drives.<br>Il control and the | e spee<br>d cont<br>e sele<br>load a | ed of D<br>trol te<br>ction<br>and an | OC mor<br>chniqu<br>of driv<br>alyze c | tors.<br>les and<br>ves for<br>current |
| Course Outcor<br>The Student will    |                                              | :0                                                                                                                                                                                                                                                                                                                                                          | Cognitive Level                                                                                     | in                                   | End S                                 | ge of C<br>emest<br>ination            | ter                                    |
| COI predict different                | the spee<br>power e                          | ial concept of electric drives to load and ed of DC and induction motor with electronic converters.                                                                                                                                                                                                                                                         | Ар                                                                                                  |                                      | 3                                     | 0%                                     |                                        |
| CO2 motor d                          | rive wit                                     | eed control of DC and induction<br>h different converter topologies used to<br>speed and torque characteristics.                                                                                                                                                                                                                                            |                                                                                                     |                                      |                                       |                                        |                                        |
|                                      | echniqu<br>the n                             | drive systems with scalar and vector<br>e with appropriate braking systems and<br>notor speed with recent digital                                                                                                                                                                                                                                           | Ap                                                                                                  |                                      | 3                                     | 0%                                     |                                        |
| CO4<br>CO4<br>equation<br>such as in | nd deve<br>/ load<br>for mother<br>nertia, d | elop the transfer function for DC<br>d, current, speed controllers and<br>tor load dynamics considering factors<br>amping, and friction.                                                                                                                                                                                                                    | Ap                                                                                                  |                                      | 2                                     | 0%                                     |                                        |
| presenta<br>CO5 based or             | tion on<br>1 techni                          | ependent or team and make an oral<br>selection drive for industrial application<br>cal, economic, and operational criteria,<br>analytical skills and decision-making                                                                                                                                                                                        | U                                                                                                   |                                      | sessme                                | ernal<br>nt(Sem<br>ne Quiz             |                                        |
| UNIT I- IN                           | rod                                          | OUCTION TO DRIVES                                                                                                                                                                                                                                                                                                                                           |                                                                                                     |                                      |                                       |                                        | (9)                                    |

Electrical drives: Basic Elements, Types, Factors influencing the choice of electrical drives- Multiquadrant operation -Equations governing motor load dynamics - Components of load torque – Nature and classification of load torque – Modes of operation -Classes of motor duty – Determination of motor rating- Braking.

### UNIT II - UNIT II - CONVENTIONAL AND SOLID STATE SPEED CONTROL OF D.C. DRIVES

Speed control of DC series and shunt motors – Armature and field control- Ward-Leonard control system – Steady state analysis of the single and three phase converter fed separately excited DC motor drive –4 quadrant operations of converter / chopper fed drive.

### UNIT III – CONVENTIONAL AND SOLID STATE SPEED CONTROL OF A.C. DRIVES (9)

Speed control of three phase induction motor – Voltage control- voltage / frequency control – Constant airgap flux – Field weakening mode –AC voltage Regulator- Voltage / current fed inverter – Rotor control – Rotor resistance control and slip power recovery schemes- vector control of induction motor drives.

### UNIT IV – DIGITAL CONTROL TECHNIQUES IN SPEED CONTROL OF DRIVES AND SELECTION OF DRIVES

(9)

(9)

Digital techniques in speed control - Advantages and limitations - Microcontroller based control of drives – Microprocessor based control of drives-PLC Based drives. Selection of drives for textile mills, cement mills, steel rolling mills and paper mills-Case study.

### **UNIT V – DESIGN OF CONTROLLERS FOR DRIVES**

Transfer function for DC motor / load and converter – Closed loop control with Current and speed feedback– Design of controllers: current controller and speed controller- converter selection and characteristics.

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS**:

- 1. Dubey G.K., "Fundamentals of Electrical Drives", Second Edition, Narosa Publishing House, New Delhi, 2015
- 2. Bose, B.K., —Modern Power Electronics and AC Drives", Pearson Education (Singapore) Pvt.. Ltd, New Delhi, 2016.

### **REFERENCES**:

- 1. Vedam Subramanyam, Electric Drives: Concepts and Applications, Second Edition, Tata McGraw hill Pvt. Ltd, New Delhi, 2011.
- 2. Krishnan R, Electric Motor Drives: Modeling, Analysis and Control, Prentice Hall of India, Pvt. Ltd, New Delhi,2015.
- 3. S.K.Pillai, "A First Course on Electrical Drives", Third Edition, New Age International Publishers, 2013.

|             | Mapping of COs with POs / PSOs |     |   |   |   |    |    |   |   |    |    |    |      |   |
|-------------|--------------------------------|-----|---|---|---|----|----|---|---|----|----|----|------|---|
|             |                                |     |   |   |   | РС | Ds |   |   |    |    |    | PSOs |   |
| COs         | I                              | 2   | 3 | 4 | 5 | 6  | 7  | 8 | 9 | 10 | 11 | 12 | I    | 2 |
| Ι           | 3                              |     |   |   |   |    |    |   |   |    |    |    | 2    | Ι |
| 2           | 3                              | 3 3 |   |   |   |    |    |   |   |    |    |    | 2    | I |
| 3           | 3                              |     |   |   |   |    |    |   |   |    |    |    | 2    | I |
| 4           |                                |     | 3 |   |   |    |    |   |   |    |    |    |      |   |
| 5           |                                |     |   |   |   | 3  |    |   | 2 | 2  |    | 2  | 2    |   |
| CO<br>(W.A) | 3                              | 3   | 3 |   |   | 3  |    |   | 2 | 2  |    | 2  | 2    | I |

(81)

| 22EEP09 - POWER SYSTEM SIMULATION LABORA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | TORY                            |                          |                               |                          |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------|--------------------------|-------------------------------|--------------------------|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | L                               | Т                        | Ρ                             | С                        |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 0                               | 0                        | 4                             | 2                        |
| PRE-REQUISITE : 22EEC11, 22EEC14                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 |                          |                               |                          |
| <ul> <li>To acquire the capability to develop prograformation of bus admittance and impedance system.</li> <li>To develop proficiency in programming technic parameters and stability of the power systems.</li> <li>To gain the ability of computational programs for the Gauss-Seidel, Newton-Raphson, and fast</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | matrice<br>ues to<br>r load flo | es in<br>compu<br>ow ana | the po<br>itation<br>alysis u | ower<br>line<br>utilizin |
| <b>Course Outcomes</b><br>The Student will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | Co                              | gnitiv                   | e Lev                         | el                       |
| COI Apply the mathematical approach for the solution of bus and impedance matrices.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                 | A                        | P                             |                          |
| CO2 Analyze and provide the solution for symmetrical and unsymmetrical faults.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                 | Aı                       | n                             |                          |
| CO3 Analyze and solve the sudden disturbance for power system stability.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                 | Aı                       | n                             |                          |
| Analyze and solve the problem by using load flow analysis iterative CO4 methods.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                 | Aı                       | า                             |                          |
| Implement the programming skill in industry-standard simulation cO5 software.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                 | С                        | 2                             |                          |
| <ol> <li>LIST OF EXPERIMENTS :         <ol> <li>Formation of bus admittance Matrices and solution of networks.</li> <li>Computation of parameters and modeling of transmission lines.</li> <li>Formation of Bus Impedance Matrices and Solution of Networks.</li> <li>Transient stability analysis of single-machine infinite bus system.</li> <li>Transient stability analysis of multi-machine power systems.</li> <li>Electromagnetic transients in power systems.</li> <li>Fault analysis – symmetrical short circuit analysis.</li> <li>Fault analysis – unsymmetrical short circuit analysis.</li> <li>Solution of load flow problems using Gauss-Seidel method.</li> <li>Solution of load flow related problems using Newton-Raphson and fast-de</li> </ol> </li> <li>ADDITIONAL EXPERIMENTS:         <ol> <li>Development of HKV/433 V substation automation scheme using progr<br/>for normal load operation.</li> <li>Relay coordination using Arduino.</li> </ol> </li> </ol> | ammable                         | e logic                  | contro                        |                          |
| ΤΟΤΑ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | L (P:60                         | ) = 60                   | PERI                          | ODS                      |

|             |   |   |   | M | lapping | g of CC | Ds with | POs / | PSOs |    |    |    |    |    |
|-------------|---|---|---|---|---------|---------|---------|-------|------|----|----|----|----|----|
|             |   |   |   |   |         | PC      | Os      |       |      |    |    |    | PS | Os |
| COs         | I | 2 | 3 | 4 | 5       | 6       | 7       | 8     | 9    | 10 | 11 | 12 | I  | 2  |
| I           |   |   |   | 3 | 3       |         |         |       |      |    |    |    | 2  |    |
| 2           |   |   |   | 3 | 3       |         |         |       |      |    |    |    | 2  |    |
| 3           |   |   | 3 | 3 | 3       |         |         |       |      |    |    |    | 2  |    |
| 4           |   |   | 3 | 3 | 3       |         |         |       |      |    |    |    | 2  |    |
| 5           |   |   |   | 3 | 3       |         |         |       |      |    |    | 3  | 2  |    |
| CO<br>(W.A) |   |   | 3 | 3 | 3       |         |         |       |      |    |    | 3  | 2  |    |

G. 8 1

|        |                                    | 22GEA01 UNIVERSAL HUMA                                                                                                                                                                                                                                                            | N VALUES                                                           |                                       |                 |                                    |       |
|--------|------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------|-----------------|------------------------------------|-------|
|        |                                    | (For Common To All Bra                                                                                                                                                                                                                                                            | nches)                                                             |                                       |                 |                                    |       |
|        |                                    |                                                                                                                                                                                                                                                                                   |                                                                    | L                                     | Т               | Ρ                                  | С     |
|        |                                    |                                                                                                                                                                                                                                                                                   |                                                                    | 2                                     | 0               | 0                                  | 2     |
| PRE-F  | REQUISITE : N                      | NL .                                                                                                                                                                                                                                                                              |                                                                    |                                       |                 |                                    |       |
| Course | e Objective:                       | <ul> <li>To help the students appreciate<br/>'VALUES' and 'SKILLS' to ensure s</li> <li>To facilitate the development o<br/>towards life and profession.</li> <li>To highlight plausible implications o<br/>human conduct.</li> <li>To understand the nature and exist</li> </ul> | sustained happin<br>f a holistic pe<br>of holistic unde<br>stence. | ness and p<br>erspective<br>rstanding | orospei<br>amoi | rity.<br>ng stud                   | dents |
|        |                                    | To understand human contact and                                                                                                                                                                                                                                                   | holistic way of                                                    | •                                     |                 |                                    |       |
|        | e Outcomes<br>udent will be able   | to                                                                                                                                                                                                                                                                                | Cognitive<br>Level                                                 | in                                    | End S           | ge of <b>C</b><br>emest<br>inatior | ter   |
| COI    |                                    | ignificance of value inputs in formal<br>start applying them in their life and                                                                                                                                                                                                    | E                                                                  |                                       |                 |                                    |       |
| CO2    | accumulation                       | ween values and skills, happiness and<br>of physical facilities, the Self and the<br>and Competence of an individual.                                                                                                                                                             | Ар                                                                 |                                       |                 |                                    |       |
| CO3    | '                                  | ue of harmonious relationship based on<br>ct in their life and profession.                                                                                                                                                                                                        | An                                                                 | Int                                   | ernal A         | Assessn                            | nent  |
| CO4    | Examine the ro<br>in society and n | le of a human being in ensuring harmony<br>ature.                                                                                                                                                                                                                                 | Ap                                                                 |                                       |                 |                                    |       |
| CO5    |                                    | nderstanding of ethical conduct to<br>trategy for ethicallife and profession.                                                                                                                                                                                                     | Ap                                                                 |                                       |                 |                                    |       |

UNIT I: Introduction-Basic Human Aspiration, its fulfillment through Allencompassing Resolution (6)

(6)

The basic human aspirations and their fulfillment through Right understanding and Resolution, Right understanding and Resolution as the activities of the Self, Self being central to Human Existence; Allencompassing Resolution for a Human Being, its details and solution of problems in the light of Resolution

### UNIT II: Right Understanding (Knowing)- Knower, Known & the Process

The domain of right understanding starting from understanding the human being (the knower, the experiencer and the doer) and extending up to understanding nature/existence – its interconnectedness and co-existence; and finally understanding the role of human being in existence (human conduct).

Understanding the human being comprehensively as the first step and the core theme of this course; human being as co-existence of the self and the body; the activities and potentialities of the self; Basis for harmony/contradiction in the self

### **UNIT IV: Understanding Nature and Existence**

**UNIT III: Understanding Human Being** 

A comprehensive understanding (knowledge) about the existence, Nature being included; the need and process of inner evolution (through self-exploration, self- awareness and self-evaluation), particularly awakening to activities of the Self: Realization, Understanding and Contemplation in the Self (Realization of Co-Existence, Understanding of Harmony in Nature and Contemplation of Participation of Human in this harmony/ order leading to comprehensive knowledge about the existence).

UNIT V: Understanding Human Conduct, All-encompassing Resolution and Holistic Way of Living

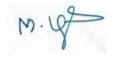
Understanding Human Conduct, different aspects of All-encompassing Resolution (understanding, wisdom, science etc.), Holistic way of living for Human Being with All- encompassing Resolution covering all four dimensions of human endeavor viz., realization, thought, behavior and work (participation in the larger order) leading to harmony at all levels from Self to Nature and entire Existence

### TOTAL (L:30) : 30 PERIODS

### **TEXT BOOKS**

I. R R Gaur, R Asthana, G P Bagaria, 2019 (2nd Revised Edition), A Foundation Course inHuman Values and Professional Ethics. ISBN 978-93-87034-47-1, Excel Books, New Delhi

### **REFERENCES:**


- 1. Ivan Illich, 1974, Energy & Equity, The Trinity Press, Worcester, and Harper Collins, USA
- 2. E.F. Schumacher, 1973, Small is Beautiful: a study of economics as if people mattered, Blond & Briggs, Britain.
- 3. Sussan George, 1976, How the Other Half Dies, Penguin Press. Reprinted 1986, 1991
- 4. Donella H. Meadows, Dennis L. Meadows, Jorgen Randers, William W. Behrens III, 1972, Limits to Growth Club of Rome's report, Universe Books.
- 5. A Nagraj, 1998, Jeevan Vidya EkParichay, Divya Path Sansthan, Amarkantak.
- 6. P L Dhar, RR Gaur, 1990, Science and Humanism, Commonwealth Publishers.
- 7. A N Tripathy, 2003, Human Values, New Age International Publishers
- 8. E G Seebauer& Robert L. Berry, 2000, Fundamentals of Ethics for Scientists&Engineers, Oxford University Press
- 9. M Govindrajran, S Natrajan& V.S. Senthil Kumar, Engineering Ethics (including Human Values), Eastern Economy Edition, Prentice Hall of India Ltd.
- 10. Subhas Palekar, 2000, How to practice Natural Farming, Pracheen (Vaidik) Krishi Tantra Shodh, Amravati
- 11. B P Banerjee, 2005, Foundations of Ethics and Management, Excel Books
- 12. B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Lucknow. Reprinted 2008.

(6)

(6)

(6)

|             |   |   |   | ۲ | lapping | g of CC | Ds with | POs / | PSOs |    |    |    |    |    |
|-------------|---|---|---|---|---------|---------|---------|-------|------|----|----|----|----|----|
|             |   |   |   |   |         | PC      | Os      |       |      |    |    |    | PS | Os |
| COs         | I | 2 | 3 | 4 | 5       | 6       | 7       | 8     | 9    | 10 | 11 | 12 | I  | 2  |
| I           |   |   |   |   |         | 2       | 2       | 3     | 2    | 2  |    | 3  |    |    |
| 2           |   |   |   |   |         | 2       | 2       | 3     | 2    | 2  |    | 3  |    |    |
| 3           |   |   |   |   |         | 2       | 2       | 3     | 2    | 2  |    | 3  |    |    |
| 4           |   |   |   |   |         | 2       | 2       | 3     | 2    | 2  |    | 3  |    |    |
| 5           |   |   |   |   |         | 2       | 2       | 3     | 2    | 2  |    | 3  |    |    |
| CO<br>(W.A) |   |   |   |   |         | 2       | 2       | 3     | 2    | 2  |    | 3  |    |    |



|         | 1                              | 22GE     | ED0   | )2 –  | IN     | TER    | RNS    | SHI   | IP /  | / IN  | IDU                         | JST   | RIA   |      | <b>RA</b> | INI    | ۱G    |       |      |       |      |
|---------|--------------------------------|----------|-------|-------|--------|--------|--------|-------|-------|-------|-----------------------------|-------|-------|------|-----------|--------|-------|-------|------|-------|------|
|         |                                |          |       |       |        |        |        |       |       |       |                             |       |       |      |           |        | L     | 1     | •    | Ρ     | С    |
|         |                                |          |       |       |        |        |        |       |       |       |                             |       |       |      |           |        | 0     | (     | )    | 0     | 2    |
| PRE-R   | EQUISITE :                     | NIL      |       |       |        |        |        |       |       |       |                             |       |       |      |           |        |       |       |      |       |      |
| Cours   | e Objective:                   | •        | •     | To c  | obtai  | in a l | bro    | oad u | unde  | lerst | tanc                        | ding  | of th | ne e | merg      | ging t | echno | logie | s in | Indus | stry |
|         | e Objective.                   |          | • ]   | To g  | gain I | knov   | wle    | edge  | e abo | out   | t I/O                       | ) mo  | odels | 5.   |           |        |       |       |      |       |      |
| The Stu | dent will be abl               | le to    | С     | Cour  | rse (  | Out    | tcor   | mes   | S     |       |                             |       |       |      |           |        | С     | ogni  | tive | e Lev | el   |
| соі     | Engage in Ind                  | lustrial | al ac | tivit | y wł   | hich   | n is a | a coi | mm    | nuni  | ity s                       | servi | ice.  |      |           |        |       |       | U    | J     |      |
| CO2     | Prepare the p<br>work.         | projec   | ct re | epor  | rt, th | nree   | e mir  | nute  | e vic | ideo  | o ano                       | d the | е ро  | stei | r of 1    | he     |       |       | A    | P     |      |
| CO3     | Identify and s<br>comfortable. |          | fy ar | n er  | ngine  | eerin  | ng p   | prod  | duct  | t th  | that can make their life An |       |       |      |           |        |       |       |      |       |      |
| CO4     | Prepare a bu<br>product, toge  |          |       |       |        |        |        |       |       |       |                             |       | f the | e pr | ороз      | ed     |       |       | A    | P     |      |
| CO5     | Identify the c                 | commu    | unit  | ty th | nat sł | hall   | ben    | nefit | fro   | om t  | the                         | prod  | duct  | •    |           |        |       |       | E    |       |      |

During semester breaks, students are encouraged to engage in industrial training or undergo internship in an industry related to the field of study. The duration of the activity shall be of 4 to 6 weeks. The work carried out in the semester break is assessed through an oral seminar accompanied by a written report. It is expected that this association will motivate the student to develop simple Electronic (or other) products to make their life comfortable and convert new ideas into projects.

Every student is required to complete 12 to 16 weeks of internship (with about 40 hours per week), during the Summer/Winter semester breaks. The Internships are evaluated through Internship Reports and Seminars during the VI and VIII semesters. The internships can be taken up in an industry, a government organization, a research organization or an academic institution, either in the country or outside the country, that include activities like:

- Successful completion of Internships/ Value Added Programs/Training
- Programs/ workshops organized by academic Institutions and Industries
- Soft skill training by the Placement Cell of the college
- Active association with incubation/ innovation /entrepreneurship cell of the
- institute;
- Participation in Inter-Institute innovation related competitions like Hackathons
- Working for consultancy/ research project within the institutes

- Participation in activities of Institute's Innovation Council, IPR cell, Leadership
- Talks, Idea/ Design/ Innovation contests
- Internship with industry/ NGO's/ Government organizations/ Micro/ Small/
- Medium enterprises
- Development of a new product/ business plan/ registration of a start-up

|             | Mapping of COs with POs / PSOs |   |   |   |   |    |    |   |   |    |    |    |    |    |
|-------------|--------------------------------|---|---|---|---|----|----|---|---|----|----|----|----|----|
|             |                                |   |   |   |   | PC | Ds |   |   |    |    |    | PS | Os |
| COs         | Ι                              | 2 | 3 | 4 | 5 | 6  | 7  | 8 | 9 | 10 | 11 | 12 | I  | 2  |
| I           |                                |   |   |   |   | 2  |    |   |   |    |    |    |    |    |
| 2           |                                |   |   |   |   |    |    |   |   | 3  |    |    |    |    |
| 3           |                                | Ι |   |   |   |    |    |   |   |    |    |    |    |    |
| 4           |                                |   |   |   |   |    | 2  | 3 |   |    | 2  |    |    |    |
| 5           |                                |   |   |   |   | 2  |    |   |   |    |    |    |    |    |
| CO<br>(W.A) |                                | Ι |   |   |   | 2  | 2  | 3 |   | 3  | 2  |    |    |    |

G. 8 1

|         | 22EED01- Project Work                                                                                                                                                                                                                                                                                                              | - 1                |       |       |                             |       |
|---------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|-------|-----------------------------|-------|
|         |                                                                                                                                                                                                                                                                                                                                    |                    | L     | Т     | Ρ                           | С     |
|         |                                                                                                                                                                                                                                                                                                                                    |                    | 0     | 0     | 20                          | 10    |
| PRE-R   | EQUISITE : NIL                                                                                                                                                                                                                                                                                                                     |                    |       |       |                             |       |
| The Stu | <b>Course Outcomes</b><br>dent will be able to                                                                                                                                                                                                                                                                                     | Cognitive<br>Level | in    | End S | ge of C<br>emest<br>ination | ter   |
| COI     | Engage in independent study to research literature in the identified area and consolidate the literature search to identify and formulate the engineering problem.                                                                                                                                                                 | Ар                 | 20    |       | rst Rev<br>ernal)           | view  |
| CO2     | Prepare the Gantt Chart for scheduling the project,<br>engage in budget analysis, and designate responsibility for<br>every member in the team and identify the community<br>that shall benefit through the solution to the identified<br>research work and also demonstrate concern for<br>environment                            | Ар, Е              | 20 \$ |       | cond Re<br>ernal)           | eview |
| CO3     | Identify, apply the mathematical concepts, science<br>concepts, and engineering concepts necessary to<br>implement the identified engineering problem, select the<br>engineering tools /components required to reproduce<br>the identified project, design, implement, analyze and<br>interpret results of the implemented project | An An C            | 20    |       | iird Re<br>ernal)           | view  |
| CO4     | Engage in effective written communication through the<br>project report, the one-page poster presentation, and<br>preparation of the video about the project and the four<br>page IEEE format of the work and effective oral<br>communication through presentation of the project<br>work and demonstration of the project.        | E                  | 20    |       | iird Re<br>ernal)           | view  |
| CO5     | Perform in the team, contribute to the team and<br>mentor/lead the team, demonstrate compliance to the<br>prescribed standards/ safety norms and abide by the<br>norms of professional ethics and clearly specify the<br>outcome of the project work (leading to start-up/<br>product/ research paper/ patent)                     |                    | 20    |       | iird Re<br>ernal)           | view  |

### DESCRIPTION

Project work may be allotted to a single student or to a group of students not exceeding 3 per group. The title of project work is approved by head of the department under the guidance of a faculty member and student(s) shall prepare a comprehensive project report after completing the work to the satisfaction of the guide. The Head of the department shall constitute a review committee for project work. There shall be three reviews during the semester by the committee to review the progress. Student(s) shall make presentation on the progress made by him / her / them before the committee and evaluation is done as per Rules and Regulations

TOTAL (P: 120) = 120PERIODS

|             | Mapping of COs with POs / PSOs |       |   |   |   |   |   |   |   |    |    |    |    |   |
|-------------|--------------------------------|-------|---|---|---|---|---|---|---|----|----|----|----|---|
|             | POs                            |       |   |   |   |   |   |   |   |    |    | PS | Os |   |
| COs         | Ι                              | 2     | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | I  | 2 |
| I           |                                | 3     |   |   |   |   |   |   |   |    |    | 3  | 3  | 3 |
| 2           |                                | 3 3 3 |   |   |   |   |   |   |   |    |    |    | 3  | 3 |
| 3           | 3                              | 3     | 3 | 3 | 3 |   |   |   |   |    |    |    | 3  | 3 |
| 4           |                                |       |   |   |   |   |   | 3 |   | 3  |    |    | 3  | 3 |
| 5           |                                |       |   |   |   |   |   |   | 3 |    | 3  | 3  | 3  | 3 |
| CO<br>(W.A) | 3                              | 3     | 3 | 3 | 3 | 3 | 3 | 3 | 3 | 3  | 3  | 3  | 3  | 3 |

G. 81)

|        |                                        | 22EEX01- POWER SWITCHING                                                                                                                                                                                                                   | CONVERTERS                                                                        |                          |                          |                             |                            |
|--------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------|--------------------------|-----------------------------|----------------------------|
|        |                                        | ZZEEX01- POWER SWITCHING                                                                                                                                                                                                                   | CONVERTERS                                                                        | L                        | т                        | Р                           | С                          |
|        |                                        |                                                                                                                                                                                                                                            |                                                                                   | 3                        | 0                        | 0                           | 3                          |
| PRE-R  | EQUISITE: N                            | IL                                                                                                                                                                                                                                         |                                                                                   | •                        | •                        | •                           |                            |
| Course | e Objectives:                          | <ul> <li>To equip students with the know performance of converters and in</li> <li>To develop students' ability to performance parameters of memodes.</li> <li>To enable students to apply a converters and inverters effective</li> </ul> | verters in power sy<br>analyze DC-DC o<br>odern inverters u<br>concepts of single | vitchi<br>conve<br>inder | ng app<br>rters<br>vario | licatior<br>and ca<br>us op | ns.<br>Ilculate<br>erating |
|        | e <b>Outcomes</b><br>dent will be able | to                                                                                                                                                                                                                                         | Cognitive<br>Level                                                                | in                       | End S                    | ge of (<br>emest<br>nation  | ter                        |
| COI    |                                        | eration and performance of converters<br>n power switching applications.                                                                                                                                                                   | Ар                                                                                |                          | 3                        | 0%                          |                            |
| CO2    | /                                      | DC-DC converters and calculate<br>parameters of modern inverters under<br>ing modes.                                                                                                                                                       | An                                                                                |                          | 2                        | 5%                          |                            |
| CO3    | Apply the c<br>converters and          | oncept of single and three phase<br>d inverters.                                                                                                                                                                                           | Ар                                                                                |                          | 2                        | 5%                          |                            |
| CO4    | Design and sin                         | nulate the power converters.                                                                                                                                                                                                               | An                                                                                |                          | 2                        | 0%                          |                            |
| CO5    | an authentic a                         | independent learner in a team to build<br>pplication of power converter paradigm<br>discrete components and make an<br>presentation.                                                                                                       | U                                                                                 | Int                      |                          | Assessn<br>ninar)           | nent                       |

| UNIT I - SINGLE PHASE & THREE PHASE CONVERTERS                                                       | (9)       |
|------------------------------------------------------------------------------------------------------|-----------|
|                                                                                                      | · · /     |
| Principle of phase-controlled converter operation – Single-phase full converter and semi-converter ( |           |
| load) – Single phase dual converter – Three phase operation full converter and semi converter (R,    | RL, RLE   |
| load) – Power factor improvement techniques – PWM rectifiers.                                        |           |
| UNIT II - DC-DC CONVERTERS                                                                           | (9)       |
|                                                                                                      |           |
| Limitations of linear power supplies – Switched mode power conversion – Non-isolated DC- DC cor      |           |
| Operation and analysis of Buck, Boost, Buck-Boost, Cuk and SEPIC – Under continuous and discor       | ntinuous  |
| operation – Isolated converters: Basic operation of Flyback, Forward and Push pull topologies.       |           |
| UNIT III - DESIGN OF POWER CONVERTER COMPONENTS                                                      | (9)       |
|                                                                                                      |           |
| Introduction to magnetic materials- Hard and soft magnetic materials – Design of transformer –I      | nductor   |
| design equations – Examples of inductor design for buck/flyback converter-selection of outp          | ut filter |
| capacitors – Selection of ratings for devices – Input filter design.                                 |           |

### **UNIT IV - THREE PHASE INVERTERS**

180-degree and 120-degree Conduction Mode Inverters with Star and Delta-Connected Loads – Voltage Control of Three-phase Inverters: Single, Multi-pulse, Sinusoidal, and Space Vector Modulation Techniques – AC Drive System – Current Source Inverters.

### **UNIT V - MODERN INVERTERS**

Multilevel Concept and Types; Diode Clamped, Flying Capacitor, and Cascaded - Comparison of Multilevel Inverters - Application of Multilevel Inverters – PWM Techniques for MLI – Single-phase & Three-phase Impedance Source Inverters – Filters.

### TOTAL (L:45)= 45 PERIODS

### **TEXT BOOKS:**

- 1. Rashid M.H., "Power Electronics Circuits, Devices and Applications", Pearson, Fourth Edition, 10<sup>th</sup> Impression 2021.
- 2. Philip T. Krein, "Elements of Power Electronics" Indian edition Oxford University Press-2017.

### **REFERENCES:**

- 1. Jai P. Agrawal, "Power Electronics System Theory and Design", Pearson Education, First Edition, 2015.
- Ned Mohan, T.M. Undeland and W.P. Robbins, "Power Electronics: Converters, Application and Design", 3<sup>rd</sup> edition Wiley, 2007.
- 3. P.C. Sen, "Modern Power Electronics", S. Chand Publishing 2005.

|             |     |   |   | M | lapping | g of CC | Os with | POs / | PSOs |    |    |    |    |    |
|-------------|-----|---|---|---|---------|---------|---------|-------|------|----|----|----|----|----|
|             |     |   |   |   |         | PC      | Ds      |       |      |    |    |    | PS | Os |
| COs         | I   | 2 | 3 | 4 | 5       | 6       | 7       | 8     | 9    | 10 | 11 | 12 | I  | 2  |
| I           | 2   |   |   |   |         |         |         |       |      |    |    |    | I  |    |
| 2           | 3   |   |   |   |         |         |         |       |      |    |    |    | I  |    |
| 3           |     | 3 |   |   |         |         |         |       |      |    |    |    | I  |    |
| 4           |     |   | 3 |   |         |         |         |       |      |    |    |    | I  |    |
| 5           |     |   |   |   |         |         |         |       | 3    | 3  |    | 3  |    |    |
| CO<br>(W.A) | 2.5 | 3 | 3 |   |         |         |         |       | 3    | 3  |    | 3  | I  |    |

(9)

|        |                                        | 22EEX02- SPECIAL ELECTRICA                                                                                                                                                                                    | L MACHINES               |                   |               |                           |                           |
|--------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------|-------------------|---------------|---------------------------|---------------------------|
|        |                                        |                                                                                                                                                                                                               |                          | L                 | т             | Ρ                         | С                         |
|        |                                        |                                                                                                                                                                                                               |                          | 3                 | 0             | 0                         | 3                         |
| PRE-R  |                                        | NIL                                                                                                                                                                                                           |                          |                   |               |                           |                           |
| Course | e Objective:                           | <ul> <li>To understand the contorque prediction of synchron switched reluctance motor, permission synchronous motor with application.</li> <li>To analyze the movement of motor power controllers.</li> </ul> | manent magnet br<br>ons. | notor,<br>rushles | stepp<br>s DC | per m<br>motor            | otor,<br><sup>-</sup> and |
|        | e <b>Outcomes</b><br>dent will be able | to                                                                                                                                                                                                            | Cognitive<br>Level       | in                | End S         | ge of (<br>emes<br>inatio | ter                       |
| COI    | with different                         | que prediction theory in various motors<br>features, phasor diagram, driver circuits<br>s of special electrical machines.                                                                                     | Ар                       | 0%                |               |                           |                           |
| CO2    | Apply the vari<br>real time appli      | ous types of special electrical machines in cations.                                                                                                                                                          | Ap                       | 2                 | 0%            |                           |                           |
| CO3    |                                        | e ideas about the performance of various special electrical machines and losed loop operation.                                                                                                                | An                       | 15%               |               | 5%                        |                           |
| CO4    | •                                      | ower controller circuit for a given evaluate the characteristics.                                                                                                                                             | Ap                       |                   | 2             | 5%                        |                           |
| CO5    | authentic app                          | independent learner in a team to build an<br>lications of special electrical machines<br>el using different controllers and make an<br>presentation.                                                          | С                        | Int               |               | Assessr<br>ninar)         | nent                      |

### **UNIT I - SYNCHRONOUS RELUCTANCE MOTORS**

Constructional features – Types: Axial and Radial flux motors – Operating principles – Variable Reluctance and Hybrid motors – Voltage and Torque equations – Phasor diagram – Characteristics – Applications.

### UNIT II - STEPPING MOTORS

Constructional features – Principle of operation – Types – Theory of torque predictions – Modes of excitations – Characteristics – Drive circuits – Microprocessor control of stepping motors – Closed-loop control – Applications.

### UNIT III - SWITCHED RELUCTANCE MOTORS

Constructional features – Principle of operation – Torque prediction – Power converters and their controllers – Methods of rotor position sensing – Closed-loop control of SRM – Characteristics – Applications.

(9)

(9)

### UNIT IV - PERMANENT MAGNET BRUSHLESS D.C. MOTORS

Permanent Magnet materials and it's characteristics – Principle of operation – Types – EMF and Torque equations – Electronic commutator – Power controllers – Motor characteristics and control – Applications.

### **UNIT V - PERMANENT MAGNET SYNCHRONOUS MOTORS**

(9)

Principle of operation – EMF and Torque equations – Sine wave motor with practical windings – Phasor diagram – Torque/Speed characteristics – Power controllers – Converter Volt-Ampere requirements – Applications.

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS**:

- 1. Bilgin, Berker Emadi, Ali Jiang, James Weisheng Switched reluctance motor drives: fundamentals to applications- CRC 2019.
- 2. R. Krishnan Switched Reluctance Motor Drives Modeling, Simulation, Analysis, Design, and Applications CRC Press 2017.

### **REFERENCES:**

- I. E.G. Janardanan, "Special Electrical Machines," PHI learning Private Limited, Delhi, 2014.
- 2. R. Krishnan, "Switched Reluctance Motor Drives Modeling, Simulation, Analysis, Design and Application," CRC Press, New York, 2014.
- 3. T. Kenjo, "Stepping Motors and Their Microprocessor Controls," 3rd Edition, Oxford University Press, New Delhi, 2009.

|             |     |   |   | M | lapping | g of CC | Os with | POs / | PSOs |    |    |    |    |    |
|-------------|-----|---|---|---|---------|---------|---------|-------|------|----|----|----|----|----|
|             |     |   |   |   |         | PC      | Ds      |       |      |    |    |    | PS | Os |
| COs         | I   | 2 | 3 | 4 | 5       | 6       | 7       | 8     | 9    | 10 | 11 | 12 | I  | 2  |
| I           | 3   |   |   |   |         |         |         |       |      |    |    |    |    |    |
| 2           | 2   | 2 |   |   |         |         |         |       |      |    |    |    |    |    |
| 3           |     | 2 |   |   |         |         |         |       |      |    |    |    | 3  |    |
| 4           | 3   |   |   |   |         |         |         |       |      |    |    |    |    |    |
| 5           |     |   |   |   |         |         |         |       | 3    |    | 3  | 3  |    |    |
| CO<br>(W.A) | 2.6 | 2 |   |   |         |         |         |       | 3    |    | 3  | 3  | 3  |    |



|        |                                 | 22EEX03- DESIGN OF ELECTRIC                                                                                                                              | AL MACHINES        |       |         |                             |     |
|--------|---------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-------|---------|-----------------------------|-----|
|        |                                 |                                                                                                                                                          |                    | L     | Т       | Ρ                           | С   |
|        |                                 |                                                                                                                                                          |                    | 3     | 0       | 0                           | 3   |
| PRE-R  | EQUISITE : N                    | IIL                                                                                                                                                      |                    |       |         |                             |     |
|        |                                 | <ul> <li>To study Design considerations,<br/>of various electrical machines.</li> <li>To realize the design procedure</li> </ul>                         | -                  | -     |         |                             | -   |
| -      |                                 | machines.                                                                                                                                                | <i>.</i> .         |       |         |                             |     |
| Course | e Objective:                    | <ul> <li>To understand the design proced<br/>cooling systems of transformers.</li> </ul>                                                                 | ures of yoke, core | and v | vinding | gs, tank                    | and |
|        |                                 | <ul> <li>To grasp the design procedures of</li> <li>To comprehend the design proce<br/>machines.</li> </ul>                                              |                    |       |         |                             |     |
|        | e Outcomes<br>dent will be able |                                                                                                                                                          | Cognitive<br>Level | in    | End S   | ge of (<br>emest<br>ination | ter |
| COI    | design of elec                  | neral concepts and constraints in the ctrical DC and AC machines including ects considerations.                                                          | Ар                 |       | 2       | 0%                          |     |
| CO2    | electrical engir                | wledge of fundamental principles, factors,<br>neering materials and use of existing tools<br>of electrical machines.                                     | Ар                 |       | 2       | 0%                          |     |
| CO3    | '                               | ffect of dimensions of the different parts trical machines on the output and losses.                                                                     | An                 |       | 2       | 0%                          |     |
| CO4    | -                               | mensions of different parts and details of ctrical DC and AC machines.                                                                                   | С                  |       | 4       | 0%                          |     |
| CO5    | engineering to                  | with team members and learn<br>to create solutions using effective<br>ols and develop mini projects that meet<br>of real-world Electrical machine design | С                  |       |         | Assessn<br>y Perso          |     |

| UNIT I- FUNDAMENTAL ASPECTS OF ELECTRICAL MACHINE DESIGN                                               | (9)       |
|--------------------------------------------------------------------------------------------------------|-----------|
| Major considerations in Electrical Machine Design – Electrical Engineering Materials – Space factor –C | hoice of  |
| Specific Electrical and Magnetic loadings – Thermal considerations - Heat flow – Temperature rise-R    | Rating of |
| machines – Standard specifications – Introduction to Computer Aided Design.                            |           |
| UNIT II – DC MACHINES                                                                                  | (9)       |
| Output Equations – Main Dimensions - Magnetic circuit calculations – Carter's Coefficient –Net Le      | ength of  |
| Iron – Real & Apparent flux densities – Selection of number of poles - Design of Armature - D          | esign of  |
| Commutator and brushes - Design of Field.                                                              |           |

### UNIT III – TRANSFORMERS

Output Equations – Main Dimensions – KVA output for single and three phase transformers–Window space factor – Design of yoke, core and winding for core and shell type transformer – Estimation of No load current – Temperature rise in Transformers–Design of Tank and cooling tubes.

### UNIT IV – THREE PHASE INDUCTION MOTORS

Output equation of Induction motor – Main dimensions – Design of Stator – Length of Air gap – Design of squirrel cage rotor and wound rotor – Operating Characteristics: Magnetizing current and Short circuit current.

### UNIT V – THREE PHASE SYNCHRONOUS MACHINES

Output equations – choice of loadings – Design of salient pole machines – Runaway speed - Short circuit ratio –shape of pole face – Armature design – Estimation of Air gap length – Design of rotor –Design of damper winding – Determination of full load field MMF – Design of field windings – Design of Turbo alternators.

### TOTAL = 45 PERIODS

### **TEXT BOOKS**:

- "A Course in Electrical Machine Design" by A.K. SAWHNEY, Dhanpat Rai & Co. (P) LTD, 6<sup>th</sup> Edition, Educational and Technical Publishers, Reprint: 2019.
- 2. "Design of Electrical Machines" by K.G.Upadhaya, New Age International Publishers, New Delhi 2017.

### **REFERENCES:**

- 1. "Electrical Machine Design" by R.K.Agarwal, S.Kataria & Sons, 5th Edition, New Delhi Reprint, 2014.
- 2. "Design of Electrical Machines" by Mittle V N, Mittle A, Standard Publishers Distributors, 5th Edition, New Delhi, 2013.
- 3. "Principles of Electrical machine Design" by S.K.Sen, 3<sup>rd</sup> Edition, Oxford & IBH publishing Co. Pvt. Ltd., 13<sup>th</sup> September 2014.

|             |     |   |   |   |   | Po | DS |   |   |    |    |    | PS | SOs |  |
|-------------|-----|---|---|---|---|----|----|---|---|----|----|----|----|-----|--|
| COs         | I   | 2 | 3 | 4 | 5 | 6  | 7  | 8 | 9 | 10 | 11 | 12 | I  | 2   |  |
| I           | 2   |   |   |   |   |    |    |   |   |    |    |    |    |     |  |
| 2           | 3   |   |   |   | 2 |    |    |   |   |    |    |    |    |     |  |
| 3           |     | 3 |   |   |   |    |    |   |   |    |    |    |    |     |  |
| 4           |     |   | 3 |   |   |    |    |   |   |    |    |    | 3  | 2   |  |
| 5           |     |   |   |   | 2 |    |    |   | 2 |    |    | 2  |    | 2   |  |
| CO<br>(W.A) | 2.5 | 3 | 3 |   | 2 |    |    |   | 2 |    |    | 2  | 3  | 2   |  |



(9)

(9)

|        |                                          | 22EEX04-ANALYSIS OF IN                                                                                                                                                                                                                                      | VERTERS                                                     |                             |                                |                                   |     |
|--------|------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------|--------------------------------|-----------------------------------|-----|
|        |                                          |                                                                                                                                                                                                                                                             |                                                             | L                           | Т                              | Р                                 | С   |
|        |                                          |                                                                                                                                                                                                                                                             |                                                             | 3                           | 0                              | 0                                 | 3   |
| PRE-R  | EQUISITE : N                             | NIL                                                                                                                                                                                                                                                         |                                                             |                             |                                |                                   |     |
| Course | e Objective:                             | <ul> <li>To understand the various operation power converters</li> <li>To impart knowledge on voltage s</li> <li>To Understand the topology of Z systems.</li> <li>To explore different resonant puls</li> <li>To impart knowledge on multilever</li> </ul> | ource and current<br>-source networks<br>e inverter topolog | source<br>in pow<br>ies and | e invert<br>rer elec<br>config | er<br>tronic<br>uratior           |     |
|        | e <b>Outcomes</b><br>dent will be able   | e to                                                                                                                                                                                                                                                        | Cognitive<br>Level                                          | in                          | End S                          | ge of <b>C</b><br>emest<br>natior | ter |
| соі    | Analyze the construction sketch their ch | oncept of various types of inverters and naracteristics.                                                                                                                                                                                                    | An                                                          |                             | 3                              | 0%                                |     |
| CO2    | related to Z- s<br>evaluate the          | n- solving skills in addressing challenges<br>source inverter design and operation and<br>performance and efficiency of resonant<br>s in various operating conditions                                                                                       | Ap, E                                                       |                             | 2                              | 0%                                |     |
| CO3    |                                          | operation of single-phase circuit and he inverter circuits.                                                                                                                                                                                                 | An                                                          |                             | 3                              | 0%                                |     |
| CO4    | Design the in<br>loads                   | werters for generic loads and machine                                                                                                                                                                                                                       | С                                                           |                             | 2                              | 0%                                |     |
| CO5    | an authentic a                           | independent learner in a team to build<br>application of inverters paradigm model<br>components and make an effective oral                                                                                                                                  | С                                                           | -                           |                                | Assessn<br>nt/Sem                 |     |

### UNIT I- SINGLE PHASE INVERTERS

Introduction – principle of operation – performance parameters – single phase half bridge inverters – single phase full bridge inverter – single phase series inverter – single phase parallel inverter - modified McMurray inverter– McMurray bedford half bridge and full inverter-voltage control of single phase inverters

# UNIT II – THREE PHASE VOLTAGE SOURCE AND CURRENT SOURCE INVERTER

(9)

(9)

Three phase bridge inverter with  $180^{\circ}$  and  $120^{\circ}$  mode of operation – voltage control of three phase inverters - analysis of single phase and three phase auto sequential current source inverter - current source bridge inverter-harmonic elimination techniques

### **UNIT III - Z-SOURCEINVERTERS**

Comparison with VSI and CSI-principle of operation, equivalent circuit and analysis. Introduction to Quasi Z- source inverter-basic topology-Extended boost quasi Z- source inverter topologies

### **UNIT IV - RESONANT PULSE INVERTERS**

Introduction - series resonant inverters with unidirectional and bidirectional switches - parallel resonant inverters- class e resonant inverter - zero current switching resonant converter - zero voltage switching resonant converter - two quadrant ZVS resonant converter - resonant dc link inverter

### **UNIT V – MULTILEVEL INVERTERS**

Multilevel concept – types – diode clamped – flying capacitor – cascade h bridge multilevel inverters- 3 level- 5 level - comparison of multi-level inverters - applications of multilevel inverters

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS**:

- Ι. Rashid M.H, "Power Electronics – Circuits, Devices & Applications", 4th edition, Pearson Education. 2017.
- P.S.Bimbra, "Power Electronics", Khanna Publishers, 7<sup>th</sup> Edition, 2022. 2.

### **REFERENCES:**

- 1. Fang Lin luo, Hong Ye, "Advanced DC/AC Inverters: Applications in Renewable Energy" CRC press, Taylor and Francis Group, 2013.
- 2. Mohan .N, Undeland & Robbins, "Power Electronics Converters, Application & Design", John Wiley & Sons, Inc, 3<sup>rd</sup> Edition, Newyork, 2002.
- 3. P.C Sen, "Modern Power Electronics", S.Chand Ltd., 2<sup>nd</sup> Edition, 2005.
- 4. M.D. Singh & K.B. Khanchandani, "Power Electronics", Tata Mc Graw Hill Publishing Company Limited, 2<sup>nd</sup> edition, 2017.

|             |   |   |   | M | lapping | g of CC | Os with | POs / | PSOs |    |    |    |     |     |
|-------------|---|---|---|---|---------|---------|---------|-------|------|----|----|----|-----|-----|
|             |   |   |   |   |         | PC      | Ds      |       |      |    |    |    | PS  | Os  |
| COs         | I | 2 | 3 | 4 | 5       | 6       | 7       | 8     | 9    | 10 | 11 | 12 | I   | 2   |
| Ι           |   | 3 |   |   |         |         |         |       |      |    |    |    | 2   | 2   |
| 2           | 2 |   |   | 2 |         |         |         |       |      |    |    |    | 3   |     |
| 3           |   | 3 |   |   |         |         |         |       |      |    |    |    | 2   | 3   |
| 4           |   |   | 2 |   |         |         |         |       |      |    |    |    | 3   | 2   |
| 5           |   |   |   | 2 |         |         |         |       | 2    | 2  |    | I  |     |     |
| CO<br>(W.A) | 2 | 3 | 2 | 2 |         |         |         |       | 2    | 2  |    | I  | 2.5 | 2.3 |



(9)

(9)

|        |                                              | 22EEX05- WIND AND SOLAR EN                                                                                                                                                                               | ERGY SYSTEMS       | 1   |       |                            |     |  |  |
|--------|----------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----|-------|----------------------------|-----|--|--|
|        |                                              |                                                                                                                                                                                                          |                    | L   | Т     | Ρ                          | С   |  |  |
|        |                                              |                                                                                                                                                                                                          |                    | 3   | 0     | 0                          | 3   |  |  |
| PRE-R  | REQUISITE : 1                                |                                                                                                                                                                                                          |                    |     |       |                            |     |  |  |
|        |                                              | • To study the concepts of wind en                                                                                                                                                                       |                    |     |       |                            |     |  |  |
|        |                                              | • To understand the new developm                                                                                                                                                                         | •                  |     | em    |                            |     |  |  |
| Course | e Objective:                                 | • To motivate the students to desig                                                                                                                                                                      | , , ,              |     | _     |                            | _   |  |  |
|        | ·                                            | <ul> <li>To provide students with a solid<br/>engineering fundamentals requ<br/>problems</li> </ul>                                                                                                      |                    |     |       |                            |     |  |  |
|        | e <b>Outcomes</b><br>dent will be able       | to                                                                                                                                                                                                       | Cognitive<br>Level | in  | End S | ge of C<br>emest<br>nation | ter |  |  |
| COI    | ,                                            | ature, occurrence, and characteristics of<br>r energy system                                                                                                                                             | An                 | 30% |       |                            |     |  |  |
| CO2    |                                              | zation techniques such as Maximum<br>Tracking (MPPT) in PV system design                                                                                                                                 | Ар                 | 30% |       |                            |     |  |  |
| CO3    | / /                                          | erformance of PV models and equivalent<br>different environmental conditions                                                                                                                             | An                 |     | 2     | 0%                         |     |  |  |
| CO4    | 0                                            | c photovoltaic systems for power cluding power conditioning and storage.                                                                                                                                 | С                  |     | 2     | 0%                         |     |  |  |
| CO5    | photovoltaic<br>the developn<br>work collabo | I tools to simulate the performance of<br>systems, adhere to ethical standards in<br>nent and deployment of PV systems,<br>ratively to address technical issues and<br>performance of hybrid wind and PV | Ар                 | -   |       | Assessn<br>hent/Q          |     |  |  |

### **UNIT I – WIND ENERGY CONVERSION**

Wind resources – Nature and occurrence of wind – Power in the wind – Wind characteristics – Principles of wind energy conversions – Components of wind energy conversion system (WECS) – Classification of WECS – Advantages and disadvantages of WECS.

### UNIT II – WIND ELECTRIC GENERATORS

Characteristics of Induction generators – Permanent magnet generators – Single phase operation of induction generators – Doubly fed generators – Grid connected and standalone systems – Controllers for wind driven self-excited systems and capacitor excited isolated systems – Synchronized operation with grid supply – Real and reactive power control.

### UNIT III - PHOTO VOLTAIC MODELS

Solar cells and panels – Structure of PV cells – Semiconductor materials for PV cells – I-V characteristics of PV systems – PV models and equivalent circuits- Effects of irradiance and temperature on PV characteristics.

(9)

(9)

## UNIT IV - PHOTO VOLTAIC ENERGY CONVERSION SYSTEM

Introduction to PIC microcontrollers-Overview and features-PIC 16FXX architecture- Memory organization - Register File Structure-Timer module-CCP module – Addressing Modes-Classification of instructions.

### UNIT V – RECENT ADVANCEMENTS IN WIND AND PV SYSTEMS

Wind farms and grid connections – Grid related problems on absorption of wind – Grid interfacing arrangement – Operation, control and technical issues of wind generated electrical energy – Interconnected operation – Hybrid systems.

Recent Advances in PV Applications: Building Integrated PV systems, Grid Connected PV systems, Hybrid systems, Solar cars, Solar energy storage system and their economic aspects.

### TOTAL (L:45) = 45 PERIODS

### TEXT BOOKS:

- 1. Ashish Chandra and Taru Chandra, Non-conventional Energy Resources, 2<sup>nd</sup> Edn., Khanna Publishers, 2021.
- 2. B.H. Khan, "Non-conventional Energy Resources", Tata McGraw Hill Education India Pvt. Ltd., Third Edition, 2017.

### **REFERENCES**:

- G.N. Tiwari, "Solar Energy: Fundamentals, Design, Modeling & Application", Narosa Publishing House, 2013.
- D.S.Chauhan, S.K. Srivastava, "Non Conventional Energy Resources", 3<sup>rd</sup> Ed., New Age Publishers, 2012.
- 3. D.P.Kothari and K.C.Singhal,"RenewableEnergy Sources and Emerging Technologies", P.H.I. 2<sup>nd</sup> Ed., 2011.

|             |   |     |   | ۲ | lappin | g of C | Os witł | n POs / | <b>PSO</b> s |    |    |    |    |     |
|-------------|---|-----|---|---|--------|--------|---------|---------|--------------|----|----|----|----|-----|
|             |   |     |   |   |        | PC     | Ds      |         |              |    |    |    | PS | Os  |
| COs         | Ι | 2   | 3 | 4 | 5      | 6      | 7       | 8       | 9            | 10 | 11 | 12 | I  | 2   |
| I           |   | 3   |   |   |        |        |         |         |              |    |    |    | I  | 3   |
| 2           | 3 |     |   |   |        |        |         |         |              |    |    |    | I  | 2   |
| 3           |   | 2   |   |   |        |        |         |         |              |    |    |    | I  | 2   |
| 4           |   |     | 2 |   |        |        |         |         |              |    |    |    | I  | 2   |
| 5           | 3 |     |   |   | 2      |        |         | I       | I            |    |    |    | I  | 3   |
| CO<br>(W.A) | 3 | 2.5 | 2 |   | 2      |        |         | I       | I            |    |    |    | I  | 2.4 |



(9)

|        |                                        | 22EEX06- IoT FOR SMART S                                                                                                                               | SYSTEMS            |    |       |                                    |     |
|--------|----------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----|-------|------------------------------------|-----|
|        |                                        |                                                                                                                                                        |                    | L  | т     | Ρ                                  | С   |
|        |                                        |                                                                                                                                                        |                    | 3  | 0     | 0                                  | 3   |
| PRE-R  |                                        | NIL                                                                                                                                                    |                    |    |       |                                    |     |
| Course | e Objective:                           | <ul> <li>To familiarize the activation techniques of Internet of Things for</li> <li>To provide insight about the ember Internet of Things.</li> </ul> | -                  |    |       | nmunic<br>require                  |     |
|        | e <b>Outcomes</b><br>dent will be able | to                                                                                                                                                     | Cognitive<br>Level | in | End S | ge of <b>C</b><br>emest<br>inatior | ter |
| COI    |                                        | architecture, different protocols and<br>n technologies used in IoT in smart                                                                           | Ap                 |    | 3     | 0%                                 |     |
| CO2    |                                        | t platforms, protocols and technologies<br>T in smart grids.                                                                                           | Ap                 |    | 3     | 0%                                 |     |
| CO3    | Analyze the c                          | oncepts of IoT and the big data analytic<br>ing of IoT                                                                                                 | An                 |    | 2     | 0%                                 |     |
| CO4    |                                        | arious wireless technologies, architecture<br>s in IoT with case study.                                                                                | Ap                 |    | 2     | 0%                                 |     |
| CO5    | Implement IoT<br>a presentation        | solutions for smart applications and give in a team.                                                                                                   | U                  |    |       | Assessn<br>ar, Qui                 |     |

### **UNIT I - INTRODUCTION TO INTERNET OF THINGS**

Introduction - Hardware and software requirements for IOT - Sensor and actuators - Technology drivers - Business drivers - Typical IoT applications - Trends and implications.

### **UNIT II - IOT ARCHITECTURE**

IoT reference model and architecture: Node Structure, Sensing, Processing, Communication, Powering, Networking – Topologies - Layer/Stack architecture - IoT standards - Cloud computing for IoT – Bluetooth: Bluetooth Low Energy beacons.

### UNIT III - PROTOCOLS AND WIRELESS TECHNOLOGIES FOR IOT

**PROTOCOLS:** NFC, SCADA and RFID, Zigbee MIPI, M-PHY, UniPro, SPMI, SPI, M-PCIe GSM, CDMA, LTE, GPRS, small cell.

Wireless technologies for IoT: WiFi (IEEE 802.11), Bluetooth/Bluetooth Smart, ZigBee/ZigBee Smart, UWB (IEEE 802.15.4), 6LoWPAN.

(9)

(9)

### UNIT IV - IOT PROCESSORS

Services/ Attributes: Big data Analytics for IoT, Dependability, Interoperability, Security, Maintainability. **Embedded Processor for IoT:** Introduction to python programming – Building IoT with RASPERRY PI and Ardunio

### UNIT V - CASE STUDIES

Industrial IoT, Home Automation, Smart cities, Smart Grid.

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS**:

- I. Oliver Hersent, David Boswarthick and Omar Elloumi "The Internet of Things", Wiley, 2016.
- 2. Lingyang Song/DusitNiyato/ Zhu Han/ Ekram Hossain," Wireless Device-to-Device Communications and Networks, CAMBRIDGE UNIVERSITY PRESS,2015.
- 3. Samuel Greengard, "The Internet of Things", The MIT press, 2015.

### **REFERENCES**:

- 1. ArshdeepBahga and VijaiMadisetti : A Hands-on Approach "Internet of Things", Universities Press 2015.
- 2. Vijay Madisetti , ArshdeepBahga, "Internet of Things (A Hands on-Approach)", 2014.
- 3. Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", John Wiley and sons, 2014.
- 4. Lars T.Berger and Krzysztof Iniewski, "Smart Grid applications, communications and security", Wiley, 2015.
- 5. UpenaDalal,"Wireless Communications & Networks,Oxford,2015.

|             |     |   |   | M | lapping | g of CC | Ds with | POs / | PSOs |    |    |    |    |    |
|-------------|-----|---|---|---|---------|---------|---------|-------|------|----|----|----|----|----|
|             |     |   |   |   |         | PC      | Os      |       |      |    |    |    | PS | Os |
| COs         | I   | 2 | 3 | 4 | 5       | 6       | 7       | 8     | 9    | 10 | 11 | 12 | I  | 2  |
| I           | 3   |   |   |   |         |         |         |       |      |    |    |    | 3  |    |
| 2           | 3   |   |   |   |         |         |         |       |      |    |    |    | 3  |    |
| 3           |     | 2 |   |   |         |         |         |       |      |    |    |    | 3  |    |
| 4           | 2   |   |   |   |         |         |         |       |      |    |    |    | 3  |    |
| 5           |     |   |   |   |         |         |         |       | 3    |    |    | 3  |    |    |
| CO<br>(W.A) | 2.6 | 2 |   |   |         |         |         |       | 3    |    |    | 3  | 3  |    |



(9)

|        | 22EE                                     | EX07 - MODERN POWER ELECTRO                                                                                                        | ERS                    |       |        |                             |      |
|--------|------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------|------------------------|-------|--------|-----------------------------|------|
|        |                                          |                                                                                                                                    |                        | L     | т      | Ρ                           | С    |
|        |                                          |                                                                                                                                    |                        | 3     | 0      | 0                           | 3    |
| PRE-R  | EQUISITE : N                             | IL                                                                                                                                 |                        |       |        |                             |      |
| Course | • Objective:                             | <ul> <li>To impart knowledge about Sv<br/>design of converter</li> <li>To acquire knowledge on AC –<br/>design examples</li> </ul> |                        |       |        |                             |      |
|        |                                          | To understand the multilevel inver-                                                                                                | rter and its classific | ation |        |                             |      |
|        |                                          | <ul> <li>To impart knowledge about matrix</li> </ul>                                                                               | converter and its      | modu  | lation | techni                      | ques |
|        |                                          | <ul> <li>To gain knowledge on soft switched</li> </ul>                                                                             | ed converters          |       |        |                             |      |
|        | e <b>Outcomes</b><br>dent will be able t | to                                                                                                                                 | Cognitive<br>Level     | in    | End S  | ge of (<br>emestination     | ter  |
| соі    | Examine the dif<br>time application      | ferent converters concept related to real<br>ns.                                                                                   | Ар                     |       | 2      | 0%                          |      |
| CO2    | electronics to                           | edge of mathematics, physics and<br>obtain Switched mode DC power<br>and AC-DC converters Performance<br>amples                    | AP                     |       | 3      | 0%                          |      |
| СОЗ    |                                          | ifferent multilevel inverter and matrix<br>its modulation techniques and arrive at<br>sions                                        | An                     |       | 3      | 0%                          |      |
| CO4    | meet given                               | erter using soft switching techniques to<br>specification using suitable power<br>ponents/ Engineering Tool                        | Ар                     |       | 2      | 0%                          |      |
| CO5    |                                          | pendent study as a member of a team<br>effective oral presentation on the                                                          | U                      | Inte  | (Ser   | Assessr<br>ninar,<br>nment) |      |

### UNIT I - UNIT I- SWITCHED MODE POWER SUPPLIES (SMPS)

DC Power supplies and Classification - Switched mode dc power supplies: with and without isolation, single and multiple outputs - Closed loop control and regulation - Design examples on converter and closed loop performance.

### UNIT II - AC-DC CONVERTERS

Switched mode AC-DC converters - synchronous rectification - single and three phase topologies – switching techniques - high input power factor - reduced input current harmonic distortion - improved efficiency-with and without input-output isolation - Performance indices design examples.

(9)

| UNIT III - DC-AC CONVERTERS                                                                             | (9)     |
|---------------------------------------------------------------------------------------------------------|---------|
| Multi-level Inversion - concept, classification of multilevel inverters, Principle of operation, main f | eatures |
| and analysis of Diode clamped. Flying capacitor and cascaded multilevel inverters: Modulation schem     | es.     |

### UNIT IV - AC-AC CONVERTERS WITH AND WITHOUT DC LINK

Matrix converters. Basic topology of matrix converter; Commutation – current path; Modulation techniques - scalar modulation, indirect modulation; Matrix converter as only AC-DC converter; AC-AC converter with DC link - topologies and operation - with and without resonance link - converter with dc link converter, Performance comparison with matrix converter with DC link converters.

### UNIT V – SOFT-SWITCHING POWER CONVERTERS

(9)

(9)

Soft switching techniques: ZVS, ZCS, quasi resonance operation - Performance comparison hard switched and soft switched converters - AC-DC converter - DC-DC converter - DC-AC converter - Resonant DC power supplies.

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS**:

- I. M.H.Rashid, "Power Electronics Handbook", Academic press, New york, 2000.
- Fang Lin Luo and Fang Lin Luo, "Advanced DC/DC Converters", CRC Press, NewYork, 2<sup>nd</sup> Edition,2017.
- 3. Marian P.Kazmierkowski, R.Krishnan and Frede Blaabjerg, "Control in Power Electronics- Selected Problem", Academic Press (Elsevier Science), 2002.

### **REFERENCES:**

- 1. Issa Batarseh, "Power Electronic Circuits", John Wiley and Sons, Inc.2014.
- 2. Frede Blaabjerg and Zhe Chen, "Power Electronics for Modern Wind Turbines" Morgan & Claypool Publishers series, United States of America, 2006.

|             |     |   |   | M | lapping | g of CC | <b>)</b> s with | POs / | PSOs |    |    |    |     |   |
|-------------|-----|---|---|---|---------|---------|-----------------|-------|------|----|----|----|-----|---|
|             | POs |   |   |   |         |         |                 |       |      |    |    |    |     |   |
| COs         | I   | 2 | 3 | 4 | 5       | 6       | 7               | 8     | 9    | 10 | 11 | 12 | I   | 2 |
| I           | 2   |   |   |   |         |         |                 |       |      |    |    |    | I   |   |
| 2           | 3   |   |   |   |         |         |                 |       |      |    |    |    | I   | Ι |
| 3           |     | 3 |   |   |         |         |                 |       |      |    |    |    | 2   | Ι |
| 4           |     |   | 3 |   |         |         |                 |       |      |    |    |    | 2   | Ι |
| 5           |     |   |   |   |         | I       |                 |       |      | I  |    | I  | Ι   | Ι |
| CO<br>(W.A) | 2.5 | 3 | 3 |   |         | Ι       |                 |       |      | I  |    | I  | 1.4 | I |

6.81

|        |                                 | 22EEX11 - HIGH VOLTAGE EN                                                                                               | IGINEERING |    |       |                   |     |
|--------|---------------------------------|-------------------------------------------------------------------------------------------------------------------------|------------|----|-------|-------------------|-----|
|        |                                 |                                                                                                                         |            | L  | Т     | Ρ                 | С   |
|        |                                 |                                                                                                                         |            | 3  | 0     | <b>0 0</b>        | 3   |
| PRE-R  | EQUISITE : N                    | NIL                                                                                                                     |            |    |       |                   |     |
| Course | Objective:                      | <ul> <li>To motivate students to le<br/>mechanisms</li> <li>To Understand about the Ger<br/>and high current</li> </ul> |            |    | 0     |                   |     |
|        | Outcomes<br>dent will be able   | to                                                                                                                      |            | in | End S | emes              | ter |
| соі    | ldentify the v<br>voltage and h | rarious measurement techniques of high<br>igh currents.                                                                 | Ap         |    | 2     | .0%               |     |
| CO2    | ,                               | owledge to comprehend high voltage and<br>ble dielectrics in various HV applications.                                   | An         |    | 2     | .0%               |     |
| CO3    |                                 | breakdown phenomenon and factors<br>AC and HVDC measurements.                                                           | An         |    | 4     | 0%                |     |
| CO4    | •                               | specify the suitable testing methods for power system equipment.                                                        | An         |    | 2     | .0%               |     |
| CO5    | presentation                    | dependent study to make an effective<br>on real time applications of HVE<br>power systems domain.                       |            |    |       | Assessr<br>Online |     |

| UNIT I- OVER VOLTAGES IN ELECTRICAL POWER SYSTEM                                                                                                                                                                                                                                                                                         | (9)                    |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------|
| Causes of over voltages and its effects on power system –Corona and its effects -Lightning Surges.<br>over voltages-Protection against over voltages, protection gaps, surge arresters                                                                                                                                                   | Switching              |
| UNIT II - DIELECTRIC BREAKDOWN                                                                                                                                                                                                                                                                                                           | (9)                    |
| Gaseous breakdown in uniform and non-uniform fields – Corona discharges – Vacuum brea<br>Conduction and breakdown in pure and commercial liquids-Maintenance of oil Quality– Br<br>mechanisms in solid and composite dielectrics.<br>UNIT III - GENERATION OF HIGH VOLTAGES AND HIGH CURRENTS                                            |                        |
| Generation of high AC voltages - Cascaded transformers -resonant transformer and tesla coil - G<br>of high DC voltages -Rectifier - Cockroft Walton voltage multiplier circuit - Van de Graff Ge<br>Generation of impulse and switching surges – Marx circuit-generation of high impulse current - Tri<br>control of impulse generators. | eneration<br>nerator - |
| UNIT IV - MEASUREMENT OF HIGH VOLTAGES AND HIGH<br>CURRENTS                                                                                                                                                                                                                                                                              | (9)                    |

High Resistance with series ammeter – Dividers, Resistance, Capacitance and Mixed dividers – Peak Voltmeter, Generating Voltmeters - Capacitance Voltage Transformers-Electrostatic Voltmeters – Sphere Gaps - High current shunts- High voltage measurement using CRO

### UNIT V – HIGH VOLTAGE TESTING & INSULATION COORDINATION (9)

High voltage testing of electrical power apparatus as per Indian standards – Power frequency, impulse voltage, Partial discharge and DC testing of Insulators-Circuit breakers –Bushing-Isolators and Transformers-Insulation Coordination

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS**:

- 1. S.Naidu and V. Kamaraju, —High Voltage Engineering, Tata McGraw Hill, 6th ed., 2020
- E. Kuffel and W.S. Zaengl, J.Kuffel, —High voltage Engineering fundamentals, Newnes 2<sup>nd</sup> ed., Elsevier, New Delhi, 2008.

### **REFERENCES:**

- 1. L.L. Alston, High Voltage Technology, Oxford University Press, First Indian Edition, 2011.
- 2. C.L. Wadhwa, High voltage engineering, New Age International Publishers, 3<sup>rd</sup> ed., 2012.

|             |   |     |   | M | lapping | g of CC | Os with | POs / | PSOs |    |    |    |      |   |
|-------------|---|-----|---|---|---------|---------|---------|-------|------|----|----|----|------|---|
|             |   |     |   |   |         | PC      | Os      |       |      |    |    |    | PSOs |   |
| COs         | I | 2   | 3 | 4 | 5       | 6       | 7       | 8     | 9    | 10 | 11 | 12 | I    | 2 |
| I           | 2 |     |   |   |         |         |         |       |      |    |    |    |      |   |
| 2           |   | 2   |   |   |         |         |         |       |      |    |    |    | Ι    |   |
| 3           |   | 3   |   |   |         |         |         |       |      |    |    |    | Ι    |   |
| 4           |   | 2   |   |   |         |         |         |       |      |    |    |    | Ι    |   |
| 5           |   |     |   |   |         |         |         |       | 3    |    |    | 3  | I    |   |
| CO<br>(W.A) | 2 | 2.3 |   |   |         |         |         |       | 3    |    |    | 3  | I    |   |

G. Fi

|        |                                        | 22EEX12 - HVDC TRANSMISSIO                                                                                                                                                                                                                                                                                                    | ON SYSTEMS                                                                                       |                           |                                      |                              |                       |
|--------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|---------------------------|--------------------------------------|------------------------------|-----------------------|
|        |                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                  | L                         | Т                                    | Ρ                            | С                     |
|        |                                        |                                                                                                                                                                                                                                                                                                                               |                                                                                                  | 3                         | 0                                    | 0                            | 3                     |
| PRE-R  | EQUISITE : N                           | NIL                                                                                                                                                                                                                                                                                                                           |                                                                                                  |                           |                                      |                              |                       |
| Course | e Objective:                           | <ul> <li>To introduce students with the</li> <li>To familiarize the students with system</li> <li>To expose the students to the har and their prevention</li> <li>To learn the components used a regulating the voltage angle interconnection</li> <li>To enhance their learning doma HVDC system over HVAC system</li> </ul> | the HVDC conve<br>rmonics and faults<br>nd role of power<br>and frequency<br>ain by distinguishi | occur<br>electro<br>for p | and th<br>in the<br>onics i<br>power | system<br>nvolved<br>flow    | ntrol<br>d for<br>and |
|        | e <b>Outcomes</b><br>dent will be able | to                                                                                                                                                                                                                                                                                                                            | Cognitive<br>Level                                                                               | in                        | End S                                | ge of C<br>emest<br>ination  | ter                   |
| соі    | Identify the fa                        | ault and protection schemes in HVDC                                                                                                                                                                                                                                                                                           | Ap                                                                                               |                           | 2                                    | 0%                           |                       |
| CO2    |                                        | owledge of transmission technology for<br>asmission over conventional AC                                                                                                                                                                                                                                                      | U                                                                                                |                           | 2                                    | 0%                           |                       |
| СОЗ    | operation of strategies of H           | ectifier and inverter control methods for<br>conversion and obtain the control<br>IVDC converter and its in systems.                                                                                                                                                                                                          | An                                                                                               |                           | 4                                    | 0%                           |                       |
| CO4    | Implement the transmission s           |                                                                                                                                                                                                                                                                                                                               | U                                                                                                |                           |                                      | 0%                           |                       |
| CO5    |                                        | learning and work well as a team, giving presentation related to HVDC                                                                                                                                                                                                                                                         | U                                                                                                | -                         | Semina                               | Assessr<br>ur, Onli<br>uiz,) |                       |

### UNIT I - INTRODUCTION

Introduction of DC power transmission technology - comparison of AC and DC transmission- limitation of HVDC transmission, reliability of HVDC systems - application of DC transmission - description of DC transmission system - planning for HVDC transmission - modern trends in DC transmission.

### UNIT II - ANALYSIS OF HDVC CONVERTERS

Three-phase AC–DC Conversion, six pulse converter operation - Effect of Delaying the Firing Instant -The Commutation Process - Analysis of the Commutation Circuit - Analysis neglecting commutation overlap, Rectifier Operation - Inverter Operation - Power Factor and Reactive Power - Characteristic Harmonics, DC Side Harmonics - AC Side Harmonics - Twelve Pulse Converters operation - AC/DC side voltage and current waveforms - Expressions for average dc voltage.

(9)

### **UNIT III - CONTROL OF HVDC CONVERTER & SYSTEMS**

HVDC system control, necessity of control in HVDC link - power reversal, Basic controllers - constant current and constant extinction - power control, high level controllers - Firing angle control- Individual phase control and equidistant firing angle control - Summary of converter control.

### UNIT IV – FAULT AND PROTECTION SCHEMES IN HVDC SYSTEMS

Nature and types of faults - faults on AC side of the converter stations - converter faults, fault on DC side of the systems - protection against over currents and over voltages - protection of filter units.

### UNIT V - MULTITERMINAL HVDC SYSTEMS

Types of multiterminal (MTDC) systems - parallel operation aspect of MTDC - Control of power in MTDC - Multilevel DC systems - Power upgrading and conversion of AC lines into DC lines - Parallel AC/DC systems - FACTS and FACTS converters.

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS**:

- I. Padiyar, K.R., 'HVDC transmission systems', New Age International Publisher , New Delhi, 4<sup>th</sup> edition 2023.
- 2. Kamakshaiah, S and Kamaraju, V, 'HVDC Transmission', 2<sup>nd</sup> Edition, McGraw Hill Education (India), New delhi 2020.

### **REFERENCES:**

- Arrilaga, J., 'High Voltage Direct Current Transmission', 2<sup>nd</sup> Edition, Institution of Engineering and Technology, London, 1998.
- 2. Vijay K. Sood, 'HVDC and FACTS Controllers', Kluwer Academic Publishers, New York, 2004.

|             | Mapping of COs with POs / PSOs |     |   |   |   |    |    |   |   |    |    |    |      |   |
|-------------|--------------------------------|-----|---|---|---|----|----|---|---|----|----|----|------|---|
|             |                                |     |   |   |   | PC | Ds |   |   |    |    |    | PSOs |   |
| COs         | I                              | 2   | 3 | 4 | 5 | 6  | 7  | 8 | 9 | 10 | 11 | 12 | I    | 2 |
| I           |                                | 2   |   |   |   |    |    |   |   |    |    |    | I    |   |
| 2           | 3                              |     |   |   |   |    |    |   |   |    |    |    | I    |   |
| 3           |                                | 3   |   |   |   |    |    |   |   |    |    |    | I    |   |
| 4           |                                |     | 3 |   |   |    |    |   |   |    |    |    | I    |   |
| 5           |                                |     |   |   |   | I  |    |   | I |    |    | I  |      |   |
| CO<br>(W.A) | 3                              | 2.5 | 3 |   |   | I  |    |   | I |    |    | I  | I    |   |

(9)

(9)

|        |                                        |              | 22EEX13 -                                                 | POWER QU        | JALITY     |    |         |       |                                    |        |
|--------|----------------------------------------|--------------|-----------------------------------------------------------|-----------------|------------|----|---------|-------|------------------------------------|--------|
|        |                                        |              | _                                                         |                 |            |    | L       | Т     | Ρ                                  | С      |
|        |                                        |              |                                                           |                 |            |    | 3       | 0     | 0                                  | 3      |
| PRE-R  |                                        | NIL          |                                                           |                 |            |    |         |       |                                    |        |
| Course | Objective:                             | in e<br>• To | provide know<br>electric power<br>study variou<br>rmonics | systems         |            |    | onitori | ng an | d impa                             | act on |
|        | e <b>Outcomes</b><br>dent will be able | e to         |                                                           |                 |            |    | in      | End S | ge of <b>C</b><br>emest<br>inatior | ter    |
| соі    | concerns of                            | power qual   | to comprehe<br>ity, classify, ske<br>henomena no          | etch and identi | ify        | Ap |         | 2     | 0%                                 |        |
| CO2    | presented th                           | hrough cas   | v issues and<br>e studies for<br>le remedial me           | power quali     | <b>t</b> v | An |         | 2     | 0%                                 |        |
| CO3    | Identify the h<br>mitigate harn        |              | roblems and d                                             | esign circuits  | to         | An |         | 4     | 0%                                 |        |
| CO4    |                                        |              | ed equipment<br>er quality prot                           |                 | ta         | An |         | 2     | 0%                                 |        |
| CO5    |                                        |              | t study to<br>it report on                                |                 |            | U  | -       |       | Assessn<br>Online                  |        |

### UNIT I-INTRODUCTION

Power quality-Voltage quality- Overloading - Under voltage - Sustained interruption - Sags and swells -Waveform distortion - Total Harmonic Distortion (THD) - Computer Business Equipment Manufacturers Associations (CBEMA) curve- ITI curves.

### **UNIT II - VOLTAGE SAGS AND INTERRUPTIONS**

Sources of sags and interruptions - Estimating voltage sag performance - Motor starting sags - Estimating the sag severity - Mitigation of voltage sags - Active series compensators - Static transfer switches and fast transfer switches.

### UNIT III - OVERVOLTAGES

Sources of Transient Over voltages - Principles of Over voltage Protection - Capacitor switching -Lightning- Ferro resonance - Mitigation of voltage swells - Surge arresters - Low pass filters - Power conditioners – Lightning protection – Shielding - Line arresters - Protection of transformers and cables.

### **UNIT IV - HARMONICS**

Introduction –harmonics indices, inter harmonics, notching – voltage Vs current distortion – harmonics Vs transients – sources and effects of harmonic distortion – mitigation and control techniques– passive and active filters for harmonic reduction

(9)

(9)

(9)

### **UNIT V – POWER QUALITY MONITORING**

Monitoring considerations – Applications of expert systems for power quality monitoring - Assessment of power quality measurement data and power conditioning equipment's – Harmonic / Spectrum analyzer, Flicker meters and Disturbance analyzer.

### TOTAL = 45 PERIODS

### TEXT BOOKS:

- Roger C. Dugan, Mark F. McGranaghan, H. Wayne Beaty, "Electrical Power Systems Quality", 3<sup>rd</sup> Edition, McGraw-Hill, New York, Reprint 2017.
- 2. Sankaran.C, "Power Quality", 1<sup>st</sup> Edition CRC Press, Washington, D.C., 2017.

### **REFERENCES**:

1. J. Arrillaga, N.R. Watson, S. Chen, "Power System Quality Assessment", New York: Wiley, 2014.

2. M.H.J Bollen, "Understanding Power Quality Problems: Voltage Sags and Interruptions", New York: IEEE Press, 2011.

|             |   |     |   | M | lapping | g of CC | Os with | POs / | PSOs |    |    |    |      |   |
|-------------|---|-----|---|---|---------|---------|---------|-------|------|----|----|----|------|---|
|             |   |     |   |   |         | PC      | Ds      |       |      |    |    |    | PSOs |   |
| COs         | I | 2   | 3 | 4 | 5       | 6       | 7       | 8     | 9    | 10 | 11 | 12 | I    | 2 |
| I           | 2 |     |   |   |         |         |         |       |      |    |    |    | I    |   |
| 2           |   | 2   |   |   |         |         |         |       |      |    |    |    | I    |   |
| 3           |   | 3   |   |   |         |         |         |       |      |    |    |    |      |   |
| 4           |   | 2   |   |   |         |         |         |       |      |    |    |    | I    |   |
| 5           |   |     |   |   |         |         |         |       | 3    | 3  |    | 3  |      |   |
| CO<br>(W.A) | 3 | 2.3 |   |   |         |         |         |       | 3    | 3  |    | 3  | I    |   |

6.80

|        | 22E                                    | EX14 - POWER SYSTEM OPERATIO                                                                                                                   | ON AND CONT         | ROL     |        |                                    |     |  |
|--------|----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|---------------------|---------|--------|------------------------------------|-----|--|
|        |                                        |                                                                                                                                                |                     | L       | т      | Ρ                                  | С   |  |
|        |                                        |                                                                                                                                                |                     | 3       | 0      | 0                                  | 3   |  |
| PRE-R  | EQUISITE : N                           | NIL                                                                                                                                            |                     |         |        |                                    |     |  |
|        | Ohiostinu                              | • To apply the tools like load curv<br>estimate the future demand and                                                                          | to predict the rese | erve ca | pacity | •                                  |     |  |
| Course | e Objective:                           | <ul> <li>To explain the hardware compon<br/>voltage control, economic load<br/>system monitoring and control.</li> </ul>                       | •                   | •       |        | ,                                  |     |  |
|        | e <b>Outcomes</b><br>dent will be able | e to                                                                                                                                           | Cognitive<br>Level  | in      | End S  | ge of <b>(</b><br>emest<br>inatior | ter |  |
| соі    |                                        | s strategies of frequency and voltage<br>nes to control real & reactive power.                                                                 | Ap                  | 20%     |        |                                    |     |  |
| CO2    | implemented                            | analyze the control actions that are<br>to meet the minute-to minute variation<br>power demand.                                                | An                  |         | 2      | 0%                                 |     |  |
| CO3    | -                                      | operation and model static & dynamic<br>s of LFC and AVR of power system.                                                                      | An                  |         | 4      | 0%                                 |     |  |
| CO4    | e e                                    | ontrol area schemes to find the efficient<br>batch problem for smooth operation of                                                             | Ар                  |         | 2      | 0%                                 |     |  |
| CO5    | system contro                          | dating the technical knowledge of power<br>of using modern tools & deliver the skills<br>whenever and wherever necessary to<br>pocietal needs. | U                   | -       |        | Assessn<br>Assignr                 |     |  |

# UNIT I - INTRODUCTION (9) Power scenario in Indian grid, Need for voltage and frequency regulation in power system, System load characteristics, load curves, Load-duration curve, load factor and diversity factor – Reserve requirements – Overview of power system operation: Load forecasting, unit commitment and load dispatching – Overview of power system control – Plant level and System level controls (block diagram approach only). UNIT II – REAL POWER – FREQUENCY CONTROL (9) Basics of speed governing mechanism and medeling – Speed load characteristics – Load sharing in parallel

Basics of speed governing mechanism and modeling – Speed-load characteristics – Load sharing in parallel operation – Control area concept – LFC control of a single-area system – Static and dynamic analysis of uncontrolled and controlled cases.

### UNIT III – REACTIVE POWER-VOLTAGE CONTROL

Generation and absorption of reactive power – Automatic Voltage Regulator (AVR): brushless AC excitation system - Block diagram representation of AVR loop – Static and dynamic analysis - Methods of voltage control: tap changing transformer, SVC (TCR + TSC).

### UNIT IV - UNIT COMMITMENT AND ECONOMIC DISPATCH

Statement of unit commitment problem – Constraints – Priority-list method – Forward dynamic programming, Formulation of economic dispatch problem – Input and output characteristics of thermal plant - Incremental cost curve – Coordination equations without and with loss (No derivation of loss coefficients) – Solution by direct method and  $\lambda$ -iteration method.

### UNIT V – COMPUTER CONTROL OF POWER SYSTEMS

(9)

Need for computer control of power systems – Concept of energy control centre – Functions – System monitoring – Data acquisition and control – System hardware configuration – SCADA and EMS functions – Various operating states – State transition diagram.

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS**:

- I. V.Ramanathan, P.S.Manoharan, 'Power System Operation and Control' Third Edition, 2015, Charulatha Publications, Chennai.
- Allen J Wood, Bruce F Wollenberg, Gerald B Sheble, "Power Generation Operation and Control", 2014, 3<sup>rd</sup> Edition, John Wiley Publication.

### **REFERENCES:**

- Olle. I. Elgerd, "Electric Energy Systems Theory An Introduction", 2nd Edition, 46<sup>th</sup> reprint, McGraw- Hill Education, 2017
- 2. John J. Grainger, William D. Stevenson, Gary W. Chang, "Power System Analysis", 2016, McGraw-Hill Education.
- 3. Kundur, Prabha S, "Power System Stability and Control", 3<sup>rd</sup> edition, CRC Press, 2017

|             |     |   |   | Μ | apping | g of CC | <b>)</b> s with | POs / | <b>PSO</b> s |    |   |    |     |     |
|-------------|-----|---|---|---|--------|---------|-----------------|-------|--------------|----|---|----|-----|-----|
|             | POs |   |   |   |        |         |                 |       |              |    |   |    |     |     |
| COs         | Ι   | 2 | 3 | 4 | 5      | 6       | 7               | 8     | 9            | 10 | П | 12 | I   | 2   |
| Ι           | 3   | 2 |   |   |        |         |                 |       |              |    |   |    |     |     |
| 2           |     | Ι |   |   |        |         |                 |       |              |    |   |    | I   |     |
| 3           | Ι   | 3 | I | 2 |        |         |                 |       |              |    |   |    | 3   | 3   |
| 4           | 2   |   | 3 | 2 |        |         |                 |       |              |    |   |    | 3   | 3   |
| 5           |     |   |   |   | 2      | I       |                 |       | 2            |    |   | 2  |     | 2   |
| CO<br>(W.A) | 2   | 2 | 2 | 2 | 2      | I       |                 |       | 2            |    |   | 2  | 2.3 | 2.6 |



(9)

| 22EEX15- FUNDAMENTALS OF ELECTRIC POWER UTILIZATION |                                                                  |                                                                     |                                                                                            |                                                    |   |   |   |  |  |  |
|-----------------------------------------------------|------------------------------------------------------------------|---------------------------------------------------------------------|--------------------------------------------------------------------------------------------|----------------------------------------------------|---|---|---|--|--|--|
|                                                     |                                                                  |                                                                     |                                                                                            | L                                                  | Т | Р | С |  |  |  |
|                                                     |                                                                  |                                                                     |                                                                                            | 3                                                  | 0 | 0 | 3 |  |  |  |
| PRE-R                                               | PRE-REQUISITE : NIL                                              |                                                                     |                                                                                            |                                                    |   |   |   |  |  |  |
| Course Objective: and welding.                      |                                                                  |                                                                     | h the concept of electrical energy for heating main by electric traction systems and their |                                                    |   |   |   |  |  |  |
|                                                     | e <b>Outcomes</b><br>dent will be able                           | e to                                                                | Cognitive<br>Level                                                                         | Weightage of COs<br>in End Semester<br>Examination |   |   |   |  |  |  |
| соі                                                 | Apply the kn<br>different tract                                  | owledge of electric drives concept in ion effort.                   | Ар                                                                                         | 20%                                                |   |   |   |  |  |  |
| CO2                                                 | Analyze the ill                                                  | umination system for energy saving.                                 | An                                                                                         | 20%                                                |   |   |   |  |  |  |
| CO3                                                 |                                                                  | processes, types, applications and s of electric power utilization. | An                                                                                         | 20%                                                |   |   |   |  |  |  |
| CO4                                                 | Demonstrate<br>heating and w<br>efficient dome<br>specific house | Ар                                                                  | 40%                                                                                        |                                                    |   |   |   |  |  |  |
| CO5                                                 | Hire in appr<br>utilization usin<br>the team to pr               |                                                                     | Assessment<br>minar)                                                                       |                                                    |   |   |   |  |  |  |

### UNIT I – ELECTRIC HEATING

Electric Heating – Advantages- Modes of heat transfer -Methods of Electric heating – Resistance heating – requirement of a heating element – design of heating element – Arc furnaces – Induction heating- Core type Induction Furnace and Coreless Induction furnace – Eddy current Heating

### UNIT II – ILLUMINATION

Introduction – Definition and meaning of terms used in illumination engineering – Laws of illumination, lighting calculations -Classification of light sources – Incandescent lamps, mercury vapour lamps, fluorescent lamps – Design of illumination systems – Indoor lighting schemes – Factory lighting halls – Outdoor lighting schemes – Flood lighting – Street lighting – Energy saving lamps, LED.

### UNIT III – WELDING

Welding – Welding processes – Types – Resistance welding – Arc welding – Power supply for arc welding - Electrodes for metal arc welding – Arc Welding machines – VI characteristics – DC welding machine with motor-generator set – AC Welding Machines, Types of Welding – TIG, MIG, MAG, resistance Welding, Spot Welding, Butt Welding, Projection Welding and Electron Beam Welding

(9)

(9)

### **UNIT IV – ELECTRIC TRACTION**

Traction system - Speed- Time characteristics - Series and parallel control of D.C motors - Open circuited, shunt and bridge transitions - Traction effort calculation - Electric braking - Tramways and trolley bus - A.C traction and its recent trends.

### UNIT V – FANS AND PUMPS

Fans – Types, Characteristics and Typical applications, Fan curves – Fan Laws – Flow Control Strategies – Energy Saving Opportunities in fans - Pumps: Types, System Characteristics, Pump curves - Flow control strategies - Energy Conservation opportunities in Pumps

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS:**

- I. J.B.Gupta, "Utilisation Electric power and Electric Traction", S.K.Kataria and Sons, Newdelhi 10th edition, 2019.
- 2. "Energy Efficiency in Electrical Utilities", Guide Book for National Certification Examination for energy managers and Auditors, 4th Edition, Bureau of Energy Efficiency, 2015.

### **REFERENCES:**

- 1. Taylor E. Openshaw, "Utilization of Electrical Energy", Universities Press, Hyderabad, 2012.
- 2. Partab.H, "Art and Science of Utilisation of Electrical Energy", Dhanpat Rai and Co, New Delhi, 2017.

| Mapping of COs with POs / PSOs |     |   |   |   |   |   |   |   |   |    |    |    |      |   |
|--------------------------------|-----|---|---|---|---|---|---|---|---|----|----|----|------|---|
| COs                            | POs |   |   |   |   |   |   |   |   |    |    | PS | PSOs |   |
|                                | I   | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | I    | 2 |
| I                              | 2   |   |   |   |   |   |   |   |   |    |    |    | Ι    |   |
| 2                              |     | 2 |   |   |   |   |   |   |   |    |    |    | I    |   |
| 3                              |     | 2 |   |   |   |   |   |   |   |    |    |    | I    |   |
| 4                              | 3   |   |   |   |   |   |   |   |   |    |    |    | I    |   |
| 5                              |     |   |   |   | 3 | 3 |   |   | 3 |    |    | 3  |      |   |
| CO<br>(W.A)                    | 2.5 | 2 |   |   | 3 | 3 |   |   | 3 |    |    | 3  | Ι    |   |

6.80

(9)

|                                                                                                                                                             | 22EEX16-ENERGY AUDITING CONSERVATION AND MANAGEMENT |                                                                                                                            |                                                    |                                             |   |   |   |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------|---------------------------------------------|---|---|---|--|--|--|
|                                                                                                                                                             |                                                     |                                                                                                                            |                                                    | L                                           | Т | Р | С |  |  |  |
|                                                                                                                                                             |                                                     |                                                                                                                            |                                                    | 3                                           | 0 | 0 | 3 |  |  |  |
| PRE-R                                                                                                                                                       | EQUISITE : N                                        | NIL                                                                                                                        |                                                    |                                             |   |   |   |  |  |  |
| Systems         Course Objective:         • To equip students with the know performance of electric motors         • To provide the students with a control |                                                     |                                                                                                                            | agement of energy in lighting systems              |                                             |   |   |   |  |  |  |
|                                                                                                                                                             | e Outcomes<br>dent will be able                     | Cognitive<br>Level                                                                                                         | Weightage of COs<br>in End Semester<br>Examination |                                             |   |   |   |  |  |  |
| соі                                                                                                                                                         |                                                     | ndamental energy scenario and energy<br>n electric motors, lighting system                                                 | Ap                                                 | 30%                                         |   |   |   |  |  |  |
| CO2                                                                                                                                                         | Apply and im electrical syste                       | plement energy-efficient technologies in<br>ems                                                                            | Ap                                                 | 30%                                         |   |   |   |  |  |  |
| CO3                                                                                                                                                         | electric motor<br>of electric mot                   | quantify energy consumption patterns in<br>r systems and optimize the performance<br>tors and drives                       | An                                                 | 20%                                         |   |   |   |  |  |  |
| CO4                                                                                                                                                         | audits, metho<br>performance c                      |                                                                                                                            | An                                                 | 20%                                         |   |   |   |  |  |  |
| CO5                                                                                                                                                         | implementatio                                       | learning, uphold ethical standards in the<br>n of energy-efficient technologies and<br>ainable solutions to address energy | U                                                  | Internal Assessment<br>(Assignment/Seminar) |   |   |   |  |  |  |

### UNIT I- ENERGY SCENARIO

Introduction – primary and secondary energy – commercial and non-commercial Energy – renewable and non- renewable Energy – world renewable energy scenario, renewable energy scenario in India, energy needs of growing economy, energy and environment, energy conservation act 2001 and its importance, energy security, BEE star ratings-introduction to energy trading- electrical load analysis

### **UNIT II - ENERGY MANAGEMENT IN ELECTRIC MOTORS**

Introduction - losses in electric motors – motor efficiency – factors affecting motor performance – rewinding and motor replacement issues – energy saving opportunities with energy efficient motors – motor efficiency management.

(9)

### UNIT III - ENERGY MANAGEMENT IN LIGHTING

Light source, choice of lighting – luminance requirements – energy conservation methods – lighting energy management – day lighting – energy efficiency in lighting

### **UNIT IV - ENERGY EFFICIENT TECHNOLOGIES IN ELECTRICAL SYSTEMS**

Maximum demand controllers – automatic power factor controllers – energy efficient motors – soft starters with energy saver – variable speed drives – energy efficient transformers – electronic ballast – occupancy sensors, energy efficient lighting controls. energy saving potential of each technology- hybrid energy systems

### UNIT V – ENERGY AUDIT

Energy audit – necessity of energy audit – types of energy audit, methodology of energy audit - energy costs – benchmarking – energy performance and maximizing system efficiency, energy audit instruments – energy monitoring and targeting.

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS**:

- Stephen A. Roosa, Steve Doty, Wayne C. Turner, Energy Management Handbook, River Publisher, 9th Edition 2018.
- 2. Sonal Desai, Handbook of Energy Audit, McGraw-Hill Education, 2017.

### **REFERENCES**:

- 1. Barney L. Capehart, Wayne C. Turner, and William J. Kennedy, "Guide to Energy Management", 8th Edition, River Publishers, Inc., 2016.
- 2. Amit K. Tyagi, "Handbook on Energy Audits and Management", The Energy and Resources Institute, 2003.
- 3. Larry C. Witte, Philip S. Schmidt & David R. Brown, "Industrial Energy Management & Utilization", Hemisphere Pub. Corp., 1988.

|             | Mapping of COs with POs / PSOs |   |   |   |   |   |   |   |   |    |    |    |      |     |
|-------------|--------------------------------|---|---|---|---|---|---|---|---|----|----|----|------|-----|
|             | POs                            |   |   |   |   |   |   |   |   |    |    |    | PSOs |     |
| COs         | I                              | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | I    | 2   |
| I           | 3                              |   |   |   |   |   |   |   |   |    |    |    |      |     |
| 2           | 3                              |   |   |   |   |   |   |   |   |    |    |    |      | Ι   |
| 3           |                                | 2 |   |   |   |   |   |   |   |    |    |    | 2    | 2   |
| 4           |                                | 2 |   |   |   |   |   |   |   |    |    |    | 2    | 2   |
| 5           |                                |   |   |   |   | 2 | 2 | I |   |    |    | 2  |      |     |
| CO<br>(W.A) | 3                              | 2 |   |   |   | 2 | 2 | I |   |    |    | 2  | 1.7  | 1.7 |

(9)

(9)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                       | 22EEX17 - RESTRUCTURED PO                                                              | WER SYSTEM |                           |                             |     |   |  |  |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------|----------------------------------------------------------------------------------------|------------|---------------------------|-----------------------------|-----|---|--|--|
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                       |                                                                                        |            | L                         | Т                           | Ρ   | С |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                       |                                                                                        |            | 3                         | 0                           | 0   | 3 |  |  |
| PRE-R                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | EQUISITE : I                                                          |                                                                                        |            |                           |                             |     |   |  |  |
| <ul> <li>To understand the behavior of deregulated markets in power system.</li> <li>To acquire knowledge the technical and non- technical issues in deregulated power industry.</li> <li>To identify the methods of Local Marginal prices calculation in transmission and the function of financial transmission rights.</li> <li>To Analyze the energy and ancillary services management in deregulated power industry</li> <li>To Discriminate the restructuring framework US and Indian power sector</li> </ul> |                                                                       |                                                                                        |            |                           |                             |     |   |  |  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e <b>Outcomes</b><br>dent will be able                                | Cognitive<br>Level                                                                     | in         | eightag<br>End S<br>Exami | emes                        | ter |   |  |  |
| СОІ                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       | rious restructured power markets in<br>nanagement and financial transmission           | Ap         | 30%                       |                             |     |   |  |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                       | requirement for deregulation of the<br>ket and the principles of market models<br>ems. | Ар         |                           | 2                           | 0%  |   |  |  |
| CO3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Analyze the n<br>deregulated p<br>pricing and fin<br>ancillary servio | An                                                                                     |            | 3                         | 0%                          |     |   |  |  |
| CO4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Propose the re<br>power sectors                                       | estructuring framework of US and Indian                                                | Ap         | 20%                       |                             |     |   |  |  |
| CO5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | Engage in inde<br>and make au<br>applications of                      | U                                                                                      | Int        | •                         | Assessr<br>ninar,<br>nment) |     |   |  |  |

### **UNIT I- INTRODUCTION**

Reasons for restructuring - Understanding the restructuring process - objectives of deregulation of various power systems across the world - Consumer behavior - Supplier behavior - Market equilibrium - Short-run and Long-run costs - Various costs of production. The Philosophy of Market Models: Market models based on contractual arrangements - Market architecture.

### UNIT II - TRANSMISSION CONGESTION MANAGEMENT

Importance of congestion management in deregulated environment - Classification of congestion management methods - Calculation of ATC - Non-market methods - Market based methods - Nodal pricing - Inter-zonal Intra-zonal congestion management - Price area congestion management - Capacity alleviation method.

(9)

### UNIT III - LOCATIONAL MARGINAL PRICES AND (9) FINANCIAL TRANSMISSION RIGHTS

Fundamentals of locational marginal pricing - Lossless DCOPF model for LMP calculation - Loss compensated DCOPF model for LMP calculation - ACOPF model for LMP calculation - Risk Hedging Functionality of financial Transmission Rights - FTR issuance process - Treatment of revenue shortfall - Secondary trading of FTRs - Flow Gate rights - FTR and market power.

### UNIT IV- ANCILLARY SERVICE MANAGEMENT AND PRICING OF TRANSMISSION NETWORK

Types of ancillary services -Load-generation balancing related services - Voltage control and reactive power support services - Black start capability service - Mandatory provision of ancillary services - Markets for ancillary services - Co-optimization of energy and reserve services - International comparison. Pricing of transmission network: wheeling - principles of transmission pricing - transmission pricing methods - Marginal transmission pricing paradigm - Composite pricing paradigm - loss allocation methods.

### UNIT V – MARKET EVOLUTION

US markets: PJM market - The Nordic power market - Reforms in Indian power sector: Framework of Indian power sector - Reform initiatives - availability based tariff (ABT) - The Electricity Act 2012 - Open Access issues - Power exchange.

### TOTAL (L:45) = 45 PERIODS

(9)

(9)

### TEXT BOOKS:

- I. Mohammad Shahidehpour, Muwaffaq Alomoush,, "Restructured electrical power systems: operation, trading and volatility", Marcel Dekker Pub., 2001,. 1st Edition.
- 2. Kankar Bhattacharya, MathH.J.Boolen, and Jaap E.Daadler, "Operation of restructured power systems", Kluwer Academic Pub., 2001, 1st Edition.

### **REFERENCES:**

- 1. Paranjothi, S.R., "Modern Power Systems The Economics of Restructuring", New Age International Publishers, First Edition: 2017.
- 2. Sally Hunt, "Making competition work In electricity", John Willey and Sons Inc.2002.

|             | Mapping of COs with POs / PSOs |   |   |   |   |   |   |   |   |    |    |    |    |   |
|-------------|--------------------------------|---|---|---|---|---|---|---|---|----|----|----|----|---|
| POs         |                                |   |   |   |   |   |   |   |   |    |    | PS | Os |   |
| COs         | Ι                              | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | Ι  | 2 |
| I           | 2                              |   |   |   |   |   |   |   |   |    |    |    |    | I |
| 2           | 3                              |   |   |   |   |   |   |   |   |    |    |    | 2  | I |
| 3           |                                | 3 |   |   |   |   |   |   |   |    |    |    | 2  | I |
| 4           |                                |   | 3 |   |   |   |   |   |   |    |    |    | 2  | I |
| 5           |                                |   |   |   |   |   |   |   |   |    |    | I  | I  | I |
| CO<br>(W.A) | 2.5                            | 3 | 3 |   |   | I |   |   |   | I  |    | I  | 2  | I |

181

| 22     | EEX18- FUNDAMENTALS OF FIBRE OPTICS AND                                                                                                                                                                                                                                                                                                                                                                                                                 | D LASER INST                                                                                                                            | RUM                                                                | ENT/                                                                 |                                                                        | N                                                                          |
|--------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------|----------------------------------------------------------------------|------------------------------------------------------------------------|----------------------------------------------------------------------------|
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         | L                                                                  | Т                                                                    | Ρ                                                                      | С                                                                          |
|        |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         | 3                                                                  | 0                                                                    | 0                                                                      | 3                                                                          |
| PRE-R  |                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                         |                                                                    |                                                                      |                                                                        |                                                                            |
| Course | <ul> <li>To equip students with the knowled optical fibres, analyze their properties industrial applications.</li> <li>To develop students' ability to analy optics, evaluate fibre characteristics. Interferometry.</li> <li>To demonstrate the application of ensuring students understand the prime.</li> <li>To foster independent learning and effective presentations and submit deta fibre optics, laser instrumentation, ar systems.</li> </ul> | s, and understand<br>yze the theory a<br>s, and apply m<br>laser instrumen<br>ciples and safety<br>teamwork, enco<br>ailed reports on a | l laser<br>ind cl<br>nethoo<br>ts in<br>consid<br>uragir<br>assign | funda<br>assifica<br>ds of<br>media<br>deration<br>ng stua<br>ed top | amenta<br>ation c<br>Holo<br>cal sur<br>ons inve<br>dents<br>vics rela | ls with<br>of fibre<br>graphic<br>rgeries,<br>olved.<br>to give<br>ated to |
|        | e <b>Outcomes</b><br>Ident will be able to                                                                                                                                                                                                                                                                                                                                                                                                              | Cognitive<br>Level                                                                                                                      | in                                                                 | End S                                                                | ge of (<br>emes<br>inatio                                              | ter                                                                        |
| СОІ    | Apply the concepts of optical fibres with the properties<br>and analyze about the laser fundamentals with industrial<br>applications.                                                                                                                                                                                                                                                                                                                   | Ар                                                                                                                                      |                                                                    | 3                                                                    | 5%                                                                     |                                                                            |
| CO2    | Analyze the theory and classification of fiber optics and fibre characteristics with methods of Holographic interferometry.                                                                                                                                                                                                                                                                                                                             | An                                                                                                                                      |                                                                    |                                                                      |                                                                        |                                                                            |
| CO3    | Demonstrate the application of laser instruments in medical surgeries.                                                                                                                                                                                                                                                                                                                                                                                  | Ap                                                                                                                                      |                                                                    | 2                                                                    | 0%                                                                     |                                                                            |
| CO4    | Describe the lighting systems, lighting design and appraise the energy saving opportunities in them.                                                                                                                                                                                                                                                                                                                                                    | An                                                                                                                                      |                                                                    | 2                                                                    | 0%                                                                     |                                                                            |
| CO5    | Engage in self-directed learning and work well as a team, giving an effective presentation and submitting a report on an assigned topic related to fibre optics and laser instrumentation.                                                                                                                                                                                                                                                              | U                                                                                                                                       | Int                                                                |                                                                      | Assessr<br>ninar)                                                      | nent                                                                       |

# UNIT I - OPTICAL FIBRES AND THEIR PROPERTIES (9) Theory and classification of fiber optics: Principles of light propagation through a fibre - Different types of fibres and their properties, fibre characteristics – Absorption losses – Scattering losses – Dispersion – Connectors and splicers – Optical sources – Optical detectors UNIT II - INDUSTRIAL APPLICATION OF OPTICAL FIBRES (9) Fibre optic sensors — Different types of modulators - fibre optic communication set up- Interferometric method of measurement of length – Moire fringes – Measurement of pressure, temperature, voltage, liquid level and strain.

| UNIT III - LASER FUNDAMENTALS                                                                     | (9)            |
|---------------------------------------------------------------------------------------------------|----------------|
| Fundamental characteristics of lasers – Three level and four level lasers – Properties of laser – | Laser modes ·  |
| Resonator configuration – Q-switching and mode locking – Cavity damping – Types of lasers –       | Gas lasers,    |
| solid lasers, liquid lasers, semiconductor lasers.                                                |                |
| UNIT IV - INDUSTRIAL APPLICATION OF LASERS                                                        | (9)            |
| Laser for measurement of velocity and Atmospheric effect – Material processing – Laser heatin     | ng – Welding - |
| Melting and trimming of material – Removal and vaporization.                                      |                |
| UNIT V - HOLOGRAM AND MEDICAL APPLICATIONS                                                        | (9)            |

Holography – Basic principle - Methods – Holographic Interferometry and application, Holography for nondestructive testing – Holographic components – Medical applications of lasers - Laser and tissue interactive – Laser instruments for surgery, removal of tumors of vocal cards, brain surgery, plastic surgery, gynaecology and oncology.

### TOTAL (L:45)= 45 PERIODS

### **TEXT BOOKS**:

- 1. R.P.Khare, Fiber Optics and Optoelectronics, Oxford university press, 2008.
- 2. J. Wilson and J.F.B. Hawkes, Introduction to Opto Electronics, Prentice Hall of India, 2001.

### **REFERENCES:**

- 1. Asu Ram Jha, Fiber Optic Technology Applications to commercial, Industrial, Military and Space Optical systems, PHI learning Private limited, 2009.
- 2. M. Arumugam, Optical Fibre Communication and Sensors, Anuradha Agencies, 2002.
- 3. John F. Read, Industrial Applications of Lasers, Academic Press, 1978.

|             | Mapping of COs with POs / PSOs |     |   |   |   |   |   |   |   |    |    |    |   |    |
|-------------|--------------------------------|-----|---|---|---|---|---|---|---|----|----|----|---|----|
|             | POs                            |     |   |   |   |   |   |   |   |    |    |    |   | Os |
| COs         | I                              | 2   | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | I | 2  |
| I           | 2                              | 2   |   |   |   |   |   |   |   |    |    |    |   |    |
| 2           | 3                              | 3   |   |   |   |   |   |   |   |    |    |    | I |    |
| 3           |                                | 3   |   |   |   |   |   |   |   |    |    |    |   |    |
| 4           |                                |     | 3 |   |   |   |   |   |   |    |    |    |   |    |
| 5           |                                |     |   |   |   | I |   |   | I |    |    | I  |   |    |
| CO<br>(W.A) | 2.5                            | 2.5 | 3 |   |   | I |   |   | I |    |    | I  | I |    |

168 | Page

|                                                                                                                                                                                                                                                                              | 2                                      | 2EEX21- FUNDAMENTALS OF ELE                                                              | CTRIC VEHICI   | ES    |                                  |                           |   |  |  |  |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|------------------------------------------------------------------------------------------|----------------|-------|----------------------------------|---------------------------|---|--|--|--|
|                                                                                                                                                                                                                                                                              |                                        |                                                                                          |                | L     | Т                                | Ρ                         | С |  |  |  |
|                                                                                                                                                                                                                                                                              |                                        |                                                                                          |                | 3     | 0                                | 0                         | 3 |  |  |  |
| PRE-R                                                                                                                                                                                                                                                                        | EQUISITE : N                           | NIL                                                                                      |                |       |                                  |                           |   |  |  |  |
| <ul> <li>To familiarize the students with the concept of hybrid electric vehicle</li> <li>To expose the students to acquire knowledge on the fundamentals of t vehicles</li> <li>To enhance their learning domain by electric traction systems and th performance</li> </ul> |                                        |                                                                                          |                |       |                                  |                           |   |  |  |  |
|                                                                                                                                                                                                                                                                              | e <b>Outcomes</b><br>dent will be able | Cognitive<br>Level                                                                       | in l           | End S | e of <b>C</b><br>emest<br>nation | er                        |   |  |  |  |
| COI                                                                                                                                                                                                                                                                          |                                        | heir learning domain by electric traction<br>neir performance                            | Ap             | 40%   |                                  |                           |   |  |  |  |
|                                                                                                                                                                                                                                                                              | Apply the distir<br>electric vehicles  | nct attributes of different motor drives in<br>S.                                        | s in<br>An 20% |       |                                  |                           |   |  |  |  |
| CO3                                                                                                                                                                                                                                                                          | Analyze the in<br>EVs.                 | mportance of energy storage systems in                                                   | in An I5%      |       |                                  |                           |   |  |  |  |
| CO4                                                                                                                                                                                                                                                                          | Design an elec                         | tric vehicle based on the requirement                                                    | An 25%         |       |                                  |                           |   |  |  |  |
| CO5                                                                                                                                                                                                                                                                          |                                        | team to share the skills to develop a<br>red for the upliftment of society using<br>pols | Ap             |       | signme                           | ssessm<br>ent, Or<br>uiz) |   |  |  |  |

### **UNIT I - INTRODUCTION TO ELECTRIC VEHICLES**

Importance of Different Transportation Development Strategies to Future Oil Supply – History of EVs-Components of Electric Vehicle- General Layout of EV-EV classification- Comparison with Internal combustion Engine: Technology, Advantages & Disadvantages of EV. Performance of EVs: Traction Motor Characteristics - Tractive Effort and Transmission Requirement - Vehicle Performance - Tractive Effort in Normal Driving - Energy Consumption.

### **UNIT II – HYBRID ELECTRIC VEHICLES**

Introduction to HEV- History-Concept of Hybrid Electric Drive Trains - Architectures of Hybrid Electric Drive Trains: Series Hybrid Electric Drive Trains (Electrical Coupling) - Parallel Hybrid Electric Drive Trains (Mechanical Coupling) - Hybrid Drive Trains with Both Torque and Speed Coupling

### UNIT III – POWER SOURCES AND ENERGY STORAGES

Electrochemical Batteries: Electrochemical Reactions - Thermodynamic Voltage - Specific Energy - Specific Power - Energy Efficiency - Battery Technologies - Lead-Acid Battery - Nickel-Based Batteries - Lithium-Based Batteries – Ultracapacitors - Ultra-High-Speed Flywheels - Hybridization of Energy Storage. (9)

### **UNIT IV – ELECTRIC PROPULSION SYSTEMS**

Induction Motor Drives: Basic Operation Principles of Induction Motors - Power Electronic Control - Field Orientation Control - Voltage Source Inverter for FOC - Permanent Magnetic BLDC Motor Drives: Basic Principles of BLDC Motor Drives - BLDC Machine Construction and Classification - SRM Drives: Basic Magnetic Structure - Modes of Operation - Sensorless Control.

(9)

(9)

### UNIT V – DESIGN CONSIDERATION FOR ELECTRIC VEHICLE

Aerodynamic Considerations-Consideration of Rolling Resistance-Transmission Consideration of Vehicle Mass- Electric Vehicle Chassis and Body Design (9)

### Efficiency-

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS:**

- Iqbal Hussain., "Electric and Hybrid Vehicles: Design Fundamentals", 3<sup>rd</sup> Edition, CRC press, Taylor & Francis Group, Florida, United States, 2021.
- 2. MehrdadEhsani, YimiGao, Sebastian E. Gay, Ali Emadi, "Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design", 3<sup>rd</sup> Edition, CRC Press, 2018.

### **REFERENCES:**

- 1. James Larminie, John Lowry, "Electric Vehicle Technology Explained", 2<sup>nd</sup> Edition, Wiley, 2012.
- 2. L.Ashok Kumar, and S.Albert Alexander, "Power Converters for Electric Vehicles", First Edition, CRC Press, 2020.

|             | Mapping of COs with POs / PSOs |         |   |   |   |   |   |   |   |    |    |      |   |   |
|-------------|--------------------------------|---------|---|---|---|---|---|---|---|----|----|------|---|---|
|             | POs                            |         |   |   |   |   |   |   |   |    |    | PSOs |   |   |
| COs         | Ι                              | 2       | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12   | I | 2 |
| I           |                                |         |   |   |   |   |   |   |   |    |    |      |   |   |
| 2           | 3                              | 3       |   |   |   |   |   |   |   |    |    |      | 3 |   |
| 3           |                                | 2       |   |   |   |   |   |   |   |    |    |      | 3 |   |
| 4           | 3                              |         |   |   |   |   |   |   |   |    |    |      |   |   |
| 5           |                                |         |   |   |   |   |   |   | 3 |    | 3  | 3    |   |   |
| CO<br>(W.A) | 3                              | 3 2 3 3 |   |   |   |   |   |   |   |    |    | 3    | 3 |   |

6.81

| 22EEX22 - BATTERY PACK MODELING AND CHARGING OF ELECTRIC VEHICLE |                                                                                     |                                                                                                                                        |                  |        |        |                              |       |  |  |  |
|------------------------------------------------------------------|-------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------|--------|--------|------------------------------|-------|--|--|--|
|                                                                  |                                                                                     |                                                                                                                                        |                  | L      | Т      | Ρ                            | С     |  |  |  |
|                                                                  |                                                                                     |                                                                                                                                        |                  | 3      | 0      | 0                            | 3     |  |  |  |
| PRE-R                                                            | EQUISITE : 1                                                                        |                                                                                                                                        |                  |        |        |                              |       |  |  |  |
|                                                                  |                                                                                     | <ul> <li>To introduce the fundamental p<br/>chemistry, components, and typ</li> </ul>                                                  | •                | ,      |        | y, inclu                     | ıding |  |  |  |
| Course                                                           | objective:                                                                          | <ul> <li>To familiarize the functions, co<br/>Management Systems.</li> </ul>                                                           | omponents, and a | rchite | cture  | of Ba                        | ttery |  |  |  |
|                                                                  | • To analyze and optimize battery pack design and performance.                      |                                                                                                                                        |                  |        |        |                              |       |  |  |  |
|                                                                  | Course OutcomesCognitive<br>LevelWeightage of COs<br>in End Semester<br>Examination |                                                                                                                                        |                  |        |        |                              |       |  |  |  |
| СОІ                                                              |                                                                                     | technologies in charging infrastructure,<br>ficiency and optimization in electric                                                      | Ap               |        | 2      | 20%                          |       |  |  |  |
| CO2                                                              | the difference                                                                      | ctors influencing charging efficiency and<br>s between series, parallel, and hybrid<br>configurations and their applications in<br>es. | U                |        | 2      | 0%                           |       |  |  |  |
| CO3                                                              | Analyze the d<br>battery pack.                                                      | ifferent technologies in the modeling of                                                                                               | An               |        | 4      | 0%                           |       |  |  |  |
| CO4                                                              |                                                                                     | knowledge of different battery<br>used in electric vehicles and their<br>rantages and limitations.                                     | U                |        | 2      | 0%                           |       |  |  |  |
| CO5                                                              | the topic re                                                                        | am and make effective presentation on<br>elated to real world challenges and<br>in battery pack modeling and charging<br>es.           | U                | -      | Semina | Assessr<br>Ir, Onli<br>uiz,) |       |  |  |  |

### UNIT I – INTRODUCTION TO ELECTRIC VEHICLES AND BATTERY TECHNOLOGY

(9)

Overview of electric vehicles: history, types, and applications - Basics of battery technology: chemistry, components, and types - Comparison of battery chemistries used in EVs - Introduction to battery pack architecture and design considerations.

### UNIT II - BATTERY PACK CONFIGURATION AND MANAGEMENT

(9)

Battery pack configuration: series, parallel, and hybrid configurations - Battery Management System (BMS): functions, components, and architecture - Cell balancing techniques and algorithms - State-of-Charge (SOC) and State-of-Health (SOH) estimation methods.

### UNIT III – CHARGING INFRASTRUCTURE AND PROTOCOLS

Overview of charging infrastructure: residential, public, and fast-charging networks - AC charging: principles, standards, and charging rates - DC fast charging: principles, standards (CHAdeMO, CCS), and high-power charging - Wireless charging technologies and standards.

### UNIT IV – CHARGING EFFICIENCY AND OPTIMIZATION

Charging efficiency: factors affecting charging efficiency and losses - Impact of charging on battery life: charge rate, temperature, and depth of discharge - Charging optimization techniques: peak/off-peak charging, smart charging algorithms - Vehicle-to-Grid (V2G) and Vehicle-to-Home (V2H) integration for energy management.

# UNIT V - BATTERY PACK MODELING AND ADVANCES IN BATTERY TECHNOLOGY

Mathematical modeling of battery cells and packs: equivalent circuit models, thermal models – Predictive modeling for charging time estimation and battery performance optimization - Emerging battery technologies: solid-state batteries, lithium-sulfur batteries - Battery pack design for specific applications of electric buses, commercial vehicles, drones - Future trends and developments in EV battery technology.

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS**:

- Christopher D. Rahn and Dan M. Ionel, "Battery Systems Engineering", Wiley-IEEE Press, 1st edition, 2013.
- 2. Sandeep Dhameja, "Electric Vehicle Battery Systems", CRC Press, 1st edition, 2015.

### **REFERENCES**:

- H.J. Bergveld, P.H.L. Notten, and P.H.L. Notten, "Battery Management Systems for Large Lithium-Ion Battery Packs", Artech House, 2010.
- 2. H.A. Kiehne, "Battery Technology Handbook", CRC Press, 2<sup>nd</sup> edition, 2018.

|             | Mapping of COs with POs / PSOs |                           |   |  |  |    |    |  |  |  |  |   |      |   |
|-------------|--------------------------------|---------------------------|---|--|--|----|----|--|--|--|--|---|------|---|
|             |                                |                           |   |  |  | PC | Os |  |  |  |  |   | PSOs |   |
| COs         | I                              | I 2 3 4 5 6 7 8 9 IO II I |   |  |  |    |    |  |  |  |  |   |      | 2 |
| I           | 3                              | 3                         |   |  |  |    |    |  |  |  |  |   |      | 3 |
| 2           | I 2                            |                           |   |  |  |    |    |  |  |  |  |   | I    | I |
| 3           |                                | 3                         |   |  |  |    |    |  |  |  |  |   | I    |   |
| 4           |                                |                           | 3 |  |  |    |    |  |  |  |  |   | I    |   |
| 5           |                                |                           |   |  |  |    |    |  |  |  |  |   |      |   |
| CO<br>(W.A) | 2                              | 2 2.5 3 I I I I           |   |  |  |    |    |  |  |  |  | I | I    | 2 |

(9)

(9)

|        |                             | 22EEX23 - HYBRID ELECTRIC                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | VEHICLES                                |                    |                          |         |       |  |  |
|--------|-----------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|--------------------|--------------------------|---------|-------|--|--|
|        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | L                  | Т                        | Ρ       | С     |  |  |
|        |                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                         | 3                  | 0                        | 0       | 3     |  |  |
| PRE-RE |                             | NIL                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                    |                          |         |       |  |  |
|        |                             | <ul> <li>To provide an understanding of su<br/>history, interdisciplinary nature, c<br/>electric vehicles (HEVs).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | •                                       |                    |                          | -       |       |  |  |
|        |                             | <ul> <li>To provide a comprehensive unde<br/>conventional components, propu<br/>of Electric Vehicles (EVs), Hybr<br/>Vehicles (FCV).</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Ision loads, drive                      | cycles             | and th                   | e con   | cepts |  |  |
| Course | Objective:                  | • To understand Plug-in Hybrid Electric Vehicles (PHEVs) and Extended Range<br>Electric Vehicles (EREVs) including their architectures, electric range, fuel<br>economy, power management, end-of-life battery utilization for grid<br>support, vehicle-to-grid technology and PHEV battery charging.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                    |                          |         |       |  |  |
|        |                             | <ul> <li>To understand rectifiers, convective chargers utilized in Hybrid Elect concepts like voltage ripples and provide the concept of the section of</li></ul> | rters, regenerativ<br>ric Vehicles (HEV | ve bra<br>s), alon | king a                   |         |       |  |  |
|        |                             | <ul> <li>To explore energy storage parar<br/>Lead acid Batteries, ultra capacit<br/>pumped hydroelectric Energy Sto<br/>heat Storage.</li> </ul>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | meters and variou<br>cors, flywheels, m | us tech<br>agnetic | Storag                   | ge Syst | ems   |  |  |
|        | Outcomes<br>nd of the cours | e, the students will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | Cognitive<br>Level                      | in                 | ightaş<br>End S<br>Exami | emes    | ter   |  |  |
| COI    | development o               | ncepts of hybrid electric vehicle in the of sustainable transportation Solutions.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | Ар                                      |                    | 2                        | 0%      |       |  |  |
| CO2    | ,                           | types of hybrid electric vehicle in<br>towards transportation and energy                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | An                                      |                    | 4                        | 0%      |       |  |  |
| 603    | Interpret diffe             | erent power converter topologies used                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | An                                      |                    | 2                        | 0%      |       |  |  |

| CO3 | Interpret different power converter topologies used for electric vehicle application                                                                                   | An | 20%                              |
|-----|------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----|----------------------------------|
| CO4 | Design the energy storage solution using power<br>electronics in hybrid electric vehicle for diverse<br>application in the development of sustainable energy<br>system | С  | 20%                              |
| CO5 | Perform in team and make effective presentation on<br>the topic related to real world challenges and<br>requirements in hybrid electric vehicles.                      | U  | Internal Assessment<br>(Seminar) |

### **UNIT I - INTRODUCTION TO HYBRID ELECTRIC VEHICLES**

(9)

Sustainable transportation-History of hybrid vehicles-Inter disciplinary nature of HEVs -Challenges and key technology of HEVs -Architecture of HEVs-Series and parallel HEVs-Complex HEVs.

173 | Page

### **UNIT II - HYBRIDIZATION OF AUTOMOBILE**

Fundamentals of vehicle-Components of conventional vehicle and propulsion load-Drive cycles and drive terrain- Concept of Electric vehicle and Hybrid Electric vehicle - Comparison of EV and HEV-Fuel Cell vehicles and its constituents.

### UNIT III - PLUG-IN HYBRID ELECTRIC VEHICLE

PHEVs and EREVs blended PHEVs- PHEV Architecture-Equivalent electric range of blended PHEVs- Fuel economy of PHEVs- Power management of PHEVs- End-of-life battery for electric power grid support-Vehicle to grid technology-PHEV battery charging.

### UNIT IV - POWER ELECTRONICS IN HEVS

Rectifiers used in HEVs- Voltage ripples- Buck converter used in HEVs- Non-isolated bidirectional DC-DC converter-Regenerative braking-Voltage source inverter-Current source inverter- Isolated bidirectional DC- DC converter-PWM rectifier in HEVs- EV and PHEV battery chargers.

### UNIT V - BATTERY AND STORAGE SYSTEMS

Energy Storage Parameters-Lead Acid Batteries- Ultra capacitors-Flywheels - Magnetic Storage System-Pumped Hydroelectric Energy Storage-Compressed Air Energy Storage – Heat Storage.

### TOTAL (L:45) = 45 PERIODS

### TEXT BOOKS:

- I. Teresa Donateo, "Hybrid Electric Vehicles", Published by ExLi4EvA, 2017
- 2. NoshirwanK.medora, "Electric and Hybrid Vehicles Power Sources, Models, Sustainability, Infrastructure and the Market "Gianfranco Pistoia Consultant, Rome, Italy, Elsevier Publications, 2017.
- 3. Jack Erjavec and Jeff Arias, "Hybrid, Electric and Fuel Cell Vehicles", Cengage Learning, 2012.

### **REFERENCES:**

- Wei Liu , "Hybrid Electric Vehicle System Modeling and Control ", USA, John Wiley & Sons, Inc., 2017.
- 2. Ali Emadi, "Advanced Electric Drive Vehicles", CRC Press, 2014.
- 3. Iqbal Hussein, "Electric and Hybrid Vehicles: Design Fundamentals", CRC Press, 2003
- 4. H. Partab, "Modern Electric Traction", DhanpatRai & Co, 2007.

|             |   |   |   | M | lapping | g of CC | <b>D</b> s with | POs / | <b>PSO</b> s |    |    |    |    |    |
|-------------|---|---|---|---|---------|---------|-----------------|-------|--------------|----|----|----|----|----|
| _           |   | - | - | _ | _       | PC      |                 | _     | _            | -  | -  | -  | PS | Os |
| COs         | Т | 2 | 3 | 4 | 5       | 6       | 7               | 8     | 9            | 10 | 11 | 12 | I  | 2  |
| Ι           | 3 |   |   |   |         |         |                 |       |              |    |    |    | I  |    |
| 2           |   | 3 |   |   |         |         |                 |       |              |    |    |    | I  |    |
| 3           |   | I | I | I |         |         |                 |       |              |    |    |    | I  |    |
| 4           |   |   | 3 |   |         |         |                 |       |              |    |    |    | I  |    |
| 5           |   |   |   |   |         |         |                 |       | I            | I  |    | I  |    |    |
| CO<br>(W.A) | 3 | 2 | 2 | I |         |         |                 |       | I            | I  |    | I  | I  |    |

G. & L

(9)

(9)

(9)

|       |                         |                                                                                                                                                    |                      | Ч      | Т      | Ρ                                 | С   |
|-------|-------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------|----------------------|--------|--------|-----------------------------------|-----|
|       |                         |                                                                                                                                                    |                      | 3      | 0      | 0                                 | 3   |
| PRE-R |                         | NIL                                                                                                                                                |                      |        |        |                                   |     |
| Cour  | se Objective:           | <ul> <li>To Gain knowledge in the field of</li> <li>To familiarize the students with the</li> <li>To Gain the insight of charging state</li> </ul> | he concept of static | testii | •      |                                   | 5   |
|       |                         | <b>Course Outcomes</b><br>Student will be able to                                                                                                  | Cognitive Level      | in     | End S  | ge of <b>C</b><br>emest<br>nation | er  |
| COI   |                         | students to acquire knowledge on the dynamic testing of E-vehicle.                                                                                 | Ар                   |        | 4      | 0%                                |     |
| CO2   | Analyze the safe<br>EVs | ety cycle and need for functions safety for                                                                                                        | An                   |        | 2      | 0%                                |     |
| CO3   | Analyze the imp         | portance of dynamic testing of E-vehicle.                                                                                                          | An                   |        | I      | 5%                                |     |
| CO4   | Design the con          | cept of E-vehicle component testing.                                                                                                               | An                   |        | 2      | 5%                                |     |
| CO5   |                         | m to share the skills to develop a product<br>e upliftment of society using the modern                                                             |                      | -      | signme | Assessm<br>ent, Or<br>uiz)        |     |
|       | I - INTRODUC            | CTION<br>ication of Vehicles (including M, N and                                                                                                   | l O lavout) - Ho     | molo   | gation | & its                             | (9) |

UNIT II – STATIC TESTING OF VEHICLE

Loop (HIL) concepts for EV/HEVs.

Photographs - CMVR physical verification - Tyre Tread Depth Test - Vehicle Weightment - Horn installation - Rear view mirror installation - Tell Tales - External Projection - Wheel Guard, Arrangement of Foot Controls for MI Vehicle - Angle & Dimensions Measurement of Vehicle - The requirement of temporary cabin for drive- away - Chassis, electric vehicle - Safety norms - Energy consumption and power test.

Conformity of Production - various Parameters - Instruments and Types of test tracks - Hardware in The

### UNIT III – DYNAMICS TESTING OF VEHICLE

Hood Latch - Gradeability - Pass-by Noise, Interior Noise - Turning Circle Diameter & Turning Clearance Circle Diameter -Steering Effort - Constant Speed Fuel Consumption - Cooling Performance - Speedometer Calibration - Range Test - Maximum Speed - Acceleration Test - Coast-down test - Brakes Performance ABS Test - Broad band / Narrow band EMI Test, Electric vehicle – Range Test.

### UNIT IV – VEHICLE COMPONENT TESTING

Horn Testing, Safety Glasses Test: Windscreen laminated and toughened safety glass - Rear View Mirror Test - Hydraulic Brakes Hoses Fuel Tank Test: Metallic & Plastic - Hinges and Latches Test - Tyre & Wheel Rim Test - Bumper Impact Test, Side Door Intrusion - Crash test with dummies - Demist test, Defrost Test - Interior Fittings - Steering Impact test (GVW<1500 kg) - Body block test - Head form test - Driver Field of vision - Safety belt assemblies - Safety belt anchorages, Seat anchorages & head restraints test - Airbag Test - Accelerator Control System - Motor power - Safety Requirements of Traction Batteries - EMI-EMC (CI, BCI, RE,RI and CTE).

(9)

(9)

### UNIT V – GOVERNMENT RULES, POLICY & OPPORTUNITY

Technology Scenario - Market Scenario - Policies and Regulations - Payback and commercial model - Polices in India – opportunities-Safety provisions of all A.C. charging stations in accordance with IEC 61851-1, IEC 61851-21, IEC 61851-22 and IEC 61851-24 standards.

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS**:

Michael Plint & Anthony Martyr, "Engine Testing & Practice", Butterworth Heinmenn, 3<sup>rd</sup> ed, 2007
 "Vehicle Inspection Handbook", American Association of Motor Vehicle Administrators

### **REFERENCES:**

- Proceedings- Automotive Testing & Certification held on 20th to 24th July 2010 at ARAI, PUNE, Bosch Automotive Handbook, Robert Bosch, 7th Edition, 2007
- 2. James Larminie, John Lowry, "Electric Vehicle Technology Explained", 2<sup>nd</sup> Edition, Wiley, 2012
- 3. L.Ashok Kumar, and S.Albert Alexander,"Power Converters for Electric Vehicles", First Edition, CRC Press, 2020

|             |   |   |   | M | lapping | g of CC | Ds with | n POs / | PSOs |    |    |    |    |    |
|-------------|---|---|---|---|---------|---------|---------|---------|------|----|----|----|----|----|
|             |   |   |   |   |         | PC      | Os      |         |      |    |    |    | PS | Os |
| COs         | I | 2 | 3 | 4 | 5       | 6       | 7       | 8       | 9    | 10 | 11 | 12 | I  | 2  |
| I           | 3 |   |   |   |         |         |         |         |      |    |    |    |    |    |
| 2           |   |   |   |   |         |         |         |         |      |    |    |    | 3  |    |
| 3           |   | 2 |   |   |         |         |         |         |      |    |    |    | 3  |    |
| 4           | 3 |   |   |   |         |         |         |         |      |    |    |    |    |    |
| 5           |   |   |   |   |         |         |         |         | 3    |    | 3  | 3  |    |    |
| CO<br>(W.A) | 3 | 2 |   |   |         |         |         |         | 3    |    | 3  | 3  | 3  |    |

176 | Page

|             | 22                            | EEX25- EV INTELLIGENT            | SYSTEM          |         |         |         |             |      |
|-------------|-------------------------------|----------------------------------|-----------------|---------|---------|---------|-------------|------|
|             |                               |                                  |                 |         | L       | Т       | Ρ           | С    |
|             |                               |                                  |                 |         | 3       | 0       | 0           | 3    |
| PRE-F       | REQUISITE : NIL               |                                  |                 |         |         |         |             |      |
|             | • To                          | learn mathematical model of a    | BLDC motor      | r and   | its cha | aracter | istics.     |      |
|             | • To                          | study the different speed contro | ol for Electric | : drive | es.     |         |             |      |
| Course      | e <b>Objective:</b> • To      | learn the fundamentals of fuzzy  | logic Contro    | I.      |         |         |             |      |
|             | • To                          | study the essentials of FPGA &   | VHDL.           |         |         |         |             |      |
|             | • To                          | execute fuzzy logic control of B | LDC motor       | in rea  | l time. |         |             |      |
| Cours       | e Outcomes                    |                                  | Cognitiv        | e       |         |         | ge of (     |      |
|             | ident will be able to         |                                  | Level           | •       |         |         | emes        |      |
|             |                               |                                  |                 |         |         | Exami   | natio       | n    |
| <b>CO</b> 1 |                               | propriate electric motor, and    | ٨               |         |         | 2       | <b>^</b> 0/ |      |
| COI         | systems in electric vehicles. | hods to realize the intelligent  | Ар              |         |         | 3       | 0%          |      |
|             | ,                             | ntrol techniques with their      |                 |         |         |         | •••         |      |
| CO2         | characteristics used in EV.   | 1                                | An              |         |         | 3       | 0%          |      |
| CO3         | . , .                         | ntrol scheme for BLDC motor      | Ap              |         |         | 3       | 0%          |      |
|             | using FPGA in real time.      | · I - C                          | · •             |         |         | -       | • • •       |      |
| CO4         | technique.                    | icle for a given intelligent     | С               |         |         | I       | 0%          |      |
|             |                               | study, to perform in a team,     |                 |         |         |         |             |      |
| CO5         | •••                           | ng tool and present a technical  | An              |         | Int     |         | Assessr     | nent |
|             | report on intelligent system  | s of electric vehicle.           |                 |         |         | (Ser    | ninar)      |      |

### UNIT I- MATHEMATICAL MODEL AND CHARACTERISTICS ANALYSIS OF BLDC MOTOR

Structure and Drive Modes - Basic Structure - General Design Method-Drive Modes. Mathematical Model-Differential Equations -Transfer Functions - State-Space Equations - Characteristics Analysis-Starting Characteristics-Steady-State Operation- Dynamic Characteristics- Load Matching Commutation Transients.

### UNIT II – SPEED CONTROL FOR ELECTRIC DRIVES

Introduction -PID Control Principle- Anti windup Controller-Intelligent Controller- Vector Control-Control applied to BLDC motor.

### UNIT III – FUZZY LOGIC CONTROL

Membership functions: features, fuzzification and methods of membership value assignments, Defuzzification: lambda cuts - methods - fuzzy arithmetic and fuzzy measures: fuzzy arithmetic - extension principle -fuzzy integrals - fuzzy rule base and approximate reasoning: truth values and tables- fuzzy propositions, formation of rules decomposition of rules- aggregation of fuzzy rules-fuzzy reasoning-fuzzy inference systems- overview of fuzzy expert system-fuzzy decision making.

### UNIT IV – FPGA AND VHDL BASICS

Introduction – FPGA Architecture-Advantages-Review of FPGA family processors- Spartan 3, Spartan 6 and Spartan 7. VHDL Basics- Fundamentals-Instruction set-data type-conditional statements- programs like arithmetic, sorting, PWM generation, Speed detection.

(9)

(9)

(9)

### UNIT V – REAL TIME IMPLEMENTATION

Inverter design- identifying rotor position via hall effect sensors-open loop and fuzzy logic control of 48 V BLDC motor uses FPGA.

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS**:

- 1. Electric Power train Energy Systems, Power Electronics and Drives for Hybrid, Electric and Fuel Cell Vehicles, John G. Hayes, G. Abas Goodarzi, Wiley 1<sup>st</sup> Edition 2018.
- 2. VHDL Primer, A (3rd Edition), Jayaram Bhasker, Prentice Hall, 1st Edition 2015.
- 3. Iqbal Hussain, "Electric and Hybrid Vehicles: Design Fundamentals, Third Edition" CRC Press, Taylor & Francis Group, 1st Edition, 2021.

### **REFERENCES:**

- 1. Chang-liang, Permanent Magnet Brushless DC Motor Drives and Controls, Xia Wiley, 1st Edition, 2012.
- 2. M.N. Cirstea, A. Dinu, J.G. Khor, M. McCormick, Neural and Fuzzy Logic Control of Drives and Power Systems, Newnes publications, 1<sup>st</sup> Edition, 2002.
- 3. Wei Liu, Hybrid Electric Vehicle System Modeling and Control, 2<sup>nd</sup> Edition, Wiley 2017.
- 4. Electric and Plug-in Hybrid Vehicle Networks Optimization and Control, Emanuele Crisostomi, Robert Shorten, Sonja Stüdli, Fabian Wirth, CRC Press, 1<sup>st</sup> Edition. 2018..

|             |   |   |   | M | lapping | g of CC | Os with | POs / | PSOs |    |    |    |    |    |
|-------------|---|---|---|---|---------|---------|---------|-------|------|----|----|----|----|----|
|             |   |   |   |   |         | Po      | os      |       |      |    |    |    | PS | Os |
| COs         | I | 2 | 3 | 4 | 5       | 6       | 7       | 8     | 9    | 10 | 11 | 12 | I  | 2  |
| I           | 3 |   |   |   |         |         |         |       |      |    |    |    | 2  |    |
| 2           |   | 2 |   |   |         |         |         |       |      |    |    |    |    |    |
| 3           |   | 2 |   | I | I       |         |         |       |      |    |    |    |    |    |
| 4           |   |   | I |   |         |         |         |       |      |    |    |    |    |    |
| 5           |   |   |   |   | I       |         |         |       | I    | I  | I  | I  |    |    |
| CO<br>(W.A) | 3 | 2 | I | I | I       |         |         |       | I    | I  | I  | I  | 2  |    |

6.81

|        |                                         | 22EEX26 - ELECTRIC VEHICLES I                                                                                                                                                                                                                                     | N SMART GRID                                                                      |                          |                    |                             |       |
|--------|-----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|--------------------------|--------------------|-----------------------------|-------|
|        |                                         |                                                                                                                                                                                                                                                                   |                                                                                   |                          | Т                  | Ρ                           | С     |
|        |                                         |                                                                                                                                                                                                                                                                   |                                                                                   | 3                        | 0                  | 0                           | 3     |
| PRE-R  |                                         | NIL                                                                                                                                                                                                                                                               |                                                                                   |                          |                    |                             |       |
| Course | e Objective:                            | <ul> <li>To learn the impact of chetechnologies</li> <li>To know the influence of EVs of To acquire knowledge on freque from EVs</li> <li>To learn about smart grid and ICT</li> <li>To acquire knowledge on cent schemes and energy storage integrite</li> </ul> | on power system<br>ency control reser<br>Solutions to suppo<br>tralized charging, | ves &<br>ort E\<br>decer | k volta<br>/ deplo | ge sup<br>syment            | oport |
|        | e <b>Outcomes</b><br>Ident will be able | to                                                                                                                                                                                                                                                                | Cognitive<br>Level                                                                | in                       | End S              | ge of (<br>emes<br>inatio   | ter   |
| соі    |                                         | e electrification and impact of charging influence of EVs on power system                                                                                                                                                                                         | Ap                                                                                |                          | 3                  | 0%                          |       |
| CO2    | Demonstrate f<br>renewable ener         | he impact of EV on smart grid and gy system                                                                                                                                                                                                                       | Ар                                                                                |                          | 2                  | 0%                          |       |
| CO3    |                                         | ncy control reserves & voltage support<br>CT solutions to support EV deployment                                                                                                                                                                                   | An                                                                                |                          | 3                  | 0%                          |       |
| CO4    |                                         | alized charging, decentralized charging<br>hergy storage integration into microgrid                                                                                                                                                                               | Ap                                                                                |                          | 2                  | 0%                          |       |
| CO5    | 00                                      | dependent study and make an oral<br>1 the applications                                                                                                                                                                                                            | U                                                                                 | Int                      | (Ser               | Assessr<br>ninar,<br>e Quiz |       |

### (9) **UNIT I- INTRODUCTION** Basics of EV- Impact of charging strategies- EV charging options and infrastructure - Energy, economics and environmental considerations- Impact of EV charging on power grid- Effect of EV charging on generation and oad profile - Smart charging technologies- Impact on investment. (9) **UNIT II – INFLUENCE OF EVs ON POWER SYSTEM** dentification of EV demand - EV penetration level for different scenarios- Classification based on penetration evel - EV impacts on system demand- Charging: dumb, multiple tariff and smart charging- Case studies. (9) **UNIT III – FREQUENCY CONTROL RESERVES & VOLTAGE SUPPORT FROM EVs** Introduction- Power system ancillary services -Electric vehicles to support wind power integration- Electric vehicle as frequency control reserves and tertiary reserves - Voltage support and electric vehicle integration

Properties of frequency regulation reserves - Control strategies for EVs to support frequency regulation.

6.81

# **UNIT IV - ICT SOLUTIONS TO SUPPORT EV DEPLOYMENT**

Architecture model for smart grid & EV - ICT players in smart grid - Smart metering, information & communication models- Functional and logical models - Technology and solution for smart grid: interoperability, communication technologies.

### **UNIT V – EV CHARGING FACILITY PLANNING**

Energy generation scheduling, - Different power sources, fluctuant electricity- Centralized charging schemes-Decentralized charging schemes - Energy storage integration into microgrid - Design of V2G Aggregator.

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS:**

- Canbing Li, Yijia Cao, YonghongKuang and Bin Zhou, "Influences of Electric Vehicles on Power Ι. System and Key Technologies of Vehicle-to-Grid", Springer-Verlag Berlin Heidelberg, 2016.
- 2. Qiuwei Wu, "Grid Integration of Electric Vehicles in Open Electricity Markets", John Wiley & Sons, Ltd, 2013.

### **REFERENCES:**

I. Harald Naunheimer, Bernd Bertsche, Joachim Ryborz, Wolfgang Novak "Automotive Transmission: Fundamentals, Selection, Design and Application", 2<sup>nd</sup> Edition, Springer, 2011.

|             |     |   |   | M | lapping | g of CC | <b>)</b> s with | POs / | PSOs |    |    |    |    |    |
|-------------|-----|---|---|---|---------|---------|-----------------|-------|------|----|----|----|----|----|
|             |     |   |   |   |         | PC      | Ds              |       |      |    |    |    | PS | Os |
| COs         | I   | 2 | 3 | 4 | 5       | 6       | 7               | 8     | 9    | 10 | 11 | 12 | I  | 2  |
| I           | 3   |   |   |   |         |         |                 |       |      |    |    |    | 2  | 2  |
| 2           | 2   |   |   |   |         |         |                 |       |      |    |    |    | 2  |    |
| 3           |     | 3 |   |   |         |         |                 |       |      |    |    |    | 2  | 2  |
| 4           |     |   | 3 |   |         |         |                 |       |      |    |    |    | 2  | 2  |
| 5           |     |   |   |   |         | I       |                 |       |      | I  |    | Ι  | I  |    |
| CO<br>(W.A) | 2.5 | 3 | 3 |   |         | I       |                 |       |      | I  |    | I  | 2  | 2  |

(9)

| 22EE   | EX27- DESIGN                            | N OF MOTOR AND POWER CONVE                                                                                                                                 | RTERS FOR EL       | ЕСТР |       | EHICI                     | ES  |
|--------|-----------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|------|-------|---------------------------|-----|
|        |                                         |                                                                                                                                                            |                    | L    | Т     | Р                         | С   |
|        |                                         |                                                                                                                                                            |                    | 3    | 0     | 0                         | 3   |
| PRE-R  |                                         | NIL                                                                                                                                                        |                    |      |       |                           |     |
| Course | e Objective:                            | <ul> <li>To analyze and design the variou electric vehicles.</li> <li>To understand the motor transfe systems and DC-DC converters.</li> </ul>             | ,                  | •    |       |                           |     |
|        | e <b>Outcomes</b><br>dent will be able  | to                                                                                                                                                         | Cognitive<br>Level | in   | End S | ge of (<br>emes<br>inatio | ter |
| соі    | application ar                          | riate electric motors for electric vehicles<br>nd compute a power stage transfer<br>DC-DC converters                                                       | Ар                 |      | 3     | 0%                        |     |
| CO2    | transfer function<br>differential, fire | ynamics of Electric Vehicles and compute<br>on with factors such as constant, integral,<br>st order factor and second order factor<br>cors & denominators) | An                 |      | 3     | 0%                        |     |
| CO3    |                                         | vanced motors for electric vehicles with<br>I and simulate converter based PWM                                                                             | Ар                 |      | 2     | 0%                        |     |
| CO4    |                                         | nodeling of DC-DC converter and model<br>function of DC-DC converters and in<br>ns.                                                                        | Ар                 |      | 2     | 0%                        |     |
| CO5    | the topics r                            | team and make effective presentation on<br>elated to real world challenges and<br>in power converters for electric vehicles.                               | U                  |      |       | Assessr<br>ar, Qu         |     |

### **UNIT I - ELECTRIC VEHICLE DYNAMICS**

Standard drive cycles-Dynamics of Electric Vehicles-Tractive Force-Maximum Speed-Torque-Power-Energy requirements of EVs

### **UNIT II - ADVANCED MOTORS FOR ELECTRIC VEHICLES**

Speed and Torque control of above and below rated speed - Speed control of EV in the constant power region of electric motors. Switched Reluctance Motors (SRMs) - Synchronous Reluctance Machines - Choice of Electric Machines for EVs.

### UNIT III - CONTROL SYSTEMS SIMULATION

Transfer Function: Poles & zeros- bode plot : Bode Plots for Multiplication Factors, Constant, Single and Double Integration Functions, Single and Double Differentiation Functions, Single Pole and Single Zero Functions -Transfer function of state space Model.

(9)

(9)

| UNIT IV - MODELLING OF DC-DC CONVERTERS                                                                                                                                                                                                                  | (9)     |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------|
| Overview of PWM Converter Modelling -Power Stage Modelling - PWM Block Modelling –<br>Feedback Circuit and Small-Signal Model of PWM Converter - Averaging Power Stage Dynamics - A<br>Models for buck/boost Converter - Frequency Response of Converter |         |
| UNIT V - POWER STAGE TRANSFER FUNCTIONS OF DC -DC CONVERTERS                                                                                                                                                                                             | (9)     |
| Power Stage Transfer Functions of buck-boost Converter in CCM Operation, Input-to-Output T                                                                                                                                                               | ransfer |

Fower Stage Transfer Functions of buck-boost Converter in CCM Operation, Input-to-Output Transfer Function, Duty Ratio-to-Output Transfer Function and Load Current-to-Output Transfer Function.

### TOTAL (L:45) = 45 PERIODS

### TEXT BOOKS:

- 1. Emerging Power Converters for Renewable Energy and Electric Vehicles Modeling, Design, and Control, Md. Rabiul Islam, Md. Rakibuzzaman Shah, Mohd. Hasan Ali, CRC Press, 2021, 1<sup>st</sup> Edition.
- 2. Electrical Machine Fundamentals with Numerical Simulation using MATLAB/SIMULINK, Atif Iqbal, Shaikh Moinoddin, Bhimireddy Prathap Reddy, Wiley, 2021, 1<sup>st</sup> Edition.

### **REFERENCES**:

- 1. Iqbal Hussain, "Electric and Hybrid Vehicles: Design Fundamentals, Second Edition" CRC Press, Taylor & Francis Group, Third Edition 2021.
- 2. Power Electronic Converters, Teuvo Suntio, Tuomas Messo, Joonas Puukko, First Edition 2017.
- 3. Fundamentals of Power Electronics with MATLAB, Randall Shaffer, 2<sup>nd</sup> Edition, 2013, Lakshmi publications.

|             |     |   |   | M | lapping | g of CC | Os with | POs / | PSOs |    |    |    |    |    |
|-------------|-----|---|---|---|---------|---------|---------|-------|------|----|----|----|----|----|
|             |     |   |   |   |         | PC      | Ds      |       |      |    |    |    | PS | Os |
| COs         | I   | 2 | 3 | 4 | 5       | 6       | 7       | 8     | 9    | 10 | 11 | 12 | I  | 2  |
| I           | 3   |   |   |   |         |         |         |       |      |    |    |    | 3  |    |
| 2           |     | 3 |   |   |         |         |         |       |      |    |    |    | 3  |    |
| 3           | 2   |   |   |   |         |         |         |       |      |    |    |    | 3  |    |
| 4           | 2   |   |   |   |         |         |         |       |      |    |    |    | 3  |    |
| 5           |     |   |   |   |         |         |         |       | 3    | 3  |    | 3  |    |    |
| CO<br>(W.A) | 2.3 | 3 |   |   |         |         |         |       | 3    | 3  |    | 3  | 3  |    |

1. Ei

|        |                                       | 22EEX28 - ELECTRIC VEHICLE A                                        | RCHITECTURE           |        |         |                                   |     |
|--------|---------------------------------------|---------------------------------------------------------------------|-----------------------|--------|---------|-----------------------------------|-----|
|        |                                       |                                                                     |                       | L      | Т       | Ρ                                 | С   |
|        |                                       |                                                                     |                       | 3      | 0       | 0                                 | 3   |
| PRE-R  |                                       | NIL                                                                 |                       |        |         |                                   |     |
|        |                                       | • To learn the structure of Electric                                | Vehicle, Hybrid Ele   | ctric  | Vehicle | 9                                 |     |
|        |                                       | • To study about the EV conversion                                  | o components          |        |         |                                   |     |
| Course | e Objective:                          | • To know about the details and spe                                 | ecifications for Elec | tric V | ehicles | 5                                 |     |
|        |                                       | To understand the concepts of Plu                                   | ug-in Hybrid Electri  | ic Veh | icle    |                                   |     |
|        |                                       | • To model and simulate all types of                                | f DC motors           |        |         |                                   |     |
|        | e <b>Outcomes</b><br>end of the cours | e, the students will be able to                                     | Cognitive<br>Level    | in     | End S   | ge of <b>C</b><br>emest<br>natior | ter |
| COI    |                                       | oncepts related in the Plug-In Hybrid<br>es and control strategies. | Ар                    |        | 2       | 0%                                |     |
| CO2    | Analyze the det<br>developed.         | ails and Specifications for the various EVs                         | An                    |        | 2       | 0%                                |     |
| CO3    | Analyse the c<br>EVs developed        | letails and Specifications for the various<br>I.                    | An                    |        | 4       | 0%                                |     |
| CO4    | Design the var                        | rious EV components and brakes.                                     | С                     |        | 2       | 0%                                |     |
| CO5    |                                       | tive oral & technical presentation relevant vehicle architecture.   | U                     | -      |         | Assessn<br>Assignr                |     |

### **UNIT I - VEHICLE ARCHITECTURE AND SIZING**

Electric Vehicle History, and Evolution of Electric Vehicles. Series, Parallel and Series parallel Architecture, Micro and Mild architectures. Mountain Bike - Motorcycle- Electric Cars and Heavy Duty EVs. -Details and Specifications.

### UNIT II - VEHICLE MECHANICS

Vehicle mechanics- Roadway fundamentals, Laws of motion, Vehicle Kinetics, Dynamics of vehicle motion, propulsion power, velocity and acceleration, Tire –Road mechanics, Propulsion System Design.

### **UNIT III - POWER COMPONENTS AND BRAKES**

Power train Component sizing- Gears, Clutches, Differential, Transmission and Vehicle Brakes. EV power train sizing, HEV Powertrain sizing, Example.

### UNIT IV - HYBRID VEHICLE CONTROL STRATEGY

Vehicle supervisory controller, Mode selection strategy, Modal Control strategies.

(9)

(9)

(9)

### UNIT V - PLUG-IN HYBRID ELECTRIC VEHICLE

Introduction-History-Comparison with electrical and hybrid electrical vehicle-Construction and working of PHEV-Block diagram and components-Charging mechanisms-Advantages of PHEVs.

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS**:

- Heavy-duty Electric Vehicles from Concept to Reality, Shashank Arora, Alireza Tashakori Abkenar, Shantha Gamini Jayasinghe, Kari Tammi, Elsevier Science, 2021
- 2. Electric Vehicles Modern Technologies and Trends, Nil Patel, Akash Kumar Bhoi, Sanjeevikumar Padmanaban, Jens Bo Holm-Nielsen Springer, 2020

### **REFERENCES:**

- Mehrdad Ehsani, YiminGao, Sebastian E. Gay, Ali Emadi, 'Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design', CRC Press, 2004.
- 2. Build Your Own Electric Vehicle, Seth Leitman, Bob Brant, McGraw Hill, 3<sup>rd</sup> Edition 2013.
- 3. Advanced Electric Drive Vehicles, Ali Emadi, CRC Press, 1st edition 2017.

|             |     |   |     | M | lapping | g of CC | Ds with | n POs / | PSOs |    |    |    |    |    |
|-------------|-----|---|-----|---|---------|---------|---------|---------|------|----|----|----|----|----|
|             |     |   |     |   |         | PC      | Os      |         |      |    |    |    | PS | Os |
| COs         | Ι   | 2 | 3   | 4 | 5       | 6       | 7       | 8       | 9    | 10 | 11 | 12 | I  | 2  |
| I           | 3   |   |     |   |         |         |         |         |      |    |    |    | I  |    |
| 2           | 2   |   | 2   |   |         |         |         | I       |      |    |    |    |    |    |
| 3           |     | 3 |     |   |         |         |         |         |      |    |    |    | I  |    |
| 4           |     |   | 3   |   |         |         |         |         |      |    |    |    |    |    |
| 5           |     |   |     |   |         |         |         |         | I    | I  |    | I  |    |    |
| CO<br>(W.A) | 2.5 | 3 | 2.5 |   |         |         |         | I       | I    | I  |    | I  | I  |    |

6.80

|                                                                                                                                                                                                                                                                                                                                                                               |                                  | 22EEX31- EMBEDDED SYSTE                                                              | MS DESIGN          |                                  |       |                           |     |  |  |  |  |  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------|--------------------------------------------------------------------------------------|--------------------|----------------------------------|-------|---------------------------|-----|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                                                                                                               |                                  |                                                                                      |                    | L                                | т     | Ρ                         | С   |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                               |                                  |                                                                                      |                    | 3                                | 0     | 0                         | 3   |  |  |  |  |  |
| PRE-F                                                                                                                                                                                                                                                                                                                                                                         | REQUISITE : N                    | NIL                                                                                  |                    |                                  |       |                           |     |  |  |  |  |  |
| <ul> <li>To introduce the Building Blocks of an embedded System and Software Tools.</li> <li>To emphasize the role of Input/output interfacing with Bus Communication Protocol and embedded system application and development.</li> <li>To illustrate the ISR and scheduling for the multitasking process and explain the basics of a Real-time operating system.</li> </ul> |                                  |                                                                                      |                    |                                  |       |                           |     |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                                                                                                               | e Outcomes<br>udent will be able | to                                                                                   | Cognitive<br>Level | in                               | End S | ge of (<br>emes<br>inatio | ter |  |  |  |  |  |
| COI                                                                                                                                                                                                                                                                                                                                                                           |                                  | ioning and features of processors,<br>D system in developing Embedded                | Ар                 |                                  | 30%   |                           |     |  |  |  |  |  |
| CO2                                                                                                                                                                                                                                                                                                                                                                           | Apply the applicapproaches       | cations based on embedded design                                                     | Ар                 |                                  | 3     | 0%                        |     |  |  |  |  |  |
| CO3                                                                                                                                                                                                                                                                                                                                                                           | ,                                | bedded OS functionality and device nultitasking embedded applications.               | An                 |                                  | 2     | 0%                        |     |  |  |  |  |  |
| CO4                                                                                                                                                                                                                                                                                                                                                                           |                                  | ed applications using given specifications<br>f communication protocols and modules. | Ар                 | 20%                              |       |                           |     |  |  |  |  |  |
| CO5                                                                                                                                                                                                                                                                                                                                                                           | Make an inde<br>embedded syste   | ependent technical presentation using<br>em design tools.                            | U                  | Internal Assessment<br>(Seminar) |       |                           |     |  |  |  |  |  |

### **UNIT I - INTRODUCTION TO EMBEDDED SYSTEMS**

Embedded Systems: Structural units in Embedded processor- Selection of processor & memory devices-DMA- Memory management methods -Timer and Counting Devices-Real Time Clock- In-circuit Emulator-Hardware Debugging.

### **UNIT II - EMBEDDED NETWORKING**

Introduction-I/O Device-Ports-Buses– Serial Bus communication protocols:RS232 standard, RS485, CAN Bus, Serial Peripheral Interface (SPI)& Inter Integrated Circuits (I2C)-Standard single purpose processor's peripherals interfacing: Timers, Stepper motor controller, PWM, LCD, ADC and RTC-Interfacing.

### UNIT III - INTERRUPT SERVICE MECHANISM AND DEVICE DRIVER

Programmed I/O bus-Wait approach without interrupt service mechanism-ISR concept-Interrupt sources – Multiple interrupts – Context and context switching - Interrupt latency deadline – Introduction to Device Driver.

(9)

(9)

# I. Rajkamal, 'Embedded system-Architecture, Programming, Design, McGraw-Hill Edu, 3<sup>rd</sup> 2017.

2. Peckol, "Embedded system Design", John Wiley & Sons, 2010.

**UNIT IV - RTOS BASED EMBEDDED SYSTEM DESIGN** 

**UNIT V - EMBEDDED SYSTEM APPLICATION DEVELOPMENT** 

Camera- Adaptive Cruise control in a Car- Mobile Phone software for key inputs.

### **REFERENCES:**

**TEXT BOOKS:** 

- I. Shibu. K.V, "Introduction to Embedded Systems", TataMcgraw Hill, 2<sup>nd</sup> edition 2017
- 2. Parag H.Dave,Himanshu B.Dave," Embedded Systems-Concepts ,Design and Programming, Pearson Education, 2015, 1<sup>st</sup> edition.

Introduction to RTOS-Task, Process & threads, interrupt routines in RTOS, Multiprocessing and Multitasking- Preemptive and non-preemptive scheduling-Task communication-Shared memory, message

Objective- Need-different Phases & Modelling of the EDLC-choice of Target Architectures for Embedded Application Development for Control Dominated & Data Dominated Systems-Case studies on Digital

passing- Interprocess Communication- Introduction to process synchronization using semaphores.

3. Lyla B Das, "Embedded Systems-An Integrated Approach", Pearson 2013.

|             | Mapping of COs with POs / PSOs                                                      |   |   |   |   |    |    |   |   |    |    |    |      |     |  |
|-------------|-------------------------------------------------------------------------------------|---|---|---|---|----|----|---|---|----|----|----|------|-----|--|
|             |                                                                                     |   |   |   |   | PC | Ds |   |   |    |    |    | PSOs |     |  |
| COs         | I                                                                                   | 2 | 3 | 4 | 5 | 6  | 7  | 8 | 9 | 10 | 11 | 12 | I    | 2   |  |
| I           | 3                                                                                   |   |   |   |   |    |    |   |   |    |    |    |      |     |  |
| 2           | 2                                                                                   |   |   | I | I |    |    |   |   |    |    |    |      |     |  |
| 3           |                                                                                     | 3 |   |   |   |    |    |   |   |    |    |    | 3    |     |  |
| 4           |                                                                                     |   | 3 |   |   |    |    |   |   |    |    |    |      |     |  |
| 5           |                                                                                     |   |   |   | 2 |    |    |   | I | 2  |    | I  |      | 2   |  |
| CO<br>(W.A) | CO<br>(W.A)         2.5         3         3         2         I         2         I |   |   |   |   |    |    |   |   |    |    |    | 2.3  | 1.7 |  |

6.81

(9)

(9)

edition

TOTAL (L:45) = 45 PERIODS

|        |                                         | 22EEX32 - SIGNALS AND S                                                                                                                                         | YSTEMS             |                                  |       |                             |     |  |
|--------|-----------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|----------------------------------|-------|-----------------------------|-----|--|
|        |                                         |                                                                                                                                                                 |                    | L                                | С     |                             |     |  |
|        |                                         |                                                                                                                                                                 |                    | 3                                | 0     | 0                           | 3   |  |
| PRE-R  | REQUISITE : I                           | NIL                                                                                                                                                             |                    |                                  |       |                             |     |  |
| Course | e Objective:                            | <ul> <li>To acquire knowledge on the func-<br/>using Fourier and Laplace Transfo</li> <li>To analyze the design Consideration<br/>transform and DTFT</li> </ul> | orms               |                                  |       |                             |     |  |
|        | e <b>Outcomes</b><br>Ident will be able | to                                                                                                                                                              | Cognitive<br>Level | in                               | End S | ge of (<br>emest<br>ination | ter |  |
| соі    | ,                                       | transformation techniques in signals & veal its functionality behaviors.                                                                                        | Ар                 | 20%                              |       |                             |     |  |
| CO2    | Apply the var<br>DTFT systems           | rious standard digital signals in LTI and<br>s.                                                                                                                 | Ар                 |                                  | 2     | 0%                          |     |  |
| CO3    |                                         | nportance of continuous & discrete time<br>stems used in real time applications.                                                                                | An                 |                                  | 4     | 0%                          |     |  |
| CO4    |                                         | tem that accepts all periodic & non<br>Is to perform a realistic operations                                                                                     | Ар                 | 20%                              |       |                             |     |  |
| CO5    |                                         | team to share the skills to develop a<br>ired for the upliftment of society using<br>pols                                                                       | U                  | Internal Assessment<br>(Seminar) |       |                             |     |  |

### **UNIT I - CLASSIFICATION OF SIGNALS AND SYSTEMS**

Standard signals- Step, Ramp, Pulse, Impulse, Real and complex exponentials and Sinusoids- Classification of signals – Continuous time (CT) and Discrete Time (DT) signals, Periodic & Aperiodic signals, Deterministic & Random signals, Energy & Power signals - Classification of systems- CT systems and DT systems- – Linear & Nonlinear, Time-variant & Time-invariant, Causal & Non-causal, Stable & Unstable.

### UNIT II – ANALYSIS OF CONTINUOUS TIME SIGNALS

Fourier series for periodic signals - Fourier Transform - Inverse Fourier Transform - properties.

### UNIT III – LINEAR TIME INVARIANT- CONTINUOUS TIME SYSTEMS

Fourier and Laplace transforms in Analysis of CT systems - Systems connected in series / parallel.

### UNIT IV - ANALYSIS OF DISCRETE TIME SIGNALS

Sampling Theorem-Reconstruction of a signal from its samples-Aliasing- Fourier Series representation of Discrete Time Periodic Signals- Properties-Discrete Time Fourier Transform-Properties.

(9)

(9)

(9)

### UNIT V – LINEAR TIME INVARIANT-DISCRETE TIME SYSTEMS

Convolution sum- Difference equations -Discrete Fourier Transform and Z Transform Analysis of Recursive & Non-Recursive systems-DT systems connected in series and parallel.

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS**:

- 1. Oppenheim, Willsky and Hamid, Signals and Systems, 2<sup>nd</sup> Edition, Pearson Education, New Delhi, 2015.
- 2. Simon Haykin, Barry Van Veen, Signals and Systems, 2<sup>nd</sup> Edition, Wiley, 2007

### **REFERENCES:**

- I. B. P. Lathi, "Principles of Linear Systems and Signals", 2<sup>nd</sup> Edition, Oxford, 2009.
- 2. M. J. Roberts, "Signals and Systems Analysis using Transform methods and MATLAB", McGraw- Hill Education, 2018.

|             | Mapping of COs with POs / PSOs                                                                                     |   |   |  |  |  |  |  |  |  |   |     |   |   |
|-------------|--------------------------------------------------------------------------------------------------------------------|---|---|--|--|--|--|--|--|--|---|-----|---|---|
|             | POs                                                                                                                |   |   |  |  |  |  |  |  |  |   |     |   |   |
| COs         | I         2         3         4         5         6         7         8         9         10         11         12 |   |   |  |  |  |  |  |  |  | I | 2   |   |   |
| I           | I 3                                                                                                                |   |   |  |  |  |  |  |  |  |   |     |   |   |
| 2           |                                                                                                                    |   |   |  |  |  |  |  |  |  |   |     |   | 2 |
| 3           |                                                                                                                    | 3 |   |  |  |  |  |  |  |  |   |     | 3 | 2 |
| 4           |                                                                                                                    |   | 3 |  |  |  |  |  |  |  |   |     | 2 |   |
| 5           | <b>5</b>                                                                                                           |   |   |  |  |  |  |  |  |  |   |     |   |   |
| CO<br>(W.A) |                                                                                                                    |   |   |  |  |  |  |  |  |  |   | 2.5 | 2 |   |

3. John Alan Stuller, "An Introduction to Signals and Systems", Thomson, 2007

6.800

|                                                                                                                                                                                                                                                                                        |                                        | 22EEX33 - EMBEDDED CONTR                                          | OL SYSTEMS         |                                     |                           |      |     |  |  |  |  |  |  |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|-------------------------------------------------------------------|--------------------|-------------------------------------|---------------------------|------|-----|--|--|--|--|--|--|
|                                                                                                                                                                                                                                                                                        |                                        |                                                                   |                    | L                                   | т                         | Р    | С   |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                        |                                        |                                                                   |                    | 3                                   | 0                         | 0    | 3   |  |  |  |  |  |  |
| PRE-R                                                                                                                                                                                                                                                                                  |                                        | NIL                                                               |                    |                                     |                           |      |     |  |  |  |  |  |  |
| <ul> <li>To learn the basics of sensors and actuators in embedded platform.</li> <li>To know the interfacing techniques using communication Buses and developments of embedded system</li> <li>To learn various software tools for controlling embedded based applications.</li> </ul> |                                        |                                                                   |                    |                                     |                           |      |     |  |  |  |  |  |  |
|                                                                                                                                                                                                                                                                                        | e <b>Outcomes</b><br>dent will be able | e to                                                              | Cognitive<br>Level | in                                  | eighta;<br>End S<br>Exami | emes | ter |  |  |  |  |  |  |
| соі                                                                                                                                                                                                                                                                                    |                                        | sic tools and concepts to interface with<br>I-time applications.  | Ap                 | 30%                                 |                           |      |     |  |  |  |  |  |  |
| CO2                                                                                                                                                                                                                                                                                    | ,                                      | us interfaces, protocols embedded with and techniques.            | An                 | An 30%                              |                           |      |     |  |  |  |  |  |  |
| CO3                                                                                                                                                                                                                                                                                    |                                        | velop a complete application system ware and software components. | С                  |                                     | 2                         | 0%   |     |  |  |  |  |  |  |
| CO4                                                                                                                                                                                                                                                                                    |                                        | software tools and protocols for analysis control systems.        | An                 | 20%                                 |                           |      |     |  |  |  |  |  |  |
| CO5                                                                                                                                                                                                                                                                                    | Implement and<br>an embedded           | d test a specific protocol or algorithm on<br>platform.           | AP                 | Internal Assessment<br>(Assignment) |                           |      |     |  |  |  |  |  |  |

### **UNIT I – INTRODUCTION**

Embedded control systems - Interfacing a microprocessor to the analog world-Position and Velocity measurements - The world of sensors-Actuators-Motor control - Feedback systems - Haptic interfaces and Virtual environments Applications of embedded control systems.

### **UNIT II - EMBEDDED SYSTEM ORGANIZATION**

Embedded computing – Characteristics of embedded computing & applications–Embedded system design challenges - Build process of real-time embedded system – Selection of processor – Memory - I/O devices -RS 485 - MODEM-Bus communication system using I2C- CAN- USB -ISA- EISA.

### UNIT III - INTERFACE WITH COMMUNICATION PROTOCOLS

(9)

(9)

(9)

Design methodologies and tools – Design flow – Designing hardware and software interface – System integration – SPI - High speed data acquisition and interface - SPI read/write protocol - RTC interfacing and programming.

### UNIT IV - DESIGN OF SOFTWARE MACHINE EMBEDDED CONTROL SYSTEM

Software abstraction using Mealy - Moore FSM controller - Layered software development - Basic concepts of developing device driver – SCI – Interfacing & porting using Embedded C - Functional and performance debugging with benchmarking- Real-time software – Survey on basics of contemporary RTOS – VXWorks - UC/OS-II

### UNIT V - CASE STUDIES WITH EMBEDDED CONTROLLER

Programmable interface with A/D & D/A Converter, Digital voltmeter- Control of Robot system- PWM motor speed controller-Serial communication interface.

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS**:

- I. Embedded Systems- Architecture, Programming and Design, 3<sup>rd</sup> Edition, 2017
- 2. Chattopadhyay, "Embedded System Design", PHI Learning, 2011.
- 3. Steven F. Barrett, Daniel J. Pack, "Embedded Systems Design and Applications with the 68HC 12 and HCS12", Pearson Education, 2008.

### **REFERENCES:**

I. Marian Andrzej Adamski, Andrei Karatkevich and Marek Wegrzyn, "Design of Embedded control systems" Springer Science + Busciness Media, 2005.

|             |                  |   |   | Μ | apping | g of CC | <b>)</b> s with | POs / | PSOs |    |    |    |      |   |  |
|-------------|------------------|---|---|---|--------|---------|-----------------|-------|------|----|----|----|------|---|--|
|             |                  |   |   |   |        | PC      | Ds              |       |      |    |    |    | PSOs |   |  |
| COs         | I                | 2 | 3 | 4 | 5      | 6       | 7               | 8     | 9    | 10 | 11 | 12 | I    | 2 |  |
| I           |                  |   |   |   |        |         |                 |       |      |    |    |    |      |   |  |
| 2           | 2 3              |   |   |   |        |         |                 |       |      |    |    |    |      |   |  |
| 3           |                  |   | 2 |   |        |         |                 |       |      |    |    |    | 2    |   |  |
| 4           |                  | 2 |   |   | 2      |         |                 |       |      |    |    |    |      |   |  |
| 5           | <b>5</b> 2 1 2 1 |   |   |   |        |         |                 |       |      |    |    |    |      | 2 |  |
| CO<br>(W.A) |                  |   |   |   |        |         |                 |       |      |    |    | 2  | 1.7  |   |  |

G. Fi

(9)

|        |                                  | 22EEX34 - SIGNAL PROCE                                                                                                                               | SSING              |           |        |                              |       |  |  |
|--------|----------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------|-----------|--------|------------------------------|-------|--|--|
|        |                                  |                                                                                                                                                      |                    | L         | т      | Ρ                            | С     |  |  |
|        |                                  |                                                                                                                                                      |                    | 3         | 0      | 0                            | 3     |  |  |
| PRE-R  | REQUISITE : 1                    | NIL                                                                                                                                                  |                    |           |        |                              |       |  |  |
| Course | e Objective:                     | • To analyze various types of Four<br>Finite & Infinite Impulse Response                                                                             |                    | technique | es AN  | D desi                       | gn of |  |  |
|        |                                  | • To gain the knowledge about the o                                                                                                                  | digital signal pro | cessors   |        |                              |       |  |  |
|        | e Outcomes<br>Ident will be able | to                                                                                                                                                   | Cognitive<br>Level | in        | End S  | ge of C<br>emest<br>ination  | ter   |  |  |
| COI    | ,                                | te Fourier transform for frequency<br>to enhance the quality of signals                                                                              | Ap                 |           | 20%    |                              |       |  |  |
| CO2    | '                                | rent kinds of FIR and IIR filters to<br>eal-time signals.                                                                                            | An                 | 20%       |        |                              |       |  |  |
| CO3    | • •                              | al FIR filter using window techniques and ferent architecture processors.                                                                            | An                 |           | 40%    |                              |       |  |  |
| CO4    | window techr                     | is filters by using approximations and<br>hiques to change the dimension of the<br>e help of signal processors.                                      | An                 | 20%       |        |                              |       |  |  |
| CO5    | employed in p<br>and sharing th  | ating the knowledge on new techniques<br>processing of signals with modern tools<br>e knowledge to others through which a<br>plication is developed. | U                  | Int       | (Onlii | Assessn<br>ne Test<br>nment) | ,     |  |  |

# UNIT I - INTRODUCTION TO SIGNALS AND SYSTEMS(9)Energy and power signals- Continuous and discrete time signal-Continuous and discrete amplitude signals-<br/>System properties: linearity: additivity and homogeneity, shift-invariance, causality, stability, reliability-<br/>Effects of sampling and quantization in discrete domain.UNIT II – DISCRETE FOURIER TRANSFORM(9)DTFT - frequency domain sampling-DFT: properties, frequency analysis, Radix-2 FFT algorithms,<br/>applications, Realization of filter structures: Direct forms I and II, cascades.(9)UNIT III – DESIGN OF IIR FILTERS(9)Design techniques for analog low pass filter - Butterworth and Chebyshev approximations - frequency<br/>transformation - approximation of derivatives - Bilinear transformation and impulse invariant technique.

Digital signal processor architectures: TMS320C series - General purpose processors: fixed point and floating point, MAC, pipelining, addressing modes.

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS:**

- John G. Proakis, D. G. Manolakis, Digital Signal Processing Principles, Algorithms and Applications, 4<sup>th</sup> edition, Pearson Education, 2016
- 2. Oppenheim V.A.V and Schaffer R.W, Discrete time Signal Processing, 3<sup>rd</sup> Edition, Pearson, 2014

### **REFERENCES:**

- 1. Lawrence R Rabiner and Bernard Gold, Theory and Application of Digital Signal. Processing Pearson Education, 2016
- 2. Steven W Smith, Digital Signal Processing: A Practical Guide for Engineers and Scientists, Newnes, 2014
- 3. Sanjit K. Mitra, Digital Signal Processing, 2013, 4th edition, Tata McGraw Hill.

|             | Mapping of COs with POs / PSOs |     |   |   |   |    |    |   |   |    |    |    |      |     |  |
|-------------|--------------------------------|-----|---|---|---|----|----|---|---|----|----|----|------|-----|--|
|             |                                |     |   |   |   | PC | Ds |   |   |    |    |    | PSOs |     |  |
| COs         | I                              | 2   | 3 | 4 | 5 | 6  | 7  | 8 | 9 | 10 | 11 | 12 | I    | 2   |  |
| I           | I 3                            |     |   |   |   |    |    |   |   |    |    |    |      |     |  |
| 2           |                                | 3 I |   |   |   |    |    |   |   |    |    |    |      |     |  |
| 3           |                                |     | 2 |   | I |    |    |   |   |    |    |    | I    | I   |  |
| 4           | Ι                              | 2   | 3 |   |   |    |    |   |   |    |    |    | 3    | I   |  |
| 5           |                                |     |   |   | 2 |    |    |   | 2 | Ι  | Ι  |    |      | Ι   |  |
| CO<br>(W.A) |                                |     |   |   |   |    |    |   |   |    |    |    | 1.6  | 1.5 |  |

6.81

|        |                                |                                                                                                                   | 22EEX35 - EMBEDDED                                                                                                                                                                                                                                                                                                                                                                                                             | loT                                                                                   |                                                                                                                                               |                                                                                               |                                                                                       |                                                                       |                                                                       |
|--------|--------------------------------|-------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------|-----------------------------------------------------------------------|-----------------------------------------------------------------------|
|        |                                |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                                                                                                                               | L                                                                                             | Т                                                                                     | P                                                                     | C                                                                     |
|        |                                |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                                                                                                                               | 3                                                                                             | 0                                                                                     | 0                                                                     | 3                                                                     |
| PRE-R  | EQUISITE : 1                   |                                                                                                                   |                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                       |                                                                                                                                               |                                                                                               |                                                                                       |                                                                       |                                                                       |
| Course | e Objective:                   | actua<br>and A<br>• To ac<br>inclue<br>into to<br>• To ga<br>vario<br>smar<br>• To ur<br>enab<br>ZigBe<br>• To le | nderstand IOT architecture<br>stors, embedded computatio<br>Arduino processors.<br>Equire the knowledge in fu<br>ding IP addresses, MAC add<br>the IEEE 802 family of protoc<br>in the knowledge in recent<br>us domains, including health<br>t cities, and smart grids<br>inderstand the array of cor<br>ling IOT applications inclu<br>ee, Z-Wave, LoRa, HTTP, W<br>arn cloud architecture fur<br>syments, including securit | n<br>resses,<br>cols an<br>trends<br>acare, s<br>mmunia<br>ding F<br>Veb So<br>adamer | units, cor<br>entals of in<br>, TCP and I<br>ad Ether CA<br>and societ<br>smart trans<br>cation tech<br>RFID, NFC<br>cket, MQT<br>ntals and t | nmunio<br>nterne<br>JDP, a<br>T<br>al bene<br>portati<br>nologi<br>, BLE,<br>T, and<br>heir a | cation<br>t com<br>long v<br>efits of<br>on, sn<br>es and<br>LiFi,<br>CoAP<br>pplicat | inter<br>munica<br>vith ins<br>I IoT a<br>nart ho<br>nart ho<br>6Lowl | faces<br>ation,<br>sights<br>cross<br>omes,<br>ocols<br>PAN,<br>I IoT |
|        | e Outcomes<br>end of the cours | <u>·</u>                                                                                                          | alized IoT-related services<br>s will be able to                                                                                                                                                                                                                                                                                                                                                                               |                                                                                       | gnitive<br>.evel                                                                                                                              | in                                                                                            | End S                                                                                 | ge of (<br>Semes<br>inatio                                            | ter                                                                   |
| COI    |                                | n, selecting t                                                                                                    | configuring the network<br>he appropriate protocols                                                                                                                                                                                                                                                                                                                                                                            |                                                                                       | Ap                                                                                                                                            |                                                                                               | 2                                                                                     | .0%                                                                   |                                                                       |
| CO2    | benefits using                 |                                                                                                                   | n IoT related to societal<br>mmunication and security<br>system.                                                                                                                                                                                                                                                                                                                                                               |                                                                                       | Ар                                                                                                                                            |                                                                                               |                                                                                       | .0%                                                                   |                                                                       |
| CO3    | protocols to opportunities.    | face the futur                                                                                                    | ogies and communication<br>re societal challenges and                                                                                                                                                                                                                                                                                                                                                                          |                                                                                       | An                                                                                                                                            |                                                                                               | 4                                                                                     | 40%                                                                   |                                                                       |
| CO4    |                                | oud Infrastruct<br>of various real                                                                                | ure with security model to time systems.                                                                                                                                                                                                                                                                                                                                                                                       |                                                                                       | С                                                                                                                                             |                                                                                               | 2                                                                                     | .0%                                                                   |                                                                       |
| CO5    |                                |                                                                                                                   | e an effective presentation<br>bedded system IoT.                                                                                                                                                                                                                                                                                                                                                                              |                                                                                       | U                                                                                                                                             |                                                                                               |                                                                                       | Assessr<br>Online                                                     |                                                                       |

### UNIT I - INTRODUCTION TO IoT

Architecture-Functional Characteristics and Requirements-Components of IoT-Sensors- Actuator-Embedded Computation Units - Communication Interfaces - Software Development-Introduction to arduino processor.

### **UNIT II - COMMUNICATION PRINCIPLES**

Introduction-Internet Communication: IP Addresses, MAC Addresses - TCP and UDP - IEEE 802 Family of Protocols-Introduction to Ether CAT.

### **UNIT III - APPLICATIONS OF IoT**

Recent Trends in IoT - Societal Benefits of IoT- Health Care -Smart Transportation- Smart Home -Smart Cities- Smart Grid.

### **UNIT IV - COMMUNICATION INTERFACE WITH IOT**

IoT Enabling Technologies: Communications, RFID, NFC (Near- Field Communication), Bluetooth Low Energy (BLE), LiFi, 6LowPAN, ZigBee, Z-Wave, LoRa, HTTP, Web Socket, MQTT and CoAP Protocols. (9)

### **UNIT V - CLOUD SYSTEMS AND SECURITY**

Introduction-Fundamentals of Cloud architecture-Types of Cloud-IOT Cloud Security Architecture-Cloud services-Service related to IOT-Cloud IOT Security Controls.

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS:**

- 1. Adrian McEwen and Hakim Cassimally, "Designing the Internet of Things", John Wiley and Sons Ltd, UK, 2014.
- 2. Olivier Hersent, David Boswarthick and Omar Elloumi,"The Internet of Things: Key Applications and Protocols", John Wiley and Sons Ltd., UK 2012.
- 3. Dieter Uckelmann, Mark Harrison, Florian Michahelles, "Architecting the Internet of Things", Springer, New York, 2011.

### **REFERENCES:**

- 1. Johnny Cache, Joshua Wright and Vincent Liu," Hacking Exposed Wireless: Wireless Security Secrets and Solutions", Tata McGraw Hill, New Delhi, 2010
- Vijay Madisetti, Arshdeep Bahga, "Internet of Things (A Hands-on Approach)", Universities Press, 2. 2015.
- 3. Tim Mather, Subra Kumaraswamy, ShahedLatif, "Cloud Security and Privacy: An Enterprise Perspective on Risks and Compliance" O'Reilly Media; I edition [ISBN: 0596802765], 2009.

|             | Mapping of COs with POs / PSOs |   |   |   |   |    |   |   |   |    |   |    |    |    |
|-------------|--------------------------------|---|---|---|---|----|---|---|---|----|---|----|----|----|
|             |                                |   |   |   |   | PC |   |   |   |    |   |    | PS | Os |
| COs         | Ι                              | 2 | 3 | 4 | 5 | 6  | 7 | 8 | 9 | 10 | П | 12 | I  | 2  |
| Ι           | 3                              |   |   |   |   |    |   |   |   |    |   |    | I  | I  |
| 2           | <b>2</b> 2 2 2 1               |   |   |   |   |    |   |   |   |    |   |    |    |    |
| 3           |                                | 3 |   |   |   |    |   |   |   |    |   |    | I  | I  |
| 4           |                                |   | 3 |   |   |    |   |   |   |    |   |    | I  | I  |
| 5           |                                |   |   |   |   |    |   |   | I | I  |   | I  | I  | I  |
| CO<br>(W.A) | 3                              | 3 | 3 |   |   | 2  | I |   | I | I  |   | I  | I  | I  |

194 | Page



(9)

|        |                                       | 22EEX36 - EMBEDDED NETW                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ORKING                                                                                                                                 |                                                                  |                                                            |                                               |                                           |
|--------|---------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------|------------------------------------------------------------|-----------------------------------------------|-------------------------------------------|
|        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        | L                                                                | Т                                                          | Ρ                                             | С                                         |
|        |                                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                                                                                        | 3                                                                | 0                                                          | 0                                             | 3                                         |
| PRE-R  |                                       | NIL .                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                        |                                                                  |                                                            |                                               |                                           |
| Course | e Objective:                          | <ul> <li>To understand the principles of serial for digital system implementation.</li> <li>To learn the USB and CAN bus mechanism in programming and im</li> <li>To understand network design choin Ethernet controllers and Internet P</li> <li>To learn UDP and TCP message examines and integration with FTP and network serial integration with FTP and network serial including network topology, local efficient MAC protocols, routing applications.</li> </ul> | protocols alc<br>plementation.<br>ices, assess ne<br>Protocol.<br>change, dynami<br>security for er<br>concepts in w<br>lization, time | ong with<br>twork s<br>c web p<br>nbeddeo<br>vireless<br>synchro | n com<br>peed, f<br>age se<br>I syste<br>sensor<br>nizatic | munica<br>focusin<br>rving, e<br>ms.<br>netwo | ation<br>og on<br>email<br>orks,<br>ergy- |
|        | e <b>Outcomes</b><br>and of the cours | e, the students will be able to                                                                                                                                                                                                                                                                                                                                                                                                                                         | Cognitive<br>Level                                                                                                                     | in                                                               | End S                                                      | ge of <b>C</b><br>emest<br>natior             | ter                                       |
| COI    |                                       | ropriate protocols and CAN bus system<br>gital system design.                                                                                                                                                                                                                                                                                                                                                                                                           | Ap                                                                                                                                     |                                                                  | 2                                                          | 0%                                            |                                           |
| CO2    |                                       | distinguish the various communication ethernet of embedded system.                                                                                                                                                                                                                                                                                                                                                                                                      | on Ap 20%                                                                                                                              |                                                                  |                                                            |                                               |                                           |
| CO3    | ,                                     | wireless network elements, ethernet<br>n used in embedded applications.                                                                                                                                                                                                                                                                                                                                                                                                 | et An 40%                                                                                                                              |                                                                  |                                                            |                                               |                                           |
| CO4    |                                       | mbedded application by exchange of UDP.TCP, email integration using FTP control.                                                                                                                                                                                                                                                                                                                                                                                        | С                                                                                                                                      |                                                                  | 2                                                          | 0%                                            |                                           |
| CO5    | Perform in a in the topics            | team and make a effective presentation<br>related to real world challenges and<br>n wireless embedded network.                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                        |                                                                  |                                                            |                                               |                                           |

### **UNIT I - EMBEDDED COMMUNICATION PROTOCOLS**

Introduction – Serial/Parallel Communication – Serial communication protocols: RS232 standard, RS485. Synchronous serial protocols, Serial Peripheral Interface (SPI) and Inter Integrated Circuits (I2C) – Parallel communication protocols: ISA/PCI Bus protocols and Firewire.

### UNIT II - USB AND CAN BUS

USB bus: Speed Identification, USB States and USB bus Communication (Packets, Data flow types, Enumeration and Descriptors) –PIC18 Microcontroller USB Interface – C Programs - CAN Bus : Frames, Bit stuffing, Types of errors, Nominal bit timing – application of CAN.

(9)

### UNIT III - ETHERNET BASICS

Elements of a network-network building: Design Choices, Selecting Components, Connections and network speed -Ethernet Controllers – Ethernet Communication - Internet Protocol.

### **UNIT IV - EMBEDDED ETHERNET**

Exchanging messages using UDP and TCP – Serving web pages with dynamic Data – Email for embedded Systems Using FTP – network security.

### **UNIT V - WIRELESS EMBEDDED NETWORKING**

Introduction -Network topology - Localization -Time synchronization- Energy efficient MAC Protocols – SMAC-Energy efficient and robust routing -Data centric routing-Application

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS:**

- Jan Axelson, "Parallel Port Complete, Programming, Interfacing and Using the PC's Parallel Printer Port", Jan Axelson Series, 2012
- 2. Dogan Ibrahim, "Advanced PIC microcontroller projects in C", Elsevier 2011.

### **REFERENCES:**

 Jan Axelson, "Embedded Ethernet and Internet Complete: Designing and Programming Small Devices for Networking" Jan Axelson Series, 2007.

|                                                                                               | Mapping of COs with POs / PSOs          |       |   |   |   |    |    |   |   |    |    |    |      |   |
|-----------------------------------------------------------------------------------------------|-----------------------------------------|-------|---|---|---|----|----|---|---|----|----|----|------|---|
|                                                                                               |                                         |       |   |   |   | PC | Ds |   |   |    |    |    | PSOs |   |
| COs                                                                                           | I                                       | 2     | 3 | 4 | 5 | 6  | 7  | 8 | 9 | 10 | 11 | 12 | I    | 2 |
| I                                                                                             | 1 3 I I I I I I I I I I I I I I I I I I |       |   |   |   |    |    |   |   |    |    |    |      |   |
| 2                                                                                             |                                         | 2 I I |   |   |   |    |    |   |   |    |    |    |      |   |
| 3                                                                                             |                                         | 3     |   |   |   |    |    |   |   |    |    |    | 2    | 2 |
| 4                                                                                             |                                         |       | 3 |   |   |    |    |   |   |    |    |    | 2    |   |
| 5                                                                                             | 5 1 1 1                                 |       |   |   |   |    |    |   |   |    |    |    |      |   |
| CO<br>(W.A)         3         2.5         3         I         I         I         I         I |                                         |       |   |   |   |    |    |   |   |    | 2  | 2  |      |   |

(9)

(9) 1bedd

|        | 22EEX37- EMBEDDED SYSTEM FOR AUTOMOTIVE APPLICATIONS |                                                                                             |                      |         |                          |                   |       |  |  |  |  |  |  |
|--------|------------------------------------------------------|---------------------------------------------------------------------------------------------|----------------------|---------|--------------------------|-------------------|-------|--|--|--|--|--|--|
|        |                                                      |                                                                                             |                      | L       | Т                        | P                 | С     |  |  |  |  |  |  |
|        |                                                      |                                                                                             |                      | 3       | 0                        | 0                 | 3     |  |  |  |  |  |  |
| PRE-R  |                                                      | NIL                                                                                         |                      |         |                          |                   |       |  |  |  |  |  |  |
|        |                                                      | • To expose the students to the fun<br>Control systems.                                     | damentals and build  | ling of | Electr                   | onic Er           | ngine |  |  |  |  |  |  |
| Course | e Objective:                                         | To discuss on programmable contractions                                                     | rollers for vehicles | manag   | ement                    | systen            | ns.   |  |  |  |  |  |  |
|        |                                                      | <ul> <li>To introduce the embedded syste<br/>for automotive applications</li> </ul>         | em concepts & cor    | nmuni   | cation                   | techni            | ques  |  |  |  |  |  |  |
|        | e Outcomes<br>dent will be able                      | to                                                                                          | Cognitive<br>Level   | in      | ightaş<br>End S<br>Exami | emes              | ter   |  |  |  |  |  |  |
| COI    |                                                      | damental ideas and core components of nbedded system.                                       | Ap                   |         | 2                        | 0%                |       |  |  |  |  |  |  |
| CO2    | Analyze the management diagnostics.                  | Embedded concepts for vehicle<br>and control systems using various                          | An                   |         | 2                        | 0%                |       |  |  |  |  |  |  |
| CO3    |                                                      | d, selection of sensors and actuators to hembedded applications.                            | Ар                   |         | 3                        | 0%                |       |  |  |  |  |  |  |
| CO4    |                                                      | implement in-vehicle communication<br>ed capabilities and capacities as electronic<br>tems. | С                    |         | 3                        | 0%                |       |  |  |  |  |  |  |
| CO5    |                                                      | deliver a clear concise presentation on nd advancements in automotive systems.              | An                   | Int     | ernal A<br>(sen          | lssessn<br>ninar) | nent  |  |  |  |  |  |  |

### **UNIT I - BASICS OF ELECTRONIC ENGINE CONTROL SYSTEMS**

Overview of Automotive systems- fuel economy- air-fuel ratio, emission limits and vehicle performance-Automotive microcontrollers- Electronic control Unit- Hardware & software selection and requirements for Automotive applications - Introduction to Society SAE- Functional safety ISO 26262.

### **UNIT II - SENSORS AND ACTUATORS FOR AUTOMOTIVES**

Review of sensors- sensors interface to the ECU, conventional sensors and actuators-Modern sensor and actuators - LIDAR sensor- smart sensors- MEMS/NEMS sensors and actuators for automotive applications.

### UNIT III - VEHICLE MANAGEMENT SYSTEM

Electronic Engine Control :Engine mapping, fuel control and electronic ignition - Adaptive cruise control - speed control-Antilocking braking system-Electronic suspension - Electronic steering, Automatic wiper control- body control system - Vehicle system schematic for interfacing with EMS&ECU - Electrically assisted power steering system Adaptive lighting system - Safety and Collision Avoidance.

(9)

(9)

| UNIT IV - ONBOARD DIAGONSTICS AND TELEMATICS                                                                                                                                                                                                                                           | (9)      |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|
| On board diagnosis of vehicles - Vehicle communication protocols Bluetooth, CAN, LIN, FL<br>MOST and KWP2000 and recent trends in vehicle communication-Navigation-Tracking-Security<br>communication- Dashboard display and Virtual Instrumentation - Role of IOT in Automotive syste | for data |
| UNIT V - AUTOMOTIVE APPLICATIONS IN EMBEEDED SYSTEM                                                                                                                                                                                                                                    | (9)      |
| Navigation- Autonomous car- Role of IoT in Automotive systems. Case Study: Embedded Rair System. Automotive Night Vision System. Airbag Control Unit.                                                                                                                                  | -Sensing |

TOTAL (L:45) = 45 PERIODS

### TEXT BOOKS:

- I. William B. Ribbens," Understanding Automotive Electronics", Elseiver, 2017.
- 2. Automotive Electricals / Electronics System and Components, Tom Denton, 5<sup>th</sup> Edition, 2017.

### **REFERENCES:**

- 1. Automotive Electricals / Electronics System and Components, Tom Denton, 5<sup>th</sup> Edition, 2017.
- 2. Automotive Electricals Electronics System and Components, Robert Bosch Gmbh, 5<sup>th</sup> Edition, 2014.
- 3. Automotive Hand Book, Robert Bosch, Bently Publishers, 10<sup>th</sup> Edition, 2018.

|             | Mapping of COs with POs / PSOs |   |   |   |   |    |    |   |   |    |    |    |      |     |
|-------------|--------------------------------|---|---|---|---|----|----|---|---|----|----|----|------|-----|
|             |                                |   |   |   |   | PC | Ds |   |   |    |    |    | PSOs |     |
| COs         | Ι                              | 2 | 3 | 4 | 5 | 6  | 7  | 8 | 9 | 10 | 11 | 12 | I    | 2   |
| Ι           | 3                              |   |   |   |   |    |    |   |   |    |    |    | 3    | 2   |
| 2           |                                | 2 |   |   |   |    |    |   |   |    |    |    | I    | I   |
| 3           | 3                              |   |   |   |   |    |    |   |   |    |    |    | 2    | I   |
| 4           |                                |   | 3 |   |   |    |    |   |   |    |    |    |      |     |
| 5           |                                |   |   |   |   |    |    |   | 2 | 2  | I  | I  |      |     |
| CO<br>(W.A) | 3                              | 2 | 3 |   |   |    |    |   | 2 | 2  | I  | I  | 2    | 1.4 |

198 | Page

|        |                                        |                        | 22EEX38- M                                                                                                             |                                                          | NEMS                         |                |        |                           |                  |      |
|--------|----------------------------------------|------------------------|------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|------------------------------|----------------|--------|---------------------------|------------------|------|
|        |                                        |                        |                                                                                                                        |                                                          |                              |                | L      | Т                         | Ρ                | С    |
|        |                                        |                        |                                                                                                                        |                                                          |                              |                | 3      | 0                         | 0                | 3    |
| PRE-R  | EQUISITE : 1                           | NIL                    |                                                                                                                        |                                                          |                              |                |        |                           |                  |      |
| Course | e Objective:                           | ۲<br>• To<br>a<br>• To | o introduce the<br>IEMS/NEMS and a<br>provide an insig<br>oplications of MEM<br>o emphasise the<br>nicrostructures and | oplications.<br>nt of micro a<br>IS and NEMS<br>need for | ind nano<br>technolo<br>NEMS | sensors,<br>gy | actuat | ors an                    | d real           | time |
|        | e <b>Outcomes</b><br>dent will be able | e to                   |                                                                                                                        |                                                          | -                            | nitive<br>evel | in     | eightag<br>End S<br>Exami | emes             | ter  |
| COI    |                                        |                        | MEMS and NEMS sensors and actua                                                                                        |                                                          |                              | Ap             |        | 3                         | 0%               |      |
| CO2    |                                        |                        | perties and the sign<br>ustrial automation.                                                                            |                                                          |                              | An             |        | 2                         | 0%               |      |
| CO3    | Apply the fabr<br>actuators            | rication me            | chanism for MEMS                                                                                                       | S sensor and                                             |                              | Ap             |        | 2                         | 0%               |      |
| CO4    | Analyze the c<br>technology an         | •                      | f micro devices, r<br>ications.                                                                                        | ano devices                                              |                              | An             |        | 3                         | 0%               |      |
| CO5    | Evaluate the a solve problem           | <i>,</i> ,             | ply concepts and                                                                                                       | principles to                                            |                              | E              | Int    | ernal A<br>(C             | Assessr<br>Quiz) | nent |

### **UNIT-I INTRODUCTION TO MEMS and NEMS**

Overview of Micro electro mechanical systems and Nano Electro mechanical systems-Devices and technologies- Laws of scaling- Survey of materials- Smart Sensors - Applications of MEMS and NEMS.

### UNIT-II MICRO-MACHINING AND MICROFABRICATION TECHNIQUES

Photolithography- Film deposition, Etching Processes- wafer bonding- Bulk micro machining, silicon surface micro machining- LIGA process.

### UNIT-III MICRO SENSORS AND MICRO ACTUATORS

Transduction mechanisms in different energy domain-Micromachined capacitive, Piezoelectric, piezoresistive and Electromechanical and thermal sensors/actuators and applications.

### **UNIT-IV NEMS TECHNOLOGY**

(9)

(9)

(9)

(9)

Atomic scale precision engineering- Nano Fabrication techniques - NEMS in measurement, sensing, actuation and systems design.

### UNIT-V MEMS and NEMS APPLICATION

Introduction to Micro/Nano Fluids and applications- Bio MEMS- Optical NEMS- Micro and Nano motors-Recent trends in MEMS and NEMS.

### TOTAL (L:45) = 45 PERIODS

### **TEXT BOOKS**:

- I. Chang Liu, "Foundations of MEMS", Pearson International Edition, 2006.
- 2. Marc F madou" Fundamentals of micro fabrication" CRC Press 2002 2nd Edition Marc Madou.
- 3. M.H.Bao "Micromechanical transducers :Pressure sensors, accelerometers and gyroscopes", Elsevier, Newyork, 2000.

### **REFERENCES**:

I.Maluf, Nadim "An introduction to Micro Electro-mechanical Systems Engineering "AR Tech house, Boston 2000.

2.Tai-.Ran Hsu, "MEMS and Microsystems: design , manufacture, and Nanoscale"- 2<sup>nd</sup> Edition, John Wiley & Sons, Inc., Hoboken, New Jersey, 2008.

|             | Mapping of COs with POs / PSOs |     |   |   |   |   |   |   |   |    |    |    |   |    |
|-------------|--------------------------------|-----|---|---|---|---|---|---|---|----|----|----|---|----|
|             | POs                            |     |   |   |   |   |   |   |   |    |    |    |   | Os |
| COs         | Ι                              | 2   | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | I | 2  |
| I           | 3                              |     |   |   |   |   |   |   |   |    |    |    | 3 | I  |
| 2           |                                | 2   |   |   |   |   |   |   |   |    |    |    | I |    |
| 3           | 2                              |     |   |   |   |   |   |   |   |    |    |    | 2 |    |
| 4           |                                | 3   |   |   |   |   |   |   |   |    |    |    |   |    |
| 5           |                                |     |   |   |   |   |   |   | 2 | I  |    | Ι  |   |    |
| CO<br>(W.A) | 2.5                            | 2.5 |   |   |   |   |   |   | 2 | I  |    | I  | 2 | I  |

6.81

200 | Page

|       |                                                          | 22GEA02- PRINCIPLES OF MANAGE                                                                                                                                                                                                                                                                                                                                                                                                                                          | MENT                                                                                             |                               |                                            |                                   |                                                |
|-------|----------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------|-------------------------------|--------------------------------------------|-----------------------------------|------------------------------------------------|
|       |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  |                               | Т                                          | Ρ                                 | С                                              |
|       |                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                                                  | 3                             | 0                                          | 0                                 | 3                                              |
| PRE-  | REQUISITE: NI                                            | L                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                                                  |                               |                                            |                                   |                                                |
| Cours | e Objective:                                             | <ul> <li>To provide with a foundational understapractices.</li> <li>To equip students with the knowledge an organizations effectively, understanding practical applications in management.</li> <li>To learn about various planning tools and organizational success.</li> <li>To gain insights into human resource mana</li> <li>To study effective communication strate technology on communication and how erproductivity and organizational performance</li> </ul> | d skills neces<br>both theor<br>decision-mak<br>agement funct<br>egies and the<br>ffective contr | sary<br>etica<br>ing<br>tions | to ma<br>al fran<br>proces<br>s.<br>pact c | anage<br>newc<br>sses c<br>of inf | and lead<br>orks and<br>rucial for<br>ormation |
|       | e Outcomes<br>udent will be able t                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | Cognitive<br>Level                                                                               |                               |                                            | s in E<br>nest                    | ind<br>er                                      |
| COI   |                                                          | gement theories and practices to real-world<br>os, demonstrating the ability to implement<br>tions.                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                  |                               |                                            | 20%                               |                                                |
| CO2   | recruitment, tra                                         | resource management practices, evaluating how ining, performance appraisal, and employee te to organizational success.                                                                                                                                                                                                                                                                                                                                                 |                                                                                                  |                               |                                            | 30%                               |                                                |
| CO3   | performance, the<br>use of informatic<br>communication w | effectiveness and their impacts on organizational<br>effectiveness of communication strategies and the<br>n technology in facilitating efficient and effective<br>ithin organizations.                                                                                                                                                                                                                                                                                 | E                                                                                                |                               |                                            | 30%                               |                                                |
| CO4   | and design contro                                        | ensive strategic plans and organizational policies<br>ol systems to ensure continuous improvement in<br>organizational performance.                                                                                                                                                                                                                                                                                                                                    |                                                                                                  |                               |                                            | 20%                               |                                                |
| CO5   | higher-order thi                                         | ndent study as a member of a team and develop<br>nking skills that are crucial for effective<br>leadership in complex organizational settings with<br>se studies.                                                                                                                                                                                                                                                                                                      | ٨p                                                                                               | I                             | nternal                                    | Asse                              | essment                                        |

### **UNIT I - INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS**

(9)

Definition of Management - Science or Art - Manager Vs Entrepreneur - types of managers -managerial roles and skills - Evolution of Management - Scientific, human relations, system and contingency approaches - Types of Business organization- Organization culture and Environment - Current trends and issues in Management.

| UNIT II - PLANNING                                                                                                                                                                                                                                                                                                                                       | (9)              |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| Nature and purpose of planning - planning process - types of planning - objectives - setting object<br>Planning premises - Strategic Management - Planning Tools and Techniques - Decision making steps ar                                                                                                                                               |                  |
| UNIT III - ORGANISING                                                                                                                                                                                                                                                                                                                                    | (9)              |
| Nature and purpose - Formal and informal organization - organization chart - organization structur<br>and staff authority - departmentalization -delegation of authority - centralization and decentralization<br>Human Resource Management - HR Planning, Recruitment, selection, Training and Developmer<br>Management, Career planning and management | on -Job Design - |
| UNIT IV - DIRECTING                                                                                                                                                                                                                                                                                                                                      | (9)              |
| Foundations of individual and group behaviour - motivation -motivation theories - motivational t<br>satisfaction - job enrichment - leadership - types and theories of leadership -communication<br>communication - barrier in communication - effective communication -communication and IT.                                                            |                  |
| UNIT V - CONTROLLING                                                                                                                                                                                                                                                                                                                                     | (9)              |
| System and process of controlling - budgetary and non-budgetary control techniques - use of com<br>Management control - Productivity problems and management - control and performance -direct<br>control -reporting.                                                                                                                                    |                  |
| TOTAL (L:45)                                                                                                                                                                                                                                                                                                                                             | · 45 PERIODS     |

### **TEXT BOOKS:**

- 1. Harold Koontz, Heinz Weihrich and Mark V. Cannice "Essentials of Management: An International, Innovation, and Leadership Perspective", 11th Edition, Tata McGraw-Hill Education, 2021.
- 2. J.A.F. Stoner, R.E. Freeman, and Daniel R. Gilbert "Management", 6<sup>th</sup> Edition, Pearson Education, 2018.

### **REFERENCES:**

- I. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.
- 2. Robert Kreitner & Mamata Mohapatra, "Management", Biztantra, 2008.
- 3. Stephen A. Robbins & David A. Decenzo & Mary Coulter, "Fundamentals of Management", 7th Edition, Pearson Education, 2011.
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999.

|             | Mapping of COs with POs / PSOs |   |   |   |   |    |    |   |   |    |    |    |      |   |
|-------------|--------------------------------|---|---|---|---|----|----|---|---|----|----|----|------|---|
|             |                                |   |   |   |   | PC | Ds |   |   |    |    |    | PSOs |   |
| COs         | I                              | 2 | 3 | 4 | 5 | 6  | 7  | 8 | 9 | 10 | 11 | 12 | I    | 2 |
| I           | 3                              |   |   |   |   |    |    |   |   |    | 3  |    |      |   |
| 2           |                                | 3 |   |   |   |    |    |   |   |    | 3  |    |      |   |
| 3           |                                |   |   |   |   |    |    |   |   | 3  |    |    |      |   |
| 4           |                                |   | 3 |   |   |    |    |   |   | 3  |    |    |      |   |
| 5           |                                |   |   |   |   |    |    |   |   |    | 3  | 3  |      |   |
| CO<br>(W.A) | 3                              | 3 | 3 |   |   |    |    |   |   | 3  | 3  | 3  |      |   |



|        |                                        | 22GEA03- TOTAL QUALITY MA                                                                                                                                                                                                                                                                                                                                   | ANAGEMENT                                                                                                 |                                       |                                     |                              |              |
|--------|----------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------|---------------------------------------|-------------------------------------|------------------------------|--------------|
|        |                                        |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           | L                                     | Т                                   | Ρ                            | С            |
|        |                                        |                                                                                                                                                                                                                                                                                                                                                             |                                                                                                           | 3                                     | 0                                   | 0                            | 3            |
| PRE-R  |                                        | NIL                                                                                                                                                                                                                                                                                                                                                         |                                                                                                           |                                       |                                     |                              |              |
| Course | e Objective:                           | <ul> <li>To Recognize the importance of or TQM.</li> <li>To Explore the elements and histor</li> <li>To Foster employee involvement teamwork, and recognition.</li> <li>To Implement continuous process PDSA Cycle, 5S, and Kaizen.</li> <li>To Conduct quality audits and une standards like ISO 14000, IATF 16 20000, ISO 22000, and ISO 21001</li> </ul> | orical development<br>through motivation<br>s improvement me<br>derstand the introc<br>5949, TL 9000, IEC | t of TC<br>n, emp<br>thods<br>ductior | QM.<br>oowerr<br>like Ju<br>n to ot | ment,<br>ran's T<br>:her IS0 | rilogy,<br>D |
|        | e <b>Outcomes</b><br>dent will be able | to                                                                                                                                                                                                                                                                                                                                                          | Cognitive<br>Level                                                                                        | in                                    | End S                               | ge of C<br>emest<br>inatior  | ter          |
| COI    | Management (T                          |                                                                                                                                                                                                                                                                                                                                                             | Ap                                                                                                        |                                       | 3                                   | 0%                           |              |
| CO2    |                                        | us process improvement methodologies<br>Trilogy, PDSA Cycle, 5S, and Kaizen.                                                                                                                                                                                                                                                                                | Ар                                                                                                        |                                       | 2                                   | 0%                           |              |
| CO3    |                                        | quality tools and techniques in both<br>and service industry.                                                                                                                                                                                                                                                                                               | Ap                                                                                                        |                                       | 2                                   | 0%                           |              |
| CO4    |                                        | g supplier partnerships and understand<br>on, rating and relationship development.                                                                                                                                                                                                                                                                          | An                                                                                                        |                                       | 2                                   | 0%                           |              |
| CO5    |                                        | riate quality standards and implement pective industry App.                                                                                                                                                                                                                                                                                                 | E                                                                                                         |                                       | I                                   | 0%                           |              |

### **UNIT – I QUALITY CONCEPTS AND PRINCIPLES**

Definition of Quality - Dimensions of Quality - Quality Planning - Quality Assurance and Control - Quality Costs with Case Studies - Elements / Principles of TQM - Historical Review – Leadership – Qualities / Habits - Quality Council - Quality Statements, Strategic Planning – Importance - Case Studies - Deming Philosophy -Barriers to TQM Implementation – Cases with TQM Success and Failures.

### UNIT – II TQM-PRINCIPLES AND STRATEGIES

Customer Satisfaction - Customer Perception of Quality - Customer Complaints - Customer Retention, Employee Involvement – Motivation - Empowerment - Teams - Recognition and Reward - Performance Appraisal, Continuous Process Improvement - Juran's Trilogy - PDSA Cycle - 5S - Kaizen, Supplier Partnership - Partnering - Sourcing - Supplier Selection - Supplier Rating - Relationship Development, Performance Measures – Purpose – Methods - Cases.

### UNIT – III CONTROL CHARTS FOR PROCESS CONTROL

Basic Seven Tools of Quality and its Role in Quality Control, Statistical Fundamentals - Measures of Central Tendency and Dispersion, Population and Sample - Normal Curve - Control Charts for Variables and Attributes - Process Capability - Case Study- Introduction to Six Sigma.

(9)

(9)

### UNIT – IV TQM-MODERN TOOLS

New Seven Tools of Quality, Benchmarking - Need - Types and Process, Quality Function Deployment -House of Quality (HOQ) Construction - Case Studies, Introduction to Taguchi's Robust Design - Quality Loss Function - Design of Experiments (DOE), Total Productive Maintenance (TPM) - Uptime Enhancement, Failure Mode and Effect Analysis (FMEA) - Risk Priority Number (RPN) – Process - Case Studies.

### UNIT – V QUALITY SYSTEMS

Need for ISO 9000 and Other Quality Systems - ISO 9000: 2015 Quality System – Elements -Implementation of Quality System - Documentation - Quality Auditing, Introduction to ISO 14000 - IATF 16949 - TL 9000-IEC 17025 - ISO 18000 - ISO20000 - ISO 22000 - ISO21001. Process of Implementing ISO -Barriers in ISO Implementation.

### TOTAL (L:45) = 45 PERIODS

### TEXT BOOK:

 Besterfield Dale H., Besterfield Carol, Besterfield Glen H., Besterfield Mary, Urdhwareshe Hemant, UrdhwaresheRashmi "Total Quality Management", 5<sup>th</sup> Edition, Pearson Education, Noida, 2018.

### **REFERENCES:**

- 1. Subburaj Ramasamy, "Total Quality Management", McGraw Hill Education, New Delhi, 2017.
- 2. James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8<sup>th</sup> Edition, Cengage Learning, 2012.
- David Goetsch & Stanley Davis, "Quality Management for Organizational Excellence: Introduction to Total Quality", 8th Edition, Pearson, 2017.

|             | Mapping of COs with POs / PSOs |     |   |   |   |   |   |   |   |    |    |    |   |   |  |
|-------------|--------------------------------|-----|---|---|---|---|---|---|---|----|----|----|---|---|--|
|             |                                | POs |   |   |   |   |   |   |   |    |    |    |   |   |  |
| COs         | I                              | 2   | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | I | 2 |  |
| I           | 3                              |     |   |   |   |   |   |   |   |    |    |    |   |   |  |
| 2           | 3                              |     |   |   |   |   |   |   |   |    |    |    |   |   |  |
| 3           | 3                              |     |   |   |   |   |   |   |   |    |    |    |   |   |  |
| 4           |                                | 3   |   |   |   |   |   |   |   |    |    |    |   |   |  |
| 5           | 3                              |     |   |   | 2 |   |   |   |   |    |    |    |   |   |  |
| CO<br>(W.A) | 3                              | 3   |   |   | 2 |   |   |   |   |    |    |    |   |   |  |



(9)

|        |                                  | 22GEA04- PROFESSIONAL                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ETHICS                                                                                                                                                                           |                                                             |                                                                 |                                                              |                                                  |
|--------|----------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------------------|--------------------------------------------------------------|--------------------------------------------------|
|        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  | L                                                           | Т                                                               | Ρ                                                            | С                                                |
|        |                                  |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                                                                                                                                  | 3                                                           | 0                                                               | 0                                                            | 3                                                |
| PRE-F  | REQUISITE : N                    | 11L                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                                                                                                                                                  |                                                             |                                                                 |                                                              |                                                  |
| Course | e Objective:                     | <ul> <li>To develop students' ability to id<br/>in engineering contexts, fost<br/>responsibility, integrity, and ethica</li> <li>To provide engineering students<br/>ethical principles and practices in</li> <li>To Familiarize students with key<br/>that guide ethical decision-making</li> <li>To Foster the ability to comm<br/>effectively with diverse stakehol<br/>public.</li> <li>To Encourage students to upho<br/>their professional activities, foster</li> </ul> | tering a commi-<br>il decision-making.<br>s with a compre-<br>the engineering pro-<br>ethical theories, pr<br>in professional pra-<br>nunicate ethical co<br>ders, including col | tment<br>ofessic<br>rinciple<br>ctice.<br>oncerr<br>lleague | to<br>e undo<br>on.<br>es, and<br>es, and<br>es, clie<br>nd acc | profe<br>erstance<br>d frame<br>d colla<br>ents, a<br>ountab | ssional<br>ling of<br>eworks<br>borate<br>nd the |
|        | e Outcomes<br>udent will be able | to                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | Cognitive<br>Level                                                                                                                                                               | in                                                          | End S                                                           | ge of (<br>emest<br>ination                                  | ter                                              |
| COI    | Apply ethical r<br>issues.       | easoning to evaluate and resolve these                                                                                                                                                                                                                                                                                                                                                                                                                                         | Ар                                                                                                                                                                               |                                                             | 3                                                               | 0%                                                           |                                                  |
| CO2    | world case stud                  | rinciples and reasoning to analyze real-<br>lies in engineering.                                                                                                                                                                                                                                                                                                                                                                                                               | Ар                                                                                                                                                                               |                                                             | 3                                                               | 0%                                                           |                                                  |
| CO3    | Analyze the practice.            | importance of ethics in professional                                                                                                                                                                                                                                                                                                                                                                                                                                           | An                                                                                                                                                                               |                                                             | 2                                                               | 0%                                                           |                                                  |
| CO4    |                                  | ability to make informed and ethical<br>ineering practice.                                                                                                                                                                                                                                                                                                                                                                                                                     | An                                                                                                                                                                               |                                                             | I                                                               | 0%                                                           |                                                  |
| CO5    | Recognize the                    | importance of continuous learning and<br>development in maintaining ethical                                                                                                                                                                                                                                                                                                                                                                                                    | E                                                                                                                                                                                |                                                             | I                                                               | 0%                                                           |                                                  |

### UNIT I: INTRODUCTION TO PROFESSIONAL ETHICS

Definition and Importance of Ethics, Ethical Theories and Principles, Ethics vs. Morals vs. Values, Role of Ethics in Engineering.

### UNIT II: PROFESSIONAL RESPONSIBILITY AND CODES OF CONDUCT

Professional Responsibility and Accountability, Codes of Conduct in Engineering (e.g., IEEE, NSPE), Conflicts of Interest and Whistleblowing, Case Studies.

### UNIT III: ETHICAL DECISION-MAKING AND PROBLEM-SOLVING

Ethical Decision-Making Models, Tools and Frameworks for Ethical Analysis, Resolving Ethical Dilemmas, Case Studies

UNIT IV: LEGAL AND REGULATORY ASPECTS

(9)

(9)

Legal Frameworks Governing Engineering Practice, Intellectual Property Rights, Health, Safety, and Environmental Regulations, Case Studies.

### UNIT V: SOCIAL AND ENVIRONMENTAL RESPONSIBILITY

Social Responsibility of Engineers, Sustainable Engineering Practices, Impact of Engineering on Society and Environment, Case Studies.

### TOTAL (L:45) = 45 PERIODS

(9)

### TEXT BOOKS:

- Charles E. Harris Jr., Michael S. Pritchard, and Michael J. Rabins, "Engineering Ethics: Concepts and Cases" 6<sup>th</sup> edition, 2018.
- 2. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering" 5th Edition 2010.
- 3. by M. Govindarajan, S. Natarajan, and V. S. Senthil Kumar,"Professional Ethics and Human Values", Ist Edition 2006.

### **REFERENCES**:

- I. Stephen H. Unger, "Engineering Ethics: Real-World Case Studies"
- 2. Online Ethics Center for Engineering and Science <u>www.onlineethics.org</u>
- 3. National Society of Professional Engineers (NSPE) www.nspe.org

|             | Mapping of COs with POs / PSOs |   |   |   |   |    |    |   |   |    |    |    |    |    |
|-------------|--------------------------------|---|---|---|---|----|----|---|---|----|----|----|----|----|
|             |                                |   |   |   |   | PC | Ds |   |   |    |    |    | PS | Os |
| COs         | I                              | 2 | 3 | 4 | 5 | 6  | 7  | 8 | 9 | 10 | 11 | 12 | I  | 2  |
| I           | 3                              |   |   |   |   |    |    |   |   |    |    |    |    |    |
| 2           | 3                              |   |   |   |   |    |    |   |   |    |    |    |    |    |
| 3           |                                | 3 |   |   |   |    |    |   |   |    |    |    |    |    |
| 4           |                                | 3 |   |   |   |    |    |   |   |    |    |    |    |    |
| 5           |                                |   |   |   |   |    |    | 3 |   |    |    |    |    |    |
| CO<br>(W.A) | 3                              | 3 |   |   |   |    |    | 3 |   |    |    |    |    |    |

G. Fi