1.1.2 Details of Courses where syllabus revision was carried out

B.E.- Mechanical Engineering

R-22 Curriculum

Course Code	Course Name	% of Change			
22MEC14	Machine Design	100%			
22MEC15	Metrology and Measurements	20%			
22MEC16	Heat and Mass Transfer	2%			
22MEC17	Hydraulics and Pneumatics	100%			
22MEC19	Mechatronics & IoT	20%			
22MEX01	Composite Materials	100%			
22MEX02	Tool Design	100%			
22MEX03	22MEX03 Non-traditional Machining Processes				
22MEX04	22MEX04 Design Concepts in Engineering				
22MEX05	22MEX05 Design of Transmission System				
22MEX06	Automobile Engineering	100%			
22MEX07	Industrial Layout Design and Safety	100%			
22MEX08	Modern Robotics	100%			
22MEX11	Automotive Materials, Components, Design & Testing	100%			
22MEX12	Conventional and Futuristic Vehicle Technology	100%			
22MEX13	Renewable Powered Off Highway Vehicles and Emission Control Technology	100%			
22MEX14	Vehicle Health Monitoring, Maintenance and Safety	100%			
22MEX15	CAE and CFD Approach in Future Mobility	100%			
22MEX16	Hybrid and Electric Vehicle Technology	100%			
22MEX17	22MEX17 Thermal Management of Batteries and Fuel Cells				
22MEX18	Smart Mobility and Intelligent Vehicles	100%			

Course Code	Course Name	% of Change
22MEX21	Turbo Machines	100%
		100%
22MEX22	Advanced Internal Combustion Engineering	1000/
22MEX23	Gas Dynamics and Jet Propulsion	100%
22MEX24	Refrigeration and Air Conditioning	100%
22010724	Refrigeration and Air Conditioning	100%
22MEX25	Thermal Power Engineering	100%
22MEX26	Renewable Energy Technologies	100%
22MEV27	Advanced Weblieb Declary's	100%
	Advanced Venicle Engineering	100%
22MEX31	Computational Solid Mechanics	
22MEX32	Computational Fluid Dynamics and Heat transfer	100%
22MEX33 Theory on Computation and Visualization		100%
22MEX34	Computational Bio- Mechanics	100%
22MEX35	Design of Pressure Vessels	100%
22MEX37	Failure Analysis and NDT Techniques	100%
22MEX38	Machine Learning for Intelligent Systems	100%
22MEX41	Digital Manufacturing and IoT	100%
22MEX42	Additive Manufacturing	100%
22MEX43	Green Manufacturing Design and Practices	100%
22MEX44	Casting and Welding Processes	100%
22MEX45	Environment Sustainability and Impact Assessment	100%
22MEX46	Surface Engineering	100%
22MEX47	Green Supply Chain Management	100%
22MEX48	Product Life Cycle Management	100%
	Average	94%

HEAD OF THE DEPARTMENT DEPARTMENT OF MECHANICAL ENGINEERING, NANDHA ENGINEERING COLLEGE ERODE - 638 052.

NANDHA ENGINEERING COLLEGE

(An Autonomous Institution affiliated to Anna University Chennai and approved by AICTE, New Delhi) Erode-638 052, Tamilnadu, India, Phone: 04294 – 225585

Curriculum and Syllabi

for

B.E. – Mechanical Engineering [R22]

[CHOICE BASED CREDIT SYSTEM]

(This Curriculum and Syllabi are applicable to Students admitted of 2022-26 and 2023-27 Batches only)

JULY 2024

INSTITUTE VISION AND MISSION										
VISION	• To be an Institute of excellence providing quality Engineering, Technology and Management education to meet the ever changing needs of the society.									
	• To provide quality education to produce ethical and competent professionals with social Responsibility									
MISSION	• To excel in the thrust areas of Engineering, Technology and Entrepreneurship by solving real- world problems.									
	• To create a learner centric environment and improve continually to meet the changing global needs.									

	B.E – MECHANICAL ENGINEERING
VISION	• To be recognised as a centre of excellence in the field of Mechanical Engineering and to produce competent engineers with multi-disciplinary exposure to meet the changing needs of the society.
	• To enrich technical knowledge and skills by imparting quality education with ethics and social responsibility.
MISSION	• To empower the students in the thrust areas of Mechanical, Allied Engineering and Entrepreneurship in the continually changing global market.
	• To provide a conducive learning environment for improving continually to cater the needs of the society.
	The graduates of Mechanical Engineering will be
PROGRAMME	PEOI: Core Competency: A Successful professional with core competency and inter- disciplinary skills to satisfy the Industrial needs.
EDUCATIONAL OBJECTIVES (PEO)	PEO2: Research, Innovation and Entrepreneurship: Capable of identifying technological requirements for the society and providing innovative solutions to real time problems.
	PEO3: Ethics, Human values and Life-long learning: able to apply professional and ethical practices in their career through continuous learning.
	The students of Mechanical Engineering will be able to
PROGRAMME SPECIFIC OUTCOMES	• Identify, formulate and analyze the problems of Mechanical, Allied Engineering systems and product development.
(PSO)	• Apply appropriate computer aided engineering tools for modeling, simulation, analysis, and manufacturing techniques to solve engineering problems.

PROGRAM OUTCOMES:

At the end of this programme the students will be able to

a-l	GRADUATE ATTRIBUTES	PO No.	PROGRAMME OUTCOMES
a	Engineering Knowledge	POI	Apply the knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.
b	Problem analysis	PO2	Identify, formulate, review research literature and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.
с	Design / development of solutions	PO3	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety and the cultural, societal and environmental considerations.
d	Conduct investigations of complex problems	PO4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data and synthesis of the information to provide valid conclusions.
е	Modern Tool Usage	PO5	Create, select and apply appropriate techniques, resources and modern engineering and IT tools including prediction and modelling to complex engineering activities with an understanding of the limitations.
f	The Engineer and Society	PO6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
g	Environment and Sustainability	PO7	Understand the impact of the professional engineering solutions in societal and environmental contexts and demonstrate the knowledge and need for the sustainable development.
h	Ethics	PO8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
i	Individual and Team Work	PO9	Function effectively as an individual and as a member or leader in diverse teams and in multidisciplinary settings.
j	Communication	PO10	Communicate effectively on complex engineering activities with the engineering community and with society at large such as being able to comprehend and write effective reports and design documentation and make effective presentations and give and receive clear instructions.
k	Project Management and Finance	POII	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, manage projects and in multidisciplinary environments.
I	Lifelong Learning	PO12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES WITH PROGRAMME OUTCOMES

A broad relation between the Programme Educational Objectives and the outcomes is given in the following table

PROGRAMME	PROGRAMME OUTCOMES											
EDUCATIONA L OBJECTIVES	A	В	с	D	Е	F	G	н	I	J	к	L
I	3	3	2	3	2	I	I	2	I	2	2	3
2	3	3	3	3	3	I	I	2	I	2	2	3
3	3	3	3	3	3	I	I	2	I	2	2	3

Contribution

I: Reasonable

2: Significant 3:

3: Strong

MAPPING OF PROGRAM SPECIFIC OUTCOMES WITH PROGRAMME OUTCOMES

A broad relation between the Program Specific Objectives and the outcomes is given in the following table

PROGRAM SPECIFIC OUTCOMES	PROGRAMME OUTCOMES											
	Α	В	с	D	E	F	G	н	I	J	к	L
I	3	3	2	3	2	I	I	I	I	I	I	2
2	3	3	3	3	3	2	2	3	I	3	3	3

Contribution

I: Reasonable

2: Significant 3: Strong

			SEMES	TER: I					
S. NO	COURSE CODE	COURSE TITLE	CATEG ORY	PRE- REQUISIT E	CONTACT PERIODS	L	т	Ρ	с
I	22MAN0I	Induction Programme	MC	-	-	-	-	-	-
ТНЕ	ORY					1			1
2	22EYA0I	Professional Communication - I	HSMC		4	2	0	2	3
3	22MYB01	Calculus and linear algebra*	BSC		4	3	Ι	0	4
4	22CYB02	Chemistry for Engineers	BSC		3	3	0	0	3
5	22EEC02	Basic Electrical Engineering	ESC		3	3	0	0	3
6	22MEC02	Engineering Graphics and drafting (Theory + Lab)	ESC		5	3	0	2	4
7	22GYA01	தமிழர் மரபு /Heritage of Tamils	HSMC	-	I	I	0	0	I
PRA	CTICAL								
8	22GEP01	Engineering Practices Laboratory	ESC		4	0	0	4	2
9	22CYP01	Chemistry Laboratory*	BSC		2	0	0	2	I
Mano	datory Non C	Credit Courses							
10	22MAN02	Soft/Analytical Skills - I	мс		3	I	0	2	0
11	22MAN03	Yoga – I*	мс		I	0	0	I	0
		TOTAL	30	16	I	13	21		

			SEMES	TER: II					
S. NO	COURSE CODE	COURSE TITLE	CATEG ORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
THE	ORY								
I	22EYA02	Professional Communication - II	HSMC	22EYA01	4	2	0	2	3
2	22MYB02	Partial Differential Equations and Transform Techniques*	BSC		4	3	l	0	4
3	22PYB04	Physics for Mechanical Engineering	BSC		3	3	0	0	3
4	22CSC01	Problem Solving and C Programming [*]	ESC		3	3	0	0	3
5	22ECC03	Basic Electronics and instrumentation Engineering	ESC		3	3	0	0	3
6	22MEC03	Engineering Mechanics	ESC		3	2	I	0	3
7	22GYA02	தமிழரும் தொழில்நுட்பமும் /Tamils and Technology	HSMC	22GYA01	I	I	0	0	I
PRA	CTICAL								
8	22CSP01	Problem Solving and C Programming Laboratory*	ESC		4	0	0	4	2
9	22PYP01	Physics Laboratory*	BSC		2	0	0	2	I
Mano	latory Non C	Credit Courses			•				
10	22MAN04	Soft / Analytical Skills - II	MC	22MAN02	3	I	0	2	0
11	22MAN05	Yoga – II*	MC		I	0	0	I	0
		TOTAL			31	18	2	11	23

* Ratified by Eleventh Board of studies

			SEMES	TER: III					
S. NO	COURSE CODE	COURSE TITLE	CATEG ORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
THE	ORY						L		
I	22MYB03	Statistics And Numerical Methods	BSC		4	3	I	0	4
2	22MEC04	Engineering Thermodynamics	PCC		3	2	I	0	3
3	22MEC05	Fluid Mechanics and Machinery (Theory + Lab)	ESC		5	3	0	2	4
4	22MEC06	Manufacturing Processes	PCC		3	3	0	0	3
5	22MEC07	Engineering materials and metallurgy	PCC		3	3	0	0	3
PRA	CTICAL								
6	22MEP02	Computer Aided Machine Drawing	BSC		4	0	0	4	2
Man	datory Non Cr	edit Courses							
7	22MAN07#/ 22MAN07R##	Soft / Analytical Skills - III	MC	-	3	I	0	2	0
8	22MAN09	Indian Constitution	MC		Ι	I	0	0	0
		26	16	2	8	19			

Applicable for 2022-26 Batch only## Applicable for 2023-27 Batch only

			SEMEST	ER: IV					
S. NO	COURSE CODE	COURSE TITLE	CATE GORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
THE	ORY								
I	22MEC09	Thermal Engineering Systems	PCC	22MEC04	4	3	I	0	4
2	22MEC10	Subtractive Manufacturing Processes	PCC	2MEC06	3	3	0	0	3
3	22MECTI	Strength of Materials (Theory + Lab)	PCC		5	3	0	2	4
4	22MEC12	Theory of Machines (Theory + Lab)	PCC		4	3	0	2	4
5	EI	Elective(OEC/PEC)	OEC / PEC		3	3	0	0	3
PRA	ĊTICAL								
6	22MEP03	Thermal Engineering Systems Laboratory	PCC		4	0	0	4	2
7	22MEP04	Subtractive Manufacturing Processes Laboratory	PCC		4	0	0	4	2
Mano	latory Non Cre	dit Courses							
8	22MAN08 [#] / 22MAN08R ^{##}	Soft/Analytical Skills - IV	MC	-	3	I	0	2	0
9	22MAN06	Environmental Science	MC		2	0	0	2	0
10	22GED01	Personality and Character Development	MC		2	0	0	2	0
		34	16	1	18	22			

* Ratified by Twelfth Academic Council # Applicable for 2022-26 Batch only ## Applicable for 2023-27 Batch only

			SEMES	TER: V					
S. NO	COURSE CODE	COURSE TITLE	CATEG ORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
THE	ORY								
I	22MEC14	Machine Design	PCC		4	3	H	0	4
2	22MEC15	Metrology and Measurements	PCC		3	3	0	0	3
3	22MEC16	Heat and Mass Transfer	PCC		3	3	0	0	3
4	22MEC17	Hydraulics and Pneumatics	PCC		3	3	0	0	3
5	E2	Elective(PEC)	PEC		3	3	0	0	3
6	E3	Elective(OEC/PEC)	PEC		3	3	0	0	3
PRA	CTICAL			·					
7	22MEP05	Heat and Mass Transfer Laboratory	PCC		4	0	0	4	2
8	22MEP06	Metrology and Measurements Laboratory	PCC		4	0	0	4	2
Mano	latory Non C	Credit Courses							
9	22MANI0 R	Communication and Quantitative Reasoning	МС	-	3	Ι	0	2	0
		TOTAL			30	19		10	23

			SEMES	TER: VI					
S. NO	COURSE CODE	COURSE TITLE	CATEG ORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
THE	ORY								
I	22MEC18	Finite Element Analysis	PCC		3	3	0	0	3
2	22MEC19	Mechatronics & IoT	PCC		3	3	0	0	3
3	EMI	Elective - Management	HSMC		3	3	0	0	3
4	E4	Elective(PEC)	PEC		3	3	0	0	3
5	E5	Elective(PEC)	PEC		3	3	0	0	3
6	E6	Elective(OEC)	OEC		3	3	0	0	3
PRA	CTICAL								
7	22MEP07	Computer Aided Analysis Laboratory	PCC		4	0	0	4	2
8	22MEP08	Mechatronics & IoT Laboratory	PCC		4	0	0	4	2
		TOTAL			26	8	0	80	22

VERTIC	CAL I DESIG									
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE REQUISITE	CONTACT PERIODS	L	т	Ρ	С	P.S
Ι.	22MEX01	Composite Materia l s	PEC	-	3	3	0	0	3	∨ - ∨II
2.	22MEX02	Too l Design	PEC	-	3	3	0	0	3	∨ - ∨II
3.	22MEX03	Non-traditional Machining Processes	PEC	-	3	3	0	0	3	∨ - ∨
4.	22MEX04	Design Concepts in Engineering	PEC	-	3	3	0	0	3	∨ - ∨II
5.	22MEX05	Design of Transmission System	PEC	22MEC14	3	3	0	0	3	∨ - ∨II
6.	22MEX06	Automobile Engineering	PEC	-	3	3	0	0	3	∨ - ∨II
7.	22MEX07	Industrial Layout Design and Safety	PEC	-	3	3	0	0	3	∨ - ∨II
8.	22MEX08	Modern Robotics	PEC	-	3	3	0	0	3	∨ - ∨II
VERTIC	CAL 2 MOD	ERN MOBILITY SY	STEMS							
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE REQUISITE	CONTACT PERIODS	L	Т	Ρ	С	P.S
Ι.	22MEX11	Automotive Materials, Components, Design & Testing	PEC	-	3	3	0	0	3	∨ - ∨II
2.	22MEX12	Conventional and Futuristic Vehicle Technology	PEC	-	3	3	0	0	3	∨ - ∨II
3.	22MEX 3	Renewable Powered Off Highway Vehicles and Emission Control Technology	PEC	-	3	3	0	0	3	∨ - ∨II
4.	22MEX 14	Vehicle Health Monitoring, Maintenance and Safety	PEC	-	3	3	0	0	3	∨ - ∨II
5.	22MEX15	CAE and CFD Approach in Future Mobility	PEC	-	3	3	0	0	3	∨ - ∨II
6.	22MEX 16	Hybrid and Electric Vehicle Technology	PEC	-	3	3	0	0	3	∨ - ∨II
7.	22MEX17	Thermal Management of Batteries and Fuel Cells	PEC	-	3	3	0	0	3	∨ - ∨II
8.	22MEX 18	Smart Mobility and Intelligent Vehicles	PEC	-	3	3	0	0	3	∨ – ∨II

VERTICAL 3 THERMAL ENGINEERING											
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE REQUISITE	CONTACT PERIODS	L	т	Ρ	С	P.S	
١.	22MEX21	Turbo Machines	PEC	-	3	3	0	0	3	∨ - ∨II	
2.	22MEX22	Advanced Internal Combustion Engineering	PEC	-	3	3	0	0	3	∨ - ∨II	
3.	22MEX23	Gas Dynamics and Jet Propulsion	PEC	-	3	3	0	0	3	∨ - ∨II	
4.	22MEX24	Refrigeration and Air Conditioning	PEC	-	3	3	0	0	3	∨ - ∨II	
5.	22MEX25	Thermal Power Engineering	PEC	-	3	3	0	0	3	∨ - ∨II	
6.	22MEX26	Renewable Energy Technologies	PEC	-	3	3	0	0	3	∨ - ∨II	
7.	22MEX27	Advanced Vehicle Engineering	PEC	-	3	3	0	0	3	∨ - ∨II	
8.	22MEX28	Power Plant Engineering	PEC	-	3	3	0	0	3	∨ - ∨II	
VERTIC	CAL 4 COM	PUTATIONAL ENG	SINEERING								
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE REQUISITE	CONTACT PERIODS	L	т	Ρ	с	P.S	
Ι.	22MEX31	Computational Solid Mechanics	PEC	-	3	3	0	0	3	∨ - ∨II	
2.	22MEX32	Computational Fluid Dynamics and Heat transfer	PEC	-	3	3	0	0	3	∨- VII	
3.	22MEX33	Theory on Computation and Visualization	PEC	-	3	3	0	0	3	∨ - ∨II	
4.	22MEX34	Computational Bio- Mechanics	PEC	-	3	3	0	0	3	∨ - ∨II	
5.	22MEX35	Design of Pressure Vessels	PEC	-	3	3	0	0	3	∨ - ∨II	
6.	22MEX36	CAD and CAE	PEC	-	3	3	0	0	3	∨ - ∨II	
7.	22MEX37	Failure Analysis and NDT Techniques	PEC	-	3	3	0	0	3	∨ - ∨II	
8.	22MEX38	Machine Learning for Intelligent Systems	PEC	-	3	3	0	0	3	V - VII	

VERTIC	CAL 5 DIGIT	AL AND GREEN M	ANUFACTURI	NG						
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE REQUISITE	CONTACT PERIODS	L	т	Р	С	P.S
Ι.	22MEX41	Digital Manufacturing and IoT	PEC	-	3	3	0	0	3	∨- ∨II
2.	22MEX42	Additive Manufacturing	PEC	-	3	3	0	0	3	∨ - ∨II
3.	22MEX43	Green Manufacturing Design and Practices	PEC	-	3	3	0	0	3	∨ - ∨II
4.	22MEX44	Casting and Welding Processes	PEC	-	3	3	0	0	3	V - VII
5.	22MEX45	Environment Sustainability and Impact Assessment	PEC	-	3	3	0	0	3	∨ - ∨II
6.	22MEX46	Surface Engineering	PEC	-	3	3	0	0	3	V - VII
7.	22MEX47	Green Supply Chain Management	PEC	-	3	3	0	0	3	V - VII
8.	22MEX48	Product Life Cycle Management	PEC	-	3	3	0	0	3	∨ - ∨II
(E) MII	NOR DEGRE	E								
MINOR		IC VEHICLE TECHN	NOLOGIES							_
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE REQUISITE	CONTACT PERIODS	L	Т	Р	C	P.S
Ι.	22MEM01	Basics of Electric Vehicles	OEC	-	3	3	0	0	3	∨ - ∨II
2.	22MEM02	Electric Vehicle Architecture and Control System	OEC	-	3	3	0	0	3	∨ - ∨II
3.	22MEM03	Materials for Electric Vehicles	OEC	-	3	3	0	0	3	∨ - ∨II
4.	22MEM04	Powertrain Design for Electric Vehicles	OEC	-	3	3	0	0	3	∨ - ∨II
5.	22MEM05	Battery Management	OEC	-	3	3	0	0	3	∨ - ∨II
6.	22MEM06	Al and IoT for Electric Vehicles	OEC	-	3	3	0	0	3	∨ - ∨II
7.	22MEM07	Autonomous Vehicles	OEC	-	3	3	0	0	3	∨ - ∨II
8.	22MEM08	Fuel Cell Technology & Safety Regulations	OEC	-	3	3	0	0	3	∨ - ∨II
(F) MA	NAGEMENT			•	•					-
Ι.	22GEA02	Principles of Management	HSMC	-	3	3	0	0	3	VI
I.	22GEA03	Total Quality Management	HSMC	-	3	3	0	0	3	VI
		Thanagement								

		22MEC14 MACHINE D	ESIGN						
				L	Т	Р	С		
				3	1	0	4		
PREREC	JUISITE :	To introduce the design methodolog	w of machine alom	onto					
Course	Objective:	 To acquire knowledge on analysis of appropriate design methodology To analyse the stresses acting on the To gain knowledge about the design To teach various standards, and select 	forces acting on the temporary and pe of couplings and/or ction procedures o	he ma rmane r sprin f macl	chine e ent joir igs nine ele	elemen nts ements	ts and		
	C The	course Outcomes Student will be able to	Cognitive Level	We	ighta End S Exan	ge of (emes ninatio	COs in ter on		
CO1 5	Apply concept stresses in a components.	s of strength of materials to estimate the machine element and predict failure of	Ар			20%			
CO2	Analyse the ef and factors affe	fect of fatigue load on machine elements ecting it to predict failure.	An			20%			
CO3	Design the m springs and be	nachine elements such as Shafts, Keys, arings	An/E		40%				
CO4	Design the va permanent joir	arious joints such as temporary joints, nts and couplings	E			20%			
CO5	Implement si machine desig	andards, codes, and regulations in n	U/Ap	lr	nternal	Asses	sment		
UNIT I :	STRESSES IN	MACHINE ELEMENTS				(9	+3)		
procedur propertie failure- be	e in design pr es preferred n ending stress i	umbers, fits and tolerance - direct, bend ncurved beams - crane hook and 'C' fram	ing and torsional s e - factor of safety	teriais stress 7 - the	based equati ories c	on me on - N of failur	echanica Aodes d res		
UNIT II : Variable s Goodmar shafts bas	VARIABLE ST stresses in main and Soderbe sed on strengt	RESSES AND DESIGN OF SHAFTS chine parts - stress concentration factor - erg methods - combined normal stress an h and rigidity	cyclic stresses - fa d variable stress -	itigue desig	and er n of so	(9 Iduran Idid and	+ 3) ce limit d hollov		
UNIT III	: PERMANEN	AND TEMPORARY JOINTS				(9	+3)		
Welded j eccentrica loading -	joints - types ally loaded we introduction t	- basic weld symbols - strength of tra- elded joints. Threaded joints - terms - for o riveted joints	ansverse and para ms - design of bol	allel fi ted jo	llet w ints u	elded nder e	joints ccentric		
	: DESIGN OF	COUPLINGS AND SPRINGS				(9	+3)		
Couplings Introduct terms use springs - (s - types - des ion to ELBO ed in compre design of leafs	ign of muff coupling, unprotected type fla flexible pin-type coupling, springs- types, ssion springs - stresses and deflection in springs - stress and deflection equation, ni	ange coupling, bus helical springs, m helical springs o pping	hed p nateria of circ	in flex Is, enc ular w	ible co I conn 'ire - s	ections surge ir		

UNIT \	/ : BEARINGS ((9+3)
Sliding	contact bearings - theory of lubrication, hydrodynamic bearings, Sommerfield number	r – design of
nyaroo	iynamic bearings – rolling contact bearings, static and dynamic load capacity, cubic	; mean load,
boaring	e load, probability of survival, selection of deep groove ball bearing, introduction is applications	to magnetic
c	Dractico Titlos	Linit
S. No	Plactice Titles	Unit
1	Fits and Tolerances	1
2	Wolded joints	2
2		3
3	Helical Springs	4
	TOTAL: 60 Hours (45 L +15 T)
TEXT B	OOKS	
1. Jos	seph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engine	ering Design",
10	th ed., McGraw-Hill Education, 2015	
2. Bh	andari V.B, "Design of Machine Elements", 4th ed., McGraw Hill Education India Private	Limited, 2017
REFERE	NCES:	
1. Khu	rmi. R.S and Gupta. J. K, "A Textbook of Machine Design", S. Chand and Company Ltd	d., New Delhi,
201	4	
2. Jalal	udeen S.Md, "Machine Design (Volume-1)", 4th ed., Anuradha Publications, Chennai, 201	11
3 Sun	dararajamoorthy T. V. Shanmugam, N. "Machine Design", Anuradha Publications, Chenn	ai 2003
4 Pob	art C luvinall Kurt M Marshek "Machine Component Design" Wiley India Put I to 20	116
4. KUU	ert C. Juvinali, Kurt IVI. Ivid Shek, Ivid Shek, Component Design, Vviley India FVI Ltd., 20	/IU (India) Drivata
5. Gan	esh Badu.K, Shthar.K, "Design of Wachine Elements", 2nd ed., Wicgraw Hill Education	(india) Private

Limited, 2009

	Mapping of COs with POs / PSOs													
Cos						P	os						PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3												3	
2		3											3	
3			3										3	
4				2									3	
5								2						
CO (W.A)	3	3	3	2				2					3	

02

/

	22MEC15 MET		EASUREMENTS	;			
					т	Р	С
				3	0	0	3
PRER	EQUISITE :						•
Cours	 To introduce the To acquire known of the set objective: To acquire known of the set of the set	he principles of metro wledge on measurem wledge on the concep ements wledge on statistical m edge on laser and adva	logy and measurem ent parameters and ot of various measu neasurements and s nces in metrology	nents 1 its ap remen surface systen	oplicati nts like e finish n	ons Iinear	and
	Course Outcomes The Student will be able	to	Cognitive Level	We	ightao End S Exan	ge of (emes ninatio	COs in ter on
CO1	Apply the concept of measur industrial components	ement system for	Ар			30	
CO2	Apply the various measuring me applications	thods in mechanical	Ар			30	
CO3	Design the various component instruments	s using measuring	Ар			20	
CO4	Develop competence in form meas measurement methods, includ metrology	surement and optical ling 3D surface	An			20	
CO5	Engage in independent study as a m individual and make effective or measurement systems	nember of a team or al presentation on	U	I	nterna	l Evalu	ation
							(0)
General accuracy - correc	concept - units and standards - ch y and precision - static and dynamic ttion, calibration - interchangeability	aracteristics of measu response - repeatabili	uring instruments - ity, hysteresis - sys	- sens temat	itivity, ic and	stabili rando	ty, range om error
UNIT I	I : PARAMETER MEASUREME	NTS					(9)
Measure measure resistane	ement of force, torque, power usin ement - rotameter, pitot tube - Ter ce thermometer	ng mechanical, pneun mperature measureme	natic, hydraulic, el ent - bimetallic str	ectric ip, the	al inst ermoce	rumen ouple,	its - flov electrica
UNIT I	II: LINEAR AND ANGULAR M	IEASUREMENTS					(9)
Linear r interfere measure	measuring instruments - vernier, n ometry, optical flats, comparator ements - sine bar, sine center, bevel	nicrometer, slip gaug rs - mechanical, pr protractor, autocollin	es, limit gauges, t neumatic, electric nator, Angle Dekko	ool r al ap or.	naker's oplicati	s micr ons -	roscope - angula

UNIT IV : FORM MEASUREMENT

Fundamentals of GD & T - Measurement of Screw Thread - Measurement of Gears - Measurement of straightness, flatness and roundness - measurement of surface finish - stylus based - Tomlinson surface meter and Taylor-Hobson Talysurf - optical measurement - light cross section method - Introduction to 3D surface metrology

UNIT V : ADVANCED METROLOGY

Precision instruments based on laser principles - interferometer - application in linear, angular measurements -Coordinate Measuring Machine (CMM) - constructional features - types, applications - computer aided inspection - Introduction to machine vision system - Demonstration of Modern Measurement System for Industrial Applications.

(9)

(9)

TEXT BOOKS:

- 1. Thomas G. Beckwith, Roy D, Marangoni, John H.Lienhard V., "Mechanical Measurements", 6th ed., Pearson Education India, 2014
- 2. Jain R.K., "Engineering Metrology", 20th ed, Khanna Publishers, 2009

- 1. Raghavendra N.V, Krishnamurthy L, "Engineering Metrology and Measurements", 1st ed., Oxford University Press, 2013
- 2. R.K.Rajput A textbook of measurement and metrology ,S.K. Kataria & Sons,2013.
- 3. Gupta.I.C., "Engineering Metrology", 10th ed., Dhanpat Rai Publications, 2013
- 4. Anand K Bewoor, Vinay A Kulkarni, "Metrology & Measurement", McGraw Hill Education, 2009
- 5. Mahajan.M, "Engineering Metrology", Dhanapat Rai publications, 2014
- 6. Tayal A.K, "Instrumentation and Mechanical Measurements", 4th ed., Galgotia Publications, 2000

	Mapping of COs with POs / PSOs													
Cos						P	Os						PSOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3												2	2
2		2											2	
3			2										1	
4					2									1
5					2									2
CO (W.A)	3	2	2		2								1.67	1.67

	22MEC16 HEAT AND MASS TRANSF	ER				
			L	т	Р	С
			3	0	0	3
PRER						
0	 To introduce the concept of heat conduction in To analyze about the internal heat generation ar To acquire knowledge on convection in various 	various nd transi systems	syste ient he s.	ms. eat coi	nductio	on.
Cour	 To acquire knowledge on Boiling and Condensa To learn the basic of heat exchangers, develop convective mass transfer. 	tion, rad the ba	liatior sic cc	heat ncept	transfe diffus	er. ion and
	Course OutcomesCognitThe Student will be able toLeve	ive I	We	ightao End S Exan	ge of (emes nination	COs in ter on
CO1	Apply the concept of heat transfer to calculate the rate of heat transferred through conduction and convection in various thermal systems.Ap				40%	
CO2	Numerically determine and compare the emissivity of grey bodies with that of a black body.Ap				20%	
CO3	Compare the modes of heat transfer by solving numerical problems relevant to real-time applications.				20%	
CO4	Analyze the transfer of matter on a microscopic levelas a result of diffusion from a region of higherconcentration to lower concentration region.				20%	
CO5	Engage in an independent study to deliver a compelling oral presentation on heat transfer modesUin diverse thermal applications.		In	iternal	Asses	sment
UNIT	I: STEADY STATE HEAT CONDUCTION					(9)
Mechan steady s of insul circumf	isms of heat transfer - General heat conduction equation in Cartes state heat conduction in composite and plane walls with constant th ation - Rectangular plate fins and pin fins with uniform cross secti erential fins.	ian cooi Iermal c Ion - Eff	rdinat onduc ficienc	es –O ctivity cy and	ne dir - critio effect	nensional cal radius tiveness -
UNIT	II - CONDUCTION WITH HEAT GENERATION					(9)
Solid cy resistan plane w	(linder with internal heat generation - Transient heat conduction - ice - heat flow in an infinitely thick plate - chart solutions of trans all.	plane v sient hea	vall w at coi	ith ne nductio	gligible on pro	e internal oblems in
UNIT	III - CONVECTION					(9)
Therma - correl Natural	I and velocity boundary layer in flow over flat plate and flow throug lations for flow over flat plate - flow across tube banks - correlation convection in vertical and horizontal plates	h circula Is for flo	ar pipo ow thi	e - for rough	ced co circula	onvection ar tubes -
UNIT	IV - RADIATION, BOILING AND CONDENSATION					(9)
Therma Stefan- boiling o	Il radiation - emissive power - absorption, reflection and transmissi Boltzmann, Kirchhoff's laws - emissivity - grey body - Radiation shiel correlations <mark>-Nusselt's theory</mark> - condensation on vertical surfaces and	on - Pla Ids - poo 1 horizo	ank's, ol boi ntal ti	Wien' ling cu ubes	s displ rve fo	lacement, r water -
UNIT	V – HEAT EXCHANGERS AND MASS TRANSFER					(9)
Types of Diffusio	of heat exchangers - overall heat transfer coefficient - fouling factor in mass transfer - Fick's law of diffusion - diffusion coefficient tration boundary layer - governing equations - convective mass transf	ors - LT - equii fer corre	VITD molar elatio	and N coun ns	ITU m iter d	nethods - iffusion -
			TOT	AL =	45 P	FRIODS

TEXT BOOKS

1. Sachdeva.R.C, "Fundamentals of Engineering Heat and Mass transfer", 6th ed., New age international publishers, 2022.

2. Yunus A Cengel, "Heat and Mass Transfer", 6th ed., McGraw Hill Education (India) Pvt Ltd, 2020

- 1. Kothandaraman.C.P, "Fundamentals of Heat and Mass transfer", 4th ed., New age international publishers, 2012
- 2. Nag.P.K, "Heat and Mass Transfer", 3rd ed., McGraw Hill Education, 2011
- 3. Holman.J.P, "Heat Transfer", McGraw Hill Education (India) Pvt Ltd, 2017
- 4. Incropera and Dewitt, "Fundamentals of Heat and Mass Transfer", 7th ed., Wiley India Pvt Ltd, 2013

	Mapping of COs with POs / PSOs													
COs		POs												SOs
003	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3												2	
2	3												2	
3	3												2	
4		3											2	
5										2				
CO (W.A) 3 3 2												2		

an

		22MEC17 HYDRAULICS AND	PNEUMATICS				
				L	Т	Ρ	С
				3	0	0	3
Cours	e Objective:	 To provide the knowledge on the we To study the fluids and components system. To develop the design, construction To learn the working principles of principles of principles of principles and principles of principles of principles and principles of principles	orking principles of used in modern inc and operation of flu neumatic power sys	fluid j lustria uid po stem a	oower I fluid wer ci Ind its	system power rcuits. compo	nents.
	C The	• To provide the knowledge of trouble Course Outcomes Student will be able to	Cognitive Level	We	ightag End S Exan	ge of C emest ninatic	COs in ter on
CO1	Apply the co actuators/com	pncepts of fluid power in controlling ponents.	AP			20	
CO2	Apply the co obtain automa	ncepts of hydraulics and pneumatics to tion industrial applications.	АР			40	
CO3	Analyze variou actuators and	us fluid power circuits and select suitable control components.	AN			20	
CO4	Design hydrau given specifica	ulic and pneumatic circuits to meet the tions.	AN/C			20	
CO5	a mini project	relate to the course.	AN / C	Ir	nternal	Assess	sment
UNIT I	- FLUID PO\	VER PRINICIPLES AND HYDRAUL					(9)
Fluid pov of fluids Pump Cl	ver systems – I – Basics of Hy assification – C	ntroduction to Fluid power – Advantages /draulics – Pascal's Law – Problems, Sou onstruction Operation Advantages Disa	and Applications - Irces of Hydraulic dvantages and App	-Type: powe licatio	s of flu er: Pun	iids - P nping	roperties Fheory –
	- HYDRAUL	IC ACTUATORS AND CONTROL		5			(9)
Hydrauli Actuator valves –	c Actuators: (s – Hydraulic) Types, Constru	Cylinders – Types and construction, a motors - Control Components: Direction action, Operation and Applications – Fluid	Application, Hydra n Control, Flow co Power ANSI Symb	aulic ontrol ools	cushio and p	ning - ressure	- Rotary e control
	I - HYDRAU	LIC CIRCUITS AND SYSTEMS					(9)
Accumul Pressure – Applica	ators, Intensifi Intensifier, Sea ations – Mechai	ers, Industrial hydraulic circuits – Re quence, Reciprocation, Synchronization, F nical, hydraulic servo systems	generative, Pump Fail-Safe, Speed Co	Unlo ntrol,	ading, Dece	Doub leratio	le-Pump, n circuits
	- PNEUMA	TIC AND ELECTRO PNEUMATIC	SYSTEMS				(9)
Propertie Quick E classificat Elements	es of air – Air p xhaust Valves tion – single c s – timer circuit	preparation and distribution – Filters, Reg , Compressors and types, Pneumatic ylinder and multi cylinder circuits – Cas s	ulator, Lubricator, actuators, Desigr scade method – El	Muffle n of lectro	er, Air Pneur Pneu	contro natic o matic S	ol Valves, circuit – System –
UNIT V	- TROUBLE	SHOOTING AND APPLICATION	S				(9)
Installation Design of circuits f	on, Selection, I f hydraulic circ or metal worki	Maintenance, Trouble Shooting and Rer uits for Drilling, Surface grinding, Press a ng, handling, clamping counter and timer o	nedies in Hydraul nd Forklift applicat circuits – IoT in Hy	ic and ions - drauli	d Pneu - Desig cs and	imatic in of P pneun	systems, neumatic natics
					NL =	45 PE	RIODS

TEXT BOOKS:

- 1. Anthony Esposito, "Fluid Power with Applications", Prentice Hall, 2009.
- 2. James A. Sullivan, "Fluid Power Theory and Applications", Fourth Edition, Prentice Hall, 1997

- 1. Jagadeesha. T., "Pneumatics Concepts, Design and Applications ", Universities Press, 2015.
- 2. Joshi.P., Pneumatic Control", Wiley India, 2008.
- 3. Majumdar, S.R., "Oil Hydraulics Systems Principles and Maintenance", TataMcGraw Hill, 2001.
- 4. Shanmugasundaram.K., "Hydraulic and Pneumatic Controls". Chand & Co, 2006.
- 5. Srinivasan.R., "Hydraulic and Pneumatic Controls", Vijay Nicole Imprints, 3rd edition, 2019.

60						Р	Os						PS	Os
0	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3												3	
2	3												3	
3		3											3	
4			3										3	
5			2						2	1	1	1	3	2
CO (W.A)	3	3	2.5						2	1	1	1	3	2

	221	MEC19 MECHATRONICS & IoT								
				L	Т	Р	С			
	CITE - 220			3	0	0	3			
Course Obj	ectives:	 To make students get acquainted w mechatronics systems To provide insight into the control To understand the concepts and pr To make students familiarize with t To inculcate skills in the design and der based systems 	ith the system ogrami he func velopme	sensors is in Mec ming in P damental: ent of me	and t hatro LC s of Ic chatro	he actu nics oT syst onics an	uators in ems d IoT			
		Course Outcomes	С	ognitive	We	ightag	e of COs			
	-	The Student will be able to		level	in E	End Se Examii	emester nation			
CO1 Apply applicat	the conce on	pt of sensors and actuator for mechatro	nics	Ар		40	%			
CO2 Analyze	the output	response of various control modes of systems	6	An		20	%			
CO3 Investig	ate and ana hatronics a	alyze the operations of microcontroller and I pplications	PLC	An		20	%			
CO4 Interfac	ing the IoT	concepts in the Mechatronics systems		Ар		20	%			
CO5Engage in an independent study as a member of a team or individual and investigate, design, develop a mini-project demonstrating the Mechatronics and IoT applicationsCInternal Assessment										
UNIT I - SENSORS AND ACTUATORS										
Introduction characteristic vision system humidity sens hybrid steppe	to Mechatro s, transduce s - laser - f or - tempe r motors - DNTROL	onics - emerging areas of Mechatronics - sense ers - resistive, capacitive, inductive and reson ibre optic - non-fibre optic, solid state sensor erature sensors - actuators - brushless perma DC and AC servo motors	ors and ant, op s, piezo inent m	transduce tical sens electric a agnet DC	ers - s ors - nd ult C mot	tatic an photod rasonic or - PN	d dynamic etectors - sensors - A, VR and			
Control syst	ms - open	and closed loop systems - automatic control	ol of w	ater level	- ana	logue	and digital			
control systemicroprocess microcontrol	ms - cont or - arch er - single- tems - emb	trol modes - two step, proportional, derivite itecture of 8085 microprocessor - pin o chip microcontroller systems - single-board edded systems - peripherals - typical architectu	vative, i configur microco ure of a	integral a ation - ontroller CAN bas	and Pl archit syster	D cor ecture ns - sii	ntrollers - of 8051 ngle-board			
UNIT III - F		IMABLE LOGIC CONTROLLER		0,111,040	jou oje		(9)			
Programmabl sequencing, t control	e logic cor mers, cour	ntroller - architecture - input / output pro iters and internal relays - data handling - sele	ocessino ection o) - ladde f PLC - a	r diaç applica	rams tion of	- latching, PLCs for			
UNIT IV - F	UNDAME	NTALS OF IOT AND CONTROLLERS					(9)			
TThe Internet implementation Boards - Arco controlling I/	t of Things on of IoT - uino periph D devices by	(IoT) - introduction to the IoT framework - foundation topics: Programming Languages: herals- Arduino IDE - ESP series Wi-Fi modul y Arduino : LEDs - sensor and actuator interac	oT ena C and e - (typ tions	bling tech Python - pical perip	nolog Ardu oherals	ies - th ino: th s) inter	e effective e Arduino facing and			
UNIT V – M	ECHATR	ONICS AND IoT CASE STUDIES					(9)			
Mechatronics Mechatronics Monitoring S IoT sensors Sensors for A	systems: E Electronic ystems- Re or climate griculture -	Drone actuation and Control -Autonomous F Ignition System - ABS - EBD - Adaptive Cru motely Operated Autonomous Systems - Ce control - IoT Enabled Robotic Camera Doll IoT Vehicle Management System with Network	Robot V uise Co ntralize y - Por rk Selec	with Visic ntrol. Io d Water table, W tion	n Sys Case Mana ireless	tem, A studie gement s, Inter	utomotive s: Remote : System - active IoT			

TEXT BOOKS:

- 1. D.A. Bradley, N.C. Burd, D. Dawson, A.J. Loader, "Mechatronics: Electronics in Products and Processes", Routledge, 2018.
- 2. S.H. Sami and G. Kisheen Rao, "The Internet of Mechanical Things: The IoT Framework for Mechanical Engineers", CRC Press, 2022.

- 1. John Billingsley, "Essentials of Mechatronics", Wiley, 2006.
- 2. David H., Gonzalo S., Patrick G., Rob B. and Jerome H., "IoT Fundamentals: Networking Technologies, Protocols, and Use Cases for the Internet of Things", Pearson Education, 2018
- 3. Nitin G and Sharad S, "Internet of Things: Robotic and Drone Technology", CRC Press, 2022
- 4. Newton C. Braga, "Mechatronics for The Evil Genius", McGrawHill, 2005.
- 5. Bell C., "Beginning Sensor Networks with Arduino and Raspberry Pi", Apress, 2013

	Mapping of COs with POs / PSOs														
COs						F	POs						PS	SOs	
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2	
1	3												3	1	
2		3											3	1	
3		3		1									3	1	
4	3												3	1	
5			1	2	1				1	1	2	1	3	1	
CO (W. A)	3	3	1	1.5	1				1	1	2	1	3	1	

		22MEX01 COMP	OSITE MATE	ERIALS				
					L	Т	Р	С
					3	0	0	3
PRERE	QUISITE : NIL							
Course	e Objective:	 To introduce the furmaterials To acquire knowledge laminated flat plates To introduce the therm To understand various formation of the standard sta	idamentals and e on Lamina al analysis of va failure criterion ut thermal analy	d manufacturi Constitutive arious laminate is related to la ysis of compos	ing aspe Equatior es minated sites	ects of ns and plates	f comp analys	oosite sis of
Course	e Outcomes		Cognitive	Weigh	tage of	COs	in End	
The Stu	dent will be able t	0	Level	Seme	ester Ex	camin	ation	
соі	Apply the rule of properties of co	of mixtures to predict the mposite materials.	Ар		209	%		
CO2	Analyze the m applications of v	echanical properties and arious composites.	An		209	%		
CO3	Develop the composite manu	role of interfaces in facturing.	Ap		209	%		
CO4	Make use of st to predict the fa	rength analysis techniques ilure of laminated plates	Ар		209	%		
CO5	Evaluate the Expansion of c thermal analysis	Coefficient of Thermal omposites by selecting a	An		209	%		

UNIT I- INTRODUCTION TO COMPOSITE MATERIALS

Definition - matrix materials - polymers - metals - ceramics - reinforcements - particles, whiskers, inorganic fibers, metal filaments - ceramic fibers - fiber fabrication - natural composite wood, jute - advantages and drawbacks of composites over monolithic materials - mechanical properties and applications of composites, particulate reinforced composite materials, dispersion strengthened composite, fiber reinforced composites - rule of mixtures - characteristics of fiber reinforced composites, manufacturing fiber and composite .

UNIT II - MANUFACTURING OF COMPOSITES

(9)

(9)

Manufacturing of Polymer Matrix Composites (PMCs) - handlay up, spray technique, filament winding, pultrusion, Resin Transfer Moulding (RTM) - bag moulding, injection moulding, Sandwich Mould Composites (SMC) - manufacturing of Metal Matrix Composites (MMCs) - solid state, liquid state, vapour state processing, manufacturing of Ceramic Matrix Composites (CMCs) - hot pressing - reaction bonding process - infiltration technique, direct oxidation – interfaces.

UNIT III - INTRODUCTION, LAMINA CONSTITUTIVE EQUATIONS

(9)

Lamina Constitutive Equations: Lamina Assumptions - macroscopic viewpoint - generalized Hooke's Law - reduction to Homogeneous Orthotropic Lamina - Isotropic limit case, Orthotropic Stiffness matrix (Qij), definition of stress and moment resultants - strain displacement relations - basic assumptions of laminated anisotropic plates - laminate constitutive equations - coupling - Interactions, balanced laminates, symmetric laminates, angle ply laminates, cross ply laminates - laminate structural moduli - evaluation of lamina properties from laminate tests - quasi Isotropic laminates - determination of lamina stresses within Laminates.

UNIT IV - LAMINA STRENGTH ANALYSIS AND ANALYSIS OF LAMINATED FLAT PLATES	(9)
Introduction - maximum stress and strain criteria - Von-Misses yield criterion for isotro	pic materials -
generalized Hill'scriterion for anisotropic materials - Tsai-Hill's failure criterion for comp	osites – tensor
polynomial (Tsai-Wu) - failure criterion - prediction of laminate failure equilibrium equation	ns of motion -
energy formulations - static bending analysis - buckling analysis - free vibrations - natural frequen	cies .
UNIT V – THERMAL ANALYSIS	(9)
Assumption of constant Coefficient of Thermal Expansion (C.T.E.) - modification of Hooke's law	v - modification
of laminate constitutive equations - orthotropic lamina C.T.E's - C.T.E's for special laminate	configurations -
unidirectional, off-axis,symmetric balanced laminates, zero C.T.E laminates, thermally quasi-isotr	opic laminates
TOTAL =	45 PERIODS
TEXT BOOKS	
I.Malik, P.K., "Fiber Reinforced Composite: Materials, Manufacturing and Design", 3rd ed., CRC	Press, 2007
2. Ronald F. Gibson, "Principles of Composite Material Mechanics", 2nd ed., CRC Press, 2007	
REFERENCES:	
I.Michael Hyer and Scott R White, "Stress Analysis of Fibre Reinforced Composite Materials",	
International edition, McGraw-Hill Education, 1998	
2.Issac M. Daniel and Oril Shai, "Engineering Mechanics of Composite Materials", 2nd ed., Oxfor	ď
UniversityPress, 2005	
3.Bhagwan D. Agarwal, Lawrence J. Broutman and K. Chandrashekhara, "Analysis and Performa	nce
of Fiber Composites", 3rd ed., Wiley Publications, 2012	
4.Mallick.P.K and Newman.S, "Composite Materials Technology: Processes and Properties", Har	iser
Gardner Publications, 1991	
5.Deborah D. L. Chung, "Composite Materials: Science and Applications", 2nd ed., Springer, 20	12

				Ма	apping	of CC)s with	POs / P	SOs					
Cos						F	' Os						PS	Os
003	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2												2	
2		2											2	
3			2										2	
4				1									2	
5					1		1	2	1	1		2	2	
CO (W.A)	2	2	2	1	1	2	1	2	1	1		2	2	

		22MEX02	TOOL DESI	GN				
					L	Т	Р	С
					3	0	0	3
PRERE	EQUISITE : NIL				•		•	
Course	e Objective:	 To teach students To enable the students To teach students To gain knowledge To expose student 	the fundament lents design to to analyze and about the des to design of	als of work ho ols, dies, jigs ar optimize an ex ign of various f dies for press v	lding de id fixtur kisting ji îxtures. work an	vices. es. gs. d forgi	ng	
Cours The Stu	e Outcomes Ident will be able t	.0	Cognitive Level	Weightage	e of CC Exam)s in E inatio	nd Ser n	nester
COI	Apply general co of jigs and fixtu construction.	onsiderations in the design ares and their methods of	Ap		2	0%		
CO2	Apply principles and hydraulic cla	of mechanical, pneumatic, amping.	Ар		2	0%		
CO3	Comprehend the and selection of	ne metal cutting process appropriate tool materials	Ар		2	0%		
CO4	Analyze the re press for requir	quired specifications of a ed operations	An		2	0%		
CO5	Identify the in design, including and materials fo	nportance of forging die g flow lines, parting lines, r die blocks.	An		2	0%		

UNIT I- DESIGN OF CUTTING TOOLS

(9)

(9)

(9)

(9)

(9)

Metal cutting process - selection of tool materials - design of single point and multipoint cutting tool - form tools, drills, milling cutters, broaches and chip breakers - problems on design of single point cutting tools only .

UNIT II - LOCATING AND CLAMPING METHODS

Basic principles of location - locating methods and devices - principles of clamping - mechanical, pneumatic and hydraulic actuation - clamping force analysis - design problems.

UNIT III - DESIGN OF JIGS

Types of drill jigs - general considerations in the design of drill jigs - drill bushings - types, methods of construction- simple designs of plate, channel, boxes, post, angle plate, turnovers and pot jigs.

UNIT IV - DESIGN OF FIXTURES

Design principles - types of fixtures - fixtures for machine tools: lathe, milling, boring, broaching and grinding - assembly fixtures - inspection and welding fixtures.

UNIT V – DESIGN OF DIES

Press tools - Fundamentals of die-cutting operations - Cutting action in punch and die operations - Die clearance - Blanking and Piercing Die construction - Pilots - Strippers and Pressure Pads - Press work materials - Strip layout - Design of simple progressive and compound die sets - Forging Die - Flow lines, parting lines, open and close die forging; Materials for die block.

TOTAL = 45 PERIODS

TEXT BOOKS

- I. Donaldson, Lecain and Goold, "Tool Design", 3rd ed., Tata McGraw Hill, 2012
- 2. John G. Nee, "Tool Design", 6th ed., Society of Manufacturing Engineers, 2010

- I. Venkataraman. K, "Design of Jigs Fixtures and Press Tools", Tata McGraw Hill, New Delhi, 2005
- 2. Joshi. P.H, "Jigs and Fixtures", 2nd ed., Tata McGraw Hill Publishing Co. Ltd., New Delhi, 2004
- 3. Elanchezhian. C, "Design of Jigs Fixtures and Press Tools", EswarPress, Chennai, 2004
- 4. Hoffman, "Jigs and Fixture Design", Thomson Delmar Learning, Singapore, 2004
- 5. VukotaBoljanovicPaquin .J. R, "Die Design Fundamentals", 3rd ed., Industrial Press, 2005

				M	apping	g of CC)s with	POs / P	SOs				
Cos						F	°O s					PS	Os
•••	I	2	3	4	5	6	7	8	9	0	12	I	2
I	2			2								2	
2		2										2	
3			2									2	
4												2	
5				2	2	I	2	I		I	2	2	
CO (W.A)	2	2	2	2	2	I	2	I	I	I	2	2	

		22	MEX03 NON TRADITIONAL MAC	HINING PROCE	SSES									
					L	Т	Р	С						
					3	0	0	3						
PRERE	EQUISI	TE:						<u> </u>						
Cours	se Objec	ctive:	 I o classify non-traditional machining processes. To differentiate chemical and electro c To describe thermo-electric energy-ba To explain nano finishing processes. To introduce hybrid non-traditional machining processes. 	rocesses and describ hemical energy-base sed processes achining processes a	be mecha ed proce and differ	sses. entia	l energ	y based rid						
		Ċ	ourse Outcomes	Cognitive	Weig	htaş	ge of (COs in						
		The	Student will be able to	Level	Er	nd S	emes	ter						
					E	xam	ninatio	on						
COI	Formula process tradition	ate diff ses and nal mac	erent types of non-traditional machining evaluate mechanical energy based non- hining processes.	AP			30							
CO2 Investigate the mechanisms and characteristics of mechanical energy-based processes, such as Ultrasonic AN 30 Machining and Water Jet Machining. Compare the advantages and limitations of USM and Imitations of USM and Imitations of USM and														
CO3	CO3 Compare the advantages and limitations of USM and WJM against other non-traditional methods, such as EDM or Laser Machining, with respect to specific manufacturing scenarios. E 20													
manufacturing scenarios. Image: Constraint of the selecting nano finishing processes by integrating knowledge of material properties, desired surface finish, and production volume. AN 20														
CO5	Analyse differen	e hybrio tiate no	I non-traditional machining processes and processes and processes.	AN	Inte	rnal	Asses	sment						
Introduce processes machinin paramete UNIT	- INTR ction - N es - App ng, Abras ers, appli	ODUC Need f blication sive wa ications	CTION AND MECHANICAL ENERG or non-traditional machining processes ns, advantages and limitations of non-tra- iter jet machining, Ultrasonic machining s, advantages and limitations. IICAL AND ELECTRO CHEMIC	- Classification or aditional machinin, their principles, ed CAL ENERGY	CESSE f non-tr g proce quipmen BASE	S aditi sses t, ef ED	onal r - Ab fect o	(9) machinin rasive je f proces						
PROCE	ESSES							(9)						
Principle machinir deburrin	es, equip ng, Electr ng.	ments, °o-cher	effect of process parameters, application nical machining, Electro-chemical honing	ons, advantages a , Electro-chemical	nd limit grindin	atior g, E	ns of ectro	Chemic chemic						
UNIT I	II - THE	RMO	-ELECTRIC ENERGY BASED PROC	ESSES				(9)						
Principle discharg beam ma	es, equip e machin achining,	ments, iing, W Ion be	effect of process parameters, applicat 'ire electric discharge machining, Laser be am machining.	ions, advantages am machining, Plas	and lim sma arc	itatio mac	ons of hining,	f Electri Electro						
	V - NA		NISHING PROCESSES					(9)						
Principles, equipments, effect of process parameters, applications, advantages and limitations of Abrasive flow machining – Chemo mechanical polishing, Magnetic abrasive finishing, Magneto rheological finishing, Magneto rheological abrasive flow finishing.														
UNIT V – HYBRID NON-TRADITIONAL MACHINING PROCESSES (9)														
Introduction - Various hybrid non-traditional machining processes, their working principles, equipments, effect of process parameters, applications, advantages and limitations. Selection and comparison of different non-traditional machining processes.														
				Т	OTAL	. =	45 PE	RIOD						

TEXT BOOKS:

- Adit han. M., "Unconventional Machining Processes", Atlantic, New Delhi, India, 2009. ISBN 13: 9788126910458
- 2. Ana nd Pandey, "Modern Machining Processes", Ane Books Pvt. Ltd., New Delhi, India, 2019.

- Benedict, G.F., "Non-traditional Manufacturing Processes", Marcel Dekker Inc., New York 1987. ISBN-13: 978-0824773526.
- 2. Carl Sommer, "Non-Traditional Machining Handbook", Advance Publishing., United States, 2000, ISBN-13: 978-1575373256.
- Golam Kibria, Bhattacharyya B. and Paulo Davim J., "Non-traditional Micromachining Processes: Fundamentals and Applications", Springer International Publishing., Switzerland, 2017, ISBN:978-3-319-52008-7.
- 4. Jagadeesha T., "Non-Traditional Machining Processes", I.K. International Publishing House Pvt. Ltd., New Delhi, India, 2017, ISBN-13: 978-9385909122.
- Kapil Gupta, Neelesh K. Jain and Laubscher R.F., "Hybrid Machining Processes: Perspectives on Machining and Finishing", 1st edition, Springer International Publishing., Switzerland, 2016, ISBN- 13: 978-3319259208.

60						P	Os					PS	Os
		2	3	4	5	6	7	8	9	0	12		2
I	3											2	
2		3										2	
3				3								2	
4		3										2	
5		2										2	
CO (W.A)	3	2.7		3								2	

	F						
				Ľ	т	Р	С
				3	0	0	3
		PREREQUISITE : N	IL				
Cours	se Objective:	 To study the various design requiprocesses involved in product de To study the design processes to To learn scientific approaches to Designing solution through relate To study the principles of materiadesign. 	rements and get ac evelopment. develop a successfi provide design solu the human needs a l selection, costing	quaint ul pro utions. und pr and n	ed wit duct. ovide a nanufac	h the a soluti cturing	on. in
	C The	Course Outcomes Student will be able to	Cognitive Level	We in I	ightag End So Exami	ge of C emest natior	:Os :er 1
COI	Analyze the acquainted window	various design requirements and get th the processes involved in product	An		20	0%	
CO2	Apply the deproduct.	sign processes to develop a successful	Ар		20	0%	
CO3	Apply scient solutions.	ific approaches to provide design	Ар	20%			
CO4	Design solutic provide a solu	on through relate the human needs and tion.	Cr		20	0%	
CO5	Apply the prin manufacturing i	ciples of material selection, costing and n design.	Ар		20	0%	

UNIT I- DESIGN TERMINOLOGY

Definition-various methods and types of design-importance of product design-various design projectsmorphology of design-requirements of a good design-design guidelines-design catalogs-codes and standardsdesign product and process cycles-bench marking.

UNIT II - INTRODUCTION TO DESIGN PROCESSES

Basic modules in design process-scientific method and design method- identification, importance of problem structured problem, real life problem- information gathering -customer requirements- Quality Function Deployment (QFD)- Detail design and engineering drawings-prototyping and testing-Design for X.

UNIT III - CREATIVITY IN DESIGN

Creativity and problem solving-vertical and lateral thinking-invention, innovation, diffusion-psychological view, mental blocks- Creativity methods-brainstorming, mind map, concept map-Theory of innovative problem solving (TRIZ) –Axiomatic design.

UNIT IV - HUMAN AND SOCIETAL ASPECTS IN PRODUCT DEVELOPMENT

Human factors in design, ergonomics, user friendly design-Aesthetics and visual aspects - environmental aspects-marketing aspects-team aspects-legal aspects-presentation aspects

133 Page

(9)

(9)

(9)

(9)

UNIT V – MATERIAL AND PROCESSES IN DESIGN

Material selection for performance characteristics of materials-selection for new design substitution for existing design-economics of materials-selection methods-recycling and material selection-types of manufacturing process, process systems-Design for Manufacture (DFM)-Design for Assembly (DFA).

TOTAL (L:45) = 45 PERIODS

(9)

TEXT BOOKS:

I. Dieter. G. N., Linda C. Schmidt, "Engineering Design", McGraw Hill, 2013.

2. Horenstein, M. N., Design Concepts for Engineers, Prentice Hall, 2010.

- I. Edward B. Magrab, Satyandra K. Gupta, F. Patrick McCluskey and Peter A. Sandborn, "Integrated Product and Process Design and Development", CRC Press, 2009.
- 2. Sumesh Krishnan and MukulSukla, Concepts in Engineering Design, Notion Press, 2016.

	Mapping of COs with POs / PSOs														
	POs												PSOs		
COs	I	I 2 3 4 5 6 7 8 9 10 11 12												2	
I	2	3		I									3		
2	3	3 I I I I I I I I I I I I I I I I I I I													
3	2		3	I									2		
4		2	3		I								I		
5										I	2	2	I		
CO (W.A)	2.3	2.3 2.5 2.3 2.0 1.0 1.0 2.0 2													

		22MEX05 DESIGN OF TRANSMIS	SSION SYSTE	MS			
22MEX05 DESIGN OF TRANSMISSION SYSTEMS L T P C 2 1 0 3 PREREQUISITE : 22MECI4 • To understand and apply the fundamental design principles • • To analyze complex gear drive problems • • To design and draft gearbox layouts • • To evaluate mechanical power transmission systems • • To subpress transmission systems • COI Apply fundamental design principles to calculate the parameters for various gear drives, belt drives, chain drives, clutches, and brakes. An ad0% CO2 bevel and worm gear drives by considering factors like An 40% An/E 20% CO3 Design the multistage gear box and draft the kinematic arrangement and ray diagram. An/E 20% CO4 Evaluate various mechanical power transmission systems extended			C				
				2		0	3
PREREC				• •			
		• To understand and apply the fundam	ental design prin	ciples			C 3 a f COs in ester ution ester ution a (6+3) a sprockets. (6+3) a sprockets. (6+3) number of s on teeth- (6+3) raight bevel nsiderations y, design of (6+3) atic layout - n. (6+3) ttic layout - n. (6+3) ess - friction n to Design
	22MEX05 DESIGN OF TRANSMISSION SYSTEMS L T P C 2 I 0 0 2UISITE : 22MECI4 • To understand and apply the fundamental design principles • To analyze complex gear drive problems • To exaluate mechanical power transmission systems • To evaluate mechanical power transmission systems • To evaluate mechanical power transmission systems • To implement standards and regulations Cognitive Level Weightage of COs in End Semester Examination Apply fundamental design principles to calculate the parameters for various gear drives, belt drives, chain drives, chuches, and brakes. An 40% Analyze complex problems related to spur, helical, bevel and worm gear drives by considering factors like An An/E 20% Design the multistage gear box and draft the kinematic arrangement and ray diagram. An/E 20% Evaluate various mechanical power transmission system design. E 20% Design of FLEXIBLE POWER TRANSMISSION SYSTEMS (6+3) to belt and V belt drive based on manufacturer's catalogue- design of transmission chains and sprockets. (6+3) turbes, and brakes by using engineering principles and manufacturer/s catalogue- design of transmission chains and sprockets. (6+3) turbes and V belt drive based on manufacturer's catalogue- design						
Course	e Objective:	• To design and draft gearbox layouts					
		• To evaluate mechanical power transr	nission systems				
		• To implement standards and regulation	ons				
	6		Cognitive	N	/eighta	ge of C	COs in
The Student will be able to			Level		End Semester		
	The	student will be able to	Leve		Exan	ninatio	n
	Apply fundam	nental design principles to calculate the					
COI	parameters fo	or various gear drives, belt drives, chain	Ap		20%		
	drives, clutche	es, and brakes.					
600	Analyze com	Image: Second					
02	bever and wor	jective: • To design and draft gearbox layouts • To evaluate mechanical power transmission systems • To implement standards and regulations Course Outcomes The Student will be able to Cognitive Level Weightage of COs in End Semester Examination by fundamental design principles to calculate the ameters for various gear drives, belt drives, chain ees, clutches, and brakes. Ap 20% by fundamental design principles to solidering factors like erials, loads, stresses and efficiency. An 40% eign the multistage gear box and draft the kinematic negement and ray diagram. An/E 20% uate various mechanical power transmission emes, including belts, chains, gears, gearboxes, ches, and brakes by using engineering principles and ufacturer data L/Ap Internal Assessment SIGN OF FLEXIBLE POWER TRANSMISSION SYSTEMS (6+3) (6+3) co timing belt and silent chain. U/Ap Internal Assessment Cord belt drive based on manufacturer's catalogue- design of transmission chains and sprockets. o timing belt and sil					
	Design the m	utistage gear box and draft the kinematic					
CO3	arrangement a	and ray diagram	An/E			20%	
		ious mechanical power transmission					
	systems incl	uding belts chains gears gearboxes					
CO4	clutches, and l	brakes by using engineering principles and	L I C and apply the fundamental design principles splex gear drive problems draft gearbox layouts Image: Comparison of the systems chanical power transmission systems standards and regulations model of the systems Cognitive Level Weightage of COs in End Semester Examination es to calculate the s, belt drives, chain Ap 20% ed to spur, helical, isidering factors like An 40% ncy. An/E 20% I draft the kinematic An/E 20% ower transmission gears, gearboxes, sering principles and E 20% nd regulations in U/Ap Internal Assessment ER TRANSMISSION SYSTEMS (6+3) r gear & Parallel axis helical gears based on speed ratio, number of ength and wear considerations. Forces on teeth-stresses on teeth- transverse, Equivalent number of teeth. (6+3) Gears (6+3) (6+3) r gear & Parallel axis helical gears based on speed ratio, number of faigue strength, Factor of safety, Strength and wear considerations. Forces on teeth- stresses on teeth- transverse, Equivalent number of teeth. (6+3) Sterminology - tooth forces and stresses – Design of straight bevel Fatigue strength, Factor of safety, Strength and wear considerations nology, Thermal capacity, Forces and stresses, efficiency, design of ding stresse				
	manufacturer	data	Dives, s and s and E 20% s in U/Ap Internal Assessment				
605	manufacturer data Implement standards, codes, and regulations in U/Ap Internal Assess						
COS	CO5 Implement standards, codes, and regulations in U/Ap Internal Assess transmission system design.					ment	
		· · · · ·					
	DESIGN OF	FLEXIBLE POWER TRANSMISSIO	N SYSTEMS				(6+3)
Design fla	at belt and V be	elt drive based on manufacturer's catalogu	e- design of tran	smissio	on chains	s and sp	prockets.
Introduct	ion to timing b	elt and silent chain.					
UNIT II	- SPUR GEA	RS AND HELICAL GEARS					(6+3)
Gear mat	terials- design o	of straight tooth spur gear & Parallel axis	helical gears bas	sed on	speed r	atio, nu	umber of
teeth, Fa	tigue strength,	Factor of safety, Strength and wear cons	iderations. Forc	es on 1	teeth-str	esses c	on teeth -
gear failu	res-Helical gear	-Module-Normal and transverse, Equivaler	it number of tee	th.			
	- BEVEL AN	ID WORM GEARS	-				(6+3)
Straight b	pevel gear: Gea	r materials - tooth terminology - tooth i	forces and stres	ses —	Design c	of straig	sht bevel
gears bas	ed on speed ra	tio, number of teeth, Fatigue strength, Fac	tor of safety, Str	ength a	and wear	r consid	derations
	gear: Gear ma	ateriais –tooth terminology, Thermai capa	icity, forces and	1 stres	ses, enic	iency, o	lesign or
		E GEAR BOXES					(6+3)
							(0.5)
Gear box	kes - speed se	lection - geometric progression - standar	d step ratio - r	ay diag	ram, kin	ematic	layout -
design of	multistage mul	ti speed constant mesn gear boxes. Introdu	iction to automo	obile ge	ear box o	iesign.	
UNIT V	- MOTION (CONTROL: CLUTCHES AND BRAK	ES				(6+3)
Clutches	- types - mate	erials - design of single plate, multi plate	and cone clutc	hes – b	orakes -	types	- friction
materials – design of single block brake, simple band brake, and internal expanding brake. Introduction to Design							
of Disc b	rake.						
			TOTAL	(L:30	+T:15)	=45 PE	RIODS

SI.No	Practice Litles	Unit
 2 3	Flat belt and V belt drive Design of straight tooth spur gear Design of straight bevel gears	 2 3
		L

TEXTBOOKS:

I. Joseph Shigley, Charles Mischke, Richard Budynas and Keith Nisbett "Mechanical Engineering Design", 10th ed., Tata McGraw-Hill, 2015

2. Bhandari V.B, "Design of Machine Elements", 4th ed., Tata McGraw-Hill Book Co, 2017

REFERENCES:

I. Jalaludeen S.Md, "Machine Design (Volume-2)", 4th ed., Anuradha Publications, Chennai, 2012

2. Robert C. Juvinall, Kurt M. Marshek, "Machine Component Design", Wiley India Pvt Ltd., 2016

3. Sharma P. C, Aggarwal D. K., "A Textbook of Machine Design" S K Kataria & Sons-New Delhi, 2013

4. Spotts M. F, Shoup T. E, Hornberger L.E, David O. Kazmer, "Design of Machine Elements", 8th ed., Pearson India, 2006

5. Sundararajamoorthy T. V, Shanmugam .N, "Machine Design", Anuradha Publications, Chennai, 200

Mapping of COs with POs / PSOs														
Cos	POs											PSOs		
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2		3											3	
3			3										3	
4			3										3	
5						2		2						
CO (W.A)	3	3	3			2		2					3	

		22MEX06 - AUTOMOBILE EN	GINEERING	•	–	в	
				3	0	Р 0	3
PRERE	EQUISITE : N	IL.					
 To introduce the types of automobiles, structure at To acquire knowledge on engine auxiliary system at To know about the engine transmission systems To learn the working principle of steering, brakes a To introduce the types of emissions in automobiles techniques and advanced technologies 				consti ignitic I suspe emissio	ruction on syste insion n cont	n detail: ems system rol	s
	(The	Course Outcomes Student will be able to	Cognitive Level	We in E	ightas End S Exami	ge of C emest natior	COs ter 1
COI	Apply the lubrication sy	working concept of cooling and vstem in internal combustion engines	Ap	30%			
CO2	App l y the de	esign concept in c l utch, gear box and hission systems.	Ap	30%			
CO3	Analyze the suspension s	performance of steering, braking and ystems.	An	20%			
CO4	Analyze the automobile.	emission norms and safety systems in	An	20%			
CO5	Seminar pre in automobil	sentation in the recent technologies es	U	Internal Assessment			

UNIT I - VEHICLE STRUCTURE AND ENGINE COMPONENTS

(9)

Types of automobiles - vehicle construction and layouts - chassis - frame and body – Vehicle aerodynamics, resistances and moments - components of IC engines- their forms, functions and materials – cooling system - lubrication system.

UNIT II - ENGINE AUXILIARY SYSTEMS

(9)

(9)

Fuel supply system, Simple Carburetor - electronically controlled gasoline injection system for SI engines -Mono point and multi point fuel injection system - electronically controlled diesel injection system rotary distributor type, CRDI, unit injector system - Ignition system - battery coil ignition system, magneto coil ignition system, electronic coil ignition system (Transistorized coil ignition system, capacitive discharge ignition system) -Turbo charger - super charger - electronic engine management system

UNIT III - TRANSMISSION SYSTEMS

Clutch - Types and construction - single plate, multi plate, diaphragm clutch - types of gear boxes - sliding mesh, constant mesh, synchromesh - gear shifting mechanism - overdrive – transfer box- fluid flywheel - torque converter - propeller shaft - slip joint - universal joint - differential - Hotchkiss drive and torque tube drive.
UNIT IV - STEERING, BRAKES AND SUSPENSION SYSTEMS

Principle of steering - steering geometry - steering linkages - steering gear box - power steering - Direct adaptive steering - brakes - types and construction - drum brake, disc brake, pneumatic braking system, hydraulic braking system, anti lock braking system (ABS) - types of front and rear axle - suspension system - types and construction - coil spring, leaf spring, stabilizer bars- air suspension -shock absorber

UNIT V - EMISSION CONTROL, SAFETY SYSTEMS

(9)

(9)

Automobile emissions - standards - Control techniques - exhaust gas recirculation - 3 way catalytic converter - Safety standards for automobiles - seat belts - air bags -Electronic Brake Distribution (EBD) - Electronic Stability Program (ESP) - Traction Control System (TCS) - Global Positioning System (GPS) - Collision avoiding system, low tire pressure warning system, driver information system. Blind spot detection and warning.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

1. Babu.A.K and Ajit Pal Singh, "Automobile Engineering", 1st ed., S.Chand Publications, 2014 2. Kirpal Singh, "Automobile Engineering Vol.1 and 2", Standard Publishers, New Delhi, 2021

REFERENCES:

- William H. Crouse and Donald L Anglin, "Automotive Mechanics", McGraw Hill Education (India) Private Limited, 10th Edition, 2017
- 2. Rajput.R.K, "A textbook Automobile Engineering" Laxmi Publishers, 3rd ed., New Delhi, 2018
- 3. Ramakrishna K, "Automobile Engineering", Prentice Hall India Learning Private Limited, 2012
- 4. Srinivasan.S, "Automotive Mechanics", 2nd ed., McGraw Hill Education (India) Private Limited, 2017
- 5. Jain K.K and Asthana.R.B, "Automobile Engineering", 1st ed., McGraw Hill Education Pvt. Ltd., 2017

				M	lapping	g of CC	Os with	POs /	PSOs						
	POs														
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	2												I		
2	2												I		
3		I													
4		I													
5										I					
CO (W.A)	2	I								I			I		

138 Page

	22	MEX07 INDUSTRIAL LA	AYOUT DES	IGN AND SA	FETY	1		
					L	т	Р	С
					3	0	0	3
PRERE	EQUISITE : NIL							
Course	e Objective:	 To introduce the industiflow analysis and product To learn the facilities lay To study the facilities production, warehouse, To learn the safety plant To learn the various safetimes and the various safetimes are various safetimes and the various safetimes are various safetimes and the various safetimes are various are various	strial facility lay ct and equipme vout design algo s layout prob and material h ning and manag ety managemer	yout design prin ant analysis. Drithms and sele Dem modelling Dandling. gement principle Dt approaches in	ciples, cting a tools s in inc i indust	proce opropr and lustries ries.	ss and riate so algorit s.	material ftware. hms for
Course	e Outcomes		Cognitive	Weightage	of CO	s in E	nd Sei	mester
The Stu	ıdent will be able t	0	Level		Exami	natio	n	
COI	Analyze industr principles, prod analysis and p analysis.	ial facility layout design cess and material flow product and equipment	An		20)%		
CO2	Apply the eng approach to a equipment a requirements an	ineering design problem analyze products, select and analyze space d availability.	Ар		20)%		
CO3	Upgrade safety by implementi arrangements, ar	developmental programs ng safety procedures, nd performance measures.	Ар		20)%		
CO4	Evaluate safe understanding health, and indus	ty performance by accidents, occupational strial hygiene.	An		20)%		
CO5	Illustrate the va approaches in in	rious safety management dustries.	An		20)%		

UNIT I- INTRODUCTION	(9)
Industrial Facility Layout: Definition, Types of Layout Problems, Engineering Design Probler	m Approach –
Product Analysis, Equipment Selection, Personnel Requirement Analysis, Space Requirement an	d Availability –
Process and Material Flow Analysis, Data Requirement for Layout Decisions, Tools for Pre	senting Layout
Designs.	
UNIT II - FACILITIES LAYOUT DESIGN & ALGORITHMS	(9)
.Traditional Approaches to Facility Layout, Systematic Layout Planning, Special Considerations in	Office Layout,
Engineering Design Problem Approach, Code Compliance, OSHA, ADA Regulations	s, and Other
Considerations in Facility Design – Algorithms for the Layout Problem, Constructio	on Algorithms,
Improvement Algorithms, Hybrid Algorithms, Layout Software (CRAFT, BLOCPLAN, PFAST, L	_ayout-iQ, VIP-
PLANOPT, Factory CAD, Factory FLOW, Plant Simulation)	
UNIT III - FACILITIES LAYOUT PROBLEM MODELS & ALGORITHMS	(9)
Models for the Layout Problem, Generic Modeling Tools, Models for the Single-Row Layout Pr	oblem, Models
for the Multi row Layout Problem with Departments of Equal and Unequal Area – Mat	erial Handling,
Principles, Types, Models for Material-Handling System Design – Storage and Warehousin	ıg, Warehouse
Functions, Warehouse Design and Operation.	-

UNIT IV - SAFETY PLANNING & MANAGEMENT

Introduction: Elements of Safety Programming, Safety Management. Upgrading Safety Developmental Programs: Safety Procedures, Arrangements and Performance Measures, Education, Training and Development in Safety. Safety Performance: An Overview of an Accident, Occupational Health and Industrial Hygiene. Understanding the Risks: Prevention of Accidents Involving Hazardous Substances. Indian Factories Act 1948 for Health and Safety.

UNIT V – APPROACHES IN SAFETY MANAGEMENT

Safeguarding against Common Potential Hazards: Trips, Slips and Falls, Preventing Electrocution, Static Electricity, Hazardous Energy Control. Specific Hazard Control Measures: Forklift Hazard Control, Tractor Hazard Control. Safe Handling and Storage: Material Handling, Compressed Gas Cylinders, Corrosive Substances, Hydrocarbons, Waste Drums and Containers.

TEXT BOOKS

I.Sunderesh S. Heragu, "Facilities Design", 3rd Edition, CRC Press Taylor & Francis Group, 2008.

2. L. M. Deshmukh, "Industrial Safety Management: Hazard Identification and Risk Control", Tata McGraw-Hill Publishing

Co. Ltd., 2005.

REFERENCES:

- I.EricTeicholz, "Facility Design and Management Handbook", Tata McGraw-Hill Publishing Co. Ltd., 2001.
- 2.James A. Tompkins, John A. White, Yavuz A. Bozer, and J. M. A. Tanchoco, "Facilities Planning", 4th Edition, John Wiley &Sons, 2010.
- 3.Matthew P. Stevens and Fred E. Meyers, "Manufacturing Facilities Design and Material Handling", 5th Edition, Purdue University Press, 2013.
- 4. Charles D. Reese, Occupational Health and Safety Management: A Practical Approach, CRC Press, 2003.
- 5.JMaiti, Pradip Kumar Ray, Industrial Safety Management: 21st Century Perspectives of Asia, Springer, 2017.
- 6.Industrial Hazard and Safety Handbook: (Revised impressionby Ralph W King and John Magid | 24 September 2013

			Ма	pping	of CO	s with	POs / P	SOs					
					F	'Os						PS	Os
1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	2	2										2	
												2	
												2	
			2									2	
					3		3	2	1	1	3	2	
1	2	2	2		3		3	2	1	1	3	2	
	1 1 	1 2 1 2 	1 2 3 1 2 2 - - - - - - 1 2 2	Ma 1 2 3 4 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2	Mapping 1 2 3 4 5 1 2 2 - - 1 2 2 - - 1 2 2 - - 1 2 2 - - 1 2 2 - - 1 2 2 2 - 1 2 2 2	Mapping of CO I 2 3 4 5 6 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 3 1 2 2 2 3	Mapping of COs with POs 1 2 3 4 5 6 7 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 1 2 2 2 3 1 2 2 2 3	Mapping of COs with POs / P POs POs 1 2 3 4 5 6 7 8 1 2 2 1 2 2 1 2 2 </td <td>Mapping of COs with POs / PSOs POs 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 2 - - - - - - 1 2 2 -</td> <td>Mapping of COs with POs / PSOs POs 1 2 3 4 5 6 7 8 9 10 1 2 2 4 5 6 7 8 9 10 1 2 2 4 5 6 7 8 9 10 1 2 2 4 5 6 7 8 9 10 1 2 2 4 5 6 7 8 9 10 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 3 3 2 1 1 2 2 2 3 3 3 2 1</td> <td>Mapping of COs with POs / PSOs POs 1 2 3 4 5 6 7 8 9 10 11 1 2 2 4 5 6 7 8 9 10 11 1 2 2 - - - - - - 1 2 2 - - - - - - 1 2 2 - - - - - - - 1 2 2 -<td>Mapping of COs with POs / PSOs POs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 2 - - - - - - 1 2 2 - - - - - - - 1 2 2 - - - - - - - 1 2 2 - - - - - - - - 1 2 2 - 3 - 3 2 1 1 3 1 2 2 2 3 3 3 2 1 1 3</td><td>Mapping of COs with POs / PSOs POs PS 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 3 3 3 2 1 1 3 2 1 2 2 2 3 3 3 2 1 1 3 2 1 2 2 2 3 3 3 2 1 1 3 2 1 2 2</td></td>	Mapping of COs with POs / PSOs POs 1 2 3 4 5 6 7 8 9 1 2 3 4 5 6 7 8 9 1 2 2 - - - - - - 1 2 2 -	Mapping of COs with POs / PSOs POs 1 2 3 4 5 6 7 8 9 10 1 2 2 4 5 6 7 8 9 10 1 2 2 4 5 6 7 8 9 10 1 2 2 4 5 6 7 8 9 10 1 2 2 4 5 6 7 8 9 10 1 2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2 1 3 3 2 1 1 2 2 2 3 3 3 2 1	Mapping of COs with POs / PSOs POs 1 2 3 4 5 6 7 8 9 10 11 1 2 2 4 5 6 7 8 9 10 11 1 2 2 - - - - - - 1 2 2 - - - - - - 1 2 2 - - - - - - - 1 2 2 - <td>Mapping of COs with POs / PSOs POs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 2 - - - - - - 1 2 2 - - - - - - - 1 2 2 - - - - - - - 1 2 2 - - - - - - - - 1 2 2 - 3 - 3 2 1 1 3 1 2 2 2 3 3 3 2 1 1 3</td> <td>Mapping of COs with POs / PSOs POs PS 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 3 3 3 2 1 1 3 2 1 2 2 2 3 3 3 2 1 1 3 2 1 2 2 2 3 3 3 2 1 1 3 2 1 2 2</td>	Mapping of COs with POs / PSOs POs 1 2 3 4 5 6 7 8 9 10 11 12 1 2 3 4 5 6 7 8 9 10 11 12 1 2 2 - - - - - - 1 2 2 - - - - - - - 1 2 2 - - - - - - - 1 2 2 - - - - - - - - 1 2 2 - 3 - 3 2 1 1 3 1 2 2 2 3 3 3 2 1 1 3	Mapping of COs with POs / PSOs POs PS 1 2 3 4 5 6 7 8 9 10 11 12 1 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 2 2 2 2 2 2 1 2 2 2 3 3 3 2 1 1 3 2 1 2 2 2 3 3 3 2 1 1 3 2 1 2 2 2 3 3 3 2 1 1 3 2 1 2 2

TOTAL (L:45) = 45 PERIODS

(9)

-							
		22MEX08 – MODERN ROE	BOTICS				
				L	Т	Р	С
				3	0	0	3
PRERE	EQUISITE :						
		• To introduce definition, history of	robotics and robo	t anato	omy.		
		• To learn the simulation of robot ki	inematics				
Cours	se Objective:	 To study the grasping and manipula 	ation of robots.				
		 To study about mobile robot and r 	manipulation.				
		 To study the applications of indust 	rial, service, dome	stic rol	oots.		
Course The Stud	Outcomes dent will be able	to	Cognitive Level	We in	ighta; End S Exami	ge of C emest inatior	COs ter 1
соі	Apply the de anatomy.	finition, history of robotics and robot	Ap		2	0%	
CO2	Design and De	evelop the simulation of robot kinematics	An		2	0%	
CO3	Optimize eth manipulation c	ical knowledge in the grasping and frobots.	An		4	0%	
CO4	Establish real manipulation.	time working about mobile robot and	Ap		2	0%	
CO5	Manipulate tl domestic robc	ne applications of industrial, service, ts.	An/ Cr	Int	ernal A	Assessn	nent

UNIT I - INTRODUCTION

Robot: Definition, History of Robotics, Robot Anatomy, Co-ordinate systems, types and classification, Configuration space and degrees of freedom of rigid bodies and robots, Configuration space topology and representation; configuration and velocity constraints; task space and workspace, Rigid-body motions, rotation matrices, angular velocities, and exponential coordinates of rotation, Homogeneous transformation matrices.

UNIT II - SIMULATION OF ROBOT KINEMATICS

Robot kinematics, Forward and inverse kinematics (two three four degrees of freedom), Forward and inverse kinematics of velocity, Homogeneous transformation matrices, translation and rotation matrices Dennavit and Hartenberg (D-H) transformation, Dynamics of Open Chains, Trajectory Generation, motion planning, robot control: First- and second-order linear error dynamics, stability of a feedback control system. Sensors- Infrared, Temperature, Proximity, Ultrasonic, Gyroscope, Hall effect and Light sensor.

UNIT III - GRASPING AND MANIPULATION OF ROBOTS

(9)

(9)

(9)

Kinematics of contact, contact types (rolling, sliding, and breaking), graphical methods for representing kinematic constraints in the plane, and form-closure grasping, Coulomb friction, friction cones, graphical methods for representing forces and torques in the plane, End effectors, grippers, types of gripper, gripper force analysis, and examples of manipulation and grasping.

UNIT IV - MOBILE ROBOTS

Mobile robot, Wheeled Mobile Robots: Kinematic models of omnidirectional and non-holonomic wheeled mobile robots, Controllability, motion planning, feedback control of non-holonomic wheeled mobile robots; odometry for wheeled mobile robots; and mobile manipulation. Reference Trajectory generation, feed forward control. Mobile Robots applications and case studies on aerospace, medical, chemical industry, UAV's & UGV's triage and surveillance.

UNIT V - APPLICATIONS OF ROBOTS

(9)

Application of robotic: industrial robots, Service robots, domestic and house hold robots, Medical robots, military robots, agricultural robots, space robots, Aerial robotics Role of robots in inspection, assembly, material handling, underwater, space and healthcare. Case studies on mobile manipulator, transportation and picking areas.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. Modern Robotics: Mechanics, Planning, and Control, by Kevin M. Lynch , Frank C. Park , Cambridge University Press; 1st edition (25 May 2017), ISBN-10 : 110715
- 2. Modern Robotics: Mechanics, Systems and Control, by Julian Evans, Larsen and Keller Education (27 June 2019), ISBN-10 : 1641720751

REFERENCES:

- I. Modern Robotics: Designs, Systems and Control, by Jared Kroff, Willford Press (18 June 2019)ISBN-10: 1682856763
- Advanced Technologies in Modern Robotic Applications, by ChenguangYang, Hongbin Ma, Mengyin Fu, Springer; Softcover reprint of the original 1st ed. 2016 edition (30 May 2018), ISBN - 10 : 981109263X
- 3. Modern Robotics: Building Versatile Machines, by Harry Henderson, Facts On File Inc; Illustrated edition (I August 2006), ISBN-10:0816057451
- 4. Artificial Intelligence for Robotics, by Francis X. Govers, Packt Publishing Limited; Standard Edition (30 August 2018), ISBN-10 : 1788835441
- 5. Modern Robotics Hardcover by Lauren Barrett (Editor), Murphy & Moore Publishing (1 March 2022), ISBN-10 : 1639873732

Mapping of COs with POs / PSOs															
	POs														
COs	I	2	3	4	5	6	7	8	9	10		12	I	2	
I	3												2		
2					2										
3			3												
4												3			
5								3							
CO (W.A)	3		3		2			3				3	2		

142 | Page

	22MEXII - AU	JTOMOTIVE MATERIALS, COMPO	NENTS, DESIGI	N AN	D TES	TING	
				L	Т	Р	С
				2	0	2	3
PRER	EQUISITE : N	il					
Cour	rse Objective:	 To analyze and prioritize functiona while critically assessing suitable r To design cylinder and piston com To design connecting rod and crar To design of flywheel and valve tra To describe the Engine Testing cyd 	al requirements of o materials for optima ponents hk shaft ain cles, Emission meas	engine al perfe	compo ormano ent tecl	onents ce nnolog	ies
	C The	Course Outcomes Student will be able to	Cognitive Level	We in	ighta End S Exami	ge of (emes natio	COs ter n
соі	Apply knowled various engine requirements.	ge to select suitable materials for components based on their functional	Ap		2	0%	
CO2	Design the cyli engineering pri	nder and piston components considering nciples and material properties.	С		3	0%	
CO3	Apply analytica crankshaft und	l skills to design a connecting rod and er different loading conditions.	С		30%		
CO4	Design a flywho specified perfo	eel and valve train design to meet rmance criteria.	С		2	0%	
CO5	Demostrate th standards follo	e engine testing procedures and current wed in India for engine testing.	U	Int	ernal A	ssessr	ment
τινυ				NTS			(6)

UNIT – I FUNCTIONAL REQUIREMENTS OF ENGINE COMPONENTS AND SUITABLE MATERIALS

Functional requirements of engine components – Piston, piston pin, cylinder liner, connecting rod, crank

shaft, valves, spring, engine block, cylinder head, and flywheel. Suitable materials for engine components.

UNIT – II DESIGN OF CYLINDER AND PISTON COMPONENTS

(6)

(6)

(6)

(6)

Design of cylinder, cylinder head, piston, piston rings and piston pin

UNIT - III DESIGN OF CONNECTING ROD AND CRANK SHAFT

Design of connecting rod – Shank design – small end design – big end design – bolts design. Design of overhang crank shaft under bending and twisting – Crank pin design – Crank web design – Shaft design.

UNIT – IV DESIGN OF FLYWHEEL AND VALVE TRAIN

Design of valve – inlet valve – exhaust valve - Valve springs – Camshafts – SOHC & DOHC- tappet – rocker arm. Determination of mass of flywheel for a given coefficient of fluctuation of speed. Design of flywheel - rim - hub – arm.

UNIT – V ENGINE TESTING

Engine test cycles – Worldwide harmonized Light-duty vehicles Test Cycles ((WLTC) – World Harmonized Stationary Cycle (WHSC) – World Harmonized Vehicle Cycle (WHVC) – Nonroad Transient Cycle (NRTC) – ISO 8178. Dynamometer - Chassis dynamometer - transient dynamometer. Emission measurement technologies and instruments - NO_X – Smoke – Particulate matter – $CO - CO_2$ - HC.-Particle counter, Current Standards followed in India for Engine Testing.

EXPERIMENTS

- I. Design and animate Piston Cylinder assembly and motion study using CAD software.
- 2. Design and simulate Connecting rod and crank shaft
- 3. Design flywheel and valve
- 4. Design and simulate Two Cylinder Engine assembly using CAD software.
- 5. Conduct the engine performance test
- 6. Conduct the emission test

TOTAL (L:30 + P:30) = 60 PERIODS

TEXT BOOKS:

- I. Khurmi. R.S. & Gupta. J.K., "A text book of Machine Design", Eurasia Publishing House (Pvt) Ltd, 2001.
- 2. The Automotive Chassis: Volume I: Components Design (Mechanical Engineering Series) by Giancarlo Genta and Lorenzo Morello | 24 December 2019

- I. Hiroshima Yamagata, "The science and technology of materials in automotive engines", Woodhead Publishing Limited, Cambridge, England.
- 2. Jain.R.K, "Machine Design", Khanna Publishers, New Delhi, 2005
- 3. Manufacturing Automotive Components from Sustainable Natural Fiber Composites (SpringerBriefs in Materials) by Lobna A. Elseify, Mohamad Midani, et al. | 9 August 2021
- 4. Mechanical and Materials Engineering of Modern Structure and Component Design (Advanced Structured Materials Book 70) by Andreas Öchsner and Holm Altenbach | 6 June 2015
- 5. Advanced Technology for Design and Fabrication of Composite Materials and Structures: Applications to the Automotive, Marine, Aerospace and ... Applications of Fracture Mechanics) by George C. Sih, Alberto Carpinteri, et al. | 15 December 2010

			M	lapping	g of CC	Os with	POs /	PSOs						
POs														
I	2	3	4	5	6	7	8	9	10	11	12	I	2	
3														
3	3											3		
3	3											3		
3	3											3		
						3	3							
3	3					3	3					3		
	I 3 3 3 3 3 3	I 2 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3	I 2 3 3 3 - 3 3 - 3 3 - 3 3 - 3 3 - 3 3 - 3 3 - 3 3 - 3 3 - 3 3 - 3 3 - 3 3 -	I 2 3 4 3 . . . 3 3 . . 3 3 . . 3 3 . . 3 3 . . 3 3 . . 3 3 . . 3 3 . . 3 3 . . 3 3 . . 3 3 . .	I 2 3 4 5 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 <td>Mapping of CO I 2 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 <t< td=""><td>Mapping of COs with POs I 2 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 3 3 3 4 5 6</td><td>Mapping of COs with POs / POs POs I 2 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 4 5</td><td>Mapping of COs with POs / PSOs POs I 2 3 4 5 6 7 8 9 3 3 </td><td>Mapping of COs with POs / PSOs POs I 2 3 4 5 6 7 8 9 10 3 3 3 3 3 3 3 3 3 3</td><td>Mapping of COs with POs / PSOs POs I 2 3 4 5 6 7 8 9 10 II 3 - <</td><td>Mapping of COs with POs / PSOs POs I 2 3 4 5 6 7 8 9 10 II 12 3 </td><td>Mapping of COS with POS / PSOs POS PS I 2 3 4 5 6 7 8 9 10 11 12 1 3 </td></t<></td>	Mapping of CO I 2 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 6 3 3 4 5 <t< td=""><td>Mapping of COs with POs I 2 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 3 3 3 4 5 6</td><td>Mapping of COs with POs / POs POs I 2 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 4 5</td><td>Mapping of COs with POs / PSOs POs I 2 3 4 5 6 7 8 9 3 3 </td><td>Mapping of COs with POs / PSOs POs I 2 3 4 5 6 7 8 9 10 3 3 3 3 3 3 3 3 3 3</td><td>Mapping of COs with POs / PSOs POs I 2 3 4 5 6 7 8 9 10 II 3 - <</td><td>Mapping of COs with POs / PSOs POs I 2 3 4 5 6 7 8 9 10 II 12 3 </td><td>Mapping of COS with POS / PSOs POS PS I 2 3 4 5 6 7 8 9 10 11 12 1 3 </td></t<>	Mapping of COs with POs I 2 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 7 3 3 4 5 6 3 3 3 4 5 6	Mapping of COs with POs / POs POs I 2 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 5 6 7 8 3 3 4 4 5	Mapping of COs with POs / PSOs POs I 2 3 4 5 6 7 8 9 3 3	Mapping of COs with POs / PSOs POs I 2 3 4 5 6 7 8 9 10 3 3 3 3 3 3 3 3 3 3	Mapping of COs with POs / PSOs POs I 2 3 4 5 6 7 8 9 10 II 3 - <	Mapping of COs with POs / PSOs POs I 2 3 4 5 6 7 8 9 10 II 12 3	Mapping of COS with POS / PSOs POS PS I 2 3 4 5 6 7 8 9 10 11 12 1 3	

	22MEX12 -	CONVENTIONAL AND FUTURIST	IC VEHICLE TE	CHN	OLOC	GY	
				L	Т	Р	С
				3	0	0	3
		PREREQUISITE :N	il				
		• To determine the number of stage	s/plates required	1.5			
		 I o learn various advanced combus To learn the methods of using low 	stion technologies a	ind its	benefi	ts	
Cours	se Objective:	 To learn the methods of using low To analyze the advanced engine to 	carbon fuels and n	s signi	ncance	2	
Cours	se Objective.	 To apply advanced principles of dr 	ivetrain technology	in div	erse o	peratio	onal
		scenarios		in an		o a a a a	ona
		• To study the application of fuel cel	l technology in auto	omotiv	ves		
	<i>с</i>		Cognitive	We	ighta	ge of	COs
	The	Student will be able to	Level	in	End S	emes	ster
					Exami	inatio	n
601	Apply combu	stion technology principles to analyze	•		2	00/	
201		spark Ignition and Compression Ignition	Ар		2	0%	
600	Evaluate and a	apply low carbon fuel technologies such Eucle Mothana and Hydrogen for	E		r	^ %	
02	automotive ad	polications.	E		Z	0⁄0	
	Alu advance	d ancine technologies in ancine design					
CO3	and performation	a engine technologies in engine design	Ap		3	0%	
CO4	hybrid and put	re electric vehicles to propose solutions	An		2	ሰ%	
007	for efficiency i	mprovements.			J	078	
	Demonstrate	the advancements and operational					
CO5	principles of	fuel cell technology for automotive	U	Int	ernal A	Assess	ment
	applications ar	nd their road map to market integration.					
UNIT	– I COMBUS	TION TECHNOLOGY					(9)
Spark I	gnition combus	tion, Compression Ignition Combustion,	Conventional Dual	Fuel	Comb	ustion	, Low
Tempe	rature Combus	stion Concepts– Controlled Auto Igniti	on, Homogeneous	s Cha	rge C	ompre	ession
Ignition	n, Premixed Ch	narge Compression Ignition, Partially Pr	emixed Compress	sion I	gnition	, Rea	ctivity
Contro	olled Compressi	on Ignition, Gasoline Direct Injection Con	npression Ignition.				
	– II LOW CA	RBON FUEL TECHNOLOGY					(9)
Alcoho	I Fuels, Ammo	nia Fuel and Combustion, Methane Tec	hnology, Dimethy	Ethe	r, Hyo	Irogen	n Fuel
l'echno	ology, Challenge	s, and way forward					
UNIT	- III ADVAN	CED ENGINE TECHNOLOGY					(9)
Gasolir	ne Direct Injec	tion, Common Rail Direct Injection, I	Fixed Geometry	Turbo	charge	er, Va	riable
Geome	etry Turbocha	rger (VGT), Variable Compression	Ratio Turbochar	rged	Engine After	s, El	ectric
Techno	ologies, Electric	Exhaust Gas Recirculation, recent Engine	Management System	m arch	nitectu	re	
L	-	•					

145IPage

Approved by Twelfth Academic Council

UNIT – IV ADVANCED DRIVE TRAIN TECHNOLOGY

Automatic Planetary Gearbox, Torque Converter, Fluid Coupling, Continuously Variable Transmission (CVT), Automated Manual Transmission (AMT), Dual clutch transmission (DCT)/ Direct Shift Gearbox (DSG), Intelligent Manual Transmission (IMT) / Clutch-less Transmission, Limited Slip Differential

UNIT – V FUEL CELL TECHNOLOGY

Fuel cells for automotive applications - Technology advances in fuel cell vehicle systems - Onboard hydrogen storage - Liquid hydrogen and compressed hydrogen - Metal hydrides, Fuel cell control system - Alkaline fuel cell - Road map to market.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- I. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004
- 2. Rakesh Kumar Maurya, Characteristics and Control of Low Temperature Combustion Engines. ISBN 978-3-319-68507-6, SPRINGER

REFERENCES:

- I. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.
- 2. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003
- 3. Rand D.A.J, Woods, R & Dell RM Batteries for Electric vehicles, John Wiley & Sons, 1998
- 4. Iqbal Hussein, Electric and Hybrid Vehicles: Design Fundamentals, CRC Press, 2003.
- 5. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003

Mapping of COs with POs / PSOs															
	POs														
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3												3		
2	3	3											3		
3	3												3		
4	3	3											3		
5							3								
CO (W.A)	3	3					3						3		

(9)

22MEX13 -RENEWABLE POWERED OFF HIGHWAY VEHICLES AND EMISSION CONTROL TECHNOLOGY

							-
				3	0	0	3
		PREREQUISITE :N	il				
Course	e Objective:	 To study the low and zero carbon fuels survehicles To learn and understand the green energy off-road vehicle categories To learn various fuel cell types and its suit To illustrate the impact of in-cylinder tech To study the existing after-treatment tech applications 	itability and metho production metho ability in off-highwa nologies on engine nologies used in of	ds of u odolog ay vehi out e f-highv	use in c ies and cles ap missior vay veł	off-road its use plications cont nicle	in ons rol
	TI	Course Outcomes ne Student will be able to	Cognitive Level	We in	eighta; End S Exami	ge of (emes natio	COs ter n
соі	Analyze the zero carbon	e suitability and technologies of low and fuels for powering off-road vehicles.	An		2	0%	
CO2	Apply solar green energ	and hydrogen technologies to develop y solutions for off-highway vehicles.	Ap	30%		0%	
CO3	Evaluate the highway veh	design and application of fuel cells for off- icle power systems.	E		3	0%	
CO4	Analyze the technologies	e effectiveness of in-cylinder treatment s in reducing engine emissions.	An		2	0%	
CO5	Demonstrat treatment t highway veh	e the principles and applications of after- echnologies in emission control for off- icles.	U	Int	ernal A	ssessr	nent

UNIT – I LOW AND ZERO CARBON FUELS POWERED OFF-HIGHWAY VEHICLES

(9)

C

Ethanol, Methanol, Butanol, Biodiesel, Compressed natural gas, liquefied natural gas, Dimethyl ether, Polyoxymethylene Dimethyl Ether, Ammonia and Hydrogen Fuels suitability, methods, and technologies for powering off-road vehicles.

UNIT - II GREEN ENERGY POWERED OFF-HIGHWAY VEHICLES

(9)

(9)

(9)

Solar Technology for Green Electricity, Green Electricity for Hydrogen Production, Hydrogen Smart Grid Technologies, Hydrogen to ICE powered vehicles, Hydrogen to Fuel Cell Powered Vehicles.

UNIT – III FUEL CELL POWERED OFF-HIGHWAY VEHICLES

Fuel Cell, Types, Applications, Fuel Cell Requirement, Sizing and Design for Off-Highway applications, Merits and Demerits, Pathway to overcome the limitations. Scope of the fuel cell research on Off-road vehicle applications.

UNIT – IV IN-CYLINDER TREATMENT TECHNOLOGIES

Low temperature Combustion Modes - Homogeneous Charge Compression Ignition, Premixed- Charge Compression Ignition, Reactivity Controlled Compression Ignition, Gasoline Direct Injection Compression Ignition, Water Injection Technologies.

UNIT – V AFTER TREATMENT TECHNOLOGIES

Diesel Oxidation Catalyst, Diesel Particulate Filter, Selective Catalytic Reduction, Ammonia slip / clean up catalyst. CO2 absorption techniques, Waste Heat Recovery and Organic Rankine Cycle.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- I. John Twidell, and Tony Weir. Renewable Energy Sources 3rd Edition 2015
- 2. Rakesh Kumar Maurya, Characteristics and Control of Low Temperature Combustion Engines.

REFERENCES:

- I. Daniel J Holt. Fuel Cell Powered Vehicles: Automotive Technology of the Future. Society of Automotive Engineers, 2001 Technology & Engineering,
- 2. W. Addy Majewski, Magdi K. Khair. Diesel Emissions and Their Control.
- 3. Toward Zero Carbon: The Chicago Central Area DeCarbonization Plan by Adrian Smith and Gordon Gill | I June 2011
- 4. Transportation in a Net Zero World: Transitioning Towards Low Carbon Public Transport (Green Energy and Technology) by Kathryn G. Logan, Astley Hastings, et al. | 7 April 2022
- 5. The Political Economy of Low Carbon Transformation: Breaking the habits of capitalism (Routledge Studies in Low Carbon Development) by Harold Wilhite | 21 December 2017

	POs														
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3	3											3		
2	3												3		
3	3	3											3		
4	3	3											3		
5							3								
CO (W.A)	3	3					3						3		

22	MEXI4 - VEHICLE HEALTH MONITORING, MAINTENAN	CE AI	ND S	AFET	Υ		
		L	Т	Р	С		
		3	0	0	3		
PRERE	EQUISITE :Nil						
Course	 To learn the fundamentals of vehicle maintenance, includintervals, and international safety standards To acquire knowledge on vehicle maintenance principle technologies to service power train and vehicle systems. To analyze the stresses acting on the temporary and per To apply machine learning techniques to improve electrol engine management systems To study and understand the simulation of safety concert 	ing diag s and ac manent onic fue ts	nostics Ivanced joints I injecti	s, servi d diagn ion and	ce ostic I		
	Course OutcomesCognitiveThe Student will be able toLevel	We in	Weightage of COs in End Semester Examination				
соі	Apply knowledge of vehicle maintenance principles and advanced diagnostic technologies to service powerAptrain and vehicle systemsAp		40%				
CO2	Analyze and implement maintenance strategies for vehicle systems, including power train components and An vehicle systems and An An An		2	.0%			
CO3	Analyze safety concepts, including active and passivesafety systems, collision warning systems, and objectAndetection mechanismsAn		2	.0%			
CO4	Apply machine learning techniques to enhance electronic fuel injection and engine management Ap services		2	.0%			
CO5	Implement maintenance practices for ensuring optimal U/Ap vehicle handling and safety	g optimal U/Ap Inter					

UNIT – I INTRODUCTION

(9) Need for maintenance – importance, classification of maintenance work-basic problem diagnosis. maintenance of vehicle systems - power pack, tyres, safety systems. scheduled maintenance services service intervals – on-board diagnostics, computerized engine analyzer study and practice- obd and scan tools; Importance of advanced diagnostic technologies, Overview of international vehicle safety standards and regulations

POWERTRAIN MAINTENANCE UNIT – II

(9)

(9)

Exhaust emission test of petrol and diesel engine; - Electronic fuel injection and engine management service - fault diagnosis- OBD-III and scan tool, identifying DTC and servicing emission controls, Maintenance of Batteries, Starting System, Charging System and Body Electrical - Application of Machine Learning in Electronic Fuel Injection and Engine Management Service.

VEHICLE SYSTEM MAINTENANCE UNIT – III

Clutch- adjustment and service, Maintenance and Service of Hydraulic brake, Bleeding of brakes, Checking ABS and components. Maintenance and Service of McPherson strut, coil spring. tyre wear, measurement of read depth and tyre rotation, Smart tyre wear monitoring and management systems Computerized wheel balancing & wheel alignment, Maintenance and Service of steering linkage, steering column, Rack and pinion steering

UNIT – IV VEHICLE SAFETY

Concepts of vehicle safety -Seat belt, regulations, automatic seat belt tightener system, collapsible steering column, air bags, electronic system for activating air bags, bumper design for safety, Active Safety - ABS, EBD, CSC, Traction control system, Modern electronic features in vehicles like tyre pressure monitoring, Automatic headlamp ON, Rain sensing wipers. Cybersecurity measures for vehicle safety and data protection

UNIT – V SIMULATION OF SAFETY CONCEPTS

(9)

Active safety: driving safety, conditional safety, perceptibility safety, operating safety passive safety: exterior safety, interior safety, deformation behavior of vehicle body, speed and acceleration characteristics of passenger compartment on impact. Collision warning system, causes of rear end collision, frontal object detection, rear vehicle object detection system, object detection system with braking system Interactions.

TOTAL 45 PERIODS

TEXT BOOK:

- I. 5th Edition, "Advanced Automotive Fault Diagnosis Automotive Technology: Vehicle Maintenance and Repair" By Tom Denton
- 2. Safety Management System and Documentation Training Programme Handbook by S. V. Paul ISBN: 9788123923444

REFERENCES:

- Ed May, "Automotive Mechanics Volume One" and Two, Mc Graw Hill Publications, Tenth edition, 2018
- 2. Bosch Automotive Handbook, Tenth Edition, 2018
- 3. Jack Erjavek, "A systems approach to Automotive Technology", Cengage Learning, 5th Edition, 2012
- 4. William H. Crouse and Donald L. Anglin, "Automotive Mechanics", Tata McGraw Hill, 10thEdition, 2004.

	Mapping of COs with POs / PSOs													
Car		POs												
Cos	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	
2		2											3	
3		2											3	
4	3													
5						2		2				2		2
CO (W.A)	3	2	2			2		2				2	3	2

5. Vehicle Service Manuals of Reputed Indian Manufacturers

	22 M E	XI5 - CAE AND CFD APPROACH I	N FUTURE MO	BILIT	Υ			
				L	Т	Р	С	
				3	0	0	3	
PRERE	EQUISITE : N	IL						
Cours	se Objective:	r mobi oid pro s metl tional r ation 1	lity. ototypi nods. fluid dy cechnic	ng mamics ues	;			
	C The	Cognitive Level	Weightage of CO in End Semester Examination					
соі	App ly the dynamics in r	concepts of computational fluid nobility engineering.	Ap	30%				
CO2	App ly the m in various me	odeling and discretization technique echanical elements.	Ар	30%				
CO3	Ana l yze the c	lurability, reliability and crash analysis	An		2	0%		
CO4	Ana ly ze the l Engineering /	pasic concept of the Computer Aided Computational Fluid Dynamics	An	20%				
CO5	Develop the rapid prototy	computer aided design and model in ping.	Ap	Internal Assess				

UNIT I - COMPUTER AIDED ENGINEERING AND COMPUTATIONAL FLUID DYNAMICS

(9)

Introduction to use of computer in Mobility Product Life Cycle, Software for mobility. Introduction to design process and role of computers in the design process, use of modern computational tools used for design and analysis, Concept of modeling and simulation. CFD as a design and research tool, Applications of CFD in mobility engineering

UNIT II - APPLICATIONS OF COMPUTER AIDED ENGINEERING

(9)

(9)

Computational Fluid Dynamics – Introduction three dimensional of fluid dynamics, equilibrium equation for a fluid conversation. Injection moulding of plastics simplification of mould geometry for FEA material model. Simulation for manufacturing process like casting and sheet metal applications. Durability analysis, reliability, crash analysis. Noise vibration and hardness NVH analysis.

UNIT III - FINITE ELEMENT ANALYSIS

Basic Concept of Finite Element Method, Ritz and Rayleigh Ritz methods, Method of weighed residuals, Galerkin method. Governing differential equations of one and two dimensional problems, One Dimensional Second Order Equations – Discretization – Linear and Higher order Elements – Interpolation and shape functions, Derivation of Shape functions and Stiffness matrices and force vectors-Assembly of Matrices - Solution of static problems and case studies in stress analysis of mechanical components using 2D and 3D elements

UNIT IV - COMPUTATIONAL FLUID DYNAMICS

CFD vs. experimentation; continuity, Navier-stokes and energy equations; modeling and discretization techniques; basic steps in CFD computation various simplifications, Dimensionless equations and parameters, Incompressible inviscid flows, Source panel method, and Vortex panel method. Conservation form of the equations, shock fitting and shock capturing, Time marching and space marching. 3-D structured and unstructured grid generation, mesh smoothing and sensitivity checks. Different types of codes and grids used for CFD calculations.

UNIT V - PROBLEM SOLVING USING CFD

Turbulence Modeling, different turbulent modeling scheme. Incompressible Viscous Flows, Applications to internal flows and boundary layer flows. Eddy viscosity and non-eddy viscosity models; Vehicle Aerodynamic Simulation Wind tunnel and on-road simulation of vehicles; Simulation of Ahmed and Windsor bodies; Vorticity based grid-free simulation technique; simulation in climatic and acoustic wind tunnels; velocity vector and pressure contour simulation

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. Computational Fluid Dynamics: A Practical Approach by Jiyuan Tu, Guan Heng Yeoh, Chaoqun Liu, Butterworth – Heinemann Ltd, Second Edition, 2012.
- 2. Applied Computational Fluid Dynamics by S. C. Gupta, Wiley publisher, 2019

REFERENCES:

- I. Ibrahim Zeid "Mastering CAD CAM" Tata McGraw-Hill Publishing Co.2007
- 2. Groover, M. P., CAD/CAM: Computer-Aided Design and Manufacturing, Pearson Education,
- 3. 2008
- 4. TirupathiR.Chandrupatla and Ashok D.Belegundu, "Introduction to Finite Elements in
- 5. Engineering", International Edition, Pearson Education Limited, 2014.
- 6. Dhanaraj. R and Prabhakaran Nair. K, "Finite Element Analysis", Oxford Publications, 2015.
- 7. Versteeg, H.K., and Malalasekera, W.,"An Introduction to Computational Fluid Dynamics": The finite volume Method, Pearson Education, 2014

	Mapping of COs with POs / PSOs													
		POs												
COs	I	2	3	4	5	6	7	8	9	10		12	I	2
	2													
2	2													
3		I												I
4		I												I
5						I								
CO (W.A)	2	I				I								

(9)

L T P

С

		5	U	U	3						
	PREREQUISITE :Nil										
	• To introduce the concept of hybrid and electric driv	e trains	•								
	 To elaborate on the types and utilization of hybrid and electric drive trains 										
Course Objective:	• To expose on different types of AC and DC drives f	or elec	tric vel	ni cles .							
	• To learn and utilize different types of energy storage	system	าร								
	• To introduce concept of energy management strates	zies and	drive	sizing							

	Course Outcomes The Student will be able to	Cognitive Level	Weightage of COs in End Semester Examination
COI	Analyze the performance and power source characterization of hybrid and electric vehicles in relation to their impact on energy supplies.	An	20%
CO2	Apply power flow control techniques to optimize fuel efficiency in hybrid and electric drive-train topologies.	Ap	20%
CO3	Implement and control AC and DC motor drives in hybrid and electric vehicles to enhance drive system efficiency.	Ар	40%
CO4	Analyze the performance and hybridization of different energy storage devices in hybrid and electric vehicles.	An	20%
CO5	Explain the historical development, social, and environmental significance of hybrid and electric vehicles.	U	Internal Assessment

UNIT I : INTRODUCTION TO HYBRID AND ELECTRIC VEHICLES

(9)

Basics of vehicle performance, vehicle power source characterization, transmission characteristics, History of hybrid and electric vehicles, social and environmental importance of hybrid and electric vehicles, impact of modern drive-trains on energy supplies.

UNIT II : HYBRID ELECTRIC DRIVE TRAINS

(9)

(9)

Basic concept of hybrid traction, introduction to various hybrid drive-train topologies, power flow control in hybrid drive-train topologies, fuel efficiency analysis. Electric Drive-trains: Basic concept of electric traction, introduction to various electric drive-train topologies, power flow control in electric drive-train topologies, fuel efficiency analysis.

UNIT III : CONTROL OF AC & DC DRIVES

Introduction to electric components used in hybrid and electric vehicles, Configuration, and control - DC Motor drives, Induction Motor drives, Permanent Magnet Motor drive, and Switch Reluctance Motor drives, drive system efficiency.

UNIT IV : ENERGY STORAGE

Introduction to Energy Storage Requirements in Hybrid and Electric Vehicles, Energy storage and

its analysis - Battery based, Fuel Cell based, and Super Capacitor based, Hybridization of different energy storage devices

UNIT V : DRIVE SIZING AND ENERGY MANAGEMENT STRATEGIES

(9)

Sizing the drive system: Matching the electric machine and the internal combustion engine (ICE), Sizing the propulsion motor, sizing the power electronics, selection of appropriate energy storage technology, Energy Management Strategies: Introduction to energy management strategies used in hybrid and electric vehicles, classification, and comparison of energy management strategies, Implementation issues.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- I. Iqbal Husain, Electric and Hybrid Vehicles: Design Fundamentals||, Third Edition, 2021
- 2. James Larminie, John Lowry, Electric Vehicle Technology Explained, Wiley, 2003

REFERENCES:

- I. Mehrdad Ehsani, Yimi Gao, Sebastian E. Gay, Ali Emadi, Modern Electric, Hybrid Electric and Fuel Cell Vehicles: Fundamentals, Theory and Design, CRC Press, 2004.
- 2. R and D.A.J, Woods, R & amp; Dell RM Batteries for Electric vehicles, John Wiley & amp;
- 3. Sons, 1998
- 4. Hybrid, Electric and Fuel-Cell Vehicles, International Edition by Jack Erjavec June 2012
- 5. Energy Management in Hybrid Electric Vehicles using Co-Simulation by Christian PaarII February 2011
- 6. Hybrid Electric Vehicle Design and Control: Intelligent Omnidirectional Hybrids (MECHANICAL ENGINEERING) by YangshengXu , Jingyu Yan, et al. 16 December 2013

	Mapping of COs with POs / PSOs													
	POs										PSOs			
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3	3											3	
2	3												3	
3	3												3	
4	3	3											3	
5							3							
CO (W.A)	3	3					3						3	

Girt

	22MEX 7 -	THERMAL MANAGEMENT OF BA	TTERIES AND F	UEL	CELL	S			
				L	т	Р	С		
				3	0	0	3		
PRERE	EQUISITE :								
Cours	se Objective:	 To study the working principle of To learn the thermal management To develop the different case stud System. To learn the working principle of I To learn the inside components of famous Electric and Evel Cell Elect 	Li-ion Batteries and system in Battery i ies in Battery Theri Fuel Cells and cooli Thermal Managem atric Vehicles	l Batte modul mal M ng me nent Sy	ery Pacl es. anagem thods. /stems	<s. nent in vario</s. 	ous		
	C The	Course Outcomes Student will be able to	Cognitive Level	Weightage of COs in End Semester Examination					
соі	Apply knowled and managen performance a	dge of Li-ion battery chemistry, formats, nent systems to optimize battery nd longevity.	Ар	20%					
CO2	Apply therma battery perfor	l management techniques to optimize mance in electric vehicles.	Ар		2	0%			
CO3	Evaluate the methods in ba	effectiveness of different cooling ttery thermal management systems.	E		3	0%			
CO4	Analyze the t solutions for f	hermal management requirements and uel cell systems in electric vehicles.	An	30%					
CO5	Demonstrate battery manage	the configuration and characteristics of ement systems in advanced batteries.	U	U Internal Assessr					

UNIT I : ADVANCED BATTERIES

Li-ion Batteries- chemistry, different formats, operating areas, efficiency, aging. Battery Management System- Configuration, Characteristics. Tesla Model S-18650 Cell specifications, P85 Battery Pack mechanical structure, Texas Instruments BMS. Super capacitors Vs batteries. Diamond battery concepts.

UNIT II : THERMAL MANAGEMENT IN BATTERIES

Thermal Management Systems- impact, Types- Air, Liquid, Direct refrigerant, Heat pipe, Thermo Electric, Phase Change Material (PCM) Cooling methods. Solid-liquid PCM Types- Organic, Inorganic, Eutectics. PCM Thermal properties and applications. Tesla Model-S Battery Module- bonding techniques, thermal management.

UNIT III : BATTERY THERMAL MANAGEMENT CASE STUDIES

EV Battery Cooling- challenges and solutions. Heat Exchanger Design and Optimization Model for EV Batteries using PCMs- system set up, selection of PCMs. Chevrolet Volt Model Battery Thermal Management System- Case study. Modeling Liquid Cooling of a Li-lon Battery Pack with COMSOL Multi physics- simulation concepts

155 Page

(9)

(9)

UNIT	IV : T	HERM	AL MA	NAGE	MENT		UEL C	ELLS						(9)
Fuel C polariz equatio	ells- op ation c ons, cha	perating urves, a aracteris	princip pplicatio tic curv	le, hydr ons. Fu e, sizing	ogen-ai el cell g, coolir	ir fuel o thermal ng meth	cell syst I manag 10ds, ad	em cha gement- vantage	aracteri basic s, restr	stics, o model, ictions.	ther fue energy	el cell t balance	echnolo e, gove	ogies, rning
UNIT	V : Fl	JEL CE	LL TH	IERMA		NAGE	MENT	CASE	STU	DIES				(9)
Fuel ce Electric princip Hydrog	ell syste c Vehic le, Hig gen refi	em- balaı Ie Fuel h press ueling- C	nce of p econon ure hyc Case stu	plant- c ny calcu drogen dies.	ompon ulations tank, E	ents ree -Battery Boost c	quired. y EVs \ converta	Fuel ce /s Fuel or, NiN	ll powe Cell E` 1H Bat	er plant Vs. Toy tery, Ir	sizing p rota Min nternal	oroblem rai FCV circulat	is- Fuel - Oper ion sys	Cell rating stem,
										1014	AL(L:4	5) = 45	PERIC	ODS
ТЕХТ	воо	KS:												
I. 2. 3. 4. 5. REFEI I. 2. 3. 4. 5.	Ibrahi Battery Jiuchu Drive Mehro and Fuo John O David House, RENC Nag.P 2013. "Vehi Techno Youno Press. T. Yo Jerry 1998, N	m Dinç v System in Jiang a Vehicles' dad Ehsa el Cell V G. Hayes e Andre 2010. ES: .K, "Eng cle ther o centre, es Shaba mi Obid Sergent, 1c Graw	er, Hal s", Wile ind Caip ', Wiley ani, Yim ehicles- s and G ea, "Bat mal Ma mal Ma i, "Ther Al Kru <i>r</i> -Hill	il S. Ha ey, 2017 bing Zha 7, 2015. hin Gao Fundan . Abas G ttery M g Therr mageme eat Tra mageme mal Ma m, "The	amut, a 7. ang, "Fu , Sebas nentals, Goodar lanagem modyna ent Sys ansfer: unageme ermal N	und Na undame tien E. Theory zi, "Elec nent Sy umics", tems C Therma ent in A 1anagen	der Jav ntals an Gay an y, and E ctric Po stems f 5th Edi Conferen al Mana automot ment Ha	ani, "T d applie d Ali E Design", wertrai for Larg tion, T nce Pro gement sive app andboo	hermal cations CRC F n", Wil ge Lithi ata Mc occeedin c of Ele lication k: For E	Manag of Lithiu Press, 20 ey, 2013 jum-Ion Graw F gs", Isu ectronic s", 2013 Electron	ement um-Ion n Electi 005. 8 Batter Hill Edu t Editio s Hard 5, SAE I ic Asse	of Elec batterie ric, Hyb ry Packs cation, on; 2013 cover" nternat	tric Ve es in Ele rid Ele " ART New E 3, Cove 2010, ional. Hardco	hicle ectric ctric, ECH Delhi, entry CRC ver",
				M	lapping	g of CC	Os with	POs /	PSOs					
						PC	Os						PS	Os
COs	l	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2	3												3	
3	3	3											3	
4	3	3					1						3	
5							3						<u> </u>	
CO (W.A)	3	3					3						3	

156 Page

	22MEX18 SMART MOBILITY AND INTELLIGENT VE	HICLE	S								
		L	Т	Р	С						
		3	0	0	3						
PRERI	EQUISITE : Nil										
 To introduce students to the various technologies and systems used to implement smart mobility and intelligent vehicles To learn basics of radar technology and systems, ultrasonic sonar systems, LIDAR sensor technology and systems and other sensors for automobile vision system To learn basic control system theory applied to autonomous automobiles To produce overall impact of automating like various driving functions, connecting the automobile to sources of information that assist with a task To allow the automobile to make autonomous intelligent decisions concerning future actions of the vehicle that potentially impact the safety of the occupant through connected car & autonomous vehicle technology 											
	Course OutcomesCognitiveThe Student will be able toLevel	We in	eighta End S Exam	ge of (Semes inatio	COs ter n						
COI	Apply the concept of cyber-physical control systems and their application to collision avoidance and Ap autonomous vehicles		2	20%							
CO2	Apply the concept of remote sensing and the types of sensor technology needed to implement remote An sensing			10%							
CO3	Apply the concept of fully autonomous vehicles. Ap		3	0%							
CO4	Apply basic concepts of wireless communications and Ap wireless data networks		2	20%							
CO5	Integrate the connected vehicle and its role in C automated vehicles	In	ternal	assessn	nent						

UNIT I- INTRODUCTION TO AUTOMATED, CONNECTED, AND INTELLIGENT (9) VEHICLES

Concept of automotive electronics, electronics overview, history & evolution, infotainment, body, chassis, and powertrain electronics, introduction to automated, connected, and intelligent vehicles. case studies: automated, connected, and intelligent vehicles.

UNIT II - SENSOR TECHNOLOGY FOR SMART MOBILITY

(9)

(9)

Basics of radar technology and systems, ultrasonic sonar systems, lidar sensor technology and systems, camera technology, night vision technology, other sensors, use of sensor data fusion, integration of sensor data to onboard control systems.

UNIT III - CONNECTED AUTONOMOUS VEHICLE

Concepts of autonomous vehicles, basic control system theory applied to automobiles, overview of the operation of ECUs, basic cyber-physical system theory and autonomous vehicles, role of surroundings sensing systems and autonomy, role of wireless data networks and autonomy.

UNIT IV - VEHICLE WIRELESS TECHNOLOGY & NETWORKING

(9)

Wireless system block diagram and overview of components, transmission systems – modulation/encoding, receiver system concepts– demodulation/decoding, wireless networking and applications to vehicle autonomy, basics of computer networking – the internet of things, wireless networking fundamentals, integration of wireless networking and on-board vehicle networks.

UNIT V – CONNECTED CAR & AUTONOMOUS VEHICLE TECHNOLOGY

(9)

Connectivity fundamentals, navigation and other applications, vehicle-to-vehicle technology and applications, vehicle-to-roadside and vehicle-to-infrastructure applications, autonomous vehicles - driverless car technology, moral, legal, roadblock issues, technical issues, security issues.

TEXT BOOKS

- 1. "Intelligent transportation systems and connected and automated vehicles", 2016, transportation research board
- 2. Radovan miucic, "connected vehicles: intelligent transportation systems", 2019, springer

REFERENCES:

1. Tom denton, "automobile electrical and electronic systems, roultedge", taylor & francis group,5th edition,2018.

	Mapping of COs with POs / PSOs													
	POs													Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3												
3	3													
4	3													
5										2		2		
CO (W.A)	3	3								2		2	I	

		22MEX2I-TURBO MACH	IINES				
				L	т	Ρ	C
				3	0	0	3
PRERI	EQUISITE : N	il					
Cours	se Objective:	 To study the energy transfer in rot To study the function of various el To evaluating the working and per To analyzing flow behavior and flow To study the types and working of 	tor and stator pai ements of centrif formance of cent w losses in axial fl axial and radial fl	rts of the ugal fans rifugal co low com ow turb	e turbo and bl ompres presso ines.	o mach Iower ssor or.	nines. 's.
	C The	Course Outcomes Student will be able to	Cognitive Level	We in l E	ightaş End S Exami	ge of emes natio	COs ster n
COI	Apply the prir stator parts of	iciples of energy transfer in rotor and turbo machines.	Ар		30) %	
CO2	Analyze the flo compressors.	w behavior and flow losses in axial flow	An		20) %	
CO3	Evaluate the w compressors.	orking and performance of centrifugal	Ap		30) %	
CO4	Justify the func fans and blowe	tions of various elements in centrifugal rs.	Ap/C		20) %	
CO5	Develop team group-based o peer reviews.	work and collaboration skills through n the turbo machines assignments and	Ap/An	Inte	ernal A	ssess	ment
	- WORKING	PRINCIPLES					(9
Classific interpre Dimensi	ation of Turbo 1 tation. Velocity onless paramete	machines. Energy transfer between fluid an triangles. Efficiencies in Compressor and 7 ers for Turbo machines.	d rotor - Euler e Furbine stages. D	equation egree of	and its react	s ion.	
	I - CENTRIFU	IGAL FANS AND BLOWERS					(9)
Types – diagram bearings	components – v Stage paramete drives and nois	working. Flow analysis in impeller blades-v ers in fans and blowers. Performance chara se.	olute and diffuse acteristic curves -	rs. Veloc - variou:	ity tria s losse	angles s. Fan	- h-s
		JGAL COMPRESSOR					(9)
Compoi Perform	nents - blade typ ance characteris	es. Velocity triangles - h-s diagram, stage v stics and various losses. Geometry and per	work. Slip factor formance calcula	and Deg ition.	ree of	Reac	tion.
	V - AXIAL FL	OW COMPRESSOR					(9)
Constru Porform	iction details. W	fork done factor. Velocity triangles - h-s di	agram, stage woi	rk. Wor	k done	e facto	or. flow
		ID RADIAL FLOW TURBINES	na surging. Free	and For		rtex I	10w. (9)
Axial flo reaction Element	w turbines - Ty stages. Compo s - Stage velocit	pes – Elements - Stage velocity diagrams - unding of turbines. Performance coefficien y diagrams - h-s diagram, stage work Perfo	h-s diagram, stag ts and losses. Ra prmance coefficie	e work dial flow nts and	- impu turbir losses.	lse an nes: T	d ypes

TEXT BOOKS:

- I. Ganesan, V., "Gas Turbines", 3rd Edition, Tata McGraw Hill, 2011.
- 2. Yahya, S.M., "Turbines, Compressor and Fans", 4th Edition, Tata McGraw Hill, 2011.

- I. Dixon, S.L., "Fluid Mechanics and Thermodynamics of Turbomachinery", 7th Edition, ButterworthHeinemann, 2014.
- 2. Gopalakrishnan. G and Prithvi Raj. D," A Treatise on Turbomachines", Scitech Publications (India) Pvt. Ltd., 2nd Edition, 2008.
- 3. Lewis, R.I., "Turbomachinery Performance Analysis" 1st Edition, Arnold Publisher, 1996.
- 4. Saravanamutto, Rogers, Cohen, Straznicky., "Gas Turbine Theory" 6th Edition, Pearson Education Ltd, 2009.
- 5. Venkanna, B.K., "Fundamentals of Turbomachinery", PHI Learning Pvt. Ltd., 2009.

	Mapping of COs with POs / PSOs														
POs													PSOs		
COs	I	I 2 3 4 5 6 7 8 9 10 11 1 2 -													
I	3	3													
2		3													
3	3												3		
4	3												3		
5	3	3													
CO (W.A)	3 3 I I I												3		

	22MEX22	2 - ADVANCED INTERNAL COME	BUSTION ENG	GINE	ERIN	G	
				L	Т	Р	С
				3	0	0	3
PRERE	EQUISITE:						
Cours	e Objective:	 To study the working of Gas combustion. To study the working of Di combustion To Identifying the source and a emission formation and control To study the Selecting alternative techniques in IC engines. To study the advanced combusive systems. 	iesel fuel inject measure it; expl methods. tive fuel resource stion modes an	ion s ain th ces ar d futu	syster ystem e mea nd its ure pa	ns an s and chanisi utiliza ower	d SI d CI m of ation train
	Th	Course Outcomes e Student will be able to	Cognitive Level	We in	eighta; End S Exami	ge of (emes inatio	COs ter n
соі	Apply the w systems in SI	orking concept of Gasoline fuel injection combustion.	Ap		3	0%	
CO2	Apply the v systems diese	vorking concept of Diesel fuel injection el cycle.	Ap		3	0%	
CO3	Analyze the utilization tea	performance of alternative fuels and chniques in IC engines.	An		2	0%	
CO4	Analyze the c	characteristics of Fuel Cells in automobiles	An		2	0%	
CO5	Formulate th and future po	ne different advanced combustion modes ower train systems.	U	Int	ernal A	Assess	nent

UNIT I - SPARK IGNITION ENGINES

Mixture requirements – Fuel injection systems – Mono-point, Multipoint & Direct injection -Stages of combustion – Normal and Abnormal combustion, Spark Knock, Factors affecting knock, Combustion chambers.

UNIT II - COMPRESSION IGNITION ENGINES

Diesel Fuel Injection Systems – Mechanical and Common Rail Direct Injection Systems - Stages of combustion – Knocking – Factors affecting knock –Direct and Indirect injection systems –Fuel Spray behaviour – Spray structure and spray penetration – Air motion - Combustion chambers – Turbo charging – Waste Gate, Variable Geometry turbochargers.

UNIT III - EMISSION FORMATION AND CONTROL

(9)

(9)

(9)

Sources – Formation of Carbon Monoxide, Unburnt hydrocarbon, Oxides of Nitrogen, Smoke and Particulate matter – Methods of controlling emissions – In-cylinder treatments – After treatment systems – Three Way Catalytic converter, Selective Catalytic Reduction, De-NOx Catalyst, Diesel Oxidation Catalyst and Particulate Traps – Methods of emission measurement – Emission norms and Driving cycles.

UNIT IV - ALTERNATIVE FUELS

(9)

Alcohol Fuels, Hydrogen – production, storage - Compressed Natural Gas, Liquefied Petroleum Gas and Bio Diesel - Properties, Suitability, Merits and Demerits – Utilization Methods - Engine Modifications.

UNIT V - ALTERNATE COMBUSTION AND POWER TRAIN SYSTEM

(9)

Low Temperature Combustion - Homogeneous charge compression ignition (HCCI) – Reactivity Controlled Compression Ignition (RCCI) – Gasoline Compression Ignition – Spark Assisted HCCI - Hybrid Electric and Electric Vehicles – Fuel Cells.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. V. Ganesan, "Internal Combustion Engines", V Edition, Tata McGraw Hill, 2012.
- 2. John B. Heywood, "Internal Combustion Engines Fundamentals", McGraw-Hill, 2009.

- I. B.P. Pundir, "IC Engines Combustion & Emission", Narosa Publishing House, 2014.
- 2. Duffy Smith, "Auto Fuel Systems", The Good Heart Wilcox Company, Inc., 2003.
- 3. EranSher, Handbook of Air Pollution from Internal Combustion Engines: Pollutant Formation and Control, Academic Press, 1998.
- 4. K.K. Ramalingam, "Internal Combustion Engine Fundamentals", SciTech Publications, 2011.
- 5. R.B. Mathur and R.P. Sharma, "Internal Combustion Engines", Dhanpat Rai& Sons, 2007

				M	lapping	g of CC	Os with	POs /	PSOs					
						PC	Os						PSOs	
COs		2	3	4	5	6	7	8	9	10	11	12	I	2
I	2													
2	2												I	
3		I												
4		I												
5								I						
CO (W.A)	2	I											I	

				_				
		22MEX23- GAS DYNAMICS AND JE		N				
				L	Т	Р	С	
				3	0	0	3	
PRERI	EQUISITE : N	IL						
		 To study the fundamentals of com tables. 	pressible flow cond	epts a	nd the	use of	gas	
C		• To learn the compressible flow be	haviour in constant	t ar e a	ducts			
Cour	se Objective:	 To study the development of shoc 	k waves and its effe	ects				
		 To study the types of jet engines a 	nd their performar	ice pai	ramete	rs		
		• To learn the types of rocket engine	es and their perfor	mance	param	eters.		
		Course Outcomes	Cognitive	We in	eightag End S	ge of C emest	COs Cer	
	The	Student will be able to	Level		Examination			
COI	Apply the fundand the use of	damentals of compressible flow concepts gas tables	Ap		2	0%		
CO2	Analyze the c area ducts	compressible flow behaviour in constant	An		2	0%		
CO3	Evaluate the effects	development of shock waves and its	An		2	0%		
CO4	Analyze the associated wit of compressil technologies.	ethical implications and responsibilities h the design, development, and operation ble fluid flow systems and propulsion	An		2	0%		
CO5	Classify the parameters.	rocket engines and their performance	Ap		2	0%		

UNIT I - BASIC CONCEPTS AND ISENTROPIC FLOWS

(9)

Energy and momentum equations of compressible fluid flows, Concepts of compressible flow – Mach waves and Mach cone. Flow regimes, effect of Mach number on compressibility. Stagnation, static, critical properties and their interrelationship. Isentropic flow and its relations. Isentropic flow through variable area ducts – nozzles and diffusers. Use of Gas tables.

UNIT II - COMPRESSIBLE FLOW THROUGH DUCTS

Flows through constant area ducts with heat transfer (Rayleigh flow) and Friction (Fanno flow) – variation of flow properties. Choking. Isothermal flow with friction. Use of Gas tables.

UNIT III - NORMAL AND OBLIQUE SHOCKS

(9)

(9)

(9)

(9)

Governing equations – Rankine - Hugoniot Relation. Variation of flow parameters across the normal and oblique shocks. Prandtl – Meyer expansion and relation. Use of Gas tables.

UNIT IV - JET PROPULSION

Theory of jet propulsion – thrust equation – Performance parameters - thrust, power and efficiency. Operation, cycle analysis and performance of ram jet, turbojet, turbofan, turbo prop and pulse jet engines.

UNIT V – SPACE PROPULSION

Types of rocket engines and propellants. Characteristic velocity – thrust equation. Theory of single and multistage rocket propulsion. Liquid fuel feeding systems. Solid propellant geometries. Orbital and escape velocity. Rocket performance calculations.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. Anderson, J.D., "Modern Compressible flow", Third Edition, McGraw Hill, 2003.
- 2. S.M.Yahya, "Fundamentals of Compressible Flow with Aircraft and Rocket propulsion", New Age International (P) Limited, 4th Edition, 2012.

- I. R. D. Zucker and O Biblarz, "Fundamentals of Gas Dynamics", 2nd edition, Wiley, 2011. .
- 2. Balachandran. P., "Fundamentals of Compressible Fluid Dynamics", Prentice-Hall of India, 2007.
- 3. Radhakrishnan. E., "Gas Dynamics", Printice Hall of India, 2006.
- 4. Hill and Peterson, "Mechanics and Thermodynamics of Propulsion", Addison Wesley, 1965.
- 5. Babu, V., "Fundamentals of Compressible Flow", CRC Press, 1st Edition, 2008

	Mapping of COs with POs / PSOs													
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	1
2		3	3										2	1
3													2	1
4								3					2	1
5		3												
CO (W.A)	3	3 3 3 3												

		22MEX24 REFRIGERATION AND A	IR CONDITION	IING	1							
				L	т	Р	С					
				3	0	0	3					
PRERI	EQUISITE : N											
		 To introduce the refrigerants and 	refrigeration cycle	es								
		 To know the working principles c 	of vapour compress	ion an	id vapo	our abs	orption					
		refrigeration systems.										
Cours	se Objective:	 To acquire knowledge on non-cor 	nventional refrigera	ition s	ystems	•						
	-	 To acquire knowledge on Air con 	ditioning systems a	nd the	eir com	nponen	ts					
		 To get exposure on load estimation 	on in									
		Refrigeration and air conditioning	systems									
		6 6	,	We	ighta	e of C	COs in					
	_ (Course Outcomes	Cognitive		End S	emes	ter					
	The	Student will be able to	Level		Exan	ninatio	on					
Calculate the performance and efficiency of simple												
COIvapor compression, absorption system and otherAp20%												
non-conventional refrigeration systems.												
	Analyze the c	lifferent types of refrigeration cycles and				1001						
CO2 determine the most suitable refrigerant for each An 40%												
	application.	working principle of various air										
Analyze the working principle of various air conditioning systems and select the most appropriate												
CO3	conditioning systems and select the most appropriate systems for specific applications, incorporating noise control methods											
	, control meth	ods.										
	Estimate co	oling and heating loads for various										
CO4	applications,	including the design and maintenance of	An			20%						
	cold storage	and domestic refrigerators.										
CO5	effective ora	presentation on Refrigeration and Air	L L	Ir	ternal	Δςςρς	sment					
005	Conditioning	Systems.	Ũ		leerman	/ (3503.	sment					
		/										
	: AIR REFRIC	GERATION CYCLES AND REFRIGE	RANTS				(9)					
efriger	ation - systems	s, Coefficient of Performance - Reversed	d Carnot cycle -	revers	ed Br	ayton	cycle -					
lefriger	ants - introduct	ion, classification - primary refrigerants - de	esignation - proper	ties an	id uses	of cor	nmonly					
ised ref	rigerants - com	parison and application of refrigerants – Le	ak detection.									
JNIT	II - VAPOL	IR COMPRESSION AND ABSOR	PTION REFRIC	SERA	TION		(0)					
SYSTE	MS						(9)					
imple v	apour compres	ssion system - T-s diagrams - P-h chart	- factors affecting	the p	erform	nance	actua					
apour	compression cy	cle - volumetric efficiency - methods of	improving simple	satura	ation o	cycle -	Simple					
vapour absorption system - practical vapour absorption system - COP - Lithium Bromide system.												
JNIT I	II - NON COI	NVENTIONAL REFRIGERATION SY	STEMS				(9)					
hermo	electric refriger	ation system - thermoelectric effects, com	nparison between t	hermo	pelectr	ic and	vapour					
compre	ssion refrigerati	on- vortex tube and pulse tube refrigeratio	n.									
JNIT I	V - AIR CON	DITIONING SYSTEMS AND EQUIP	MENTS				(9)					
ir con	ditioning cycle	- classification of air conditioning systems	s - central system	- zon	ed sys	tem -	unitary					
ystem ·	- unitary centra	l system – VRF/VRV system <mark>-</mark> selection of	system - RSHF -	GSHF	- appl	ication	s of air					
onditio	ning - air condit	ioning equipment - package units, central u	inits - noise and no	ise co	ntrol.							

UNIT V – LOAD ESTIMATION, APPLICATIONS OF REFRIGERATION AND AIR CONDITIONING

Cooling and heating load - Thermal resistance value (U) for wall, roof, glass, solar radiation and heat gain - thermal barriers - infiltration - internal heat gains - Design of a cold storage - domestic refrigerator - electrical circuit, maintenance - year round air conditioner - year round absorption air conditioner - air conditioning of theatres - manufacture of ice.

TEXT BOOKS

- 1. Rajput.R.K, "A textbook of Refrigeration and Air conditioning", S.K.Kataria and Sons, 3rd ed., Reprint 2015
- 2. Arora, C.P., "Refrigeration and Air Conditioning", 4th ed., McGraw Hill, New Delhi, 2021

- I. Ananthanarayanan P.N, "Basic Refrigeration and Air Conditioning",4th ed.,McGraw Hill, New Delhi, 2013
- 2. Paul Lang V, "Principles of Air conditioning", 3rd ed., CBS Publishers and Distributors Pvt Ltd, New Delhi 2003
- 3. Khurmi.R.S and Gupta.J.K, "A Textbook of Refrigeration and Air Conditioning", 1st ed., S. Chand Publications, 2011
- 4. Roy.J.Dossat, "Principles of Refrigeration", 4th ed., Pearson education inc, New Delhi, 2012

	Mapping of COs with POs / PSOs														
CO 5						F	POs						PSOs		
	I 2 3 4 5 6 7 8 9 10 11 12												I	2	
I	3												2		
2		3											2		
3		3											2		
4		3											2		
5										2					
CO (W.A)	3	3								2			2		

		22MEX25 THERMAL POWER E	NGINEERING								
				L	T	Р	С				
PPED				3	0	0	3				
Cours	se Objective:	 To study the fuel properties and fuels. To study the different types or parameters. To study the performance parameters or study the working principles or COP calculations. To study the psychrometric proper calculations to determine heating 	arrive at proxima f boilers and con ters of an air comp of various refrigera erties and how the loads.	te and mpute presso ation s	their their or. ystems utilized	ate and perfo and p d in arr	alysis of rmance perform riving at				
	Co The St	urse Outcomes cudent will be able to	Cognitive Level	We	eightag End S Exan	ge of (emes ninatio	COs in ter on				
COIAnalyze the properties of different fuels and conduct proximate and ultimate analysis to determine their composition and characteristics.An20%Explore the various types of boilers and analyze their											
CO2Explore the various types of boilers and analyze their performance through boiler trials, including calculations and evaluations of efficiency.An40%											
CO3	calculations and evaluations of efficiency.Calculate the performance of air compressors and different refrigeration cycles, such as vapor compression, air cycle, and thermoelectric refrigeration systems for the given condition.Ap20%										
CO4	Use the psychro processes and s systems tailored	ometric chart to analyze psychrometric support the design of air conditioning I to different climatic conditions.	An			20%					
CO5	Participate in an effective oral p and air condition	independent team study and deliver an presentation on boilers, refrigeration, ning systems.	U	lı	nternal	Asses	sment				
	: FUELS AND	COMBUSTION					(9)				
Fuels - and Ult	Types and Charac imate Analysis - N	cteristics of Fuels - Determination of Pro Moisture Determination - Calorific Value	operties of Fuels - e - Gross & Net Ca	- Fuels alorific	s Analy : Value	rsis — P s	roximat				
UNIT I	I - BOILERS						(9)				
Types generat	of boilers and co tion boiler design	omparison, Mountings and Accessories.	Performance cal	culatio	ons, Bo	oiler tr	ial. Nex				
UNIT III - AIR COMPRESSORS (9)											
Classification of air compressors, working principle, work of compression - with and without clearance, Volumetric efficiency, Isothermal efficiency. Multistage air compressor with Intercooling. Working principle and comparison of Rotary compressors with reciprocating air compressors											
UNIT IV - REFRIGERATION SYSTEMS (9)											
Vapour compression refrigeration cycle, Effect of Superheat and Sub-cooling, Performance calculations, Working principle of air cycle, vapour absorption system, and Thermoelectric refrigeration. Advanced refrigeration and Cryogenics											

UNIT V – PSYCHROMETRY AND AIR-CONDITIONING

(9)

Psychrometric properties – Property calculations using Psychrometric chart and expressions. Psychrometric processes – adiabatic saturation, sensible heating and cooling, humidification, dehumidification, evaporative cooling and adiabatic mixing Air conditioning systems, concept of RSHF, GSHF and ESHF, Cooling load calculations. Cooling towers – concept and types.

TEXT BOOKS

- I. Mahesh. M. Rathore, "Thermal Engineering", 4th Edition, Tata McGraw Hill, 2023.
- 2. Ballaney. P, "Thermal Engineering", 25th Edition, Khanna Publishers, 2017

- I. Ananthanarayanan P.N, "Basic Refrigeration and Air-Conditioning", 4th Edition, Tata McGraw Hill, 2013.
- 2. Arora, "Refrigeration and Air-Conditioning", 4th ed., McGraw Hill, New Delhi, 2021.
- 3. Mathur M.L and Mehta F.S., "Thermal Science and Engineering", 3rd Edition, Jain Brothers Pvt. Ltd, 2017.
- 4. Nag P.K, "Basic and Applied Thermodynamics", 4th Edition, Tata McGraw Hill, 2017
- 5. Soman. K, "Thermal Engineering", 2nd Edition, Prentice Hall of India, 2011

Mapping of COs with POs / PSOs														
CO 2						F	POs						PSOs	
COS	I 2 3 4 5 6 7 8 9 10 11 12												I	2
I	3												2	
2	3												2	
3		3											2	
4	3												2	
5									2	2				
CO (W.A)	3	3							2	2			2	

					I			
				L 2	1	P 0		
				3	T P 0 0 enewable ener conversion Veightage of n End Seme Examination 20% <td>U</td> <td>3</td>	U	3	
PRERE	EQUISITE :							
Cou	rse Objective:	 To analyze the global energy status and sources. To understand the different types of bio technologies 	potential of varion	us rene neir co	ewable nversic	energ	у	
	C The	Course Outcomes Student will be able to	Cognitive Level	We in	eightag End S Exami	ge of (emest natior	COs ter 1	
COI	Describe the various sector agriculture and	energy consumption and demands in s like domestic, industrial, commercial, transportation in India.	U		2	0%		
CO2	Calculate wind considering fac for wind farms.	d energy potential using wind data, tors like the Betz limit and site selection	Ap		2	0%		
CO3	Analyze and De biodiesel prod systems.	esign the biomass gasifiers, biogas plants, uction plants and ethanol production	An		2	0%		
CO4	Define the m storage and th sector	ethods of hydrogen production and eir potential applications in the energy	U	20%				
CO5	collectors, ind collectors, and.	ations and design the solar thermal cluding flat plate and concentrating	Εv	20%				
	: ENERGY SC	ENARIO					(9)	
ndian e others enewat JNITI Solar ra	energy scenario – Present conv ble energy sourc I:SOLAR ENE diation – Measu	in various sectors – domestic, industrial, ventional energy status – Present rene es-Global energy status-Per capita energy RGY rements of solar radiation and sunshine –	commercial, agric wable energy sta consumption - Fu Solar spectrum -	ulture, tus- P ture er Solar t	transp otentia nergy p therma	ortational of values of the second se	on a vario	
lat pla undam	te and concent entals of solar p	rating collectors – Solar thermal applic hoto voltaic conversion – Solar cells – Sola	ations – Solar t ar PV Systems – So	herma ⊃lar P\	l eners / applic	gy sto ations	rage	
JNITI Vind da ssessm generate JNITI	II:WIND ENE ata and energy e ent - Horizont ors and its perfo V:BIO-FNFRG	RGY stimation – Betz limit - Site selection for v al axis wind turbine – components - V rmance – Hybrid systems – Environmenta	windfarms – chara ′ertical axis wind I issues - Applicati	cterist turbii ons.	ics – W ne – V	/ind re Vind 1	(9) soui turb (9)	
	sources – Biom	nass direct combustion – thermochemi	cal conversion -	bioch	emical	conv	ersid	
nechan	ical conversion	- Biomass gasifier - Types of biomass g	asifiers - Cogener	ation	- Car	bonisa	ition	
yrolysi	s - Biogas plants	– Digesters –Biodiesel production – Ethan	nol production - A	pplicat	tions.			
UNITY Geothe nicro-h Hydroge	rmal energy, ma ydel systems, hy en production a	RGY SOURCES agneto hydrodynamic system (MHD), th ybrid systems and applications; Fuel cells nd storage methods.	ermionic and the : Classification, re	rmos- action	electr s and	ic gen perfor	(9) erat man	
/ ~ 0	г							

TEXT BOOKS:

- Fundamentals and Applications of Renewable Energy | Indian Edition, by Mehmet Kanoglu, Yunus A. Cengel, John M. Cimbala, cGraw Hill; First edition (10 December 2020), ISBN-10: 9390385636
- 2. Renewable Energy Sources and Emerging Technologies, by Kothari, Prentice Hall India Learning Private Limited; 2nd edition (1 January 2011), ISBN-10 : 8120344707

- I. Godfrey Boyle, "Renewable Energy, Power for a Sustainable Future", Oxford University Press, U.K., 2012.
- 2. Rai.G.D., "Non-Conventional Energy Sources", Khanna Publishers, New Delhi, 2014.
- 3. Sukhatme.S.P., "Solar Energy: Principles of Thermal Collection and Storage", Tata McGraw Hill Publishing Company Ltd., New Delhi, 2009.
- 4. Tiwari G.N., "Solar Energy Fundamentals Design, Modelling and applications", Alpha Science Intl Ltd, 2015.
- 5. Twidell, J.W. & Weir A., "Renewable Energy Resources", EFNSpon Ltd., UK, 2015.

				M	lapping	g of CC	Ds with	POs /	PSOs						
						PC	Ds						PS	Os	
COs		2	3	4	5	6	7	8	9	10	11	12	I	2	
I		2 2 3													
2	3	2	2				3								
3	3	2	2				3						3		
4	3	2	2	3			3								
5	3	3 2 2 3 3 3													
CO (W.A)	3	3 2 2 3 3 3 1													

		22MEX27 - ADVANCED VEHICLE	ENGINEERING								
				L	Т	Ρ	С				
				3	0	0	3				
PRERE	EQUISITE :	NIL									
		 To introduce the basic conc characteristics 	epts of electric	: veł	nic l e	and 1	their				
Course Objective:		• To introduce different types of motors and the selection of motor for vehicle applications.									
		 To acquaint the student with different sensors and systems used in autonomous and connected vehicles. 									
		 To give an overview of networking with sensors and systems. 									
 To introduce the modern methods of diagnosing on-board the vehic troubles. 											
		Cognitive	Weightage of COs								
The Student will be able to			Level	in End Semester Examination							
col	App ly the importance	concept of electric vehicles and their in automotive.	Ар	30%							
CO2	Analyze t configuratio	he performance, characteristics and on of electric vehicle motors.	Ар	30%							
CO3	Ana l yze th Diagnostic	ne characteristics of networking and Interfaces.	An	20%							
CO4	Analyze the	e on-board diagnostics systems	An		2	0%					
CO5	Seminar pr and connec	resentation in the autonomous vehicle ated vehicles	U	Internal Assessment							

UNIT I - ELECTRIC VEHICLES

EV architectures, advantages and disadvantages, Electrical and mechanical energy storage technologies, battery management. Performance of Electric Vehicles, Electric Power Steering. Tractive effort and Transmission requirement, Vehicle performance, Tractive effort in normal driving.

UNIT II - ELECTRIC VEHICLE MOTORS

(9)

(9)

(9)

Electric Propulsion basics, motor capacity determination, Induction motor, DC motor, Permanent Magnet Motor, Switch Reluctance Motor, Configuration, Characteristics, Performance and control of Drives.

UNIT III - AUTONOMOUS AND CONNECTED VEHICLES

Vehicle-to-Vehicle Technology, Vehicle to Road and Vehicle to Vehicle Infrastructure, Basic Control System, Surroundings Sensing Systems, Role of Wireless Data Networks, Advanced Driver Assistance Systems, Basics of Radar System, Ultrasonic Sonar Systems, Lidar System, Camera Technology, Basics of Wireless Technology, Receiver System.

UNIT IV - AUTOMOTIVE NETWORKING

(9)

Bus Systems – Classification, Applications in the vehicle, Coupling of networks, networked vehicles, Buses - CAN Bus, LIN Bus, MOST Bus, Bluetooth, Flex Ray, Diagnostic Interfaces.

UNIT V - ON-BOARD TESTING

(9)

Integration of Sensor Data to On-Board Control Systems (OBD), OBD requirements, certification, enforcement, systems, testing, Introduction to Cyber-physical system.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. John G Hayes and G AbaasGoodarzi, Electric Powertrain -, 1st Edition, John Wiley & Sons Ltd., 2018
- 2. Hussain T Mouftah, Melike Erol-kantarci and Samesh Sorour, Connected and Autonomous Vehicles in Smart Cities, CRC Press, 1st Edition, 2020.

- I. Dominique Paret, Multiplexed Networks for Embedded Systems, John Wiley & Sons Ltd., 2007.
- 2. Hong Cheng, Autonomous Intelligent Vehicles: Theory, Algorithms & amp; Implementation, Springer, 2011
- 3. Advanced Technology Vehicles Manufacturing (ATVM) Loan Program (Energy Science, Engineering and Technology: Congressional Policies, Practices and Procedures)by Andrew M Wright and Harrison R Scott | 5 September 2012
- 4. Advanced Vehicle Technology by Heinz Heisler MSc BSc FIMI MIRTE MCIT | 17 July 2002
- 5. Advanced Motorsport Engineering: Units for Study at Level 3by Andrew Livesey | | September 2011

Mapping of COs with POs / PSOs														
	POs									PSOs				
COs	I	2	3	4	5	6	7	8	9	10		12	I	2
I	2												I	
2	2												I	
3		I												
4		I												
5										I				
CO (W.A)	2	I								I			I	

	r	22MEX31-COMPUTATIONAL SOL		5				
				L	Т	Р	С	
			3	0	0	3		
PREREQUISITE : Nil								
Cour	se Objective:	on theory of elasticity nd procedure for static linear elasticity tory depend problems namic problems of Small and large strain nterfaces and contact using penalty method						
	C The	Course Outcomes Student will be able to	Cognitive Level	Weightage of COs in End Semester Examination				
соі	Utilize the theo in structural an	ory of elasticity to solve basic problems alysis.	Ap	40%				
CO2	Differentiate be dependent pro mechanics.	etween non-linear problems and history- oblems in the context of structural	An	20%				
CO3	Evaluate meth interfaces, and	ods for solving structural elements, contact problems.	Ap	20%				
CO4	Derive the fir elasticity from	nite element method for static linear first principles.	Ap/C	20%				
CO5	Develop team group-based o peer reviews.	work and collaboration skills through n the solid mechanics assignments and	Ap/An	Internal Assessment				

UNIT I - BASIC ON THEORY OF ELASTICITY

Definitions- notations and sign conventions for stress and strain, Equations of equilibrium. Strain – displacement relations, Stress – strain relations, Lame's constant –cubical dilation, Compressibility of material, bulk modulus, Shear modulus, Compatibility equations for stresses and strains, Principal stresses and principal strains, Mohr's circle, Saint Venant's principle.

UNIT II - FINITE ELEMENT METHOD FOR STATIC LINEAR ELASTICITY

Derivation and implementation of a basic 2D FE code with triangular constant strain elements. Generalization of finite element procedures for linear elasticity: interpolation and numerical integration in ID, 2D and 3D. Deriving finite element equations - constructing variational forms; mixed methods. Accuracy and convergence; the Patch test.

UNIT III - NON LINEAR AND HISTORY DEPEND PROBLEMS

Small strain hypo-elastic materials - Small strain visco-plasticity - Large strain elasticity -Large strain viscoplasticity

UNIT IV - TIME DEPENDENT AND DYNAMIC PROBLEMS

First-order systems - the diffusion equation - Explicit time integration - the Newmark method - Implicit time integration - Modal analysis and modal time integration.

(9)

(9)

(9)
UNIT V - AXISYMMETRIC CONTINUUM AND PLANE TRUSS

(9)

Axisymmetric formulation - Element stiffness matrix and force vector - Body forces and temperature effects - Stress calculations - Boundary conditions - 2D axis symmetric elements.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- I. L.S.Srinath, Advanced Mechanics Of Solids, 3rd Edition 2008. (0070139881 · 9780070139886).
- 2. J.N.Reddy, Introduction To Finite Element Method, 4th Edition 2020. (939038527X 9789390385270).
- 3. R.D.Cook, Concepts and Applications of Finite Element Analysis, 4th Edition 2001 (978- 0-471- 35605-9).
- 4. S.Timoshenko, Theory of Elasticity, McGraw-Hill Education (India) Pvt Limited, 2010.(9780070701229-0070701229)
- 5. G. Ramamurty, Applied Finite Element Analysis, I.K. International Publishing House Pvt. Limited, 2013. (9789380578453-9380578458)

REFERENCES:

- The Mechanics of Solids and Structures Hierarchical Modeling and the Finite Element Solution (Computational Fluid and Solid Mechanics)by Miguel Luiz Bucalem and KlausJurgen Bathe | 25 February 2013
- 2. The Finite Element Analysis of Shells Fundamentals (Computational Fluid and Solid Mechanics)by Dominique Chapelle and Klaus-Jurgen Bathe | 27 January 2013
- 3. Inelastic Analysis of Solids and Structures (Computational Fluid and Solid Mechanics)by M. Kojic and Klaus-Jurgen Bathe | 22 October 2010
- 4. High-Resolution Methods for Incompressible and Low-Speed Flows (Computational Fluid and Solid Mechanics)by D. Drikakis and W. Rider | 22 October 2010
- 5. Discontinuous Finite Elements in Fluid Dynamics and Heat Transfer (Computational Fluid and Solid Mechanics) by Ben Q. Li | 22 October 2010

				M	lapping	g of CC	Ds with	POs /	PSOs					
						PC	Os						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2		3											3	
3	3												3	
4	3												3	
5	3								I	I			3	
CO (W.A)	3	3							I	I			3	

176 Page

	22MEX32 -	COMPUTATIONAL FLUID DYNAM	ICS AND HEAT	T TRA	NSFE	R				
	-			L	Т	Р	С			
				3	0	0	3			
PRERE	EQUISITE : N	IL								
Cours	se Objective:	 To study the fluid flow simulation To learn the discretise ID and 2D volume techniques To Formulate diffusion – convection To study the flow field for different To learn the need for turbulence restriction 	techniques and its r systems using finite on problems using f it types of grids models and its types	nathei e diffei ïnite v s	matical rence a olume	behavi Ind finit metho	our te d			
	C The	Course Outcomes Student will be able to	Cognitive Level	We in	eightag End S Exami	ge of (emest natior	2Os ter 1			
COI	Apply the fun governing equa	damentals of CFD, and develop specific ations	Ap	30%						
CO2	Apply the va procedure and	rious discretization methods, solution I the concept of turbulence modeling.	ⁿ Ap 30%							
CO3	Analyze the flu	id flow and heat transfer process	An		2	0%				
CO4	Analyze vario volume metho	us mathematical schemes under finite d for convention diffusion	An	20%						
CO5	Design a diffe using the softv	erent environmental friendly model by vare tools and relate to the course.	Ap	Internal Assessment						

UNIT I - COMPUTATIONAL FLUID DYNAMICS

(9)

Basics of Computational Fluid Dynamics – Governing equations– Continuity, Momentum and Energy equations – Boundary conditions & Types– Time-averaged equations for Turbulent Flow – Classification and Mathematical behavior of PDEs on CFD - Elliptic, Parabolic and Hyperbolic equations, comparison between Analytical, Experimental and Numerical techniques, Techniques of Discretisation and Numerical errors. Post processing techniques.

UNIT II - FINITE DIFFERENCE AND FINITE VOLUME METHODS FOR (9) DIFFUSION

Derivation of finite difference equations– General Methods for first and second order accuracy – Finite volume formulation for steady and transient diffusion ID and 2D problems – Use of Finite Difference and Finite Volume methods, Accuracy of solution, optimum step-size, Euler, Crank-Nickolson methods, stability of schemes.

UNIT III - FINITE VOLUME METHOD FOR CONVECTION DIFFUSION

(9)

Steady one-dimensional convection and diffusion – Central, upwind differencing schemes, properties of discretization schemes, Hybrid, Power-law, Quick Schemes, Computation of Boundary layer flow, von Neumann stability analysis.

Stream function and vorticity, Representation of the pressure gradient term, Staggered grid – Momentum equations, Pressure and Velocity corrections – Pressure Correction equation, Simple algorithm and its variants – PISO Algorithms, Computation of internal and external thermal boundary layer.

UNIT V - TURBULENCE MODELLING

Turbulence model requirement and types, mixing length model, Two equation (k-E) models – High and low Reynolds number models, LES, DNS, Mesh Generation and refinement Techniques-software tools, Stability of solver, Courant Fredrick Levy number, relaxation factor, and grid independence test.

TOTAL (L:45) = 45 PERIODS

(9)

(9)

TEXT BOOKS:

- Versteeg, H.K., and Malalasekera, W.,"An Introduction to Computational Fluid Dynamics": The Ι. finite volume Method, Pearson Education, 2014.
- Ghoshdastidar, P.S., "Computational Fluid Dynamics and Heat Transfer", Cengage Learning, 2. 2017.

- 1. John. F. Wendt, "Computational Fluid Dynamics An Introduction", Springer, 2013.
- 2. K. Muralidhar & T.Sundararajan, Computational Fluid Flow and Heat Transfer, Narora Publishing House, 1994.
- Suhas V, Patankar, "Numerical Heat transfer and Fluid flow", Taylor & Francis, 2009. Uriel Frisch, Turbulence, Cambridge University Press, 1999. 3.
- 4.
- 5. Yogesh Jaluria & Kenneth E. Torrance, "Computational Heat Transfer", CRC press, 2002.

				M	apping	g of CC	Os with	POs /	PSOs					
						PC	Ds						PS	Os
COs		2	3	4	5	6	7	8	9	10	11	12	I	2
I	2													
2	2													
3		2			I								I	I
4		2											I	I
5							I							
CO (W.A)	2	2			I		I						I	I

		 • 					
	22ME	K33 THEORY ON COMPUTATION	NAND VISUALIZ	ΖΑΤΙΟ	Л		
				L	Т	Р	С
				3	0	0	3
PRERE	EQUISITE : N	lil					
Cours	se Objective:	 To study the concepts and technique computer science. To learn different formal languages at To classify and construct grammars for To study visualization, graphical and construct design and data 	s of discrete mather nd their relationship or different language quantitative informat a lnk	natics es and v ion	for the vice-ve	oretica	ıl
	(The	Course Outcomes Student will be able to	Cognitive Level	We in	eighta End S Exam	ge of (Semes inatio	COs ter n
сог	Apply the cor mathematics f	cepts and techniques of discrete or theoretical computer science	Ар		3	0%	
CO2	Analyze the d relationship	ifferent formal languages and their	An		2	.0%	
CO3	Classify and c languages and	onstruct grammars for different vice-versa	Ap 30%				
CO4	Evaluate the v quantitative in	isualization, graphical and formation	E	20%			
CO5	Create visuali	zation design and data ink	U	Internal Assessment			

UNIT I- REVIEW OF MATHEMATICAL THEORY

(9)

(9)

Sets, functions, logical statements, proofs, relations, languages, principal of mathematical induction, strong principle, recursive definitions, structural induction.

UNIT II - REGULAR LANGUAGES AND FINITE AUTOMATA

Regular expressions, regular languages, application of finite automata, automata with output –mealy machine, finite automata, definitions, union- intersection and complement of regular languages, non deterministic finite automata, conversion from NFA to FA, - non deterministic finite automata, conversion of NFA- to NFA, kleene's theorem, minimization of finite automata, regular and non regular languages – pumping lemma.

UNIT III - CONTEXT FREE GRAMMAR (CFG) AND PUSHDOWN AUTOMATA

(9)

(9)

(9)

Definitions and examples, unions concatenations and kleene's of context free language, regular grammar for regular language, derivations and ambiguity, unambiguous CFG and algebraic expressions, bacosnaur form (BNF), normal form – CNF. Definitions, deterministic PDA, equivalence of CFG and PDA conversion, pumping lemma for CFL, intersections and complements of CFL, non-CFL.

UNIT IV - VALUE OF VISUALIZATION

Information visualization, in readings in information visualization, graphical excellence, graphical integrity, sources of graphical integrity in the visual display of quantitative information.

UNIT V – VISUALIZATION DESIGN

The power of representation, data-ink and graphical redesign, data-ink maximization and graphical design, data density and small multiples.

TEXT BOOKS:

- 1. Introduction to the theory of computation by michael sipser.
- 2. Automata theory, languages, and computation by john hopcroft, rajeev motowani, and jeffrey ullman.

REFERENCES:

- 1. Introduction to languages and the theory of computation, 4th by john martin, tata mc graw hill
- 2. An introduction to automata theory and formal languages by adesh k. pandey, publisher: s.k. kataria&sons
- 3. Introduction to computer theory by deniel i. cohen , joh wiley & amp; amp; sons, inc
- 4. Computation: finite and infinite by marvin I. minsky prentice-hall.

				M	apping	g of CC	Ds with	POs /	PSOs					
						PC	Os						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
	3												1	
2		3											1	
3			2										1	
4				2									1	
5												2		
CO (W.A)	3	3	2	2								2	1	

180 Page

on

		22MEX34-COMPUTATIONAL BIO	D-MECHANICS						
				L	Т	Р	С		
				3	0	0	3		
		PREREQUISITE : N	lil						
Cour	se Objective:	concepts of bio-meand nd structure of mus nd human motion. roaches in biomecha es and motion.	echanics. usculoskeletal system. hanics						
	C The	Cognitive Level	Weightage of CO in End Semester Examination						
COI	Utilize the prin biomechanical sy	ciples of mechanics to analyze various /stems	Ар	40%					
CO2	Investigate the ti system in detail.	ssues and structures of the musculoskeletal	An 20%						
CO3	Assess the emathematical mo	effectiveness of different computational odels applied in biomechanics.	nal Ap 30%						
CO4	Formulate new the human motion.	echniques for analyzing and understanding	Ap/C	10%					
CO5	Develop teamwo based biomecha	ork and collaboration skills through group- nics assignments and peer reviews.	Ap/An	Internal Assessment					

UNIT I - INTRODUCTION TO BIOMECHANICS

(9)

Perspective of biomechanics, Terminologies, Kinematic and kinetic concepts for analyzing human motion, Kinetic concepts for analyzing human motion, Linear kinetics of human movement, Equilibrium, Angular kinetics of human Movement, Mechanical properties of soft tissues, bones, and muscles

UNIT II - BIOMECHANICS OF TISSUES AND STRUCTURES OF THE MUSCULOSKELETAL SYSTEM

Biomechanics of Bone, Biomechanics of Articular Cartilage, Tendons and Ligaments, Peripheral Nerves and Spinal Nerve Roots, Skeletal Muscle

UNIT III - BIOMECHANICS OF JOINTS AND HUMAN MOTION

(9)

(9)

(9)

(9)

Knee, Hip, Foot and Ankle, Lumbar Spine, Cervical Spine, Shoulder, Elbow Wrist, and Hand, Linear kinematic and kinetic aspects of human movement, angular kinematic and kinetic aspects of human movement, equilibrium and human moment.

UNIT IV - COMPUTATIONAL APPROACHES IN BIOMECHANICS

Finite Element Analysis in Biomechanics, Computational modelling of Vancouver Periprosthetic Fracture in Femur, Scaffolds, artificial hip and knee joints, Aortic Valve.

UNIT V – GAIT ANALYSIS

Exoskeleton design, Ergonomics, Sports mechanics, Performance Analysis, Biomechanical analysis, 3D printing.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- I. Susan J Hall, —Basic Biomechanics, 6th Edition, The McGraw-Hill Companies Inc., 2011
- 2. Jay D Humphrey and Sherry L Delange, —An Introduction to Biomechanics: Solids and Fluids, Analysis and Design, 1st edition, Springer-Verlag, 2010

- I. Margareta Nordin and Victor H Frankel, —Basic Biomechanics of the Musculoskeletal System, 3rd Edition, Lippincott Williams and Wilkins, 2001.
- 2. Ozkaya, Nihat, Nordin, and Margareta, —Fundamentals of Biomechanics: Equilibrium, Motion, and Deformation, 2nd Edition, Springer, 2009.
- 3. Pritam Pain, Sreerup Banerjee, Goutam Kumar Bose , Advances in Computational Approaches in Biomechanics, 2022
- 4. Kinetics and Dynamics: From Nano- to Bio-Scale: 12 (Challenges and Advances in Computational Chemistry and Physics)by Piotr Paneth and Agnieszka Dybala-Defratyka | 12 August 2010
- 5. Computational Approaches to Biochemical Reactivity: 19 (Understanding Chemical Reactivity) by GáborNáray-Szabó and AriehWarshel | 31 March 2002

				M	lapping	g of CC	Os with	POs /	PSOs					
						PC	Os						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2		3											3	
3	3												3	
4	3												3	
5	3								I	I			3	
CO (W.A)	3	3							I	I			3	

		22MEX35 - DESIGN OF PRESSU					1
				L	Т	Ρ	
				3	0	0	
PRER	EQUISITE : N	il					
Cours	e Objective:	 To introduce the Mathematical piping To learn the ability to carry of str To study the design of vessels and To study buckling and fracture and To learn piping layout and flow distance 	knowledge to des ess analysis in pres I theory of reinford alysis in vessels.	sign pi ssure v cemen	ressure ressels t.	e vesso and pi	els ; ping
	C The	Sourse Outcomes Student will be able to	Cognitive Level	We in	ighta; End S Exami	ge of (emes inatio	CO: ter n
COI	Apply the var pressure vessels	ious method to determine stress in s.	Ap		2	0%	
CO2	Apply the stress	s concept in pressure vessels.	Ap		2	0%	
CO3	Analysis of stres analysis in vesse	sses in pressure, buckling and fracture ls.	An		3	0%	
CO4	Design and anal	ysis of vessels, piping layout and piping.	An		3	0%	
CO5	Engage indeper make effective PLM	dent study as a member of team and oral presentation on the application of	U	Int	ernal A	Assessr	nen
UNIT	I - INTRODUC	CTION					(9
Method	ls for determining	g stresses – Terminology and Ligament Eff	ficiency – Applicati	ons			
JNIT	II - STRESSES	IN PRESSURE VESSELS					(9
ntrodu Analysi: tresse:	ction – Stresses s of Vessel – Cyli s in pressure vess	in a circular ring, cylinder –Dilation of pre ndrical, spherical and, conical heads – The sels.	essure vessels, Men ermal Stresses – Di	nbrane isconti	stress nuity	5	
JNIT	III - DESIGN C	OF VESSELS					(9
Design Stress o Dole el	of Tall cylindrical concentration at a lintical openings	self-supporting process columns – Suppo a variable Thickness transition section in a Theory of Reinforcement – Pressure Ves	orts for short vertion a cylindrical vessel, sel Design	al ves about	sels – a circ	ular	
JNIT		G AND FRACTURE ANALYSIS IN	VESSELS				(9
Bucklin collapse	g phenomenon – e of thick walled g of Cylinders – I	Elastic Buckling of circular ring and cylind cylinders or tubes under external pressur	ers under external e – Effect of suppo	press rts on	ure – Elastio	5	
	$\mathbf{V} = \mathbf{PIPING}$	Sucking under combined External pressu		•		I	(9
ntrodu	ction – Flow diag	ram – piping layout and piping stress Ana	lysis.			<u> </u>	<u> </u>
				тот	AL : 4	5 PER	lO
ΓΕΧΤ	BOOKS:						
	John F. Harvey,	"Theory and Design of Pressure Vessels",	CBS Publishers an	d			
I.	Distributors, 19	37.					

- I. Henry H. Bedner, "Pressure Vessels, Design Hand Book", CBS publishers and Distributors, 1987.
- 2. Stanley, M. Wales, "Chemical process equipment, selection and Design". Buterworths series in Chemical Engineering, 1988.
- 3. William. J., Bees, "Approximate Methods in the Design and Analysis of Pressure Vessels and Piping", Pre ASME Pressure Vessels and Piping Conference, 1997.
- 4. Sam Kannapan, "Introduction to Pipe Stress Analysis". John Wiley and Sons, 1985.
- 5. Theory and design of Pressure Vessels (Pb 2001)by HARVEY J.F. | I January 2001

				M	lapping	g of CC	Os with	n POs /	PSOs				
						PC	Os					PS	Os
COs	I	2	3	4	5	6	7	8	9	10	12	I	2
I												I	
2	3											I	
3		3										I	
4			Ι									I	
5										I		I	
CO (W.A)	3	3	I							I		I	

	22ME	(37 FAILURE ANALYSIS AND NDT	TECHNIOU	JES							
			L	Т	Р	С					
			3	0	0	3					
PRER	EQUISITE :		I.								
	Course Objective:	 To gain knowledge on the need, sco To learn the principles and applicati To Understand the principles, techniparticle testing To learn the principles and techniquiand gamma radiography To teach various safety standards and methods. 	ppe, and metho ions of visual ar iques, and adva es of radiograp nd precautions	dologie nd pene inced m hic insp in nond	s of failur etrant test nethods o pection us lestructive	e analysis ting f magnetic sing X-ray e testing					
	-	•	Comitivo		Weigh	tage of					
	Cour: The Stud	se Outcomes ant will be able to	Lovel	•	Sem	n Enu ester					
			Level		Exami	ination					
col	Apply the principles, met destructive testing techni	hods, and applications of various non- ques	Ар		4	0%					
CO2	CO2 Apply the failure analysis strategies in engineering. Ap 20%										
CO3	Analyze non-destructive testing methods for suitable application and interpret failure modes Analyze failure analysis, including EMEA and RCA, to investigate										
CO4	Analyze failure analysis, including FMEA and RCA, to investigate and prevent engineering failures An 20%										
CO5	Implement safety protoco	ols in non-destructive testing methods.	U/Ap		Internal A	Assessment					
						(0)					
Introdu Fundar (RCA) UNIT Non c inspec protec applica proces	uction and need and sc mental sources of failures in failure investigation.fail II - VISUAL INSPECT destructive testing - adv ction - basic terms, equi ctive equipment (PPE), ex ations - types of penetr ss control - health and safe	ppe of failure analysis. Engineering Disa Failuremodes and effects analysis (FMEA ure prevention strategies: Design optimizat ION AND PENETRANT TESTING antages- comparison between destruct oments used - machine vision Health ar sposure limits-Principle of penetrant t ants - characteristics of good penetrar ty precautions in Liquid penetrant Inspecti	isters and und A) in industry. tion, material s tive and non nd safety consi sesting - test ints - developer ion.	derstand Role of election destru deratio statio • and it	ding failu root can n, quality ctive tes ns in ND ns - acc s types -	re analysis. use analysis control ting -visual T: Personal cessories - quality and					
UNIT	III : MAGNETIC PAR	TICLE TESTING				(9)					
Princ classi magn Adva autor in ma	tiple of Magnetic part ification of magnetic netization - DC and AC unced magnetic particle mated magnetic particle agnetic particle inspectic IV: RADIOGRAPHIC	cle testing - scope - basic terms materials - magnetic field orientati magnetization – skineffect - equipme testing methods: Multi-directional m inspection systems: Robotics, Compu n: Nano-particle enhanced testing. INSPECTION	associated v ion - direct nts - lights - agnetization, ter vision Inte	with n magr magne rotatic egratio	nagnetic netizatior tic field onal mag n, Emerg	materials, n, indirect indicator - netization, ging trends (9)					
Type advar digita tomo	es of radiations - X-Ray ntages of gamma rays c al radiography - precau ography techniques. Rad	radiography principle - X ray tube ge ver X ray radiography - X-Ray film a itions against radiation hazards and ographic image interpretation: Defect	enerator - gan nd accessorie health - Rea detection and	mma ra es - filr al-time I sizing	adiation n interp radiogr	sources - retation - aphy and					

UNIT V : ULTRASONIC AND EDDY CURRENT TESTING

Principle of ultrasonic testing - equipments used in ultrasonic testing -Ultrasonic inspection techniques – transmission method, pulse echo method, immersion technique, angle beam technique- applications – cathode ray oscilloscope – Ultrasonic testing for composite materials and additive manufacturing parts-Introduction to Phased Array Ultrasonic Testing (PAUT).Eddy current testing - working principle - basic terms -factors affecting eddycurrents - eddy current flow characteristics - applications

TOTAL=45PERIODS

TEXTBOOKS:

- 1. Osama Lari, Rajeev Kumar, "Basics of Non-Destructive testing", 1st ed., S.K.Kataria and Sons, 2013
- 2. Baldev Raj, T.Jayakumar, M.Thavasimuthu Practical Non-Destructive Testing, Narosa Publishing House, 2014.

- 1. ASM International, "ASM Handbook: Nondestructive Evaluation and Quality Control Volume 17", 9th Revised edition, 1989
- 2. Charles, J. Hellier, Handbook of Non destructive evaluation, McGraw Hill, New York 2001.
- 3. Ravi Prakash, "Non-Destructive Testing Techniques", First Revised edition, New Age International (P) Limited, 2010
- 4. Prasad.J and Nair.C.G.K, "Non-Destructive Test and Evaluation of Materials", 2nd ed., Tata McGraw-Hill Publishing company Limited, 2011
- 5. Yoshida Kenichi and Laodeno Rem N, "Non-Destructive Testing Technique", LAP Lambert Academic Publishing, 2013

				Мар	ping o	f COs v	with P	Os / PS	5Os					
Cas						P	Os						PSOs	
Cos	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	2
2	3												3	2
3		2											2	
4		2												
5						2		2				2		
CO (W.A)	3	2				2		2				2	3	2

	221	1EX3	88 MACHINE LEARNING FOR IN	TELLIGENT SY	STEN	15		
					L	Т	Р	С
					3	0	0	3
PRERE	QUISITE :	Nil						
			To introduce basic machine le classification	earning technique	s suc	h as	regre	ssion,
Cours	e Objective	:	• To learn about introduction of clu	ustering, types and	segme	entatio	n metl	nods
	·		• To learn about fuzzy logic, fuzzific	ation and defuzzifi	cation			
			• To learn about basics of neural ne	etworks and neuro	tuzzy	netwo	orks	
			• To learn about recurrent neural n	letworks and reini	orcen			<u> </u>
	т	Cou The Stu	u rse Outcomes udent will be able to	Cognitive Level	in	End S Exam	ge of Semes inatio	ter n
сог	Apply basi regression,	c ma classi	achine learning techniques such as fication	Ap		2	:0%	
CO2	Develop a methods	nd a	nalyze clustering and segmentation	An		2	.0%	
CO3	Applying a defuzzificati	fuzzy on.	/ logic system with fuzzification and	Ap		4	0%	
CO4	Apply the fuzzy netwo	conco orks	epts of neural networks and neuro	Ap		2	:0%	
CO5	Improve kn	owled	dge on reinforcement learning	U	Int	ernal /	Assessi	ment

UNIT I- INTRODUCTION TO MACHINE LEARNING

Philosophy of learning in computers, overview of different forms of learning, classifications vs. regression, evaluation metrics and loss functions in classification, evaluation metrics and loss functions in regression, applications of ai in robotics.

UNIT II - CLUSTERING AND SEGMENTATION METHODS

Introduction to clustering, types of clustering, agglomerative clustering, K-means clustering, mean shift clustering, K-means clustering application study, Introduction to recognition, K-nearest neighbor algorithm, KNN application case study, principal component analysis (PCA), PCA application case study in feature selection for robot guidance.

UNIT III - FUZZY LOGIC

Introduction to fuzzy sets, classical and fuzzy sets, overview of classical sets, membership function, fuzzy rule generation, fuzzy rule generation, operations on fuzzy sets, numerical examples, fuzzy arithmetic, numerical examples, fuzzy logic, fuzzification, fuzzy sets, defuzzification, application case study of fuzzy logic for robotics application.

UNIT IV - NEURAL NETWORKS

Mathematical models of neurons, ANN architecture, learning rules, multi-layer perceptrons, back propagation, introduction of neuro-fuzzy systems, architecture of neuro fuzzy networks, application case study of neural networks in robotics.

(9)

(9)

(9)

UNIT V - RNN AND REINFORCEMENT LEARNING

(9)

Unfolding computational graphs, recurrent neural networks, application case study of recurrent networks in robotics, reinforcement learning, examples for reinforcement learning, markov decision process, major components of RL, Q-learning. application case study of reinforcement learning in robotics.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Micheal negnevitsky, artificial intelligence: a guide to intelligent systems, 3rd edition, addision wesley, england, 2011.
- 2. The Elements of Statistical Learning, by Trevor Hastie, Robert Tibshirani, Jerome H. Friedman (freely available online)
- 3. Pattern Recognition and Machine Learning, by Christopher Bishop.

- 1. Bruno siciliano, oussama khatib, "handbook of robotics", 2016 2nd edition, springer
- 2. Simon haykin, "neural networks and learning machines: a comprehensive foundation", third edition, pearson, delhi 2016.
- 3. Timothy j ross, "fuzzy logic with engineering applications", 4th edition, chichester, 2011, sussex wiley.

				M	apping	g of CC)s with	POs /	PSO s					
						PC	Ds						PS	Os
COs		2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												Ι	
2		3												
3	3													
4					3								I	
5												2		
CO (W.A)	3	3			3							2	I	

				_			
		22MEX4I – DIGITAL MANUFACT	URING AND IoT				
				L	Т	Ρ	С
				3	0	0	3
PRER	EQUISITE :						
		 To study the various aspects of dig 	gital manufacturing.				
		• To inculcate the importance of I	DM in Product Life	ecycle	Mana	gement	t and
		Supply chain Management.					
Cours	se Objective:	 To formulate of smart manu 	facturing systems	in 1	the di	gital	work
		environment.					
		 To interpret IoT to support the di 	gital manufacturing.				
		 To elaborate the significance of dig 	gital twin.				
	C	ourse Outcomes	Cognitive	We	eighta	ge of (COs
	The	Student will be able to	Level	in	End S	emes	ter
	1				Exami	natio	n
col	Apply and Imp	art knowledge to use various elements in	An		2	0%	
	the digital man	nufacturing.	· · P		L	0/0	
	Differentiate (the concepts involved in digital product					
CO2	development	life cycle process and supply chain	An		2	0%	
	management i	n digital environment.					
CO3	Develop the	proper procedure of validating practical	٨٥		1	^%	
0.05	work through	digital validation in Factories.	All		Т	0%	
<u> </u>	Explore and In	nplement the concepts of IoT and its role	A =		n	<u>^</u>	
	in digital manu	facturing.	Ар			U /o	
605	Evaluate and	optimize various practical manufacturing	A –				
	process throu	gh digital twin.	Ар	Int	ernal A	Assessr	nent

UNIT I - INTRODUCTION TO DIGITAL MANUFACTURING AND IoT

(9)

(9)

(9)

Introduction – Need – Overview of Digital Manufacturing and the Past – Aspects of Digital Manufacturing: Product life cycle, Smart factory, and value chain management – Practical Benefits of Digital Manufacturing – The Future of Digital Manufacturing. IoT Sensors – Temperature, Pressure, Gyroscope, Motion detection and proximity.

UNIT II - DIGITAL LIFE CYCLE & SUPPLY CHAIN MANAGEMENT

Collaborative Product Development, Mapping Requirements to specifications – Part Numbering, Engineering Vaulting, and Product reuse – Engineering Change Management, Bill of Material and Process Consistency – Digital Mock up and Prototype development – Virtual testing and collateral. Overview of Digital Supply Chain - Scope& Challenges in Digital SC - Effective Digital Transformation - Future Practices in SCM, New Product Development (NPD) process, stages, test marketing & product launch

UNIT III - SMART FACTORY

Smart Factory – Levels of Smart Factories – Benefits – Technologies used in Smart Factory – Smart Factory in IoT- Key Principles of a Smart Factory – Creating a Smart Factory – Smart Factories and Cyber security – Advanced Simulation Tool – Solid works, MATLAB, SIMUL8, Logisim.

UNIT IV - INDUSTRY 4.0

Introduction – Industry 4.0 –Internet of Things – Industrial Internet of Things – Framework: Connectivity devices and services – Intelligent networks of manufacturing – Cloud computing – Data analytics –Cyber physical systems (CPS) –Machine to Machine communication – Case Studies. IoT Applications in Agriculture, Healthcare, Transportation, Hospitality, Smart Grid and Energy saving.

UNIT V - STUDY OF DIGITAL TWIN

(9)

(9)

Basic Concepts – Features and Implementation – Digital Twin: Digital Thread and Digital Shadow- Building Blocks – Types – Characteristics of a Good Digital Twin Platform – Benefits, Impact & Challenges – Future of Digital Twins.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. Zude Zhou, Shane (Shengquan) Xie and Dejun Chen, Fundamentals of Digital Manufacturing Science, Springer-Verlag London Limited, 2012.
- 2. Alasdair Gilchrist, "Industry 4.0: The Industrial Internet of Things", A press, 2016.

- I. Lihui Wang and Andrew YehChing Nee, Collaborative Design and Planning for Digital Manufacturing, Springer-Verlag London Limited, 2009.
- 2. Andrew Yeh Chris Nee, Fei Tao, and Meng Zhang, "Digital Twin Driven Smart Manufacturing", Elsevier Science., United States, 2019.
- 3. Alp Ustundag and Emre Cevikcan, "Industry 4.0: Managing The Digital Transformation", Springer Series in Advanced Manufacturing., Switzerland, 2017
- 4. Ronald R. Yager and Jordan Pascual Espada, "New Advances in the Internet of Things", Springer., Switzerland, 2018.

				Μ	apping	g of CC)s with	POs /	PSOs					
						РС	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12		2
I	3												3	
2					3							3		
3			3			3								
4														
5														
CO (W.A)	3		3		3	3						3	3	

		22MEX42 ADDITIVE MANUE	ACTURING				
				L	Т	Ρ	С
				3	0	0	3
PRER	EQUISITE : N	IL					
Cour	rse Objective:	 To introduce the fundamental contechnology and to identify the business To understand the role of CAD modeli techniques. 	cepts of Additive opportunities and ng in AM and the p	e Mai future post-p	nufactu direct rocessi	ring (ions in ng	AM) AM
	C The	Course Outcomes Student will be able to	Cognitive Level	We in	eightaş End S Exami	ge of C emest natior	COs ter 1
COI	Evaluate the be the areas of bui	enefits and diverse applications of AM in ilding, bio, food, and electronics.	Ev		2	0%	
CO2	Describe the limitations of processing (D production (CL	processes, materials, advantages, and stereolithography (SLA), digital light LP), and continuous liquid interface IP).	U		2	0%	
CO3	Generate accur CAD software	rate STL files and address errors through for AM.	Ap		2	0%	
CO4	ldentify the opportunities i trends.	current and potential business in the AM industry and predict future	An		2	0%	
CO5	Analyze the techniques for	suitable process for different AM specific applications.	An		2	0%	

UNITI: FUNDAMENTALS OFADDITIVE MANUFACTURING AND BUSINESS OPPORTUNITIES

Need - Development of Additive Manufacturing (AM) Technology: Rapid Prototyping- Rapid Tooling-Rapid Manufacturing -Additive Manufacturing. AM Process Chain- ASTM/ISO 52900 Classification - Benefits. Applications: Building Printing - Bio Printing - Food Printing- Electronics Printing. Business Opportunities and Future Directions –

UNITII: DESIGN FOR ADDITIVE MANUFACTURING

Concepts and Objectives - AM Unique Capabilities - Part Consolidation – Topology Optimization- Generative design - Lattice Structures - Multi-Material Parts and Graded Materials - AMF Design for Part Quality Improvement: Part Orientation - Support Structure - Slicing - Tool Path Generation – Design rules for Extrusion based AM.

UNITIII:VAT POLYMERIZATION AND DIRECTED ENERGY DEPOSITION

(9)

(9)

(9)

(9)

Photo polymerization: Stereolithography Apparatus (SLA)- Materials -Process – top down and bottom up approach - Advantages - Limitations - Applications. Digital Light Processing (DLP) - Process - Advantages - Applications. Continuous Liquid Interface Production (CLIP) Technology.Directed Energy Deposition: Laser Engineered Net Shaping (LENS)- Process - Material Delivery -Materials -Benefits -Applications.

UNITIV: POWDER BED FUSION AND MATERIAL EXTRUSION

Powder Bed Fusion: Selective Laser Sintering (SLS): Process - Powder Fusion Mechanism - Materials and Application. Selective Laser Melting (SLM), Electron Beam Melting (EBM): Materials - Process - Advantages and Applications. Material Extrusion: Fused Deposition Modeling (FDM)- Process-Materials -Applications and Limitations.

UNITY:CAD MODELLING AND POST-PROCESSING

CAD Software for AM: AM file format, STL file generation, accuracy of STL files, errors and repairs in STL files, direct and adaptive slicing; Design for additive manufacturing - design for minimum material usage. Post-processing: Support material removal, surface texture improvements, aesthetic improvements, property enhancement using thermal and non-thermal techniques.

TOTAL= 45PERIODS

TEXT BOOKS:

- I. Ian Gibson, David Rosen, Brent Stucker, MahyarKhorasani "Additive manufacturing technologies". 3rd edition Springer Cham, Switzerland. (2021). ISBN: 978-3-030-56126-0
- 2. Andreas Gebhardt and Jan-Steffen Hötter "Additive Manufacturing: 3D Printing for Prototyping and Manufacturing", Hanser publications, United States, 2015, ISBN: 978-1-56990-582-1.

REFERENCES:

- I. Andreas Gebhardt, "Understanding Additive Manufacturing: Rapid Prototyping, Rapid Manufacturing", Hanser Gardner Publication, Cincinnati., Ohio, 2011, ISBN :9783446425521.
- 2. Milan Brandt, "Laser Additive Manufacturing: Materials, Design, Technologies, and Applications", Woodhead Publishing., United Kingdom, 2016, ISBN: 9780081004333.
- 3. Amit Bandyopadhyay and Susmita Bose, "Additive Manufacturing", 1st Edition, CRC Press., United States, 2015, ISBN-13: 978-1482223590.
- 4. Kamrani A.K. and Nasr E.A., "Rapid Prototyping: Theory and practice", Springer., United States, 2006, ISBN: 978-1-4614-9842-1.
- 5. Liou, L.W. and Liou, F.W., "Rapid Prototyping and Engineering applications: A tool box for prototype development", CRC Press., United States, 2011, ISBN: 9780849334092.

				M	lapping	g of CC	Ds with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	3
2	3	3											2	3
3			3											3
4											3			3
5							3					3	3	3
CO (W.A)	3	3	3				3				3	3	2.6	3

	22ME	X43 – GREEN MANUFACTURING [DESIGN & PRAC	CTICE	S		
				L	т	Ρ	С
				3	0	0	3
PRERI	EQUISITE :		· · · · · ·				
Cour	se Objective:	 To familiarize the concept of envir To impart knowledge of air polluti To emphasize knowledge about no To enlighten the students with effects on the environment. To emphasize the need of green co 	onmental design ar on and its effects o bise pollution and it knowledge about o-rating and its ben	nd indu n the cs cont water water	istrial e enviroi rol. pollut	ecology nment. ion an	'. d its
	C The	Course Outcomes Student will be able to	Cognitive Level	We in	eightag End S Exami	ge of (emest natior	COs ter 1
соі	Apply knowle selection of ec	edge on the environmental design and co-friendly materials.	Ap		2	0%	
CO2	Analyze the pr air pollution.	rocesses plan minimization for preventing	An		2	0%	
CO3	Recognize the its hazards	methods to prevent noise pollution and	Ap		4	0%	
CO4	Design and de pollutants of w	evelop the impact of water demand and vater.	Ap		2	0%	
CO5	Evaluate green	co-rating and its benefits.	An/ Cr	Int	ernal A	Assessn	nent

UNIT I - DESIGN FOR ENVIRONMENT AND LIFE CYCLE ASSESSMENT

(9)

Environmental effects of design - Selection of natural friendly material - Eco design - Environmental damage Material flow and cycles – Material recycling – Emission less manufacturing- Industrial Ecology – Pollution prevention – Reduction of toxic emission – design for recycle.

UNIT II - AIR POLLUTION SAMPLING AND MEASUREMENT

(9)

Primary and Secondary Pollutants, Automobile Pollutants, Industrial Pollution, Ambient air quality Standards, Metrological aspects of air Pollution, Temperature lapse Rates and Stability-wind velocity and turbulence-Pump behavior dispersion of air Pollutants-solution to the atmosphere dispersion equation-the Gaussian Plume Model, Air pollution sampling-collection of gaseous air pollutants-collection of particulate pollutants-stock sampling, analysis of air pollutants - sulfur dioxide-nitrogen dioxide, carbon monoxide, oxidants and ozone.

UNIT III - NOISE POLLUTION AND CONTROL

(9)

Frequency and Sound Levels, Units of Noise based power radio, contours of Loudness. Effect of human, Environment and properties, Natural and Anthrogenic Noise Sources, Measuring Instruments for frequency and Noise levels, Masking of sound, Types, Kinetics, Selection of different reactors used for waste treatment, Treatment of noise at source, Path and Reception, Sources of noise, Effects of noise-Occupational Health hazards, thermal Comforts, Heat Island Effects, Radiation Effects.

UNIT IV - WATER DEMAND AND WATER QUALITY

(9)

Factors affecting consumption, Variation, Contaminants in water, Nitrates, Fluorides, Detergents, taste and odour, Radio activity in water, Criteria, for different impurities in water for portable and non-portable use, Point and non-point Source of pollution, Major pollutants of Water, Water Quality Requirement for different uses, Global water crisis issues.

UNIT V - GREEN CO-RATING

Ecological Footprint - Need For Green Co-Rating – Green Co-Rating System – Intent – System Approach – Weightage - Assessment Process – Types of Rating – Green Co-Benefits – Case Studies of Green Co-Rating

TOTAL (L:45) = 45 PERIODS

(9)

TEXT BOOKS:

- I. Gradel.T.E. and B.R. Allenby Industrial Ecology Prentice Hall 2010
- 2. Rao M.N. and Dutta A.K. "Wastewater treatment", Oxford & IBH publishing Co. Pvt. Ltd., New Delhi, Second Edition, 2006

- I. Gradel.T.E. and B.R. Allenby Industrial Ecology Prentice Hall 2010
- 2. Frances Cairncross- Costing the Earth: The Challenge for Governments, the Opportunities for Business Harvard Business School Press 1993.
- 3. World Commission on Environment and Development (WCED), Our Common Future, Oxford University Press 2005.
- 4. Rao M.N. and Dutta A.K. "Wastewater treatment", Oxford & IBH publishing Co. Pvt. Ltd., New Delhi, Second Edition, 2006
- 5. Rao CS Environmental Pollution Control Engineering-, Wiley Eastern Ltd., New Delhi, 2006.
- 6. Lewis H Bell and Douglas H Bell, Industrial noise control, Fundamentals and applications, Marcel Decker, 1994.

				M	lapping	g of CC	Os with	POs /	PSOs					
						PC	Os						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I			3				3						2	
2	3													
3												3		
4		3												
5														
CO (W.A)	3	3	3				3					3	2	

		AMENAL CASTING AND MELDI						
		22MEX44 - CASTING AND WELDI	NG PROCESSES					
				L	Т	P	C 2	
				J	U	U	د	
Cours	se Objective:	 To study the ferrous casting metal To study the nonferrous casting metal To study the ferrous welding metal To study the welding metallurgy of applications To Identifying the causes and remetal 	IL lurgy and its applicat letallurgy and its app llurgy and its applica f alloy steels and not edies of various welc	tions dicati ations nferro ding c	ons s ous me lefects;	etals an applyi	d its ng	
	C The	welding standards and codes. Course Outcomes Student will be able to	Cognitive Level	We in	eighta; End S Exami	ge of Gemes	COs ter n	
COI	Apply compre ferrous alloys, metallurgical e	hensive knowledge of ferrous and non- to effectively contribute to the field of ngineering.	Ар		2	0%		
CO2	Analyze the microstructura techniques.	An	20%					
CO3	Design and de in metallurgica knowledge of	evelop advanced materials and processes I engineering by applied comprehensive ferrous and non-ferrous alloy.	Ap	20%				
CO4	Apply ethical in the pract engineering pr	principles and professional responsibility ice and management of metallurgical ocesses.	Ap	20%				
CO5	Continuously metallurgical processes, allo defect analysis	update knowledge and skills in engineering, including solidification by compositions, welding techniques, and	Ap		2	0%		
	- FERROUS C	ASTALLOYS					(9)	
Solidifie Super Coring dilation effects- Compo steels- dephos UNIT I Coppe alloys, contro proces	cation of pure r cooling- Niyama - Eutectics-Con n, Mold metal re - Malleable Iron, ositional aspects low alloy stee sphorization, spe I - NON-FERF r- Aluminium- N Zinc alloys and I degassing tect s Applications	netals and alloys and eutectics -Nucleatio Criterion -G/R ratio- Cell- Dendritic - R actions- and alloys in Cast Irons, FG- actions- Structure and Section sensitivity C ADI, Charge calculations- Effect of norm and properties of alloy steels- melting pro els - stainless steels- composition cont cifications for carbon steels- low alloy stee COUS CAST ALLOYS Magnesium- zinc - Nickel base alloys- mel copper alloys-modification and grain refine aniques -Heat Treatment of Aluminium al of Aluminium Alloy castings in various field	n - Growth Proces andom dendritic str CGI- SG structures ast irons- family & r al elements and allo cedure and compos rol- slag-metal rea ls and stainless steel ting practices - AI a ment of AI alloys- p lloys – Basics of So ls. Residual Stresses	s, Ci ructu s, Me nicro oying ition ction s. alloys oroble lution - defe	ritical r re-Seg etallic structu elemer contro s-desu , Mg a ems in n and ects in o	Inucleus regatio Glass- Ires-Al Ires-Al for c Iphuriz Iloys, I compo Precipi casting	s size- n and Mold loying steels- arbon ation- (9) Nickel osition tation s.	

UNIT III - PHYSICAL METALLURGY OF WELDING

Welding of ferrous materials: Formation of different microstructural zones in welded plain-carbon steels. Welding of C-Mn and low-alloy steels, phase transformations in weld and heat - affected zones, cold cracking, role of hydrogen and carbon equivalent, formation of acicular ferrite and effect on weld metal toughness.

UNIT IV - WELDING OF ALLOY STEELS AND NON-FERROUS METALS

Welding of stainless steels, types of stainless steels, overview of joining ferritic and martensitic types, welding of austenitic stainless steels, Sensitisation, hot cracking, sigma phase and chromium carbide formation, ways of overcoming these difficulties, welding of cast iron. Welding of non-ferrous materials: Joining of aluminium, copper, nickel and titanium alloys, problems encountered and solutions.

UNIT V – DEFECTS, WELDABILITY AND STANDARDS

Defects in welded joints: Defects such as arc strike, porosity, undercut, slag entrapment and hot cracking, causes and remedies in each case. Joining of dissimilar materials, weldability and testing of weldments. Introduction to International Standards and Codes.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. Heine R W, Loper C R and Rosenthal P C, "Principles of Metal Castings", Tata McGraw Hill, 2017
- 2. A.K.Chakrabarthi, 'Casting Technology and Cast Alloys, Prentice Hall, 2005.

REFERENCES:

- I. Baldev Raj, Shankar V, Bhaduri A K, "Welding Technology for Engineers", Narosa Publications, 2009.
- 2. Beeley P, "Foundry Technology" Butterworth-Heinemann, 2001.
- 3. R.S.Parmar, 'Welding Engineering and Technology', Khanna Publishers, 2010
- 4. John Campbell, "Casting", Butterworth-Heinemann, 2003.

				M	lapping	g of CC	Os with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												2	I
2		3											2	I
3			3										2	I
4								3					2	I
5												3	2	I
CO (W.A)	3	3	3					3				3	2	

En

(9)

(9)

	22MEX45-	ENVIRONMENT SUSTANABILITY	AND IMPACT A	SSES	SMEN	IT	
				L	Т	Р	С
				3	0	0	3
PRERI	EQUISITE : N	il					
Cours	se Objective:	 To understand the concepts of Assessment To familiarize the students in envirient of identify, predict and evaluate impact of development activities To provide information on the making To promote environmentally source and the student of t	f Environmental conmental decision the economic, er environmental cor und and sustainabl	Sustair makin nvironr nseque	nability g proce mental, nces fr elopme	& I edure and or de ent th	mpact social :cision irough
		the identification of appropriate a	lternatives and mit	igation	measu	ires.	
	C The	ourse Outcomes Student will be able to	Cognitive Level	We in	eightag End S Exami	ge of emes natio	COs ster on
соі	Apply the cor trained to mak	ncepts of Environment Sustainability and a decision related to Environment.	Ap		2	0%	
CO2	Implement life that has an effe	elong learning skills to make a decision ect on our environment	An		2	0%	
CO3	Evaluate the l and various leg	basics of environmental policy, planning gislation	An		4	0%	
CO4	Design and o Environmental	optimize the Life cycle assessment of sustainability.	Ap		2	0%	
CO5	Analyze the development.	suitable sustainable urban economic	An/Ap	Int	ernal A	\ssess	ment
UNIT	I - ENVIRON	MENTAL IMPACT ASSESMENT					(9)
Enviro framev studies	nmental impact vorks for EIA Le on air quality, v	assessment objectives – rationale and his egislative development – European commu vater quality, noise pollution and ecosyste	storical developme unity directive – H m upset.	ent of lungari	EIA - an dire	Conc ective.	eptual . Case
UNIT	II - ENVIRON	IMENTAL DECISION MAKING					(9)
Strateg of envi consur	ic environmenta ronmental impa ner decisions, pl	al assessment and sustainability appraisal .cts- Socio economic impact assessment. anning new or improved developments an	– Mitigation, mon Case Studies on u Id managing natura	itoring use of Il reso	; and n transp urces.	nanago ort, n	ement naking
UNIT	III - ENVIROI	NMENTAL POLICY, PLANNING AN		ON			(9)
Region uncerta Monox industr	al spatial plann ainty and risk. tide Emissions rial installations.	ing and policy – Cumulative effects as: Case studies on Strategy for the Chen from Medium Combustion Plants and	sessment – Plann nical BREFs serie: Assessment of p	ing fo s revie permit	r clima ew cyc ting st	ate cl cle, C ringer	hange, arbon 1cy in

UNIT IV - LIFE CYCLE ASSESSMENT

Life cycle assessment; Triple bottom line approach; Industrial Ecology. Ecological foot printing, Design for Environment, Future role of LCA, Product stewardship, design, durability and justifiability, measurement techniques and reporting. Life cycle inventory analysis (LCI). Social Life Cycle Assessment (SLCA).

UNIT V - SUSTAINABLE URBAN ECONOMIC DEVELOPMENT

Spatial economics – Knowledge economy and urban regions. Case studies on market forces in the development of cities, land use within cities, urban transportation, urban problems and public policy, housing and public policy, and local government expenditures and taxes.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- The Application of Science in Environmental Impact Assessment, by Aaron J. MacKinnon, Peter N. Duinker, Tony R. Walker, Routledge; 1st edition (14 May 2019), ISBN-10:0367340194
- 2. Routledge Handbook of Environmental Impact Assessment, by Kevin Hanna, Routledge; 1st edition (11 April 2022), ISBN-10 : 0367244470

REFERENCES:

- Clive George, C. Collin, H. Kirkpolarice Impact Assessment and sustainable development Edward Elgar Publishing, 2007
- 2. Robort B Gibsan, Sustainability Assessment, Earth Scan publishers, 2005
- 3. Simon Dresner, The principle of sustainability Earth Scan publishers, 2008
- 4. Canter, R.L., "Environmental Impact Assessment", McGraw Hill Inc., New Delhi, 1996.
- 5. Shukla, S.K. And Srivastava, P.R., "Concepts In Environmental Impact Analysis", Common Wealth Publishers, New Delhi, 1992.
- 6. John G. Rau And David C Hooten "Environmental Impact Analysis Handbook", McGraw Hill Book Company, 1990.

				M	lapping	g of CC	Os with	POs /	PSOs					
						PC	Ds						PS	Os
COs		2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		2											2	
3			3											
4												3		
5							3							
CO (W.A)	3	2	3				3					3	2	

Gn

(9)

		22MEX46-SURFACE ENGIN	EERING				
				L	Т	P	С
				3	0	0	3
PRERE	EQUISITE : Nil						
Course	• Objective:	 To study the fundamentals of su associated with metals and non-meta To study the different types of wear To study the different types of corro To study the different types of surfac To study the various types of materia 	rface features a ls mechanism and i sion and its prev e properties and Is used in the fri	ind different ts standard entive mea surface m ction and	ent typ d measu asures odifica wear a	oes of uremen tion tec oplicatic	frictio t. hnique
	Co The St	urse Outcomes audent will be able to	Cognitive Level	We	ightag End Se Exam	e of CO emeste inatior	Os in er n
COI	Apply the concepts	and terminology of surface engineering	Ap		3	80%	
CO2	Apply the surface er component	ngineering methods to the mechanical	Ap		3	80%	
CO3	Analyze the surface	of the mechanical component	Ар		2	20%	
CO4	Design surface treat	ments for industrial applications.	An		2	20%	
CO5	Engage independent effective oral pre techniques	t study as a member of team and make esentation on the surface Engineering	U	In	ternal	Assessm	nent

UNIT I - SURFACES AND FRICTION

Basics of surfaces features – Roughness parameters – surface measurement - Cause of friction- Laws of friction – Static friction – Rolling Friction – Stick-slip Phenomenon - Friction properties of metal and nonmetals – Friction in extreme conditions – Thermal considerations in sliding contact.

UNIT II - WEAR

Laws of Wear - Types of Wear mechanism – wear debris analysis - Theoretical wear models - Wear of metals and nonmetals – International standards in friction and wear measurements

UNIT III - CORROSION

Introduction – Types of corrosion – Factors influencing corrosion – Testing of corrosion – In-service monitoring, Simulated service, Laboratory testing – Prevention of Corrosion – Material selection, Alteration of environment, Design, Cathodic and Anodic Protection, Corrosion inhibitors

UNIT IV - SURFACE TREATMENTS

Surface properties – Hydrophobic – Super hydrophobic – Hydrophilic - surface metallurgy –Surface coating Techniques – PVD – CVD – Physical CVD – Ion implantation – Surface welding – Thermal spraying – Laser surface hardening and alloying - New trends in coating technology – DLC – CNC – Thick coatings – Nanoengineered coatings – Other coatings, Corrosion resistant coatings

UNIT V – ENGINEERING MATERIALS

Introduction – High and Iow friction materials - Advanced alloys – Super alloys, Titanium alloys, Magnesium alloys, Aluminium alloys, and Nickel based alloys – Ceramics – Polymers – Biomaterials – Bio Tribology -Nano Tribology

TOTAL: 45 PERIODS

(9)

(9)

(9)

(9)

TEXT BOOKS:

- I. G.W .Stachowiak and A.W.Batchelor, "Engineering Tribology", Butterworth-Heinemann, 2005.
- 2. S.K. Basu, S.N.Sengupta and B.B.Ahuja ,"Fundamentals of Tribology", Prentice Hall of India, 2005.

- I. Fontana G., "Corrosion Engineering", McGraw Hill, 1985.
- 2. H Iling, J. (Editor), "Principles of Tribology", MacMillian, 1984.
- 3. Rabinowicz.E., "Friction and Wear of materials", John Willey &Sons, 1995.
- 4. Williams J.A., "Engineering Tribology", Oxford University Press, 1994.
- 5. Joseph R. Davis, Corrosion: Understanding the Basics, ASM International, 2000.

Mapping of COs with POs / PSOs														
COs			PSOs											
	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												I	
2	3												I	
3		3											I	
4			I										I	
5										I			I	
CO (W.A)	3	3	I							I			I	

	— Г	22MEX47 – GREEN SUPPLY CHAIN	I MANAGEMEN	Т							
				L	т	Р	С				
				3	0	0	3				
PRERI	EQUISITE : N	il									
Cours	se Objective:	 To familiar the various standards manufacturing. To know the conventional elect manufacturing techniques. To recognize the steps involved need of recycle the electronics To implement reliability and pro electronic manufacturing. To demonstrate the green electronic applications. 	 familiar the various standards and legislation of modern green electronic nanufacturing. know the conventional electronic processing and lead-free electronic nanufacturing techniques. recognize the steps involved in assembly process and understand the eed of recycle the electronics implement reliability and product life cycle estimation tools in green lectronic manufacturing. demonstrate the green electronic manufacturing procedure in real time 								
	 (The	Course Outcomes e Student will be able to	Cognitive Level	Weightage of COs in End Semester Examination							
соі	Apply fundame and legislation green environm	entals to concise awareness of standards of modern electronic manufacturing for ment.	Ар	Ар 20%							
CO2	Optimize the lead free elect	conventional electronic processing and ronic manufacturing techniques.	An	0%							
CO3	Design and re of recycle in el	40%									
CO4	Analyze reliab tools for greer	ility and product life cycle estimation n electronic manufacturing.	An	An 20%							
CO5	Validate the gr in real time ap	reen electronic manufacturing procedures plications.	An/ Cr	Internal Assessment							

UNIT I - INTRODUCTION TO GREEN ELECTRONICS

(9)

Environmental concerns of the modern society- Overview of electronics industry and their relevant regulations in China, European Union and other key countries- global and regional strategy and policy on green electronics industry. Restriction of Hazardous substances (RoHS) - Waste Electrical and electronic equipment (WEEE) - Energy using Product (EuP) and Registration - Evaluation, Authorization and Restriction of Chemical substances (REACH).

UNIT II - GREEN ELECTRONICS MATERIALS AND PRODUCTS

(9)

Basics of IC manufacturing and its process – Electronics with Lead (Pb) – free solder pastes, conductive adhesives, Introduction to green electronic materials and products - halogen-free substrates and components. Substitution of non-recyclable thermosetting polymer based composites with recyclable materials X-Ray Fluorescence (XRF) for identifying hazardous substances in electronic products.

UNIT III - GREEN ELECTRONICS ASSEMBLY AND RECYCLING

Various processes in assembling electronics components - the life-cycle environmental impacts of the materials used in the processes - substrate interconnects. Components and process equipments - Technology and management on e-waste recycle system construction, global collaboration, and product disassembles technology. Sustainable Electronics Materials in PCB Manufacturing – Restriction of Hazardous Substances Directive in PCB Assembly.

UNIT IV - PRODUCT DESIGN AND SUSTAINABLE ECO-DESIGN

Stages of product development process in green design: Materials- Manufacturing - Packaging and use - End of Life and disposal - Design for recycling - Life Cycle Assessment (LCA), and Eco-design tools - Environmental management systems, and International standards - Eco-design in electronics industry.

UNIT V - CASE STUDIES

Reliability of green electronics systems, Reuse and recycle of End-of-Life(EOL) electrical and electronic equipment for effective waste management – Introduction of Green Supply Chain, and Modeling green products from Supply Chain point of view - A life-cycle assessment for eco-design of Cathode Ray Tube Recycling. Case studies on Green Supply Chains and Enabling RFID Technology, Healthcare, Aerospace, GSCM and construction industry.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Green Supply Chain Management, by Charisios Achillas, Dionysis D. Bochtis, Dimitrios Aidonis, Routledge; 1st edition (16 November 2018), ISBN-10 : 1138644617
- 2. Sammy G. Shina, Green Electronics Design and Manufacturing, McGraw Hill., 2008.

REFERENCES:

- I. David Austen, Green Electronic Morning, Ingleby Gallery, 2006.
- 2. John Hu. Mohammed Ismail, CMOS High Efficiency on Chip Power Management, Springer Publications 4th edition, 2011.
- 3. Yuhang yang and Maode Ma, Green Communications and Networks, Springer Publication., 2014.
- 4. Sanka Ganesan, Michael Pecht, Lead free Electronics, John Wiley & Sons, 2006.
- 5. Charles A. Harper, Electronic Materials and Processes Hand book, McGraw-Hill, 2010.
- 6. Sammy G. Shina, Green Electronics Design and Manufacturing, McGraw Hill., 2008.

	Mapping of COs with POs / PSOs													
	POs												PSOs	
COs		2	3	4	5	6	7	8	9	10		12	I	2
I	3		3										2	
2											3			
3		2					3							
4														
5														
CO (W.A)	3	2	3				3				3		2	

204 | Page

(9)

(9)

		22MEX48 - PRODUCT LIFE CYCLE	MANAGEMENT				1					
				L	Т	Ρ	С					
				3	0	0	3					
PRERE	QUISITE : Nil											
Course	Objective:	PLM 1/PDM tools blications										
	C The	Weightage of COs ir End Semester Examination										
соі	Summarize the terminology of PL	Ар		3	0%							
CO2	Apply the features	Ар		3	0%							
CO3	Analyze the different of the different of the second secon		2	.0%								
CO4	Design PLM/PDM	An		2	.0%							
CO5	Engage independe effective oral pres	ent study as a member of team and make sentation on the application of PLM	U	In	nent							
UNITI-INTRODUCTION TO PRODUCT LIFECYCLE MANAGEMENT (9)												
Introduc Generic	tion to PLM, Fund Product Lifecycle I	lamentals of PLM- Objective of PLM -Activit Phases, PLM Grid, Components of PLM Grid,	ties of PLM -Joined-1 Why PLM, How PLN	up anc 1.	l Holist	tic App	roach -					
	- COMPLEX A	ND CHANGING ENVIRONMENT				(9)						
Changes Corpora	and Interconnec te Changes, Techn	ctions, Macroeconomic and Geopolitical (ological Changes, Product Changes, The Resu	Changes, Environme Ilt and the Requirem	ental : ents	and Sc	ocial C	Changes,					
	II - PLM DEPLO	YMENT AND BUSINESS BENEFITS					(9)					
Deployment Stages of PLM, PLM maturity model, Realization stage of the project, Accomplishing change, Business benefits of a PLIM system -Factors leading to PLM, Benefits of the PLM system, Improving the productivity of Iabour, Costs of quality, PLM and data warehousing as a tool to support decision-making												
UNIT I	V - SERVICE INI	DUSTRY AND PLM					(9)					
Introduc service b	tion to service, Fui pusiness, Services n	rther productization of services, Making a ser nodularization, Making items out of product fu	vice, PLM in service l unctions, IT specifical	busine Ily vari	ss - PLI able pr	M challe oduct.	enges in					
BUSINESS STRATEGY												
Product strategy, Time to	lifecycle managem Making a product service, Electronic	nent as a business strategy tool, From cha t strategy, Product management strategy, Tir business and PLM	nges in the busines ne to market, Time	s envi to re	ronme act, Tii	nt to j me to r	product volume,					
TOTAL (L:45) = 45 PERIODS												

TEXT BOOKS:

- I. John Stark, "Product Lifecycle Management: 21st Century Paradigm for Product Realisation", Springer Publisher, 2011 (2nd Edition).
- 2. AnttiSaaksvuori and Anselmilmmonen, "Product Lifecycle Management", Springer Publisher, 2008 (3rd Edition)

- I. International Journal of Product Lifecycle Management, Inderscience Publishers
- 2. Ivica Cmkovic, Ulf Asklund and Annita Persson Dahlqvist, "Implementing and Integrating ProductData
- 3. Management and Software Configuration Management", Art ech House Publishers, 2003.

	Mapping of COs with POs / PSOs														
COs	POs													PSOs	
	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I													I		
2	3												I		
3		3											I		
4			I										I		
5										I			I		
CO (W.A)	3	3	I							I			I		

