NANDHA ENGINEERING COLLEGE ### (Autonomous) Erode- 638 052 NEC/MECH/PAC-02/2024-25 DATE: 5-11-2024 ## **CIRCULAR** | Originator: | Circulated to: | |---------------|-------------------------------------| | Chairman- PAC | Members of PAC& All faculty members | # Sub: Programme Assessment Committee (PAC) meeting: The PAC meeting is scheduled on 11.11.2024 to discuss the agenda listed below. In this connection, all the PAC members are requested to attend the meeting. Date & Time of Meeting: 11.11.2024 (12.30 PM)-Monday Venue: Block 7 | | AGENDA | | | | | | |--------------|--|--|--|--|--|--| | Disseminatio | Dissemination of vision and mission of the department | | | | | | | VISION | To be recognised as a centre of excellence in the field of Mechanical Engineering and to
produce competent engineers with multi-disciplinary exposure to meet the changing needs of
the society. | | | | | | | | To enrich technical knowledge and skills by imparting quality education with ethics and social responsibility. | | | | | | | MISSION | • To empower the students in the thrust areas of Mechanical, Allied Engineering and Entrepreneurship in the continually changing global market. | | | | | | | | • To provide a conducive learning environment for improving continually to cater the needs of the society. | | | | | | | Item 2.01 | Review of the previous PAC meeting minutes | | | | | | | Item 2.02 | Overall attainment of the 2024 pass out batch & fix target for the I year (2024 – 2028 batch). | | | | | | | Item 2.03 | Teaching Learning Process and Assessment. | | | | | | | Item 2.04 | Class Committee Meeting (CCM) reports and action taken. | | | | | | | Item 2.05 | Proctor meeting minutes and action taken reports | | | | | | | Item 2.06 | Department academic plan and activities. | | | | | | | Item 2.07 | Any other matter (if any) | | | | | | To - ✓ All members of PAC, - ✓ All Faculty members, - ✓ File (O/o Head) CHAIRMAN-PAC HEAD OF THE DEPARTMENT DEPARTMENT OF MECHANICAL ENGINEERING, NANDHA ENGINEERING COLLEGE ERODE - 638 052. ### MINUTES OF THE PROGRAMME ASSESSMENT COMMITTEE MEETING | Name of the Body | PRO | PROGRAMME ASSESSMENT COMMITTEE (PAC) | | | |-----------------------------------|------|--------------------------------------|--|--| | Department Mechanical Engineering | | chanical Engineering | | | | Meeting No. | 02 | 2024-2025 | | | | Date & Time | 11.1 | 1.2024 & 12.30 PM | | | | Disseminate | ed the vision and mission of the department | |-------------|---| | VISION | • To be recognised as a centre of excellence in the field of Mechanical Engineering and to produce competent engineers with multi-disciplinary exposure to meet the changing needs of the society. | | MISSION | To enrich technical knowledge and skills by imparting quality education with ethics and social responsibility. To empower the students in the thrust areas of Mechanical, Allied Engineering and Entrepreneurship in the continually changing global market. To provide a conducive learning environment for improving continually to cater the needs of the society. | HEAD OF THE DEPARTMENT DEPARTMENT OF MECHANICAL ENGINEERING, MANDHA ENGINEERING COLLEGE ERODE - 638 052. The Chairman PAC, Dr. M. Muthukumar & HoD / Mechanical, welcomed the PACmembers and internal members. The board considered various items of the agenda for discussion and the resolutions are given below: | Item 2.01 | Review | of the prev | ious PAC meeting m | inutes | | | |------------|--|--|--|--|--|--| | | The previous PAC meeting minutes were reviewed. There were no comments from members. | | | | | | | Item 2.02 | batch). | | | batch & fix target for the I year (2024 - 202 | | | | Discussion | PO1: E | O11, PO12
Or. MM pre
O8, PO10,
Or. MM exp
theory, prol | e, and PSO1, PSO2]. sented the POs and F and PSO3, PSO4]. blained that the target blem-based, or lab-org Knowledge: an a | Os and PSOs: [PO1, PO2, PO3, PO5, PO9, PSOs that were not attained: [PO4, PO6, PO7, PO5] was attained: [PO4, PO6, PO7, PO5] was attained: [PO4, PO6, PO7, PO5] was attained: [PO4, PO6, PO7] attained | | | | | POs | Target
Level | Attainment Level | Observations | | | | | PO1 | 65% | 75.96 | Target achieved. | | | | | PO2: Pr
analyze a | and interpre | alysis: an ability to det data | design and conduct experiments, as well as t | | | | | POs | Target
Level | Attainment Level | Observations | | | | | PO2 | 65% | 69.82 | Target achieved. | | | | | PO3: Design/ Development of Solutions: an ability to design a system, component of process to meet desired needs within realistic constraints such as economic environmental, social, ethical, safety, manufacturability and sustainability | | | | | | | | POs | Level | Attainment Level | Observations | | | | | PO3 | 65% | 70.18 | Target achieved. | | | | | PO4: Conduct Investigations of Complex Problems: an ability to function of multidisciplinary teams to solve complex problems | | | | | | | | POs | Target
Level | Attainment Level | Observations | | | | | PO4 | 65% | 65.51 | Target not achieved. | | | | | Action 1: Students are investigating real time problems by collecting data from literature/industry while doing their projects in the seventh and eighth semesters. Action 2: One subject from III semester is made as Project Based Learning subject wherein they investigate and the second subject in | | | | | | | | Action 2 | One subi | ect from III comporte | mia made ee D. t. t. t. t. | | | PO5: Modern Tool Usage: an ability to use the techniques, skills and modern engineering tools necessary for engineering practice | POs | Target
Level | Attainment Level | Observations | -4 | |-----|-----------------|------------------|------------------|----| | PO5 | 65% | 69.76% | Target achieved. | | PO6: The Engineer and Society: an ability to infer societal, health, safety, legal & cultural issues and consequent responsibilities relevant to the professional engineering practice. | POs | Target
Level | Attainment Level | Observations | | |-----|-----------------|------------------|----------------------|--| | PO6 | 65% | 57.12% | Target not achieved. | | Action 1: Awareness programs and interactive sessions are arranged for the students to act as a professional engineer considering the societal, health, safety, legal & cultural issues Action 2: Courses like Constitution of India and Essence of Indian tradition are incorporated in the curriculum as non-credit and mandate courses guiding the students to understand their societal and safety needs during their engineering practices. Action 3: Students are given awareness about their requirement to the society through arranging blood donation camp and activities through NSS and other PCD clubs. Action 4: Students' have gone for internships in industries to understand the aspects of an engineer's work and its impact in societal, health, safety, legal & cultural issues. PO7: Environment and Sustainability: an ability to explain, compare and summarize the impact of engineering solutions for sustainable development with societal and environmental perspective | POs | Target
Level | Attainment Level | Observations | | |-----|-----------------|------------------|----------------------|--| | PO7 | 65% | 55.43% | Target not achieved. | | Action 1: Hands on training on various Non-Destructive Techniques are given to make the students to understand the concepts of NDT. Action 2: Field visits to several renewable energy plants are organized. Students are guided to take up solar thermal energy related projects. Action 3: Students are engaged in various sustainable activities like having a rally for creating the awareness of many environmental issues. Action 4: MoUs have been signed with Sustainable Communities India Private Limited for enhancing technical skills related to energy management in industries. PO8: Ethics: an understanding of professional and ethical responsibility | POs | Target
Level | Attainment Level | Observations | |-----|-----------------|------------------|----------------------| | PO8 | 65% | 52.11% | Target not achieved. | Action 1: Ethical practices and moral values in industries have been demonstrated during industrial visits, in-plant trainings and through industrial seminars by industrial experts. Action 2: Students are assigned with responsibilities as Event Coordinators/ Volunteers in organizing programs through Department association/Professional Society to learn the professional and ethical responsibilities. PO9: Individual and Team Work: an ability to function effectively as an individual / team in different environments | POs | Target
Level | Attainment Level | Observations | | |-----|-----------------|------------------|------------------|--| | PO9 | 65% | 60.79% | Target achieved. | | Action 1: Participation in Co-curricular and Extracurricular activities as a team. Action 2: Group activities like symposium, intra & inter department meet were organized and students show their interest in different team activities for effective team building. Action 3: Opportunities are provided to students to participate in inter and intra sports competitions as individual and as a team. Action 4: Students were separated into batches and made to work as a team for projects during seventh and eighth semesters. PO10: Communication: an ability to communicate effectively | POs | Target
Level | Attainment Level | Observations | | |------|-----------------|------------------|----------------------|--| | PO10 | 65% | 58.98% | Target not achieved. | | Action 1: Inter-department meet have been conducted through department association in all semesters. Action 2: Soft Skill- Listening and speaking; Soft Skills- Reading and Writing are introduced in the curriculum as a course to improve the communication and presentation skills. Action 3: Assessments like assignments, viva voce in laboratory courses are followed effectively for improving the writing and reading skills of the students. Action 4: Seminars/Project presentations are used as a platform to improve the communication skills. PO11: Project Management and Finance: an ability to apply knowledge of engineering and management principles to the projects | Pos | Target
Level | Attainment Level | Observations | | |------|-----------------|------------------|------------------|--| | PO11 | 65% | 66.25% | Target achieved. | | PO12: Life-long Learning: an ability to recognize the need for life-long learning | Pos Target
Level | | Attainment Level | Observations | | | | |---------------------|-----|------------------|------------------|--|--|--| | PO12 | 65% | 67.54% | Target achieved. | | | | PSO1: Ability to design mechanical systems with required specifications using latest software packages | PSOs Target
Level | | Attainment Level | Observations | | | |----------------------|--|------------------|------------------|--|--| | PSO1 65% | | 65.17% | Target achieved. | | | | | PSO2: Ability to identify sustainable materials and technologies for | | | | | | | | | | |-----------------|--|---|----------------------------------|-----------------------|------------------------------------|----------------|--|--|--|--| | | engineer | ed solutions | S A ST TOME STATES | | | | | | | | | | PSOs Target
Level Attainment Level | | | Observatio | Observations | | | | | | | | PSO2 | 65% | 65.60% | | | | | | | | | | PSO2 65% 65.60% Target achieved. PSO3: Ability to apply the concepts and principles of manufacturing engineering to | | | | | | | | | | | | innovate | and to crea | te products and proc | esses with sustain | able manufact | uring | | | | | | | PSOs | Target
Level | Attainment aval Observations | | | | | | | | | | PSO3 | 65% | 56.06% Target not achieved. | | | | | | | | | | Action 1 | Students cycle. | take up fabrication | projects and lear | rn the product | developmen | | | | | | | Action 2 | : Industria | l visits to manufactur | ing companies ha | ve been organ | ized. | | | | | | | Action 3 | One cree | dit courses titled (| GD&T ad Lean | manufacturin | g have bee | | | | | | | | organized | d in association with | leading industries | . — | | | | | | | | Action 4 | Students | participate in Semina | ars on manufactur | ing technolog | у. | | | | | | | PSO4: A | | ovide solution to cha | llenges in the sola | r thermal syst | ems | | | | | | | PSOs | Target
Level | Attainment Level | Observations | | | | | | | | | PSO4 | 65% | 58.57% | Target not achie | ved. | | | | | | | | Action 1: Field visits to solar systems inside the institution and other plants outside | | | | | | | | | | | | have been arranged for the students. | | | | | | | | | | | | | | re guided to take up | | | | | | | | | | Action 3: Industry supported lab namely Renewable Energy lab is established to | | | | | | | | | | | | W. 1 | provide experience to the students in the solar energy conversion | | | | | | | | | | | Fixing PO target for 2024- 2028 batch: Students entry level academic performance and previous Batch PO attainment performance were discussed in detail. It decided fix PO attainment target for 2024- 2028 batch as 67%. | | | | | | | | | | | Item 2.03 | | | Process and Assessm | | | | | | | | | | Category | of Course | | Continuous | Continuous End semester Total Mark | | | | | | | | Category | or course | | Assessment (CA) marks | | er I otal Mark | | | | | | | Theory C | Courses | | 40 | 60 | 100 | | | | | | | Theory
Learning | | Courses (Project B | ased 40 | 60 | 100 | | | | | | | | ry Courses | | 60 | 40 | 100 | | | | | | .(f | Embedde | ed Courses | Theory + Laboratory | 50 | 50 | 100 | | | | | | | Project w | vork | | 40 | 60 | 100 | | | | | | Discussion | | | ncement Courses (E | | - | 100 | | | | | | | | | es, Mandatory Co | ırses | | | | | | | | | (non-credit),Mini Project, etc. 1. Teaching-Learning Process | | | | | | | | | | | | a) Lectures and Conceptual Understanding | | | | | | | | | | | | Theoretical Concepts: Classes should begin with clear explanations of mechanica | | | | | | | | | | | | principles, equations, laws, and design methodologies. Topics may include | | | | | | | | | | | | Thermodynamics, Mechanics of Materials, Fluid Mechanics, Heat Transfer, and | | | | | | | | | | | | Machine | | Damonstrations - C | aton har at | 1 | 92-11
12-11 | | | | | | | Problem-Solving : Demonstrations of step-by-step problem-solving approaches to reinforce theory. | | | | | | | | | | | | Interactive Sessions: Incorporate discussion-based or flipped-classroom techniques | | | | | | | | | | | | | | s: Incorporate discu | ssion-based or f | lipped-classro | om technique | | | | | | _ = = | b) La | boratory V | Work and | Hands-On I | earning | | | | | | | |------------|---|--------------|-------------|----------------|-------------------|---------------------------------|-----------------|--|--|--|--| | | Practical Exposure: Students must apply theoretical knowledge to practical and it | | | | | | | | | | | | | which can be done in workshops and laboratories. For example, they might work wit lathes, milling machines, or perform experiments related to fluid dynamics of thermodynamics. | | | | | | | | | | | | | Simulation and Software: Introducing simulation software such as ANSYS, Soli Works, can enhance their design and analysis capabilities. | | | | | | | | | | | | | c) Des | ign Projec | ets and Cas | se Studies | | | | | | | | | | Real-World Applications: Students can work on individual or group projects the solve real-world mechanical problems, from design to manufacturing. Case Studies: Present industrial problems or incidents (like those in automobil design, HVAC, or manufacturing processes) and have students analyze or propositions. | | | | | | | | | | | | | d) Industry Interaction | | | | | | | | | | | | | Guest | Lectures | and Semi | inars: Invitio | ng professionals | from industr | ies can provide | | | | | | | Guest Lectures and Seminars: Inviting professionals from industries can provid insights into current trends and technologies. Industrial Visits: Site visits to manufacturing plants, refineries, or automotive facilities allow students to connect the | | | | | | | | | | | | | racing and w students to connect theory with real-world applications | | | | | | | | | | | | | Internships: Practical training in the industry to expose students to mechanica systems in real-world operations. | | | | | | | | | | | | | e) Peer Learning and Collaborative Learning | | | | | | | | | | | | | Group Assignments: Assigning tasks that require students to call 1 | | | | | | | | | | | | | teamwork and communication skills, critical in mechanical engineering projects. Problem-Solving Groups: Allowing students to work in groups to solve complex mechanical problems. | | | | | | | | | | | | | mechanical problems. | | | | | | | | | | | | | f) Self-Learning | | | | | | | | | | | | | Online Resources: Encouraging the use of online courses, webinars, and research papers to stay updated on the latest mechanical engineering trends. | | | | | | | | | | | | Resolution | Resolv | ed to appro | ved | ratest meens | anical engineerir | ig trends. | | | | | | | Item 2.04 | Class C | Committee | Meeting (C | CM) reports | and action taker | , | | | | | | | Discussion | Dr. M. | M shared | the Class | Committee | Meeting (CCM | n and ATR | request faculty | | | | | | | | ib look at t | o mis. | | | | request faculty | | | | | | Resolution | | | | | mmittee Meetin | g (CCM). | | | | | | | Item 2.05 | Proctor meeting minutes and action taken reports | | | | | | | | | | | | | Mr. R. Rajkumar present the proctor meeting minutes on year wise student achievement and the academic activities with proctor ATR | | | | | | | | | | | | Resolution | Resolved to approve the ATR of Proctor meeting MoM. | | | | | | | | | | | | Item 2.06 | Department academic plan and activities. | | | | | | | | | | | | | Association coordinator Mr. M. Sengottaiyan presented the academic activities event calendar 2024-2025 | | | | | | | | | | | | | Month | | IEI(3) | | SOME | | | | | | | | | | ISTE(2) | | SAE(3) | International | National | State level | | | | | | | NOV | | | | (1) | (2)
SYMPOSIU | (6) | | | | | | | DEG | | 4 | | | M 2024
(Week 1) | | | | | | | 3 | DEC
JAN | Academi | | | Exam | | | | | | | | | | c
Seminar | | | | Academic
Seminar
(Week 4) | v _= | | | | | | | | (Wast 1) | | | 14 (2) | | | | | | | | | ГЕВ | (Week 1) | Guest | | | | <u> </u> | | | | | | E | MAR | | F 7 W 10 | Industrial
Seminar
(Week1) | International
Conference
/Seminar
(Week 2) | | | | |------------|--|---|----------|----------------------------------|---|---|---|----------------------| | | APR | | | | | | | Workshop
(Week) 4 | | | MAY | | | | Exam | | 1 | | | | Count | 2 | 3 | 3 | | 1 | 2 | | | Resolution | Resolved to accept and put forth to DAB. | | | | | | | | | Item 2.07 | Any other matter (if any) | | | | | | | | Date: 11-11-2024 PAC- CHAIRMAN HEAD OF THE DEPARTMENT DEPARTMENT OF MECHANICAL ENGINEERING, NANDHA ENGINEERING COLLEGE ERODE - 638 052.