22PYB01 - SEMICONDUCTOR PHYSICS (Common to CSE, CSE (CS), CSE (IoT), IT & AI&DS)

		3	0	0	3							
PRE-REQUISITE : NIL												
Course	e Objective:	 To expose the concepts of conducting materials and electrical properties of semiconductors. To expand familiarity in the field of photo detectors and new engineering materials 										
Course The stud	e Outcomes lent will be able	to	Cognitive Level	Weightage of COs in End Semester Examination								
соі	Apply the pr photovoltaic o	operties of intrinsic semiconductor in cells.	Ap	20%								
CO2	Compare vari fabricate lapto	ous types of semiconducting materials to op circuits	An	20%								
CO3	Implement th medical applic	e principles of laser in engineering and ations.	Ap	20%								
CO4	Analyze prot fabrications.	ficient in photo doctors in device	An	20%								
CO5	Examine new performance	engineering materials to assess their n electronic applications.	Εv	20%								

UNIT I -INTRODUCTION TO CONDUCTING MATERIALS

Classical free electron theory - Expression for electrical conductivity - Thermal conductivity, expression -Wiedemann - Franz law- Success and failure - electrons in metals - Fermi- Dirac statistics - Density of energy states- - Particle in a three-dimensional box- degenerate states -Energy bands in solids- - Electron effective mass- concept of hole.

UNIT II -ELECTRICAL PROPERTIES OF SEMICONDUCTORS

Elemental and compound semiconductors - Intrinsic semiconductor - carrier concentration derivation variation of Fermi level with temperature – electrical conductivity – band gap determination – extrinsic semiconductors (qualitative) - variation of Fermi level with temperature and impurity concentration - Hall effect -determination of Hall coefficient - Applications

UNIT III -SEMICONDUCTOR LASER

Population of energy levels - Einstein's A and B coefficients derivation -Resonant cavity - Types of Semiconductor lasers: homo junction and hetero junction- Determination of particle size using laser -Holography – construction – reconstruction – Engineering applications of lasers -Medical field (Surgery).

UNIT IV - PHOTO DETECTORS

Classification of optical materials- Carrier generation and recombination processes- Absorption, emission and scattering of light in metals, insulators and semiconductors (concept only)- Formation of P-N junction -Barrier potential and depletion layer - P-N junction diode-Solar cell-LED-organic LED- Laser diode optical data storage technique.

(9)

(9)

(9)

L | T |

Ρ

(9)

UNIT V -ADVANCED NEW ENGINEERING MATERIALS

Metallic glasses: preparation, properties and applications. Shape Memory Alloys (SMA): Characteristics, properties of NiTi alloy, application. Nano materials: Properties - Preparation – Pulsed laser deposition – chemical vapour deposition of nano particles and applications. Carbon nano tubes: fabrication – arc method – pulsed laser deposition –structure – properties and application.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- R. A. Serway and J.W. Jewett, "Physics for Scientists and Engineers", Ninth Edition. Cengage Learning, 2018.
- 2. Marikani, "Materials Science", PHI Learning Private Limited, Eastern Economy Edition, 2017.
- 3. V.Rajendran, Engineering Physicsll, Tata McGraw-Hill. New Delhi.2019

REFERENCES:

- I. Raghavan V, "Materials and Engineering", Prentice-Hall of India, New Delhi, 2013.
- Dattuprasad and Ramanlal Joshi, "Engineering Physics" Tata McGraw hill education, 2016.
 B. Rogers, J.Adams and S.Pennathur, "Nanotechnology: Understanding Small System" CRC Press, 2014.

WEB LINKS

- 1. <u>https://physicaeducator.files.wordpress.com/2017/11/electricity_and_magnetism-by-purcell-3ed-ed.pdf</u>.
- 2. https://rajeshvcet.home.blog/regulation-2021/ph3151-engineering-physics-study-materials/
- 3. <u>https://zenodo.org/record/243407#.ZEgPZXZBzIU</u>
- 4. https://web.pdx.edu/~pmoeck/phy381/workbook%20nanoscience.pdf.

Mapping of COs with POs / PSOs													
60	POs										PSOs		
COs	I	2	3	4	5	6	7	8	9	10	 12	Ι	2
I	3	2											
2	3	2											
3	3		2										
4	3												
5	3					2	2				2		
CO (W.A)	3	2	2			2	2				2		

