22PYB04 - PHYSICS FOR MECHANICAL ENGINEERING (Mechanical Engineering) L T P C 3 0 0 3

PREREQUISITE: Nil

Course Objective:

- To update the knowledge about the properties of matter and elements of thermodynamics.
- To identify knowledge in the field of electromagnetic theory and optics & laser.

	Course Outcomes The student will be able to	Cognitive Level	Weightage of COs in End Semester Examination		
CO1	Correlate the stress and strain ratio to apply the elasticity for spring materials.	An	20%		
CO2	Discriminate the thermal conductivity of the medium to employing in instrument applications.	An	20%		
CO3	Manipulate the thermodynamic principles for heat engines.	Ар	20%		
CO4	Illustrate concept of electromagnetic theory to design electromagnetic coil.	Ар	20%		
CO5	Appraise the advantages and limitations of laser technology in industrial applications.	Ev	20%		

UNIT I-PROPERTIES OF MATTER

(9)

Elasticity – Hooke's law Stress-strain diagram and its uses - factors affecting elastic modulus and tensile strength – torsional stress and deformations – twisting couple - torsion pendulum: theory and experiment - bending of beams - bending moment – cantilever: theory and experiment – uniform and non-uniform bending: theory and experiment - l-shaped girders - stress due to bending in beams.

UNIT II -THERMAL PHYSICS

(9

Mode of heat transfer-thermal conductivity - Newton's law of cooling - thermal conduction through compound media (bodies in series and parallel) - thermal conductivity of a good conductor - Forbe's method-thermal conductivity of bad conductor - Lee's disc - radial flow of heat-expression for thermal conductivity of rubber - experimental determination - practical applications of conduction.

UNIT III - ELEMENTS OF THERMODYNAMICS

(9)

Concept of temperature – Heat - Thermodynamics - work – Heat in Thermodynamics – Comparison of heat and work – internal energy - first law of thermodynamics – applications of first law - second law of thermodynamics – the Carnot engine – heat engine – heat pump refrigerator -Third law of thermodynamics.

UNIT IV -ELECTRO MAGNETIC THEORY

(9)

Force on a moving Charge - Force on a differential Current Element - Force & Torque Magnetization & Permeability - Magnetic Boundary Conditions -Inductance & Mutual Inductance - Time Varying Fields: Faraday's Law - Displacement Current - Maxwell's Equation.

UNIT V-OPTICS AND LASERS

(9)

Interference: Air wedge – theory – uses – testing of flat surfaces – determination of thickness of a thin wire – Introduction of laser - Properties of laser beams: mono - chromaticity, coherence, directionality and Intensity - Einstein's A and B coefficients derivation - Resonant cavity - Types of lasers – solid state laser (Neodymium) – Gas laser (CO₂) – Materials processing – Laser Cutting – Drilling – Welding – Soldering – Industrial Applications.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- D.Kleppner and R.Kolenkow. An Introduction to Mechanics. McGraw Hill Education (Indian Edition), 2019.
- 2. E.M.Purcell and D.J.Morin, Electricity and Magnetism, Cambridge Univ. Press, 2017.
- 3. A. Marikani, "Materials Science", PHI Learning Private Limited, Eastern Economy Edition, 2019.

REFERENCES:

- 1. Dattuprasad and Ramanlal Joshi, "Engineering Physics" Tata McGraw hill education, 2016.
- 2. Subrahmanyam N, Brijlal, "A Text Book of Optics" S.Chand& Co. Ltd, New Delhi, 2017.
- 3. M.N.Avathanalu, P.G.Kshirsagar "A text book of engineering physics" S.Chand&company Ltd, 2015.

WEB LINKS:

- 1. https://bayanbox.ir/view/7764531208313247331/Kleppner-D.-Kolenkow-R.J.-Introduction-to-Mechanics-2014.pdf.
- 2. https://physicaeducator.files.wordpress.com/2017/11/electricity and magnetism-by-purcell-3ed-ed.pdf.
- 3. https://rajeshvcet.home.blog/regulation-2021/ph3151-engineering-physics-study-materials/
- 4. https://zenodo.org/record/243407#.ZEgPZXZBzIU
- 5. https://farside.ph.utexas.edu/teaching/qmech/qmech.pdf.
- 6. https://web.pdx.edu/~pmoeck/phy381/workbook%20nanoscience.pdf.

Mapping of COs with POs / PSOs														
COs	POs									PSOs				
COS	1	2	3	4	5	6	7	8	9	10	11	12	1	2
1	3	2	-	-	-	-	-	-	-	-	-	-	-	-
2	3	-	2	-	-	-	2	-	-	-	-	-	-	-
3	3	-	-	-	-	-	-	-	-	-	-	-	3	-
4	3	-	3	-	-	-	-	-	-	-	-	-	-	-
5	3	-	-	-	-	2	2	-	-	-	-	2	-	-
CO (WA)	3	2	3	0	0	2	2	0	0	0	0	2	3	0

