NANDHA ENGINEERING COLLEGE

(An Autonomous Institution affiliated to Anna University Chennai and approved by AICTE, New Delhi) Erode-638 052, Tamil Nadu, India, Phone: 04294 – 225585

Curriculum and Syllabi

for

B. Tech. – Agricultural Engineering [R22]

[CHOICE BASED CREDIT SYSTEM]

[This Curriculum and Syllabi are applicable to Students admitted from the Academic year 2024 -2025 onwards]

April 2025

INSTITUTE VISION AND MISSION

VISION	• To be an institute of excellence providing quality Engineering, Technology and Management education to meet the ever-changing needs of the society.
MISSION	 To provide quality education to produce ethical and competent professionals with social Responsibility To excel in the thrust areas of Engineering, Technology and Entrepreneurship by solving real- world problems. To create a learner centric environment and improve continually to meet the changing global needs.

B.Tech. – Agricultural Engineering

VISION	• To foster academic excellence by imparting knowledge in Agricultural Engineering to meet the ever-growing needs of the society.
MISSION	 To provide quality education to produce agricultural engineers with social responsibility. To excel in the thrust areas of agricultural engineering to identify and solve the real-world problems.
	• To create a learner-centric environment by upgrading knowledge and skills to cater the needs and challenges of the society.
PROGRAMME EDUCATIONAL OBJECTIVES (PEO)	 The graduates of Agricultural Engineering will be PEO1: Core Competency: Successful professional with core competency and inter- disciplinary skills to satisfy the Industrial needs. PEO2: Research, Innovation and Life-long Learning: Capable of identifying technological requirements for the society and providing innovative solutions to real time problems. PEO3: Ethics, Human values and Entrepreneurship: Able to demonstrate ethical practices and managerial skills through continuous learning
PROGRAMME SPECIFIC OUTCOMES (PSO)	 The students of Agricultural Engineering will be able to PSO1: Design, analyze and apply the knowledge gained on agricultural machinery, tools, implements and production technologies to increase crop production, improve land use, soil nutrient and conserve resources like water, fertilizer and energy. PSO2: Apply the comprehensive knowledge of engineering properties of agricultural products for upgrading the unit operation and developing innovative process, value-added products, and advanced engineering technologies to meet the challenges in agriculture.

PROGRAM OUTCOMES:

At the end of this programme, the students will be able to

a-l	GRADUATE ATTRIBUTES	PO No.	PROGRAMME OUTCOMES
a	Engineering Knowledge	POI	Apply the knowledge of mathematics, science, engineering fundamentals, and an engineering specialization to the solution of complex engineering problems.
Ь	Problem Analysis	PO2	Identify, formulate, review research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences, and engineering sciences.
с	Design and Development of Solutions	PO3	Design solutions for complex engineering problems and design system components or processes that meet the specified needs with appropriate consideration for the public health and safety, and the cultural, societal, and environmental considerations.
d	Investigation of Complex Problems	PO4	Use research-based knowledge and research methods including design of experiments, analysis and interpretation of data, and synthesis of the information to provide valid conclusions.
e	Modern Tool Usage	PO5	Create, select, and apply appropriate techniques, resources, and modern engineering and IT tools including prediction and modeling to complex engineering activities with an understanding of the limitations.
f	The Engineer and Society	PO6	Apply reasoning informed by the contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to the professional engineering practice.
g	Environment and Sustainability	PO7	Understand the impact of the professional engineering solutions in societal and environmental contexts, and demonstrate the knowledge of, and need for sustainable development.
h	Ethics	PO8	Apply ethical principles and commit to professional ethics and responsibilities and norms of the engineering practice.
i	Individual and Team Work	PO9	Function effectively as an individual, and as a member or leader in diverse teams, and in multidisciplinary settings.
j	Communication	PO10	Communicate effectively on complex engineering activities with the engineering community and with society at large, such as, being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.
k	Project Management and Finance	POII	Demonstrate knowledge and understanding of the engineering and management principles and apply these to one's own work, as a member and leader in a team, to manage projects and in multidisciplinary environments.
I	Lifelong Learning	PO12	Recognize the need for, and have the preparation and ability to engage in independent and life-long learning in the broadest context of technological change.

MAPPING OF PROGRAMME EDUCATIONAL OBJECTIVES WITH PROGRAMME OUTCOMES

A broad relation between the Programme Educational Objectives and the Programme Outcomes is given in the following table

PROGRAMME					PRO	GRAM	ME OU	тсом	IES			
PROGRAMME EDUCATIONAL OBJECTIVES	A	В	с	D	Е	F	G	н	I	J	к	L
I	3	3	2	3	2	I	I	2	I	I	3	I
2	3	3	3	3	3	I	I	I	I	I	I	2
3	3	3	3	3	3	2	2	3	Ι	2	2	2

Contribution

I: Reasonable

2: Significant

3: Strong

NANDHA ENGINEERING COLLEGE (AUTONOMOUS), ERODE – 638 052 REGULATIONS – 2022 CHOICE BASED CREDIT SYSTEM

			SEMESTER	k: I					
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
I	22MAN01	Induction Programme	MC	-	0	0	0	0	0
тн	EORY								I
2	22EYA01	Professional Communication - I	HSMC	-	4	2	0	2	3
3	22MYB01	Calculus and Linear Algebra*	BSC	-	4	3	I	0	4
4	22PYB02	Advanced Materials and Nano Technology	BSC	-	3	3	0	0	3
5	22AGC01	Basics of Engineering Mechanics	ESC	-	3	2	I	0	3
6	22MEC01	Engineering Graphics	ESC	-	4	2	0	2	3
7	22GYA01	தமிழர் மரபு / Heritage of Tamils*	HSMC	-	I	Ι	0	0	I
PR/	ACTICAL								•
8	22PYP01	Physics Laboratory*	BSC	-	2	0	0	2	Ι
9	22GEP01	Engineering Practices Laboratory	ESC	-	4	0	0	4	2
Ma	ndatory No	on-Credit Courses		1			•	ı	·
10	22MAN03	Yoga — I*	MC	-	I	0	0	Ι	0
				TOTAL	26	13	2	11	20

B. Tech. - AGRICULTURAL ENGINEERING

*Ratified by Eleventh Academic Council

			SEMESTER	k: II					
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
TH	EORY								
Ι	22EYA02	Professional Communication - II	HSMC	22EYA01	4	2	0	2	3
2	22MYB02	Partial Differential Equations and Transform Techniques [*]	BSC	-	4	3	I	0	4
3	22CYB05	Chemistry for Agricultural Engineers	BSC	-	3	3	0	0	3
4	22CSC01	Problem Solving and C Programming	ESC	-	3	3	0	0	3
5	22AGC02	Principles and Practices of Crop Production	PCC	-	3	3	0	0	3
6	22EEC04	Electrical Engineering*	PCC		3	3	0	0	3
7	22GYA02	தமிழரும் தொழில்நுட்பமும் /Tamils and Technology*	HSMC		I	I	0	0	I
PR/	ACTICAL		11						
8	22CSP01	Problem Solving and C Programming Laboratory	ESC	-	4	0	0	4	2
9	22AGP01	Crop Production and Husbandry Laboratory	PCC	-	4	0	0	4	2
10	22CYP01	Chemistry Laboratory*	BSC	-	2	0	0	2	Ι
Ma	ndatory No	on-Credit Courses							
11	22MAN02R	Soft/Analytical Skills – I	МС	-	3	Ι	0	2	0
12	22MAN05	Yoga – II*	MC	-	I	0	0	Ι	0
13	22MAN06	Environmental Science	MC	-	2	2	0	0	0
				TOTAL	37	21	Ι	15	25

*Ratified by Eleventh Academic Council

		S	EMESTER: I	11					
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
тн	EORY						-		
Ι	22MYB03	Statistics and Numerical Methods	BSC	-	4	3	I	0	4
2	22AGC03	Fundamentals of Soil Science	PCC	_	4	2	0	2	3
3	22AGC04	Strength of Materials for Agricultural Engineers	PCC	-	3	3	0	0	3
4	22AGC05	Basic workshop Technology	ESC	-	3	3	0	0	3
5	22AGC06	Thermodynamics for Agricultural Engineers	PCC	-	3	2	I	0	3
6	22AGC07	Farm Tractor Systems	PCC	-	3	3	0	0	3
PR/	ACTICAL								
7	22AGP02	Workshop Technology Laboratory	ESC	-	4	0	0	4	2
8	22AGP03	Drawing of Farm Structures Laboratory	PCC	-	4	0	0	4	2
9	22AGP04	Farm Tractor and Engines Laboratory	PCC	-	4	0	0	4	2
Mar	ndatory Non-O	Credit Courses	I	I	I				
10	22MAN04R	Soft / Analytical Skills - II	MC	22MAN02R	3	Ι	0	2	0
11	22MAN09	Indian Constitution	MC	-	I	I	0	0	0
				TOTAL	36	18	2	16	25

		S	EMESTER: I	v					
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
тн	EORY								
I	22AGC08	Fluid Mechanics and Hydraulics	PCC	-	4	2	0	2	3
2	22AGC09	Heat and Mass Transfer for Agricultural Engineers	PCC	-	3	2	I	0	3
3	22AGC10	Crop Process Engineering	PCC	-	3	3	0	0	3
4	22AGC11	Irrigation and Drainage Engineering	PCC	-	3	3	0	0	3
5	22AGC12	Hydrology and Water Resources Engineering	PCC	-	3	3	0	0	3
6	22AGC13	Surveying and Levelling for Agricultural Engineers	PCC	-	4	2	0	2	3
PR/	ACTICAL		1						
7	22AGP05	Crop Process Engineering Laboratory	PCC	-	4	0	0	4	2
8	22AGP06	Irrigation and Drainage Engineering Laboratory	PCC	-	4	0	0	4	2
Mar	ndatory Non-(Credit Courses							
9	22MAN07R	Soft/Analytical Skills – III	MC	22MAN04R	3	Ι	0	2	0
10	22GED01	Personality and Character Development	MC	-	0	0	0	I	0
I			1	TOTAL	31	16	I	15	22

			SEMESTER:	v					
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
тн	EORY					•			
I	22AGC14	Soil and Water Conservation Engineering	PCC	-	3	3	0	0	3
2	22AGC15	Unit Operations in Agricultural Processing	PCC	-	3	3	0	0	3
3	22AGC16	Farm Implements and Equipment (Theory + Lab)	PCC	-	5	3	0	2	4
4	EI	Elective(PEC)	PEC	-	3	3	0	0	3
5	E2	Elective(PEC)	PEC	-	3	3	0	0	3
6	E3	Elective(PEC/OEC)	PEC/OEC	-	3	3	0	0	3
PR/	ACTICAL	I				I			
7	22AGP07	CAD for Agricultural Engineers	PCC	-	4	0	0	4	2
8	22AGP08	Unit Operations in Agricultural Processing Laboratory	PCC	-	4	0	0	4	2
Mai	ndatory Non-	Credit Courses							
9	22MAN08R	Soft/Analytical Skills – IV	MC	22MAN07R	3	I	0	2	0
				TOTAL	31	19	0	12	23

			SEMESTER:	VI					
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
тн	EORY					•	•		
I	22AGC17	Renewable energy Resources	PCC	-	3	3	0	0	3
2	22AGC18	Food and Dairy Engineering	PCC	-	3	3	0	0	3
3	EMI	Elective - Management	HSMC	-	3	3	0	0	3
4	E4	Elective(PEC)	PEC	-	3	3	0	0	3
5	E5	Elective(PEC/OEC) ^{\$}	PEC/OEC	-	3	3	0	0	3
6	E6	Elective(PEC)	PEC	-	3	3	0	0	3
PR	ACTICAL								
7	22AGP09	Food and Dairy Engineering Laboratory	PCC	-	4	0	0	4	2
8	22AGP10	Rural Agro Industry Work Experiment	EEC	-	2	0	0	2	I
				TOTAL	24	18	0	6	21

\$ Ratified by Thirteen Academic Council

			SEMESTER:	VII					
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
тн	EORY						•		
I	22GEA01	Human Values and Ethics	HSMC	-	2	2	0	0	2
2	E7	Elective(PEC)	PEC	-	3	3	0	0	3
3	E8	Elective(PEC)	PEC	-	3	3	0	0	3
4	E9	Elective(OEC) ^{\$}	PEC	-	3	3	0	0	3
5	E10	Elective(OEC)	OEC	-	3	3	0	0	3
PR/	ACTICAL			·					
6	22AGPI I	Internship/ Inplant training (4 weeks)	EEC	-	0	0	0	0	2
				TOTAL	14	14	0	0	16

			SEMESTER:	VIII					
S. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
PR/	ACTICAL		·	•		•	•		
Ι	22AGD01	Project Work	EEC	-	20	0	0	20	10
				TOTAL	20	0	0	20	10
								1	

\$ Ratified by Thirteen Academic Council

D. du

HSM,BS, ES,EE and Mandatory Courses

(a) Humanities and Social Sciences including Management courses (HSMC)

S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
١.	22EYA01	Professional Communication - I	HSMC	-	4	2	0	2	3
2.	22GYA01	தமிழர் மரபு / Heritage of Tamils	HSMC	-	I	I	0	0	I
3.	22EYA02	Professional Communication - II	HSMC	22EYA01	4	2	0	2	3
4.	22GYA02	தமிழரும் தொழில்நுட்பமும் / Tamils and Technology	HSMC	-	I	Ι	0	0	I
5.	EMI	Elective - Management	HSMC	-	3	3	0	0	3
6.	22GEA01	Human Values and Ethics	HSMC	-	2	2	0	0	2

(b) Basic Science Courses (BSC)

S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
١.	22MYB01	Calculus and Linear Algebra	BSC	-	4	3	I	0	4
2.	22PYB02	Advanced Materials and Nano Technology	BSC	-	3	3	0	0	3
3.	22PYP01	Physics Laboratory	BSC	-	2	0	0	2	I
4.	22MYB02	Partial Differential Equations and Transform Techniques	BSC	-	4	3	Ι	0	4
5.	22CYB05	Chemistry for Agricultural Engineers	BSC	-	3	3	0	0	3
6.	22CYP01	Chemistry Laboratory	BSC	-	4	0	0	2	I
7.	22MYB03	Statistics and Numerical Methods	BSC	-	4	3	Ι	0	4

(c) Eng	gineering So	cience Courses (ESC)							
S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
١.	22AGC01	Basics of Engineering Mechanics	ESC	-	3	2	I	0	3
2.	22MEC01	Engineering Graphics	ESC	-	4	2	0	2	3
3.	22GEP01	Engineering Practices Laboratory	ESC	-	4	0	0	4	2
4.	22CSC01	Problem Solving and C Programming	ESC	-	3	3	0	0	3
5.	22CSP01	Problem Solving and C Programming Laboratory	ESC	-	4	0	0	4	2
6.	22AGC05	Basic workshop Technology	ESC	-	3	3	0	0	3
7.	22AGP02	Workshop Technology Laboratory	ESC	-	4	0	0	4	2
(d) Em	ployability	Enhancement Courses (EE	C)						
S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
١.	22AGPI0	Rural Agro Industry Work Experiment	EEC	-	2	0	0	2	I
2.	22AGPI1	Internship/ Inplant training (4 weeks)	EEC	-	0	0	0	0	2
3.	22AGD01	Project Work	EEC	-	20	0	0	20	10
(e) Ma	Indatory N	on Credit Courses (MC)			•				
5. NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Ρ	с
١.	22MAN01	Induction Programme	MC	-	-	-	-	-	-
2.	22MAN02R	Soft/Analytical Skills – I	MC	-	3	I	0	2	0
3.	22MAN03	Yoga – I	MC	-	Ι	0	0	I	0
4.	22MAN04R	Soft/Analytical Skills – II	MC	22MAN02R	3	I	0	2	0
5.	22MAN05	Yoga – II	MC	-	I	0	0	I	0

6.	22MAN06	Environmental Science	MC	-	2	2	0	0	0
7.	22MAN07R	Soft / Analytical Skills – III	MC	22MAN04R	5	3	0	2	0
8.	22MAN08R	Soft/Analytical Skills – IV	MC	22MAN07R	5	3	0	2	0
9.	22MAN09	Indian Constitution	MC	-	I	I	0	0	0
10.	22GED01	Personality and Character Development	MC	-	0	0	0	Ι	0

Professional Core Courses (PCC)

S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	P	С
١.	22AGC02	Principles and Practices of Crop Production	PCC	-	3	3	0	0	3
2.	22EEC04	Electrical Engineering	PCC		3	3	0	0	3
3.	22AGP01	Crop Production and Husbandry Laboratory	PCC	-	4	0	0	4	2
4.	22AGC03	Fundamentals of Soil Science	PCC	-	4	2	0	2	3
5.	22AGC04	Strength of Materials for Agricultural Engineers	PCC	-	3	3	0	0	3
6.	22AGC06	Thermodynamics for Agricultural Engineers	PCC	-	3	2	I	0	3
7.	22AGC07	Farm Tractor Systems	PCC	-	3	3	0	0	3
8.	22AGP03	Drawing of Farm Structures Laboratory	PCC	-	4	0	0	4	2
9.	22AGP04	Farm Tractor and Engines Laboratory	PCC	-	4	0	0	4	2
10.	22AGC08	Fluid Mechanics and Hydraulics	PCC	-	4	2	0	2	3
11.	22AGC09	Heat and Mass Transfer for Agricultural Engineers	PCC	-	3	2	I	0	3
12.	22AGC10	Crop Process Engineering	PCC	-	3	3	0	0	3
13.	22AGC11	Irrigation and Drainage Engineering	PCC	-	3	3	0	0	3
14.	22AGC12	Hydrology and Water Resources Engineering	PCC	-	3	3	0	0	3
15.	22AGC13	Surveying and Levelling for Agricultural Engineers	PCC	-	4	2	0	2	3

					r				
16.	22AGP05	Crop Process Engineering Laboratory	PCC	-	4	0	0	4	2
17.	22AGP06	Irrigation and Drainage Engineering Laboratory	PCC	-	4	0	0	4	2
18.	22AGC14	Soil and Water Conservation Engineering	PCC	-	3	3	0	0	3
19.	22AGC15	Unit Operations in Agricultural Processing	PCC	-	3	3	0	0	3
20.	22AGC16	Farm Implements and Equipment (Theory + Lab)	PCC	-	5	3	0	2	4
21.	22AGP07	CAD for Agricultural Engineers	PCC	-	4	0	0	4	2
22.	22AGP08	Unit Operations in Agricultural Processing Laboratory	PCC	-	4	0	0	4	2
23.	22AGC17	Renewable energy Resources	PCC	-	3	3	0	0	3
24.	22AGC18	Food and Dairy Engineering	PCC	-	3	3	0	0	3
25.	22AGP09	Food and Dairy Engineering Laboratory	PCC	-	4	0	0	4	2
Profe	ssional Elec	tive Courses (PEC)	<u> </u>	I					
Profes	ssional Elec COURSE CODE	ctive Courses (PEC)	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
	COURSE			REQUISITE	PERIODS	L	т	P	с
	COURSE	COURSE TITLE		REQUISITE	PERIODS	L 3	т 0	P	C
S.NO.	COURSE CODE	COURSE TITLE Vertical I: FA Testing and Management of		REQUISITE	PERIODS				
S.NO. I.	22AGX01	COURSE TITLE Vertical I: FA Testing and Management of Farm Machinery Plant Protection and	RM MECHA PEC	REQUISITE	PERIODS 3	3	0	0	3
S.NO. 1. 2.	COURSE CODE22AGX0122AGX02	COURSE TITLE Vertical I: FA Testing and Management of Farm Machinery Plant Protection and Harvesting Machinery Human Engineering and Safety in Farm Machinery	PEC PEC	REQUISITE	PERIODS 3 3	3	0	0	3
S.NO. 1. 2. 3.	COURSE CODE 22AGX01 22AGX02 22AGX03	COURSE TITLE Vertical I: FA Testing and Management of Farm Machinery Plant Protection and Harvesting Machinery Human Engineering and Safety in Farm Machinery Operations Design of Agricultural	PEC PEC PEC PEC	REQUISITE	PERIODS 3 3 3	3 3 3	0 0 0	0 0 0	3 3 3
S.NO. 1. 2. 3. 4.	COURSE CODE 22AGX01 22AGX02 22AGX03 22AGX04	COURSE TITLE Vertical I: FA Testing and Management of Farm Machinery Plant Protection and Harvesting Machinery Human Engineering and Safety in Farm Machinery Operations Design of Agricultural Machinery Hydraulic Drives and	ARM MECHA PEC PEC PEC PEC	REQUISITE	PERIODS 3 3 3 3 3	3 3 3 3	0 0 0 0	0 0 0 0	3 3 3 3 3
S.NO. 1. 2. 3. 4. 5.	COURSE CODE 22AGX01 22AGX02 22AGX03 22AGX04 22AGX05	COURSE TITLE Vertical I: FA Testing and Management of Farm Machinery Plant Protection and Harvesting Machinery Human Engineering and Safety in Farm Machinery Operations Design of Agricultural Machinery Hydraulic Drives and Controls Precision Farming	ARM MECHA PEC PEC PEC PEC PEC	REQUISITE	PERIODS 3 3 3 3 3 3 3	3 3 3 3 3	0 0 0 0	0 0 0 0	3 3 3 3 3 3

		Vertical II:	RENEWABL	E ENERGY					
9.	22AGX11	Biochemical and Thermo chemical Conversion of biomass	PEC	-	3	3	0	0	3
10.	22AGX12	Waste and By-Product Utilization	PEC	-	3	3	0	0	3
11.	22AGX13	Solar Energy Engineering	PEC	-	3	3	0	0	3
12.	22AGX14	Wind Energy Engineering	PEC	-	3	3	0	0	3
13.	22AGX15	Alternate Energy Sources	PEC	-	3	3	0	0	3
14.	22AGX16	Energy Storage Systems	PEC	-	3	3	0	0	3
15.	22AGX17	Energy Auditing and Management	PEC	-	3	3	0	0	3
16.	22AGX18	Carbon Capture and Storage	PEC	-	3	3	0	0	3
		Vertical III: V	WATER MAN	NAGEMENT					
17.	22AGX21	Design of Micro Irrigation Systems	PEC	-	3	3	0	0	3
18.	22AGX22	Reservoir and Farm Pond Design	PEC	-	3	3	0	0	3
19.	22AGX23	Irrigation Water Quality and Waste Water Management	PEC	-	3	3	0	0	3
20.	22AGX24	Watershed Planning and Management	PEC	-	3	3	0	0	3
21.	22AGX25	Groundwater Wells and Pumps	PEC	-	3	3	0	0	3
22.	22AGX26	Water Harvesting	PEC	-	3	3	0	0	3
23.	22AGX27	On-Farm Water Management	PEC	-	3	3	0	0	3
24.	22AGX28	Building Materials, Estimation and Costing	PEC	-	3	3	0	0	3
	Vert	ical IV: FOOD PROCES	SING AND I	PRODUCT	FECHNOL	OGY	,		
25.	22AGX31	Emerging Technologies in Food Processing	PEC	-	3	3	0	0	3
26.	22AGX32	Storage and Packaging Technology	PEC	-	3	3	0	0	3
27.	22AGX33	Refrigeration and Cold Chain Management ^{\$}	PEC	-	3	3	0	0	3

28.	22AGX34	Food Process Equipment and Design	PEC	-	3	3	0	0	3
29.	22AGX35	Processing of Fruits and Vegetables	PEC	-	3	3	0	0	3
30.	22AGX36	Food, Plant Design and Management	PEC	-	3	3	0	0	3
31.	22AGX37	Food Quality and Safety	PEC	-	3	3	0	0	3
32.	22AGX38	Dairy Technology	PEC	-	3	3	0	0	3
	Vertica	I V: AGRI-BUSINESS M	ANAGEMEN	IT AND EN	TREPRUNE	RSI	HIP	I	
33.	22AGX4I	Agricultural Business Management	PEC	-	3	3	0	0	3
34.	22AGX42	Entrepreneurship Development	PEC	-	3	3	0	0	3
35.	22AGX43	Agricultural Marketing, Trade and Prices	PEC	-	3	3	0	0	3
36.	22AGX44	Extension Methods and Transfer of Technology	PEC	-	3	3	0	0	3
37.	22AGX45	Commercial Agriculture	PEC	-	3	3	0	0	3
38.	22AGX46	Agricultural Finance, Banking and Co-operation	PEC	-	3	3	0	0	3
39.	22AGX47	Ornamental and Landscape Gardening	PEC	-	3	3	0	0	3
40.	22AGX48	Seed Technology Applications	PEC	-	3	3	0	0	3
		Vertical VI: SMAR	T AGRICUL	TURAL SYS	TEMS				
41.	22AGX51	Protected Cultivation	PEC	-	3	3	0	0	3
42.	22AGX52	Climate Change and Adaptation	PEC	-	3	3	0	0	3
43.	22AGX53	Remote Sensing and GIS for Agricultural Engineers	PEC	-	3	3	0	0	3
44.	22AGX54	Automation in Agriculture	PEC	-	3	3	0	0	3
45.	22AGX55	IT in Agriculture	PEC	-	3	3	0	0	3
46.	22AGX56	Instrumentation and Control Engineering	PEC	-	3	3	0	0	3
47.	22AGX57	IoT in Agriculture	PEC	-	3	3	0	0	3
48.	22AGX58	Artificial Intelligence and Machine Learning for Agriculture	PEC	-	3	3	0	0	3

EMI -	Elective - N	Management Courses (H	HSMC)						
S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
١.	22GEA02	Principles of Management	HSMC	-	3	3	0	0	3
2.	22GEA03	Total Quality Management	HSMC	-	3	3	0	0	3
3.	22GEA04	Professional Ethics	HSMC	-	3	3	0	0	3
4.	22GEZ01	Entrepreneurship Development	HSMC	-	3	3	0	0	3
Open	Elective C	ourses (OEC)				•	•	•	
S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
١.	22AGZ01	Fundamentals of Farm Machinery and Management	OEC	-	3	3	0	0	3
2.	22AGZ02	Plant Protection Equipments	OEC	-	3	3	0	0	3
3.	22AGZ03	Waste Water Management and Recycling	OEC	-	3	3	0	0	3
4.	22AGZ04	Baking and Confectionery Technology	OEC	-	3	3	0	0	3
Minor	Degree Co	ourses – Integrated Agr	icultural Syst	ems: Techno	ology and M	ana	gem	ent	
S.NO.	COURSE CODE	COURSE TITLE	CATEGORY	PRE- REQUISITE	CONTACT PERIODS	L	т	Р	с
١.	22AGM01	Production Technology of Field Crops	OEC	-	3	3	0	0	3
2.	22AGM02	Basic Horticulture	OEC	-	3	3	0	0	3
3.	22AGM03	Farm Mechanization	OEC	-	3	3	0	0	3
4.	22AGM04	Soil Conservation and Water Harvesting Technology	OEC	-	3	3	0	0	3
5.	22AGM05	Renewable Power Sources	OEC	-	3	3	0	0	3
6.	22AGM06	Environmental Pollution Management	OEC	-	3	3	0	0	3
7.	22AGM07	Principles of Food Science and Preservation	OEC	-	3	3	0	0	3

8.	22AGM08	Biomass Waste to Energy ^{\$}	OEC	-	3	3	0	0	3	
----	---------	---------------------------------------	-----	---	---	---	---	---	---	--

Semester/ Category	HSMC	BSC	РСС	ESC	EEC	PEC	OEC	Total
I	4	8		8				20
II	4	8	8	5				25
		4	16	5				25
IV			22					22
V			14			6	3	23
VI	3		8		I	6\$	3	21
VII	2				2	6	6\$	16
VIII					10			10
Total	13	20	68	18	13	18	12	162
%	8.02%	12.35%	41.98%	11.11%	8.02%	11.11%	7.41%	
AICTE Credits	16	23	59	29	15	12	9	163
Recommended	9.82%	14.11%	36.20%	17.79%	9.20%	7.36%	5.52%	9.82%

CREDIT DISTRIBUTION SUMMARY

\$ Ratified by Thirteen Academic Council

22MAN01 INDUCTION PROGRAMME (For Common To All Branches)

L	Т	Р	С
-	-	-	-

PRE REQUISITE : NIL

This is a mandatory 2 week programme to be conducted as soon as the students enter the institution. Normal classes start only after the induction program is over.

The induction programme has been introduced by AICTE with the following objective:

"Engineering colleges were established to train graduates well in the branch/department of admission, have a holistic outlook, and have a desire to work for national needs and beyond. The graduating student must have knowledge and skills in the area of his/her study. However, he/she must also have broad understanding of society and relationships. Character needs to be nurtured as an essential quality by which he/she would understand and fulfill his/her responsibility as an engineer, a citizen and a human being. Besides the above, several meta-skills and underlying values are needed."

"One will have to work closely with the newly joined students in making them feel comfortable, allow them to explore their academic interests and activities, reduce competition and make them work for excellence, promote bonding within them, build relations between teachers and students, give a broader view of life, and build character. "

Hence, the purpose of this programme is to make the students feel comfortable in their new environment, open them up, set a healthy daily routine, create bonding in the batch as well as between faculty and students, develop awareness, sensitivity and understanding of the self, people around them, society at large, and nature.

The following are the activities under the induction program in which the student would be fully engaged throughout the day for the entire duration of the program.

(i) Physical Activity

This would involve a daily routine of physical activity with games and sports, yoga, gardening, etc.

(ii) Creative Arts

Every student would choose one skill related to the arts whether visual arts or performing arts. Examples are painting, sculpture, pottery, music, dance etc. The student would pursue it everyday for the duration of the program. These would allow for creative expression. It would develop a sense of aesthetics and also enhance creativity which would, hopefully, grow into engineering design later.

(iii) Universal Human Values

This is the anchoring activity of the Induction Programme. It gets the student to explore oneself and allows one to experience the joy of learning, stand up to peer pressure, take decisions with courage, be aware of relationships with colleagues and supporting stay in the hostel and department, be sensitive to others, etc. A module in Universal Human Values provides the base. Methodology of teaching this content is extremely important. It must not be through do's and dont's, but get students to explore and think by engaging them in a dialogue. It is best taught through group discussions and real life activities rather than lecturing.

Discussions would be conducted in small groups of about 20 students with a faculty mentor each. It would be effective that the faculty mentor assigned is also the faculty advisor for the student for the full duration of the UG programme.

(iv) Literary Activity

Literary activity would encompass reading, writing and possibly, debating, enacting a play etc.

(v) **Proficiency Modules**

This would address some lacunas that students might have, for example, English, computer familiarity etc.

(vi) Lectures by Eminent People

Motivational lectures by eminent people from all walks of life should be arranged to give the students exposure to people who are socially active or in public life.

(vii) Visits to Local Area

A couple of visits to the landmarks of the city, or a hospital or orphanage could be organized. This would familiarize them with the area as well as expose them to the under privileged.

(viii) Familiarization to Dept./Branch & Innovations

They should be told about what getting into a branch or department means what role it plays in society, through its technology. They should also be shown the laboratories, workshops & other facilities.


(ix) Department Specific Activities

About a week can be spent in introducing activities (games, quizzes, social interactions, small experiments, design thinking etc.) that are relevant to the particular branch of Engineering/Technology/Architecture that can serve as a motivation and kindle interest in building things (become a maker) in that particular field. This can be conducted in the form of a workshop. For example, CSE and IT students may be introduced to activities that kindle computational thinking, and get them to build simple games. ECE students may be introduced to building simple circuits as an extension of their knowledge in Science, and so on. Students may be asked to build stuff using their knowledge of science.

Induction Programme is totally an activity based programme and therefore there shall be no tests / assessments during this programme.

REFERENCES:

I.Guide to Induction program from AICTE

	22EYA01 - PROFESSIONAL COMMUNICATION (Common to All Branches)				
	· · · · · · · · · · · · · · · · · · ·	L	Т	Ρ	С
		2	0	2	3
PRE -	REQUISITE : NIL				
Course	Objectives: • To build essential English skills to address the challe • To enhance communication employing LSRW skills	nges of	fcomn	nunicat	ion
	Outcomes Cognitive dent will be able to Level	in	End S	ge of C emest natior	er
соі	Communicate effectively in various work R environments.		2	0%	
CO2	Involve indiverse discourse forms utilizing LSRW U Skills.		2	0%	
CO3	Participate actively in communication activities that U U		2	0%	
CO4	Associate with the target audience and contexts using varied types of communication.		2	0%	
CO5	Convey the ideas distinctly both in verbal and non- verbal communication in work culture.		2	0%	

UNIT I -INTRODUCTORY SKILLS

Grammar – Parts of Speech – Verb (Auxiliaries – Primary & Modal, Main Verb) -**Listening** – Listening to Short Conversations or Monologues - Listening to Experiences – Listening to Descriptions- **Speaking** – Introducing Oneself – Exchanging Personal information - Talking about food and culture - **Reading**–

Reading for Interrogation – Reading Newspaper, Advertisements and Interpreting - Writing - Seeking Permission for Industrial Visit & In-plant Training

UNIT II – LANGUAGE ACUMEN

Grammar – Word Formation – Tenses (Present Tense) – Synonyms & Antonyms - **Listening** – Listeningto Announcements – Listening to Interviews - Listening and Note-taking - **Speaking** – Talking aboutHolidays & Vacations – Narrating Unforgettable Anecdotes - **Reading** – Skimming – Scanning (Short Textsand Longer Passages) – Critical Reading - **Writing** – Instruction – Process Description

UNIT III – COMMUNICATION ROOTERS

Grammar– Cause and Effect – Tenses (Past Tense) – Discourse Markers - **Listening** – Listening to Telephonic Conversations – Listening to Podcasts - **Speaking** – Talking about neoteric Technologies – Eliciting information to fill a form - **Reading** –Book Reading(Motivational) - Practicing Speed Reading (reading newspaper reports & biographies) - **Writing** – Checklist – Circular, Agenda & Minutes of the Meeting

(6+6)

(6+6)

(6+6)

Grammar – Articles – Homophones & Homonyms – Single line Definition – Phrasal Verb - Listening –
Intensive listening to fill in the gapped text - Speaking –Expressing opinions through Situations & Role
play - Reading – Cloze Texts - Writing – Paragraph Writing
LIST OF SKILLS ASSESSED IN THE LABORATORY

(Multiple Choice / Short / Open Ended Questions) - Writing - E-Mail Writing

I. Grammar

2. Listening Skills

UNIT IV - DISCOURSE FORTE

UNIT V - LINGUISTIC COMPETENCIES

- 3. Speaking Skills
- 4. Reading Skills
- 5. Writing Skills

TOTAL (L:30, P:30) = 60 PERIODS

TEXT BOOKS:

1. Shoba K N., Deepa Mary Francis. English for Engineers and Technologists. Volume 1, 3rd Edition, Orient BlackSwanPvt.Ltd, Telangana, 2022.

Grammar - Tenses (Future Tense) - Yes/No & WH type questions - Negatives - Listening - Listening toTED/ Ink talks -Speaking – Participating in Short Conversations - Reading – Reading Comprehension

REFERENCES:

- I. Koneru, Aruna. English Language Skills. Tata McGraw Hill Education (India) Private Limited, Chennai, 2006.
- 2. Hewings, M. Advanced English Grammar. Cambridge University Press, Chennai, 2000.
- 3. Jack C Richards, Jonathan Hull and Susan Proctor. Interchange. Cambridge University Press, New Delhi, 2015 (Reprint 2021).

WEB REFERENCE:

I. https://youtu.be/f0ugUzEf3A8?si=vyzu5KGIfbu35 IQ

				M	lapping	g of CC) s with	POs /	PSO s					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I									2	3				
2									2	3				
3									2	3				
4									2	3				
5									2	3				
CO (W.A)									2	3				

(6+6)

(6+6)

		22MYB01-CALC						
		(Com	mon to All Branc	hes)			T	
					L	Т	Ρ	С
					3	I	0	4
PRE -	REQUISITE :	NIL						
Course	e Objectives:		nd the mathemat eal time problems.	ical concepts of	matri	ces a	nd an	alytical
000100			e differential and l engineering syster	v .	ons to	o mo	del pl	nysical,
	e Outcomes Ident will be able	to		Cognitive Level	in	End S	ge of Semes inatio	ter
соі		cepts of matrix theory oblems efficiently.	for find solutions	Ap		2	20%	
CO2		eometric configurations tical geometry.	and relationships	An		2	20%	
CO3		partial derivatives wh oblems modeled by the		Ар		2	20%	
CO4	the differentia conduction, flu	erential and integral te l equations and multiple uid mechanics and pote	e integrals in heat ntial theory.	Ар		2	10%	
CO5		the importance of ometry and integral tools.			In	ernal /	Assessi	ment

UNIT I -MATRICES

Characteristic Equation-Eigen values and Eigen vectors of a matrix- Cayley Hamilton Theorem(excluding proof)and its applications-Quadratic Form-Reduction of a Quadratic form to canonical form by orthogonal transformation.

UNIT II – ANALYTICAL GEOMETRY OF THREE DIMENSIONS

Equation of plane–Angle between two planes–Equation of straight lines-Coplanar lines–Equation of sphere –Orthogonal spheres.

UNIT III - GEOMETRICAL APPLICATIONS OF DIFFERENTIAL CALCULUS

Curvature–Curvature in Cartesian co-ordinates-Centre and Radius of curvature-Circle of curvature-Evolutes and Involutes.

UNIT IV - FUNCTIONS OF SEVERAL VARIABLES

Partial derivatives-Euler's theorem on homogeneous function-Jacobian-Maxima and Minima of functions of Two variables-Constrained Maxima and Minima by Lagrange's multiplier method.

UNIT V - MULTIPLE INTEGRALS

Double integration in Cartesian Co-ordinates-Change of order of integration-Area as double integral-Triple Integration in Cartesian Co-ordinates-Volume as triple integrals.

TOTAL(L:45+T:15) :60PERIODS

(9+3) Iding

(9+3)

(9+3)

<u>(9+3)</u>

(9+3)

LIST OF PROGRAMS USING MATLAB(Assignment/OnlineTest):

- 1. Introduction to MATLAB
- 2. Matrix operations-Addition, Multiplication, Transpose and Inverse
- 3. Characteristic equation of a Matrix
- 4. Eigen values and Eigen vectors of Higher order Matrices.
- 5. Curve Tracing
- 6. Determining Maxima and Minima of a function of one variable.
- 7. Determining Maxima and Minima of a function of two variables.
- 8. Evaluating double integrals
- 9. Evaluating triple integrals
- 10. Finding area between two curves.

TEXT BOOKS:

- 11. Grewal, B.S., "Higher Engineering Mathematics", Khanna publications, 42nd Edition, 2012.
- 12. ErwinKreyszig, "Advanced Engineering mathematics", JohnWiley&sons, 9th Edition, 2013.
- 13. Veerarajan, T., "Engineering Mathematics of semesterl&II", TataMcGrawHill, 3rdEdition, 2016.

REFERENCES:

- 14. Bali, N.P., ManishGoyal, "A Textbook of Engineering Mathematics-Sem-II", Laxmi Publications, 6thEdition, 2014.
- 15. Kandasamy, P., Thilagavathy, K., Gunavathy, K., "Engineering Mathematics for first year", Scand&Co Ltd, 9th Revised Edition, 2013.
- 16. GlynJames, "Advanced Engineering Mathematics", Wiley India, 7th Edition, 2007.

				M	lapping	g of CC	Ds with	POs /	PSO s					
	POs													
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		2												
3		2												
4	3													
5	3				2				3			2		
CO (W.A)	3	2			2				3			2		

	22PYB02 - ADVANCED MATERIALS AND NANO TECH (Common to CIVIL, CHEM & AGRI)	NOLO	GY		
	· · · · · · · · · · · · · · · · · · ·	L	Т	Р	С
		3	0	0	3
PRE -	REQUISITE: Nil				
Course	 To gain adequate information about the proper materials. To expose the concepts of Photonics, fiber op engineering materials. 				
	e Outcomes Cognitive Level	in	End S	ge of (emes inatio	ter
соі	Correlate the stress and strain ratio to apply the elasticity for spring materials.		2	.0%	
CO2	Discriminate the thermal conductivity of the medium An to employing in instrument applications.		2	.0%	
CO3	Articulate the role of nanotechnology in environmental sustainability for the field of agriculture.		2	.0%	
CO4	Operate the optical fibers in sensor devices. Ap		2	.0%	
CO5	Appraise the classification of composites in the applications of aerospace components, automotiveEvparts, and sports equipment.Ev		2	.0%	

UNIT I - PROPERTIES OF MATTER

Elasticity – Hooke's law Stress-strain diagram and its uses – factors affecting elastic modulus and tensile strength – torsional stress and deformations – twisting couple – torsion pendulum: theory and experiment - bending of beams – bending moment – cantilever: theory and experiment – uniform and non-uniform bending: theory and experiment – I-shaped girders - stress due to bending in beams.

UNIT II -THERMAL PHYSICS

Mode of heat transfer-thermal conductivity-Newton 's law of cooling –thermal conduction through compound media (bodies in series and parallel) – Thermal conductivity of a good conductor – Forbe's method - Thermal conductivity of bad conductor – Lee's disc – Hazards– Cyclone and flood hazards – Fire hazards and fire protection, fire – proofing of materials, fire safety regulations and firefighting equipment. Prevention and safety measures.

UNIT III -SYNTHESIS AND PROPERTIES OF NANOSTRUCTURES

(9)

(9)

(9)

(9)

Introduction to Nanoscience – Types of nanostructure and properties of Nanomaterials – Synthesis and preparation of Nanomaterials – Nanosensors – Biosensors – Nanoscience and Environment.

UNIT IV -PHOTONICS AND FIBER OPTICS

Photonics: Population of energy levels – Einstein's A and B coefficients derivation – Resonant cavity – Types of lasers – solid state laser (Neodymium) – gas laser (CO_2) Applications of lasers in science – Engineering – Medicine.

Fibre optics: Principle, numerical aperture and acceptance angle - Types of optical fibres (Material, refractive index and mode) -Losses in optical fibre - Fibre optic communication Fibre optic sensors (pressure and displacement).

UNIT V -ADVANCED NEW ENGINEERING MATERIALS

(9)

Ceramics - Types and applications - Composites: classification, role of matrix and reinforcement, processing of fiber reinforced plastics - Metallic glasses: types, glass forming ability of alloys, melt spinning process, applications - Shape memory alloys: phases, shape memory effect, pseudoelastic effect, NiTi alloy and application - Bio material - applications.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- 2. Dattuprasad, Ramanlal Joshi, "Engineering Physics" Tata McGraw hill education, 2019.
- 3. V.Rajendran, Engineering Physics, Tata McGraw-Hill. New Delhi.2017.
- 4. Marikani, "Materials Science", PHI Learning Private Limited, Eastern Economy Edition, 2018.

REFERENCES:

- 1. Subrahmanyam N, Brijlal, "A Text Book of Optics" S.Chand& Co. Ltd, New Delhi, 2017.
- 2. Kongbamchandramanisingh, "Basic Physics", PHI, 2018.
- 3. M.N.Avathanalu, P.G.Kshirsagar "A text book of engineering physics" S.Chand&company Ltd, 2017.

WEB LINKS:

- <u>https://bayanbox.ir/view/7764531208313247331/Kleppner-D.-Kolenkow-R.J.-Introduction-to-Mechanics-2014.pdf.</u>
- 2. <u>https://physicaeducator.files.wordpress.com/2017/11/electricity_and_magnetism-by-purcell-3ed-ed.pdf.</u>
- 3. https://rajeshvcet.home.blog/regulation-2021/ph3151-engineering-physics-study-materials/
- 4. <u>https://zenodo.org/record/243407#.ZEgPZXZBzIU</u>
- 5. <u>https://farside.ph.utexas.edu/teaching/qmech/qmech.pdf</u>.
- 6. <u>https://web.pdx.edu/~pmoeck/phy381/workbook%20nanoscience.pdf</u>.

				Марр	oing of	f COs	with	POs /	PSOs					
CO 2						PC	Os						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
l	3	2												
2	3	2												
3	3						2							
4	3		2											
5	3					2	2					2		
CO (WA)	3	2	2			2	2					2		

		22AGC01 - BASICS OF ENGINEERI	NG MECHANIC	S			
				L	Т	Р	С
				2	I	0	3
PRE -	REQUISITE :	NIL					
Course	e Objectives:	 To analyze the behaviour of the p forces To gain knowledge related to frict To study the geometric propertie To acquire knowledge on the beha action of forces 	tion and its applicat is of the different p	ions Iane ai	reas		on of
	e Outcomes udent will be able	to	Cognitive Level	in	End S	ge of (Semes inatio	ter
соі	Evaluate the fo and rigid bodies	rces and support reactions of particles in equilibrium.	An		2	.0%	
CO2	Solve the probl equilibrium con	ems involving dry friction under ditions	An		2	.0%	
CO3		centroid, centre of gravity and moment ious plane and composite areas	An		2	.0%	
CO4	Analyze the pro	blems involving dynamics of particle	An		2	.0%	
CO5	Demonstrate tl practical applica	ne concept of forces and their effects in tions	Ap		2	.0%	

UNIT I – STATICS OF PARTICLE

Units and dimensions - fundamental principles - laws of mechanics, lami's theorem, parallelogram and triangular law of forces, principle of transmissibility – System of forces- coplanar and concurrent forces - resultant force - statics of particles in two dimension - free body diagram - equilibrium of particles in two dimensions - problems

UNIT II - STATICS OF RIGID BODY

Rigid body - Statics of rigid body in two dimensions - moment of a force about a point and about an axis -Varignon's theorem - Resultant of parallel and nonconcurrent forces - moments and couple - equilibrium of rigid bodies in two dimensions - requirements of stable equilibrium- types of supports and their reactions

UNIT III - FRICTION

Frictional force - Laws of Coulomb friction - Limiting friction - co-efficient of friction and angle of friction -Impending motion - angle of repose - cone of friction - simple contact friction - ladder friction - belt friction - transmission of power through belts - problems involving the equilibrium of a rigid bodies with frictional forces

(9)

(9)

(9)

UNIT IV- PROPERTIES OF SECTIONS

Centroid and Centre of Gravity - first and second moment of area - centroid of plan and composite plane Areas - moment of Inertia of plane and composite plane areas - Radius of gyration-parallel axis theorem perpendicular axis theorem - polar moment of inertia - Problems

UNIT V - DYNAMICS OF PARTICLES

Kinematics - Displacements, velocity and acceleration, their relationship - linear motion with uniform and variable acceleration - curvilinear motion and projectile motion - Kinetics of particles - Newton's law, D'Alembert's Principle - work energy equation - impulse momentum equation - problems

TOTAL (L:30 +T15) = 45 PERIODS

TEXT BOOKS:

- 1. Vela Murali, "Engineering Mechanics", Oxford University Press, 2010.
- 2. Ferdinand, P., Beer and Russell Johnson, E., "Vector Mechanics for Engineers: Statics and Dynamics" Tata McGraw Hill International Edition, 9thEdition, 2010.

REFERENCES:

- 1. Irving H. Shames, "Engineering Mechanics: Statics and Dynamics", Prentice Hall of India Private limited, 2003.
- 2. Russell C. Hibbeler, "Engineering Mechanics: Statics and Dynamics", 12th Edition Prentice Hall, 2009.
- 3. Anthony M. Bedford and Wallace Fowler, "Engineering Mechanics: Statics and Dynamics", 5th Edition, Prentice Hall, 2007.
- 4. Palanichamy, M. S and Nagan, S., "Engineering Mechanics Statics and Dynamics", Tata McGraw-Hill, 3rd Edition, New Delhi, 2005.
- 5. Meriam, J. L. and Kraige, L. G., "Engineering Mechanics: Statics and Dynamics", Wiley Publishers, 6th Edition, 2006.
- 6. Rajasekaran, S. and Sankarasubramanian, G., "Fundamentals of Engineering Mechanics", Vikas Publishing House Pvt. Ltd., 3rd Edition, New Delhi, 2005.

				۲	1appin;	g of CO	Os witl	h POs	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3											3	
3		2	2										2	
4	2	2											2	
5			2									3		2
CO (W.A)	2.5	2.33	2									3	2.33	2

(9)

(9)

		22MEC01 - ENGINEERING G Common to AGRI, CIVIL, CHEMICAL		s)			
				Ĺ	Т	Ρ	С
				2	0	2	3
PRE -	REQUISITE :	Nil					
Course	e Objectives:	 To Construct various plane curve To Construct the concept of proj To Develop the projection of soli To Solve problems in sectioning c To Apply the concepts of orthogr 	ection of points, lir ds f solids and develo	ping t			
	e Outcomes Ident will be able		Cognitive Level	We in	ightag End S Exami	emest	er
соі		wledge of engineering drawing standards ingineering drawings.	Ар		4	0%	
CO2		wledge of engineering drawing standards given 2D problem using first angle of	Ар		20	0%	
CO3		wledge of engineering drawing standards problem using first angle of projection	Ар		2	0%	
CO4	Analyze the giv	ven problem to create 3D drawing	An		20	0%	
CO5		ndent study as a member of team and re oral presentation on engineering	U	Int	ernal A	ssessn	nent

CONCEPTS AND CONVENTIONS (Not for Examination)

Importance of graphics in engineering applications - use of drafting instruments - BIS conventions and specifications - size, layout and folding of drawing sheets - lettering and dimensioning - scales.

UNIT I - PLANE CURVES

Basic geometrical constructions, curves used in engineering practices - conics - construction of ellipse, parabola and hyperbola by eccentricity method - construction of cycloid - construction of involutes of square and circle - drawing of tangents and normal to the above curves - theory of projection - principle of multiview orthographic projection - profile plane and side views - multiple views - representation of three dimensional objects - layout of views.

UNIT II - PROJECTION OF POINTS, LINES AND PLANES

Principal planes - first angle projection - projection of points - projection of straight lines (only first angle projections) inclined to both the principal planes - determination of true lengths and true inclinations by rotating line method - projection of planes (polygonal and circular surfaces) inclined to both the principal planes by rotating object method.

UNIT III - PROJECTION OF SOLIDS

Projection of simple solids like prisms, pyramids, cylinder and cone when the axis is inclined to anyone of the principal plane and parallel to another by rotating object method.

(6+6)

(6+6)

(6+6)

UNIT IV - SECTION OF SOLIDS AND DEVELOPMENT OF SURFACES

(6+6)

Sectioning of solids (prism, cube, pyramid, cylinder and cone) in simple vertical position when the cutting plane is inclined to the one of the principal planes and perpendicular to the other - obtaining true shape of section - development of lateral surfaces of simple and sectioned solids - prisms, pyramids cylinder and cone. (6+6)

UNIT V - ISOMETRIC AND ORTHOGRAPHIC PROJECTIONS

Principles of isometric projection - isometric scale - isometric projections of lines, plane figures, simple solids and truncated solids - prisms, pyramids, cylinders, cones – free hand sketching of orthographic views from isometric views of objects.

TOTAL (L:30+P:30) : 60 PERIODS

TEXT BOOKS:

- I. K.Venugopal and V.Prabhu Raja, "Engineering Graphics", New Age International (P) Limited, 2022.
- 2. N.S Parthasarathy and Vela Murali, "Engineering Drawing", Oxford University Press, 2015.

REFERENCES:

- 1. N.D.Bhatt and V.M.Panchal, "Engineering Drawing", Charotar Publishing House, 53rd Edition, 2014.
- 2. K.R.Gopalakrishna, "Computer Aided Engineering Drawing" (Vol I and II combined) Subhas Stores, Bangalore, 2017.
- 3. K. V.Natarajan, "A text book of Engineering Graphics", Dhanalakshmi Publishers, Chennai, 2018.
- 4. Luzzader, Warren.], and Duff, John M, "Fundamentals of Engineering Drawing with an introduction to Interactive Computer Graphics for Design and Production", Eastern Economy Edition, Prentice Hall of India Pvt Ltd, New Delhi, 2005.
- 5. M.B.Shah and B.C.Rana, "Engineering Drawing", Pearson, 2nd Edition, 2009.

				Ν	1appin	g of CO	Os wit	h POs	/ PSO s					
		POs												
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3	3		3								2	3	
2	3	3		3								2	3	
3	3	3		3								2	3	
4	3	3		3								2	3	
5	3			3					2			3	3	
CO (W.A)	3	3		3					2			2	3	

	22PYP01 - PHYSICS LABORATORY (Common to All Branches)				
		L	т	Ρ	С
		0	0	2	I
PRE -	REQUISITE : 22CHC09				
	• To infer the practical knowledge by applying th correlate with the Physics theory.	ne experime	ntal m	ethods	to
Course	• To introduce different experiments to test bas in optics and electronics	ics of physic	cs conc	epts ap	plied
	e Outcomes Ident will be able to	с	ogniti	ve Lev	el
COI	Examine the effects of material type and loading conditions on results of the non-uniform bending experiment.	the		An	
CO2	Utilize principles of light interaction to determine the particle size materials using laser diffraction techniques.	e of	,	Чp	
CO3	Evaluate the accuracy of the wavelength of different colors with accepted values in the literature	the	I	Ev	
CO4	Measure the effectiveness of the solar cell based on its characteristics.	V-I		Ev	
CO5	Analyze the principles underlying the Air wedge method for determination of the thickness of a thin wire,	the	,	An	

LIST OF EXPERIMENTS:

- I. Determination of Young's modulus by non-uniform bending method
- 2. Determination of (a) wavelength and (b) particle size using Laser.
- 3. Determination of thermal conductivity of a bad conductor Lee 's Disc method.
- 4. Determination of wavelength of mercury spectrum spectrometer grating
- 5. Determination of band gap of a semiconductor.
- 6. Determination of thickness of a thin wire Air wedge method.
- 7. Determination of V-I characteristics of solar cell.

TOTAL (P:30) = 30 PERIODS

Mapping of COs with POs / PSOs														
COs	POs										PSOs			
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3	3												
2	3											2		
3	3	3												
4	3											2		
5	3	3												
CO (weighted average)	3	3										2		

22GEP01 - ENGINEERING PRACTICES LABORATORY (Common to AGRI, BME, CHEM, CIVIL, ECE, EEE and MECH Branches)								
			L	С				
			0	0	4	2		
PRE -	REQUISITE :	NIL						
Course	e Objective:	 To provide hands on training on various basic engineering To provide hands on training on welding in mechan To provide hands on training on various basic engineering To understand the basic working principle of election To understand the basic working principle of election 	nical er gineerii ric con	ngineer ng prao nponei	ring ctices i nts			
The Stu	dent will be able	Course Outcomes to	Co	gnitiv	e Lev	el		
СОІ	Design new lay	youts of civil work for residential and industrial buildings.	Ap					
CO2	Apply the cor components	Apply the concepts of welding in repairing works and making various Ap components						
CO3	Design new components using machining processes in real life and Ap industries							
CO4		s of basic electrical engineering for wiring in different areas arious electrical quantities		А	Ψ			
CO5	Apply electron	Ар						

GROUP-A (MECHANICAL AND CIVIL ENGINEERING)

I - CIVIL ENGINEERING PRACTICE

Buildings:

a. Study of plumbing and carpentry components of residential and industrial buildings, Safety aspects

Plumbing:

- a. Study of tools and operations
- b. Hands-on-exercise: External thread cutting and joining of pipes

Carpentry:

- a. Study of tools and operations
- b. Hands-on-exercise: "L" joint and "T" joint

II - MECHANICAL ENGINEERING PRACTICE

Welding:

- a. Study of arc welding, gas welding tools and equipments
- b. Arc welding- Butt joints, Lap joints and Tee joints
- c. Practicing gas welding

(15)

(15)

Basic Machining: a. Study of lathe and drilling machine b. Facing and turning c. Drilling and Tapping Sheet Metal Work: a. Study of tools and operations b. Rectangular tray c. Cone **GROUP - B (ELECTRICAL AND ELECTRONICS)** I - ELECTRICAL ENGINEERING PRACTICE (15) a. Residential house wiring using Switches ,fuse, indicator, lamp b. Fluorescent lamp wiring c. Stair Case Wiring d. Measurement of electrical quantities - Voltage, current ,power in R Circuit e. Study of Electrical apparatus-Iron box & water heater f. Study of Electrical Measuring instruments- Megger **II - ELECTRONICS ENGINEERING PRACTICE** (15) a. Study of Electronic components and various use of multi meter. b. Measurement of AC signal parameter (peak-peak, RMS period, frequency) using CRO. c. Study of logic gates AND, OR, XOR and NOT.

- d. Study of Clock Signal.
- e. Soldering practice Components Devices and Circuits Using general purpose PCB.
- f. Study of Half Wave Rectifier (HWR) and Full Wave Rectifier (FWR).
- g. Study of Telephone, FM Radio and Cell Phone.

TOTAL(P:60)=60PERIODS

	Mapping of COs with POs / PSOs													
	POs											PSO s		
COs		2	3	4	5	6	7	8	9	10	11	12	I	2
I	3				2							3		
2		3			3									
3			2		3							3		
4	3				3									
5	3				3									
CO (W.A)	3	3	2		2.8							3		

		22MAN03 YOGA – (For Common To All Bra	=					
		X	,	L	Т	Ρ	С	
				0	0	Ι	0	
PRE -	REQUISITE :	NIL						
Course	e Objectives:	 To make students in understand mental and physical wellness. To provide awareness about the following yoga exercises and print To develop mental wellbeing through To strengthen the body through To inculcate the knowledge ab benefits 	e significance of le iciples. ough meditation ar physical exercises.	ading nd bre	a pea	ceful li exerci	fe by ses.	
	e Outcomes Ident will be able	to	Cognitive Level	in	End S	ge of (emes inatio	ter	
COI	Understand the mental goodnes	e importance of yoga for physical and s.	U					
CO2	Perform the yo salutation etc.	ga exercises for hand, leg, eye and sun	Ар					
CO3	Learn and pra good mental he	Ар	Internal Assessment					
CO4	Develop their b	ody by performing yoga exercises.	Ap					
CO5		different types of yoga Asanas for personal fitness.	Ар)				

UNIT I – INTRODUCTION TO YOGA

Meaning and Importance of Yoga - Elements of Yoga - Introduction - Asanas, Pranayama, Meditation and Yogic Kriyas - Yoga for concentration & related Asanas (Sukhasana; Tadasana; Padmasana and Shashankasana) - Relaxation Techniques for improving concentration - Yog-nidra.

UNIT II - YOGA AND LIFE STYLE

Asanas as Preventive measures – Hypertension:Tadasana, Vajrasana, Pavan Muktasana, Ardha Chakrasana, Bhujangasana, Sharasana – Obesity: Procedure, Beneits and contraindications for Vajrasana, Hastasana, Trikonasana, Ardh Matsyendrasana – Back Pain: Tadasana, Ardh Matsyendrasana, Vakrasana, Shalabhasana, Bhujangasana - Diabetes: Procedure, Benefits and contraindications for Bhujangasana, Paschimottasana, Pavan Muktasana, Ardh Matsyendrasana – Asthema: Procedure, Benfits and contraindications for Sukhasana, Chakrasana, Gomukhasana, Parvatasana, Bhujangasana, Paschimottasana,

(3)

(3)

UNIT III – MIND EXERCISES	(3)
Naadi sudhi – Thanduvada sudhi – Breathing meditation – Silent meditation – Relax meditation.	
UNIT IV – PHYSICAL EXERCISES (PART– I)	(3)
Hand Exercises – Leg Exercises – Eye Exercises – Sun Salutation.	
UNIT V – ASANAS (PART-I)	(3)
Asanas –Tadasana – Yegapadhasana – Chakrasana – Udkaddasana – Thirikosana – Thanda Paschimottanasana.	isana —
TOTAL (P:15) : 15 PEI	RIODS

TEXT BOOKS/REFERENCES:

I. Light On Yoga by B.K.S. lyengar.

				Ma	apping	of CO	s with	POs / I	PSOs					
						РС	Os						PSC	Ds
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I								3	2			3		
2								3	2			3		
3								3	2			3		
4								3	2			3		
5								3	2			3		
CO (W.A)								3	2			3		

		22EYA	02- PROFESSIONAL COMM (Common to All Brand						
					L	Т	Ρ	С	
					2	0	2	3	
PRE -	REQUISITE :	22EYA	DI						
Course	Objectives	•	To enhance the students with ne	cessary English lang	uage s	kills			
Course	e Objectives:	•	To enable students to communic	ate effectively in an	acade	mic set	ting		
	e Outcomes dent will be able	e to		Cognitive Level	in	ightag End S Exami	emes	ter	
COI	Frame senten with accuracy		in written and spoken forms cy.	R	20%				
CO2	-	kts encou	es to read and understand well- ntered in academic or	U	0%				
CO3		•	ency to express one's thoughts a meaningful way.	U		2	0%		
CO4			mpetence in the four modes of king, Reading and Writing.	Ap		2	0%		
CO5		ons apart	s, such as role plays, debates, from the use of correct n.	U	20%				

UNIT I - LANGUAGE RUDIMENTS

Grammar – Active and Passive Voice – Impersonal Passive Voice – Numerical Expressions - Listening – Listening for Specific Information and Match / Choose / Fill in the texts - Speaking - Describing a Person -Making Plans -Reading - Intensive Reading -Writing - Job Application with Resume

UNIT II - RHETORIC ENHANCERS

Grammar – Reported Speech – Infinitive and Gerund - Listening – Listening to Iconic Speeches and making notes - Listening news / documentaries - Speaking – Talking over Phone – Narrating Incidents - Reading – Extensive Reading (Motivational Books) - Writing – Recommendation

UNIT III - TECHNICAL CORRESPONDENCE

Grammar – If Conditionals – Blended Words - Listening – Listening to business conversation on audio and video of Short Films, News, Biographies - Speaking – Synchronous communication and Asynchronous communication - Opportunities and threats in using digital platform- Reading - Finding key information in a given text - Writing -Netiquettes- Inviting Dignitaries - Accepting & Declining Invitation

UNIT IV - CORPORATE COMMUNICATION

Grammar – Concord – Compound Words - Listening – Listening to Roles and Responsibilities in

Corporate - Listening to technical videos - Speaking – Introduction to Technical Presentation - Story Telling - Reading – Reading and Understanding Technical Articles - Writing – Report Writing (Accident, Survey and feasibility)

(6+6)

(6+6)

(6+6)

(6+6)

UNIT V - LANGUAGE BOOSTERS

Grammar - Idiomatic Expressions – Relative Clauses – Confusable words - Listening – Listening to different kinds of Interviews - Listening to Group Discussion - Speaking – Group Discussion - Reading – Reading and Interpreting Visual Materials - Writing – Analytical Paragraph Writing

LIST OF SKILLS ASSESSED IN THE LABORATORY

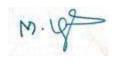
- I. Grammar
- 2. Listening Skills
- 3. Speaking Skills
- 4. Reading Skills
- 5. Writing Skills

TOTAL (L:30 , P:30) = 60 PERIODS

TEXT BOOKS:

5. Sudharshana, N.P and Saveetha.C. *English for Technical Communication*. Cambridge University Press, New Delhi, 2016 (Reprint 2017).

REFERENCES:


1. Rizvi, M Ashraf. *Effective Technical Communication*. Second Edition, McGraw Hill Education India PvtLtd, 2017.

2. Rodney Huddleston, Geoffrey K. Pullum and Brett Reynolds. A Student's Introduction to English Grammar. Second Edition, Cambridge University Press, New Delhi, 2022.

WEB REFERENCE:

I. <u>http://youtu.be/URtdGiutVew</u>

				M	lapping	g of CC	Os witł	n POs /	PSO s						
						P	Os						PSOs		
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I									2	3					
2									2	3					
3									2	3					
4									2	3					
5									2	3					
CO (W.A)									2	3					

(6+6)

22MYB02 – PARTIAL DIFFERENTIAL EQUATIONS AND TRANSFORM TECHNIQUES (Common to AGRI, CIVIL, CHEMICAL, MECH Branches)

				L	Т	Ρ	С
				3	I	0	4
PRE -	REQUISITE :	NIL					
Course	e Objectives:	 To make the conversant with concepts Fourier Transforms to represent perio analysis. To provide adequate knowledge in part boundary value problems. 	dical physical pro	oblems	in eng	gineerii	ng
	e Outcomes dent will be able	e to	Cognitive Level	in	End S	ge of (Semes inatio	ter
COI		ious techniques of Fourier series to obtain lifferent functions.	Ap		2	.0%	
CO2		methods of partial differential equations in cs and water resource management.	Ар	20%			
CO3	Solve the initi Fourier series	al and boundary value problems by using s.	Ар		2	.0%	
CO4	the problems	concepts of Transform Techniques to solve in stability analysis, Structural Analysis, m design and analysis.	An		4	0%	
CO5		the importance of Transform Techniques ferential equations in engineering using	Ар	Int	ernal /	Assessr	nent

UNIT I – FOURIER SERIES

Dirichlet's condition – Fourier series: Half range sine series – Half range cosine series – Parseval's identity for half range series – Root mean square value of a function – Harmonic analysis.

UNIT II -PARTIAL DIFFERENTIAL EQUATIONS

Formulation of partial differential equations by eliminating arbitrary constants and functions – Solution of standard types first order partial differential equations of the type f(p,q)=0, Clairaut's form – Lagrange's linear equations –Linear partial differential equation of second and higher order with constant coefficient of homogeneous types.

UNIT III - APPLICATIONS OF PARTIAL DIFFERENTIAL EQUATIONS

Classification of second order quasi linear partial differential equations – Solution of one dimensional wave equation (Zero and non-zero velocity) – One dimensional heat equation (Temperature reduced to zero and non zero boundary conditions) – Steady state solution of two dimensional heat equation(Finite and infinite plate).

UNIT IV --FOURIER TRANSFORM

Fourier integral theorem(Statement only) – Fourier transform pair - Sine and Cosine transforms – Properties -Transforms of simple functions – Convolution theorem – Parseval's identity(Excluding proof).

(9+3)

(9+3)

(9+3)

(9+3)

UNIT V -LAPLACE TRANSFORM

Condition for existence - Transforms of Elementary functions –Basic Properties- First & Second Shifting Theorems(Statement only) - Initial and Final value Theorems. Inverse Laplace transforms -Convolution theorem (Excluding proof)- Solution of linear second order ordinary differential equations with constant coefficients using Laplace transform.

TOTAL (L:45+T:15) : 60 PERIODS

TEXT BOOKS:

- I. Veerarajan.T,"Engineering Mathematics (for semester III), 3rd ed., Tata McGraw Hill, New Delhi.
- 2. Kandasamy.P, Thilagavathy.K, and Gunavathy.K., "Engineering Mathematics; Volume III", S.Chand&Coltd., 2008.
- 3. GrewalB.S,"Higher Engineering Mathematics", 42nd ed., Khanna publishers, New Delhi, 2012.

REFERENCES:

- 1. Goyal Manish and Bali.N.P,"A Text book of Engineering mathematics", 6th ed.,Laxmi Publication (P) Ltd,New Delhi, 2012.
- 2. Kreyszig, Erwin,"Advanced Engineering Mathematics", 9th ed., Wiley Publications, New Delhi, 2006.

Singaravelu.A,"Transforms and Partial Differential Equations", Reprint Edition 2013, Meenakshi Publications, Tamilnadu.

				M	lapping	g of CC	Ds with	POs /	PSO s					
		POs												
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I		2												
2	3													
3	3													
4	3													
5	3				2				3			3		
CO (W.A)	3	2			2				3			3		

	220	YB05 CHEMISTRY FOR AGRICUL (For AGRI Branch On		ERS			
		×		L	Т	Р	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objectives:	 To make the students conversant techniques, nature of bonding, enternation metals. To impart knowledge to the nanochemistry and fundamental weathering 	gineering materials e students on th	and co ne ba	orrosiv sic c	ve natu oncept	re of s of
	e Outcomes udent will be able	to	Cognitive Level	in	End S	ge of (Semes inatio	ter
COI		es of hardness in water and its removal er treatment techniques.	Ар		2	.0%	
CO2	Categorize the for various appl	properties of lubricants and refractories ications.	Ар		2	.0%	
CO3	Explore the typ	e of corrosion and its control measures.	An		2	.0%	
CO4		basic concepts of soil and identify the zers and pesticides in modern agriculture.			2	.0%	
CO5	Illustrate the c applications.	oncepts of nanoscience and its various	Ар		2	.0%	

UNIT I – WATER TECHNOLOGY

Hardness – types – estimation by EDTA method. Water quality parameter – BOD and COD - Domestic water treatment – disinfection methods (chlorination, ozonation and UV treatment) – Boiler troubles (scale, sludge, priming, foaming and caustic embrittlement) – Internal conditioning (carbonate, phosphate and calgon) – External conditioning – demineralization process – desalination – reverse osmosis method.

UNIT II – CHEMICAL BONDING AND ENGINEERING MATERIALS

Chemical bond – Types of bonds - Covalent bond – Hydrogen fluoride, Methane (overview only) - Ionic bond – Sodium Chloride, Magnesium Oxide (overview only) - Coordinate bond – Hydrogen Peroxide, Ozone (overview only) - Hydrogen Bond – Types of hydrogen bond (overview only).

Engineering Materials : Synthesis of Abrasives – Properties of Refractories – Lubricants.

UNIT III – SCIENCE OF CORRISION

Corrosion – types - chemical corrosion - pilling bedworth rule - electrochemical corrosion – mechanism - galvanic corrosion - differential aeration corrosion - factors influencing corrosion - corrosion control - sacrificial anode and impressed cathodic current methods - corrosion inhibitors.

(9)

(9)

(9)

UNIT IV – BASICS OF SOIL

Soil – Pedological and edaphological concepts – Earth – Interior and Exterior of earth -Composition of earth's crust – Rocks and minerals – types – Weathering of rocks and minerals – physical weathering - chemical weathering – biological weathering -- Fundamental soil forming process – Humification – Eluviation – Illuviation – Horizonation and specific soil forming process – Calcification – Decalcification – Fertilizers and pesticides – Effects of using fertilizers and pesticides in modern agriculture.

UNIT – V – NANOCHEMISTRY

Introduction - Types of nanomaterials - Properties and uses of – nanoparticle - nanocluster- nanorod, nanowire and nanotube. - Synthesis of nanomaterials - sol-gel – solvothermal - laser ablation - chemical vapour deposition - electrochemical deposition and electro spinning - Applications of nanomaterials.

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- I. Ravikrishnan, A., "Engineering Chemistry I & Engineering Chemistry II, Sri Krishna Hitech Publishing chem., Co. Pvt. Ltd., 13th ed., Chennai, 2020.
- 2. Dilip kumar Das, "Introductory soil science", Kalyani publishers, 2018.

REFERENCES:

- 1. Jain, P.C. and Monica Jain, "Engineering Chemistry", Vol I &II, Dhanpat Rai Pub, Co., New Delhi I5th ed., 2018.
- 2. "Fundamentals of Soil Science", ISSS Publication, New Delhi, 2019.

WEB LINK:

- I. https://www.sciencedirect.com/book/9781856177054/water-technology
- 2. <u>https://chem.libretexts.org/Bookshelves/Inorganic_Chemistry/Supplemental_Modules_and_Websites_(Inorganic_Chemistry)/Chemical_Compounds/Introduction_to_Chemical_Bonding</u>
- 3. https://www.sciencedirect.com/topics/materials-science/corrosion
- 4. https://www.soils.org/about-soils/basics/
- 5. https://www.sciencedirect.com/topics/chemistry/nanochemistry

				١	1appin	g of C	Os wit	h POs	/ PSOs	5					
						P	Os						PSO		
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3	2													
2		2					2								
3		2					2		2						
4			2				2								
5						2						2			
CO (W.A)	3	2	2			2	2		2			2			

(9)

(9)

22CSC01 - PROBLEM SOLVING AND C PROGRAMMING (Common to All Branches)

		(Common to All	Branches)						
					L	Т	Ρ	С	
					3	0	0	3	
PRE	- REQUISITE : NIL								
Cour	rse Objective:	To equip students wit computational problems					ge to	solve	
	se Outcomes tudent will be able to		Cognitive Level	Weigh Seme		of Co Exan			
COI	Apply basic syntax language to write clear a	and semantics of C and structured code.	Ар	20%					
CO2		nditional statements and actures for developing	Ар			20%			
CO3	Apply knowledge of ar computational problem	rays and strings to solve s.	Ap	20%					
CO4	Identify modular so problem-solving techni computational problem	ques to solve complex	An	20%					
CO5	Analyze the performa pointers and to m efficiently.	nce implications using nanage file operations	An			20%			

UNIT I -PROBLEM SOLVING AND C PROGRAMMING BASICS

(9)

(9)

(9)

(9)

(9)

General Problem Solving: Algorithms, Flowcharts and Pseudo-codes, implementation of algorithms **Basics of C Programming**: Introduction to C - Structure of C program - Programming Rules – Compilation – Errors - C Declarations: Tokens - keywords - identifiers - constants - data types - variable declaration and initialization - type conversion - constant and volatile variables - operators and expressions.

UNIT II - DECISION CONTROL STATEMENTS

Managing Input and Output operations, Decision Control Statements: Decision control statements, Selection/conditional branching Statements: if, if-else, nested if statements. Basic loop Structures/Iterative statements: while loop, for loop, selecting appropriate loop. Nested loops break and continue statements.

UNIT III - ARRAYS AND STRINGS

Introduction to Array - Definition - Array initialization - Characteristics - One Dimensional Array - Array operations -Two dimensional arrays -Strings and String handling functions.

UNIT IV - FUNCTIONS

Functions: Basics - definition - Elements of User defined Functions - return statement, Function types, Parameter Passing Techniques, Function returning more values - Passing Array to Functions - Recursion -Storage classes.

UNIT V - POINTERS AND FILE MANAGEMENT

Pointer concepts - Pointers & Arrays, Structure concepts - Defining, Declaring, Accessing Member Variables, Structure within Structure - Union - File Management in C- Dynamic Memory Allocation

TOTAL (L:45) :45 PERIODS

TEXT BOOKS:

- I. Ashok N. Kamthane, "Programming in C", 2nd Edition, Pearson Education, 2013.
- 2. Sumitabha Das, "Computer Fundamentals and C Programming", 1st Edition, McGraw Hill, 2018.

REFERENCES:

- 1. R. G. Dromey, "How to Solve it by Computer", Pearson Education India; 1st Edition, ISBN10: 8131705625, ISBN-13: 978-8131705629
- 2. Maureen Spankle, "Problem Solving and Programming Concepts", Pearson; 9th Edition, India, ISBN-10: 9780132492645, ISBN-13: 978-0132492645
- 3. Yashavant Kanetkar, "Let us C", 16th Edition, BPB Publications, 2018.
- 4. ReemaThareja., "Programming in C", 2nd Edition, Oxford University Press, New Delhi, 2018.
- 5. Balagurusamy E., "Programming in ANSI C", 7th Edition, Mc Graw Hill Education, 2017.

				٢	1appi	ng of	COs v	vith F	Os / P	SOs					
COs						I	POs						PS	SOs	
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3												2		
2	3		3										2		
3	3				3							3			
4		3			3							3			
5		3										3		2	
CO (W.A)	3	3	3		3							3	2	2	

	22AGC02 - PRINCIPLES AND PRACTICES OF CROP I	PRODU	ст	ION			
		L	-	Т	Р	C	
		3	}	0	0	3	
PRE -	REQUISITE: NIL						
Course	• To develop students' ability to critically eval crop production and protection strategies, productive agricultural environment.						
	e Outcomes Cognitiv udent will be able to Level		in I	End S	ge of (Semes inatio	ter	
COI	Articulate advanced tillage and crop establishment methods, including modern concepts of tillage and sowing techniques, to improve soil fertility and crop establishment in diverse farming scenarios.			2	.0%		
CO2	Analyze crop production and protection strategies, including the use of fertilizers, irrigation, and integrated pest management, to enhance the efficiency and An sustainability of agricultural practices across different crop types and farming systems.		20%				
CO3	Evaluate the effectiveness of sustainable agricultural practices, such as organic farming, integrated farming systems, and dry farming, in enhancing soil health and crop yield under varying climatic and edaphic conditions.			2	.0%		
CO4	Apply integrated crop management techniques, including soil preparation, seed selection, and pest and disease management, across various cropping systems to optimize productivity and sustainability.Ap			4	0%		
CO5	Summarize a report as a team member on the techniques and constraints, observed in crop production and management practices by gaining an field level exposure.		Inte	ernal /	Assessi	nent	

UNIT I – HISTORY OF AGRICUTLURE AND AGRONOMY(9)Agriculture – Definition – Importance and scope – Branches of agriculture – Evolution of man and
agriculture – History of agricultural development in the world and India – ITK – National and International
Agricultural Research Institutes in India and Tamil Nadu. Agronomy – Definition – Importance, meaning
and scope – Agro–climatic zones of India and Tamil Nādu – crops and classification – season – Units and
measurements.

incasti cincitis.	
UNIT II – FIELD PREPARATION AND CROP ESTABLISHMENT	(9)
Tillage – Definition – Types – Objectives – Modern concepts of tillage - Main field preparation – se	eeds –
seed rate – sowing methods – crop establishment methods – plating geometry and factors affecting	
production – climatic – edaphic – biotic – physiographic and socio-economic factors – after cultiva	tion –
Thinning – Gap filing – Earthing up – detrashing – nipping – Pruning and Mulching.	
UNIT III – CROP MANAGEMENT TECHNIQUES	(9)
Weeds – Definition – types – weed control methods – physical cultural – mechanical – chem	ical –
biological controls. Irrigation - methods. Pest and disease and their management. Manures and ferti	lizers-
organic-inorganic -Time and methods of application - Integrated management practices- (IWM, INM,	IPM)

UNIT IV – CROPPING SYSTEMS

Cropping systems – Definition – Principles – Concepts – classification cropping systems of India and Tamil Nadu – cropping patterns – suitable Agriculture – integrated farming systems – organic agriculture – Dry farming.

UNIT V – PACKAGE OF PRACTICES FOR AGRI. AND HORTI. CROPS

Cultivation practices for cereals (Rice, maize) – millets (Cumbu, Ragi, sorghum) – minor millets, pulses (Black gram, green gram, Red gram) – Oil seeds (Groundnut and sesame) – Fiber (Cotton) – Sugar crop (sugarcane). Cultivation practices for Horticulture crops – Vegetables. Fruits and flowers.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- I. Yellamanda Reddy, T., Sankara Reddy, G. H., "Principles of Agronomy", Kalyani Publishers, New Delhi, 2016.
- 2. Chidda SIngh, Prem Singh and Rajtir Sing, "Modern techniques of raising field crops". Oxford & AMP; IBH Publishing Co. Pvt. Ltd., 2nd Edition, New Delhi, 2018.

REFERENCES:

- I. Hand book of Agriculture, ICAR publications, New Delhi, 2016.
- 2. Rajendra Prasad, "Text book of field crop production", Directorate of Information and Publication, Krishi Anusandhan bavan, Pusa, New Delhi. 2015.
- 3. "Crop production guide", Directorate of Agriculture and Tamil Nadu Agricultural University, Coimbatore, 2020.
- 4. Palaniyappan, S. P. and Sivaraman, K. "Cropping systems in the tropics principles and management", New Age International Publishers, Revised 2nd Edition, New Delhi, 2006.
- 5. Kumar. N., "Introduction to Horticulture", Rajalakshmi publications, 7th Edition, Nagercoil, 2015.

	Mapping of COs with POs / PSOs													
		POs									PS	PSOs		
COs	I 2 3 4 5 6 7 8 9 10 11 12									I	2			
I					3								3	
2		3					3						3	
3				3			3						3	3
4													3	3
5									3	3				3
CO (W.A)	3			3			3		3	3			3	3

(9)

(9)

		22EEC04- ELECTRICAL ENG (For AGRI Branch onl	-								
				L	Т	Р	С				
				3	0	0	3				
PRE -	REQUISITE :	NIL									
 To impart knowledge on the concepts of measuring instruments, Electrical wiring, machines, Drives with protection To understand the concept of sensor and Transducer 											
	-	Course Outcomes Student will be able to	Cognitive Level	We in	End S	ge of C emest natior	ter				
соі		entation principles to predict the various ruments, sensor and transducers.	Ap	25%							
CO2	Analyze the pr wiring and elec	rotection circuits that used for electrical strical fencing.	An	25%							
CO3	0	ne ideas about the earthing and of earth resistance.	An		2.	5%					
CO4		peration and types of electrical machines iments, motors and drives	Ap		25	5`%					
CO5	authentic appli	independent learner in a team to build an cations of electrical engineering paradigm ffective oral presentation.	С	Inte		ssessn ninar)	nent				

UNIT I - MEASURING INSTRUMENTS

(9)

(9)

Instruments: Introduction, Classification – Indicating Instruments: Operating Principles, Moving Iron, Moving Coil – Induction type Energy meter - Measurement of Earth resistance: Fall of potential method and Earth tester.

UNIT II - ELECTRICAL WIRING AND FENCING

Electric Wiring: Types of wires, Wiring materials, Casing and Capping wiring, Cleat wiring, Batten Wiring and Conduit Wiring - Electric Fencing: working principle, Earth Return System, Fence Return System, Bi-Polar Fencing System, Energisers.

UNIT III – PROTECTION

Introduction to Fuses - Circuit Breaker: Operation - Types: MCB, MCCB, ELCB - Earthing:	Types – Pipe and Plate Earthing, System and Equipment's Earthing. UNIT IV - ELECTRICAL MACHINES AND DRIVES	(9)
		(9)

Single Phase Induction Motor: Constructional details, Starting methods - Applications -	
Electric drives: Introduction, Classifications, General electric drive system (Block diagram	(9)
Approach only)	

UNIT V SENSORS AND TRANSDUCERS

Sensors: Introduction, Position sensor, Velocity sensor, Proximity sensor, Hall effect sensor Thermistor and Thermocouple - Transducer: Principle of operation, Resistive potentiometer, LVDT, Piezo electric, capacitive.

TOTAL = 45 PERIODS

(9)

TEXT BOOKS:

- 1. Kothari, D. P. and Nagarath, I. J., "Basic Electrical Engineering", McGraw Hill Education (India) Private Limited, 4th Edition, Third Reprint, 2019.
- 2. Muthusubramaian, R., Salivahanan, S. and Muraleedharan, K.A., "Basic Electrical, Electronics and Computer Engineering", Tata McGraw Hill publishers, 2nd ed., New Delhi, 2012.

REFERENCES:

1. Bhattacharya, S. K., "Basic Electrical and Electronics Engineering", Pearson India, Second Edition, New Delhi, 2017.

² Sawhney, A. K., "A Course in Electrical and Electronic Measurement and Instrumentation", Dhanpat Rai & Sons, 29th Edition, New Delhi, 2021.

	Mapping of COs with POs / PSOs													
COs						F	'O s						F	'SO s
COS	I	2	3	4	5	6	7	8	9	10		12	Ι	2
I	3												2	
2		3											2	
3		3											2	
4	3												2	
5									3	3	3	3		
CO (W.A)	3	3							3	3	3	3	2	

22CSP01 - PROBLEM SOLVING AND C PROGRAMMING LABORATORY (Common to All Branches)

		l l	,								
				L	Т	Ρ	С				
				0	0	4	2				
PRE -	REQUISITE :	NIL									
Cours	se Objective:	To develop programs to solve ba C language	asic problems by understan	ding b	asic co	oncep	ts ir				
	se Outcomes udent will be ab	Cognitive	Leve								
COI	Formulate the	algorithms for simple problems	Ap								
CO2	Apply the co types	ncept of pointers of different	Ар								
CO3	Apply and main and structures	nipulate data with arrays, strings	Ap								
CO4 Apply the concept of functions and dynamic memory allocation Ap											
CO5	Analyse and encountered d	d correct logical errors luring execution	An								

١.	Draw the flowchart for the following using Raptor tool.
	a) Simple interest calculation
	b) Greatest among three numbers
	c) Find the sum of digits of a number
2.	Programs for demonstrating the use of different types of operators like arithmetic, logical
	relational and ternary operators (Sequential and Selection structures)
3.	Programs for demonstrating repetitive control statements like 'for', 'while' and 'do-while'
	(Iterative structures)
4.	Programs for demonstrating one-dimensional and two-dimensional numeric array
5.	Programs to demonstrate modular programming concepts using functions
6.	Programs to implement various character and string operations with and without built-in
	library functions.
7.	Programs to demonstrate the use of pointers
8.	Programs to illustrate the use of user-defined data types
9.	Programs to implement various file management.
10	Program Using Dynamic memory allocation functions

HARDWARE / SOFTWARE REQUIRED FOR A BATCH OF 30 STUDENTS:

Hardware:

- LAN System with 33 nodes (OR) Standalone PCs 33 Nos.
- Printers 3 Nos.
- Software:
- RAPTOR Tool
- Compiler C

TOTAL (P:60): 60 PERIODS

				Ν	1appin	g of C	Os wit	th POs	s / PSC)s				
COs	POs												PS	Os
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2	3												2	
3	3												2	
4	3												2	
5		3			2							2	3	
CO (W.A)	3	3			2							2	2.4	

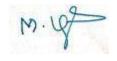
	22AGP01 -	CROP PRODUCTION AND HUS	BANDRY LABO	ORAT	ORY		
				L	Т	Р	С
				0	0	4	2
PRE -	REQUISITE: NI	L					
Course	e Objective:	• To equip students with practica harvest processes, thereby enab farming techniques for impro agriculture.	oling them to app	ly and	l analy	ze mo	dern
	e Outcomes udent will be able to	o	Cognitive Level	in	End S	Semes	ter
COI	secondary tillag	al skills in handling primary and e implements, and meteorological ying their understanding of equipment ty procedures.	Ap		20%		
CO2	,	ypes of seeds, fertilizers, manures, and ires, and analyze their suitability for	An		Weightage of CO in End Semester Examination		
CO3	different crops a	anure and fertilizer requirements for nd apply the appropriate methods for analyzing the impact on crop growth	An		2	20%	
CO4	treatments, so	nethods of land configuration and seed wing methods and analyze the arious post harvest techniques.	Ар		2	20%	
CO5	,	effectiveness of different weeding proficiently use weeding tools and	An		2	20%	

LIST OF EXPERIMENTS

- I. Identification of seeds, seed rates, manures, fertilizers, green and green leaf manures.
- 2. Identification of tools and implements.
- 3. Acquiring skill in handling primary and secondary tillage implements.
- 4. Practicing different methods of land configuration.
- 5. Practicing different methods of seed treatments and sowing methods.
- 6. Practicing various inter-cultural operations.
- 7. Working out manures and fertilizers requirements of crop and practicing methods of application.
- 8. Identification of Weeds, weeding practices and handling of weeding tools and implements.
- 9. Practicing various Harvest Post harvest techniques in field crop.
- 10. Study on Meteorological Instruments and visit to AWS.

TOTAL (P: 60) = 60 PERIODS

	Mapping of COs with POs / PSOs																		
						PC	Ds						PSO						
COs	I	I 2 3 4 5 6 7 8 9 IO II I2												2					
I	3				3								3						
2							3					2	3						
3				3								2	3	3					
4	3		3									2	3	3					
5					3									3					
CO (W.A)	3		3	3	3		3					2	3	3					


	(Commo	22CYP01 CHEMISTRY LABORATORY n to AGRI, BME, CHEM, CIVIL, ECE, EEE and MECH	l Bran	ches)		
			L	Т	Ρ	С
			0	0	2	Ι
PRE -	REQUISITE :	NIL				
Course	e Objective:	 To determine the copper in brass in the given solut origin of hardness, alkalinity, chloride and dissolved To perform a potentiometric, conductometric titrat solution of known Normality. 	oxygen	in wa	ter.	dic
	e Outcomes Ident will be able	to	Co	gnitiv	e Leve	əl
COI	Predict the vari	ous water quality parameters by volumetric analysis.		А	n	
CO2	Evaluate the am	ount of copper in the given solution by titration method.		E	Ē	
CO3	Analyze the co	nductance and emf of the different solutions.		А	n	
CO4	Analyze and gai	n experimental skill about potential of hydrogen ion.		Ą	n	
CO5	Examine the pH	l of various acidic, basic and neutral solutions.		А	n	

LIST OF EXPERIMENTS :

- 1. Determination of total, temporary & permanent hardness of water by EDTA method.
- 2. Determination of alkalinity in water sample.
- 3. Determination of chloride content of water sample by Argentometric method.
- 4. Determination of DO content of water sample by Winkler's method.
- 5. Estimation of copper in brass by EDTA.
- 6. Conductometric titration of strong acid vs strong base.
- 7. Estimation of iron content of the given solution using potentiometer.
- 8. Determination of strength of given hydrochloric acid using pH meter.

Total (30 P) = 30 periods

	Mapping of COs with POs / PSOs														
						PC	Ds						PS	PSOs	
COs	I 2 3 4 5 6 7 8 9 10 II 12											I	2		
I					3										
2							2								
3							2								
4					3										
5							2								
CO (W.A)					3		2								

		22MAN02R - SOFT/ANALYTICAL (Common to All Branches					
				L	Т	Ρ	С
				Ι	0	2	0
PRER	EQUISITE : N	il					
Course	e Objective:	 To analyze wide range of texts, unde To learn various methods for faster i logical reasoning skills 	•		•		elop
	e Outcomes udent will be able	to	Cognitive Level	ir	n Con	ge of (tinuou ient T	IS
COI		verse texts, enhancing their e and expressive capabilities.	U		4	0%	
CO2	Apply various	Ар	o 30%				
CO3	Solve mathem thinking.	atical problems by applying logical	An		3	0%	

UNIT I – VERBAL ABILITY

Grammar- Synonyms - Antonyms - Articles - Preposition - **Listening -** IELTS Listening (Beginners) - **Speaking -** Presentation - JAM - **Reading -** Reading Comprehension - **Writing -** E-mail writing.

UNIT II – APTITUDE

Square Root - Squaring of Numbers - Cube root -Cube of Numbers - Number Systems - L.C.M & H.C.F -Simplification - Problems on Numbers - Calendars - Clocks.

UNIT III - REASONING

Odd Man Out & Number Series - Letter Series - Coding and Decoding - Analogy - Mirror and Water Images.

TOTAL(L:45) = 45 PERIODS

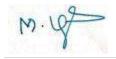
(5+10)

(5+10)

(5+10)

REFERENCES:										
١.	Rizvi, M.Ashraf. Effective Technical Communication. Tata McGraw-Hill Education, 2017.									
2.	Aggarwal R S. <i>Quantitative</i> Aptitude for Competitive Examinations. S.Chand Publishing Company Ltd(s)., 2022.									
3.	Sharma, Arun. How to Prepare for Quantitative Aptitude for the CAT. Tata McGraw – Hill Publishing, 2022.									
4.	Praveen R V. Quantitative Aptitude and Reasoning. PHI Learning Pvt. Ltd., 2016.									

	Mapping of COs with POs / PSOs													
POs											PSOs			
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I									2	3				
2		2		2										
3		2		2										
CO (W.A)		2		2					2	3				


	22MAN05 - YOGA – (For Common To All Bra						
		/	L	Т	Ρ	С	
			0	0	I	0	
PRE - REQUISITE :	NIL						
	• To strengthen the body through p	-					
	• To understand the importance of	-	ethics.				
Course Objective:	• To know the life philosophy of yo	-					
	 To understand the nature laws, ca To inculcate knowledge about diff 		,	d thair	bonofi	to	
				ightag			
Course Outcomes The Student will be able	e to	Cognitive Level	in	End S Exami	emes	ter	
COI Perform phys massage and ac	ical exercises like spine exercises, supressure.	Ар					
	nan values, ethics, time management and e of introspection.	U	Int	ornal A		nont	
CO3 Analyze various life philosophies of yogi's and rishi's. An							
CO4 Understand life lessons and nature laws.							
	different types of yoga Asanas and personal fitness.	Ар					
UNIT I – PHYSICA	L EXCERCISES (PART-II)					(3)	
Breathing Exercises –	Kapalapathi – Maharasanam (Spine Exerices	s) – Massage and A	cupre	ssure.			
UNIT II – HUMAN	VALUE					(3)	
Divine power – Life Punctuality – self confi	force (Bio magnetism) – Importance c dence – mind control.	of Introspection –	- Tim	e man	ageme	nt –	
UNIT III – PHILOS	OPHY OF LIFE					(3)	
organs – safety measu	Hunger and thirst – climatic/weather chang res – protection from natural disaster – p norality – duty – charity – Wisdom of pe	rotection from en	mity -	- prote	ection	from	
UNIT IV – NATUR	E'S LAW OF CAUSE AND EFFECT					(3)	
	nto seven minerals – Natural actions – pa - awareness – introspection.	ittern – precision	– regi	ularity	– Req	uired	
JNIT V – ASANAS ((3)	
Jstrasana – Vakrasana -	-Komugasana – Padmasana – Vajrasana – S						
		TOTAL (P	:15):	15 PE	RIO	DS	
8 Page	Approved by	v Tenth Aca	d o 100 i			: 1	

TEXT BOOKS/REFERENCES:

١.

Light On Yoga by B.K.S. Iyengar.

				٢	1appin	g of C	Os wit	h POs	PSOs					
	POs													
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I								3	2			3		
2								3	2			3		
3								3	2			3		
4								3	2			3		
5								3	2			3		
CO (W.A)								3	2			3		

	(Comm	22MAN06 ENVIRONMENTAL on to AGRI (2 nd semester) and MECH		Branc	hes)		
	X	· · · · · ·	, ,	L	Ť	Ρ	С
				2	0	0	0
PRE -	REQUISITE :	NIL					
Course	e Objective:	 To impart knowledge on ecosys and familiarize about sustainabl materials. To make the students conversa renewable resources, causes of preserve them. 	e development, c	arbon and I	credi [.] ndian	t and scenar	green io of
	e Outcomes udent will be able	to	Cognitive Level	in	End S	ge of (emes inatio	ter
соі	lllustrate the biodiversity	values and conservation methods of	Ар		2	0%	
CO2		uses, effects of environmental pollution the preventive measures to the society.	An		2	0%	
CO3		enewable and non-renewable resources nem for future generations.	Ар		2	0%	
CO4		ifferent goals of sustainable development for societal development.	^{nt} Ap 20			0%	
CO5	Evaluate the re PCB	cycling of battery, cell phone , laptop and	E	20%			

UNIT I - ENVIRONMENT AND BIODIVERSITY

Environment - scope and importance - Eco-system: Structure and function of an ecosystem- types of biodiversity - genetic - species and ecosystem diversity - values of biodiversity - hot-spots of biodiversity - conservation of biodiversity: In-situ and ex-situ.

UNIT II - ENVIRONMENTAL POLLUTION

Pollution – Causes - Effects and Preventive measures of Water, Air and noise pollution - Solid waste management: methods of disposal of solid waste - Environmental protection act: Air act – Water act.

UNIT III - RENEWABLE SOURCES OF ENERGY

Energy management and conservation - New Energy Sources: Different types of new energy sources – Solar energy – wind energy - Applications of Hydrogen energy, Ocean energy resources, Tidal energy conversion.

UNIT IV – SUSTAINABILITY AND MANAGEMENT

Development – Factors affecting development – advantages – disadvantages – GDP - Sustainability- needs – concept - concept of carbon credit – carbon footprint – Environmental management.

(6)

(6)

(6)

(6)

UNIT V – BATTERIES AND RECYCLING OF E-WASTE

Battery lifecycle - Mobile battery life cycle – Laptop battery life cycle – battery maintenance – benefits of recycling battery – E-waste – sources of e-waste - recycling of computing devices - mobile phones - PCB.

TOTAL (L:30): 30 PERIODS

TEXT BOOKS:

 Ravikrishan, A., "Envrionmental Science and Engineering", Sri Krishna Hitech Publishing Co. Pvt. Ltd., 15thEdition, Chennai, 2023.

2.Anubha Kaushik and Kaushik's, C. P., "Perspectives in Environmental Studies", 6th Edition, New Age International Publishers, 2018.

REFERENCES:

- 1. Rajagopalan, R., "Environmental Studies-From Crisis to Cure", Oxford University Press, Third Edition, 2015.
- Erach Bharucha, "Textbook of Environmental Studies for Undergraduate Courses", Orient Blackswan Pvt. Ltd. 2013.

WEB LINK:

- 1. http://www.jnkvv.org/PDF/08042020215128Amit1.pdf
- 2. https://www.conserve-energy-future.com/types-of-renewable-sources-of-energy.php
- 3. https://ugreen.io/sustainability-engineering-addressing-environmental-social-and-economic-issues/
- 4. https://www.researchgate.net/publication/326090368_E-_Waste_and_lts_Management
- 5. https://www.ewastel.com/how-to-reduce-e-waste/

	Mapping of COs with POs / PSOs													
	POs											PSOs		
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I		2												
2		2 3 3												
3	2							2						
4							3		2					
5						3						2		
CO (W.A	2	2	2			3	3	2	2			2		

(6)

22GYA01 HERITAGE OF TAMILS (For Common To All Branches)

PRE REQUISITE : NIL

UNIT I - LANGUAGE AND LITERATURE

Language Families in India - Dravidian Languages - Tamil as aClassical Language - Classical Literature in Tamil - Secular Nature of Sangam Literature - Distributive Justice in Sangam Literature - Management Principles in Thirukural - Tamil Epics and Impact of Buddhism & Jainism in Tamil Land - Bakthi Literature Azhwars and Nayanmars - Forms of minor Poetry - Development of Modern literature in Tamil - Contribution of Bharathiyar and Bharathidhasan.

UNIT II - HERITAGE - ROCK ART PAINTINGS TO MODERN ART -**SCULPTURE**

(3)

(3)

(3)

(3)

Hero stone to modern sculpture - Bronze icons - Tribes and their handicrafts - Art of temple car making -Massive Terracotta sculptures, Village deities, Thiruvalluvar Statue at Kanyakumari, Making of musical instruments - Mridhangam, Parai, Veenai, Yazh and Nadhaswaram - Role of Temples in Social and Economic Life of Tamils.

UNIT III - FOLK AND MARTIAL ARTS

Therukoothu, Karagattam, Villu Pattu, Kaniyan Koothu, Oyillattam, Leatherpuppetry, Silambattam, Valari, Tiger dance - Sports and Games of Tamils.

UNIT IV - THINAI CONCEPT OF TAMILS

Flora and Fauna of Tamils & Aham and Puram Concept from Tholkappiyam and Sangam Literature - Aram Concept of Tamils - Education and Literacy during Sangam Age - Ancient Cities and Ports of Sangam Age -Export and Import during Sangam Age - Overseas Conquest of Cholas.

UNIT V - CONTRIBUTION OF TAMILS TO INDIAN NATIONAL **MOVEMENT AND INDIAN CULTURE**

(3)

Contribution of Tamils to Indian Freedom Struggle - The Cultural Influence of Tamils over the other parts of India – Self-Respect Movement - Role of Siddha Medicine in Indigenous Systems of Medicine – Inscriptions & Manuscripts - Print History of Tamil Books.

TOTAL (L:15): 15 PERIODS

TEXT-CUM-REFERENCE BOOKS

- தமிழக வரலாறு மக்களும் பண்பாடும் –கே.கே.பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் l. மற்றும் கல்வியியல் பணிகள் கடிகம்).
- கணினித் தமிழ் முனைவா் இல.சுந்தரம். (விகடன் பிரசுரம்). 2.
- கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீ(ந) 3.
- பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு) 4.

- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

22GYA0I தமிழா் மரபு (එതെങ്ക് പ്രപ്പിനിപ്പിന്നുക്ക്രഫ്) Ρ С т 0 L L 0 முன் தேவை: இல்லை அலகு 1 மொழி மற்றும் இலக்கியம் (3) இந்திய மொழிக் குடும்பங்கள் – திராவிட மொழிகள் – தமிழ் ஒரு செம்மொழி – தமிழ் செவ்விலக்கியங்கள் – சங்க இலக்கியத்தின் சமயச் சார்பற்ற தன்மை – சங்க இலக்கியத்தில் பகிர்தல் அறம் – திருக்குறளில் மேலாண்மைக் கருத்துக்கள் – தமிழ்க காப்பியங்கள், தமிழகத்தில் சமண பௌத்த சமயங்களின் தாக்கம் – பக்தி இலக்கியம், ஆழ்வார்கள் மற்றும் நாயன்மார்கள் – சிற்றிலக்கியங்கள் – தமிழில் நவீன இலக்கியத்தின் வளர்ச்சி – தமிழ் இலக்கிய வளர்ச்சியில் பாரதியார் மற்றும் பாரதிதாசன் ஆகியோரின் பங்களிப்பு. அலகு 2 மரபு – பாறை ஒவியங்கள் முதல் நவீன ஒவியங்கள் வரை – (3) **ക്ടിന്**പക്കത്കാ: நடுகல் முதல் நவீன சிற்பங்கள் வரை — ஐம்பொன் சிலைகள் — பழங்குடியினா் மற்றும் அவா்கள் தயாரிக்கும் கைவினைப் பொருட்கள், பொம்மைகள் – தோ் செய்யும் கலை – சுடுமண் சிற்பங்கள் – நாட்டுப்புறத் தெய்வங்கள் – குமரிமுனையில் திருவள்ளுவர் சிலை – இசைக் கருவிகள் – மிருதங்கம், பறை, வீணை, யாழ், நாதஸ்வரம் – தமிழர்களின் சமூக பொருளாதார வாழ்வில் കേസ്പിക്കണിൽ പ്രത്കം அலகு 3 நாட்டுப்பறக் கலைகள் மற்றும் வீர விளையாட்டுகள்: (3) ഖിல് ബ്ബപ്പ്പ്പ്, விலாட்டாம். கணியான் தெருக்கூத்து கரகாட்டம் கூதது தோல்பாவைக்கூத்து, சிலம்பாட்டம், வளி, புலியாட்டம், தமிழாகளின் விளையாட்டுகள். அலகு 4 தமிழாகளின் திணைக் கோட்பாடுகள்: (3) தமிழகத்தின் தாவரங்களும், விலங்குகளும் – தொல்காப்பியம் மற்றும் சங்க இலக்கியத்தில் அகம் மற்றும் புறக் கோட்பாடுகள் – தமிழாகள் போற்றிய அறக்கோட்பாடு – சங்ககாலத்தில் தமிழகத்தில் எழுத்தறிவும். கல்வியும் – சங்ககால நகரங்களும் துறை முகங்களும் சங்ககாலத்தில் ஏற்றுமதி மற்றும் இறக்குமதி – கடல்கடந்த நாடுகளின் சோழாகளின் வெற்றி. அலகு 5 இந்திய தேசிய இயக்கம் மற்றும் இந்திய பண்பாட்டிற்குத் தமிழாகளின் (3) பங்களிப்பு: இந்திய விடுதலைப்போரில் தமிழாகளின் பங்கு – இந்தியாவின் பிறப்பகுதிகளில் தமிழ்ப் பண்பாட்டின் தாக்கம் – சுயமரியாதை இயக்கம் – இந்திய மருத்துவத்தில் சித்த மருத்துவத்தின் பங்கு, கல்வெட்டுகள், கையெழுத்துப்படிகள் – தமிழ் புத்தக்களின் அச்சு வரலாறு.

TOTAL (L:15): 15 PERIODS

. .

TEXT-CUM-REFERENCE BOOKS

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே.பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவர் இல.சுந்தரம். (விகடன் பிரசுரம்).
- கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

22GYA02 TAMILS AND TECHNOLOGY (For Common To All Branches)

L т Ρ С Т

0 0 Т

PRE REQUISITE : NIL

UNIT I - WEAVING AND CERAMIC TECHNOLOGY	(3)
Weaving Industry during Sangam Age – Ceramic technology – Black and Red Ware Potter Graffiti on Potteries.	ries (BRW) –
UNIT II - DESIGN AND CONSTRUCTION TECHNOLOGY	(3)
Designing and Structural construction House & Designs n household materials during Sa - Building materials and Hero stones of Sangam age – Details of Stage Constructions in Silap Sculptures and Temples of Mamallapuram - Great Temples of Cholas and other worship plac of Nayaka Period - Type study (Madurai Meenakshi Temple)- Thirumalai Nayakar Mahal - Houses, Indo - Saracenic architecture at Madras during British Period.	opathikaram - ces - Temples
UNIT III - MANUFACTURING TECHNOLOGY	(3)
Art of Ship Building - Metallurgical studies - Iron industry - Iron smelting, steel -Copper and g source of history - Minting of Coins – Beads making-industries Stone beads -Glass beads beads -Shell beads/ bone beats - Archeological evidences - Gem stone types described in Silap	- Terracotta
UNIT IV - AGRICULTURE AND IRRIGATION TECHNOLOGY	(3)
Dam, Tank, ponds, Sluice, Significance of Kumizhi Thoompu of Chola Period, Animal Husba designed for cattle use - Agriculture and Agro Processing - Knowledge of Sea - Fisheries – Pe diving - Ancient Knowledge of Ocean - Knowledge Specific Society.	
UNIT V - SCIENTIFIC TAMIL & TAMIL COMPUTING	(3)
Development of Scientific Tamil - Tamil computing - Digitalization of Tamil Books - Dev	velopment of

entific Tamil - Tamil computing – Digitalization of Tamil Books – Developme Tamil Software – Tamil Virtual Academy – Tamil Digital Library – Online Tamil Dictionaries – Sorkuvai Project.

TOTAL (L:15) : 15 PERIODS

TEXT-CUM-REFERENCE BOOKS

- தமிழக வரலாறு மக்களும் பண்பாடும் –கே.கே.பிள்ளை (வெளியீடு: தமிழ்நாடு l. பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- கணினித் தமிழ் முனைவர் இல.சுந்தரம். (விகடன் பிரசுரம்). 2.
- கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை 3. ഖെൺഡ്(പ്ര)
- பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு) 4.

- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

22GYA02 தமிழரும் தொழில்நுட்பமும் (அனைத்து பாடப்பிரிவினருக்கும்)

முன் தேவை: இல்லை

அலகு 1 நெசவு மற்றும் பானைத் தொழில்நுட்பம்:	(3)
சங்ககாலத்தில் நெசவுத்தொழில் – பானைத் தொழிலநுட்பம் – கருப்பு சிவப்பு ட	ாண்டங்கள்
– பாண்டங்களில் கீறல் குறியீடுகள்.	
அலகு 2 வடிவமைப்பு மற்றும் கட்டிடத் தொழில்நுட்பம்:	(3)
சங்ககாலத்தில் வடிவமைப்பு மற்றும் கட்டுமானங்கள் மற்றும் சங்ககாலத்தில பொருட்களல் வடிவமைப்பு – சங்ககாலத்தில் கட்டுமான பொருட்களும் நடுக்க சிலப்பதிகாரத்தில் மேடை அமைப்பு பற்றிய விவரங்கள் – மாமல்லபுரச் ச கோவில்களும் – சோழர் காலத்துப் பெருங்கோயில்கள் மற்றும் பிற வழிபாட்டுத் த நாயக்கர் காலக் கோயில்கள் – மாதிரி கட்டமைப்புகள் பற்றி அறிதல், மதுரை அம்மன் ஆலயம் மற்றும் திருமலை நாயக்கர் மஹால் – செட்டிநாட்டு வீடுகள் - காலத்தில் சென்னையில் இந்தோ – சாரோசெனிக் கட்டிடக் கலை.	கல்லும் – ஹ்பங்களும், நலங்கள் – ர மீனாட்சி
அலகு 3 உற்பத்தி தொழில் நுட்படி்:	(3)
கப்பல் கட்டும் கலை — உலோகவியல் – இரும்புத் தொழிற்சாலை – இரும்பை உ எக்கு – வரலாற்றுச் சான்றுகளாக செம்பு மற்றும் தங்க நாணயங்கள் – ப அச்சடித்தல் – மணி உருவாக்கும் தொழிற்சாலைகள் – கல்மணிகள், கண்ணாடி சுடுமண் மணிகள் – சங்கு மணிகள் – எலும்புத் துண்டுகள்– தொல்லியல் சா சிலப்பதிகாரத்தில் மணிகளின் வகைகள்.	நாணயங்கள் மணிகள் –
அலகு 4 வேளாண்மை மற்றும் நீர்பாசனத் தொழில் நுட்பம்:	(3)
அணை, ஏரி, குளங்கள், மதகு—சோழர்காலக் குமுழித் தூம்பின் முக்கியத்துவம் — பராமரிப்பு — கால்நடைகளுக்காக வடிவமைக்கப்பட்ட கிணறுகள் — வேளாண்ச வேளாண்மைச் சார்ந்த செயல்பாடுகள் — கடல்சார் அறிவு — மீன்வளம் — முத முத்துக்குளித்தல் — பெருங்கடல் குறித்த பண்டைய அறிவு — அறிவுசார் சமூகம்.	மை மற்றும்
அலகு 5 அறிவியல் தமிழ் மற்றும் கணித்தமிழ்:	(3)
அறிவியல் தமிழின் வளர்ச்சி — கணித்தமிழ் வளர்ச்சி — தமிழ் நூல்களை மின் பதிப்பு தமிழ் மென்பொருட்கள் உருவாக்கம் — தமிழ் இணையக் கல்விக்கழகம் — தமிழ் ம — இணையத்தில் தமிழ் அகராதிகள்— சொற்குவைத் திட்டம்.	

TOTAL (L:15) : 15 PERIODS

Ρ

0

L

Т 0 С

I

TEXT-CUM-REFERENCE BOOKS

- 1. தமிழக வரலாறு மக்களும் பண்பாடும் கே.கே.பிள்ளை (வெளியீடு: தமிழ்நாடு பாடநூல் மற்றும் கல்வியியல் பணிகள் கழகம்).
- 2. கணினித் தமிழ் முனைவா இல.சுந்தரம். (விகடன் பிரசுரம்).
- 3. கீழடி வைகை நதிக்கரையில் சங்ககால நகர நாகரிகம் (தொல்லியல் துறை வெளியீடு)
- 4. பொருநை ஆற்றங்கரை நாகரிகம். (தொல்லியல் துறை வெளியீடு)
- 5. Social Life of Tamils (Dr.K.K.Pillay) A joint publication of TNTB & ESC and RMRL (in print)
- 6. Social Life of the Tamils The Classical Period (Dr.S.Singaravelu) (Published by: International Institute of Tamil Studies.
- 7. Historical Heritage of the Tamils (Dr.S.V.Subatamanian, Dr.K.D. Thirunavukkarasu) (Published by: International Institute of Tamil Studies).
- 8. The Contributions of the Tamils to Indian Culture (Dr.M.Valarmathi) (Published by: International Institute of Tamil Studies.)
- 9. Keeladi 'Sangam City Civilization on the banks of river Vaigai' (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 10. Studies in the History of India with Special Reference to Tamil Nadu (Dr.K.K.Pillay) (Published by: The Author)
- 11. Porunai Civilization (Jointly Published by: Department of Archaeology & Tamil Nadu Text Book and Educational Services Corporation, Tamil Nadu)
- 12. Journey of Civilization Indus to Vaigai (R.Balakrishnan) (Published by: RMRL) Reference Book.

22MYB03 – STATISTICS AND NUMERICAL METHODS

(Comı	mon to AGRI, A	AI&DS,CSE,IT,IOT,CS(Cyber security)CIVI	L,CHEMICAL,	EEE,/	ИЕСН	Brane	:hes)			
				L	Т	Ρ	С			
				3	I	0	4			
PRE - I	REQUISITE :	NIL								
		• To understand the concept of test samples and design of experiments.	ting of hypothe	esis fo	or sma	ll and	large			
 Course Objective: To provide adequate knowledge in numerical techniques to ordinary differential equations and numerical integration which p important role in engineering and technology disciplines. 										
	e Outcomes dent will be able	Cognitive Level	Weightage of COs in End Semester Examination							
COI		principles and techniques in experimental e the variance	Ap	20%						
CO2	various types	damental numerical techniques used to solve of mathematical problems on solution of erpolation and numerical integration.	Ap		4	0%				
CO3	Determine th the testing of	e statistics based on the data and related to hypothesis.	An		2	0%				
CO4		-world problems using numerical methods onstrating their applicability and limitations.	Ap 20%							
CO5	approximatio	the importance of interpolation and n techniques to solve real-world problems in ines of Engineering using modern tools.	Ap	Int	ernal A	Assessi	nent			

UNIT I - TESTING OF HYPOTHESIS

Sampling Distributions-Tests for single mean, difference of means (Large and Small samples) Using z ,t - distribution, F – distribution- Chi-square - Test for independence of attributes and Goodness of fit.

UNIT II - DESIGN OF EXPERIMENTS

Analysis of variance- Completely randomized design - Randomized block design - Latin square design.

UNIT III - SOLUTION OF EQUATIONS AND EIGEN VALUE PROBLEMS

Solution of algebraic and transcendental equations - Fixed point iteration method - Newton Raphson method- Solution of linear system of equations Gauss elimination method – Iterative methods of Gauss Jacobi and Gauss Seidel Methods– Eigenvalues of a matrix by Power method .

UNIT IV - INTERPOLATION AND APPROXIMATION

(9+3)

Lagrange's and Newton's divided difference interpolations - Newton's forward and backward difference interpolation - Numerical single and double integrations using Trapezoidal and Simpson's I/3 rules - Romberg's Methods.

t -

(9+3)

- (9+3)
- . -/

(9+3)

UNITY - NUMERICAL DIFFERENTIATION AND INTEGRATION

(9+3)

Single step methods: Taylor's series method - Euler's method - Modified Euler's method - Fourth order Runge - Kutta method for solving first order differential equations - Multi step methods: Milne's and Adams - Bash forth predictor corrector methods for solving first order differential equations.

TOTAL (L:45+T:15): 60 PERIODS

TEXT BOOKS:

- 1. Grewal, B.S., and Grewal, J.S., "Numerical Methods in Engineering and Science", Khanna Publishers, 10th Edition, New Delhi, 2015.
- 2. Johnson, R.A., Miller, I and Freund J., "Miller and Freund's Probability and Statistics for Engineers", Pearson Education, Asia, 8th Edition, 2015.
- 3. Gupta S.C. and Kapoor V. K., "Fundamentals of Mathematical Statistics", Sultan Chand & Sons, New Delhi, 12th Edition, 2020.

REFERENCES:

- I. Burden, R.L and Faires, J.D, "Numerical Analysis", 9th Edition, Cengage Learning, 2016.
- 2. Devore. J.L., "Probability and Statistics for Engineering and the Sciences", Cengage Learning, New Delhi, 8th Edition, 2014.
- 3. Gerald. C.F. and Wheatley. P.O. "Applied Numerical Analysis" Pearson Education, Asia, New Delhi, 7th Edition, 2007.

	Mapping of COs with POs / PSOs														
	POs													PSOs	
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3												3		
2	3												3		
3		3			3										
4	3														
5	3				3				3			3			
CO (W.A)	3	3			3				3			3	3		

22AGC03 - FUNDAMENTALS OF SOIL SCIENCE

L	Т	Ρ	С
2	0	2	3

management.

PRE - REQUISITE : NIL				
Course	Objective: nutrient dynamics, and managen	• To equip students with the knowledge and skills to analyze soil properties, nutrient dynamics, and management practices in agriculture, enabling them to make informed decisions for sustainable soil use and productivity		
	e Outcomes dent will be able to	Cognitive Level	Weightage of COs in End Semester Examination	
COI	Articulate principles of soil water dynamics and their implications for irrigation, drainage, and water conservation strategies in agricultural practices.		20%	
CO2	Analyze the role of soil organic matter, soil organisms and nutrient cycling processes in soil fertility and sustainability.		20%	
CO3	Apply knowledge of soil physical and chemica properties to analyze and classify soils, and make informed decisions in soil management practices.		40%	
CO4	Evaluate different types of fertilizers and composting techniques to optimize nutrient management and enhance soil health in agricultural systems.		20%	
CO5	Summarize a report as a team member on the techniques and constraints, observed in soil fertility		Internal Assessment	

UNIT I – PHYSICAL PROPERTIES	(8)			
Soil physical properties and their significance – Soil texture and textural classes – soil structure and				
classification – soil consistence. Bulk density, particle density and porosity – soil color- significance –				
causes and measurement. Soil temperature – Soil air – soil water – Measurements – Soil water potentials				
- Soil moisture constants - Movements of soil water - saturated and unsaturated flow - infiltration,				
hydraulic conductivity, percolation, permeability and drainage.				
UNIT II -CHEMICAL PROPERTIES	(7)			
Soil colloids – properties, types and significance – layer silicate clays – their genesis and sources of charges				
- Ion exchange - CEC, AEC and Base saturation - Factors influencing Ion exchange - significance. Soil				
reaction, Buffering capacity and EC				
UNIT III – ORGANIC MATTER AND HUMUS	(5)			
Soil organic matter – Composition – decomposition and mineralization, C: N ratio, carbon cycle –				
Fractions of Soil organic matter – Humus formation. Soil organisms – Beneficial and Harmful effects – Soil				
enzymes.				
UNIT IV – CLASSIFICATION OF FERTILIZERS AND ITS REQUIREMENT	(5)			
Fertilizers – Definition and classification – Primary, Secondary and micronutrients. Calculating fertilizer				
requirements – simple fertilizer – Complex fertilizers – mixed fertilizers – water soluble fertilizers, liquid				
fertilizers.				
UNIT V – COMPOSTING TECHNOLOGY	(5)			
Composting techniques – Aerobic and anaerobic – Enriched FYM and Vermi-compost. Composting of				
organic waste – Sugarcane trash and coir waste				

LIST OF EXPERIMENTS

- I. Soil sample collection
- 2. Visit to soils of different terrains and study of Soil profiles.
- 3. Determination of bulk density, particle density and porosity cylinder, wax coating and core methods.
- 4. Soil textural analysis feel method, International pipette method.
- 5. Determination of soil color and temperature.
- 6. Determination of soil moisture
- 7. Determination of Infiltration rate
- 8. Determination of Hydraulic conductivity.
- 9. Determination of soil pH and EC
- 10. Estimation of Soil organic carbon.

TOTAL (L:30+P:30) : 60 PERIODS

TEXT BOOKS:

- 1. Brady, N. C. and Raymond, C. Weil, "The Nature and properties of Soils", Pearson Education, Inc. publishing as prentice Hall, 14th Edition, 2013.
- 2. Dilip Kumar Das, "Introductory Soil Science", Kalyani Publishers, New Delhi, 2004.
- 3. Schgal, J., "Pedology concepts and application", Kalyani Publishers, New Delhi, 2005.
- 4. "Fundamentals of Soil Science", ISS Publication, New Delhi, 2009.

- 1. Fanning, D. S. and Fanning, C. B., "Soil: Morphology, Genesis and classification", John Wiley and sons, Newyork, 1989.
- 2. Garrison Sposito, "The Chemistry of soils", Amazon Publishers, India, 2008.
- 3. Ghildyal, B. P. and Tripathi, R. P., "Soil physics", New Age International Publications, 2001.

				M	apping	g of CC) s with	POs /	PSOs					
						РС	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3			2										
2				3										
3		3												
4				3			2						3	
5									3	3				
CO (W.A)	3	3		3			2		3	3			2.7	

	22AGC04 - S	TRENGTH OF MATERIALS FOR AGR	ICULTURAL	ENG	SINE	RS	
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 To understand the stresses develop columns, shafts, and connections. To develop skills to select approp calculated stresses and safety factor reliability. To gain knowledge of material prope and factors affecting material behavior 	riate structura rs to ensure s rties relevant t	al me structu	mbers ıral in	based tegrity	d on and
	e Outcomes udent will be able	to	Cognitive Level	in	End S	ge of (emes inatio	ter
соі	gravity in struc	eses and strains, centroids and centre of atural elements subjected to axial, bending, ombined loading conditions.	Ap		2	0%	
CO2	-	tress-strain distributions, shear force and at diagrams for given / derived data.	An		2	0%	
CO3	and structures	echanisms and criteria for failure of materials and beams, including concepts like yield ng moment, ultimate strength, and factors of	An		2	0%	
CO4	Apply principl compatibility o relationships, t structural desig	Ар		2	0%		
CO5	principles of sc	cal engineering components based on the blid mechanics while working in a team and ne same through effective presentations.	Ар		2	0%	

UNIT I – BASICS OF STRESSES AND STRAINS

Simple Stresses and Strains Hookes Law Modulus of Elasticity Principle of Superposition bars of varying sections thermal stresses and strains Elastic Constants – Poisson's Ratio - Bulk Modulus - Shear Modulus - interrelationships - Strain Energy and Impact Loading - Proof Resilience - Modulus of Resilience

UNIT II - CENTRE OF GRAVITY AND MOMENT OF INERTIA

Centroid and Centre of Gravity -geometrical considerations - method of moments - Plane (laminae) sections - symmetrical sections - unsymmetrical sections - Moment of Inertia - Routh rule - method of integration - Theorem of Parallel axes - Theorem of Perpendicular axes - geometric sections - solid and hollow sections

(9)

UNIT III – ANALYSIS OF FRAMED STRUCTURES (TRUSSES)

Structures built of Frames - Types of Frames - Perfect and imperfect frames - deficient and redundant frames - Loads and stresses - Method of Joints - Method of sections - Graphical method – Bow notations - cantilever trusses - freely supported trusses - King Post and Queen Post Trusses

UNIT IV – SHEAR FORCE, BENDING MOMENT AND DEFLECTION (BEAMS)

Beams – Types - Uniformly distributed load and gradually varying load -Shear Force and Bending Moment distributions - Theory of Simple Bending - Bending stress - modulus of section - deflection in beams and cantilevers - Double integration method

UNIT V - COLUMNS, SHELLS AND SHAFTS

Columns and struts - Slenderness ratio - Buckling and crushing - Euler Column theory - applications -Rankine formula-Johnson formula - Indian Standards - Shells -Cylindrical and spherical shells- thin and thick shells - Shafts - torsion in circular shafts - Polar Moment of Inertia - strain energy due to torsion.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. Bansal, R.K., "Strength of Materials", Laxmi Publications (P) Ltd., 2007
- 2. Punmia, B. C., Jain, A. K. and Jain, A. K., 2002, "Strength of Materials", Firewall Media.
- 3. Ramamrutham, S., 2008, "Strength of Materials", Dhanpat Rai Publishing Co., 16th edition, India

REFERENCES:

- 1. Rajput, R. K. "Strength of Materials" (Mechanics of Solids), S. Chand & Company Ltd., 4th edition India, 2010.
- 2. Khurmi, R. S. Strength of Materials (Mechanics of Solids), S. Chand & Company Ltd., 24th Edition, India, 2013.

				М	apping	g of CC) s with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3												
3		3												
4	3												3	
5	2				2				2	2			3	
CO (W.A)	2.8	3			2				2	2			3	

e metsan ogo

(9)

(9)

	22AGC05 - BASIC WORKSHOP TE	CHNOLOGY				
			L	т	Ρ	С
			3	0	0	3
PRE -	REQUISITE : NIL					
Course	 To apply safety practices and proce To equip with problem-solving and professionalism in maintaining optim 	l troubleshooting	skills			
	e Outcomes udent will be able to	Cognitive Level	in	End S	ge of (emest natior	ter
соі	Demonstrate safe work habits that reflect concern and care for self, others and the environment.	Ар		2	0%	
CO2	Assemble the machine basic parts from different materials	Ар		2	0%	
CO3	Analyze the process of manufacturing	An		4	0%	
CO4	Demonstrate the ability to break down manufacturing processes for analyzing the machinery.	Ар		2	0%	
CO5	Analyze technical problems and obtain solution for the same.	An	Int	ernal A	ssessn	nent

UNIT I - WELDING

Introduction to welding, types of welding, Oxyacetylene gas welding, types of flames, welding techniques and equipment. Principle of arc welding, equipment and tools.

UNIT II – LATHE AND DRILLING

Constructional details of center lathe, Main accessories and attachments. Main operations and tools used on center lathes. Types of shapers, Constructional details of standard shaper. Work holding devices, shaper tools and main operations. Types of drilling machines. Constructional details of pillar types and radial drilling machines. Work holding and tool holding devices. Main operations. Twist drills, drill angles and sizes.

UNIT III – CASTING AND GRINDING

Patterns - mould making - core - moulding sand - melting equipment - melting and pouring - gating system - cooling and solidification - casting - preparation, design - sand, shell mould, ceramic, vacuum, investment, die, centrifugal, continuous casting processes - casting defects, inspection and testing - Grinding - types of grinding -grinding wheel designation and selection - honing, lapping, super finishing, polishing, burnishing and buffing

UNIT IV – METAL FORMING PROCESSES

Cold and hot working - rolling - forging - extrusion - drawing - metal stamping and forming - bending, deep drawing, stretch forming, metal spinning, shear and flow forming, blanking, piercing, embossing and coining, roll forming - forming defects - shot peening - types of dies, presses - comparison of forming processes

(9)

(9)

(9)

77 | Page

UNIT V – NON - TRADITIONAL MACHINING

Classification of Non-traditional Machining processes - Principle of operations - Process characteristics - applications - Abrasive jet machining, Ultrasonic machining, Electric discharge machining, Chemical machining, Electro chemical grinding, Laser beam machining, Electron beam machining

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Rajput, R. K., "A Textbook of Manufacturing Technology", Laxmi Publications (P) Ltd., 2nd ed., 2016.
- 4. Richard R. Kibbe, John E. Neely, Roland O. Meyer and Warren T. White, "Machine Tool Practices", Prentice Hall of India, 10th Revised edition, New Delhi, 2014.

REFERENCES:

- 1. Hajra Choudhury, S. K., Hajra Choundhury, A. K. and Nirjhar Roy, "Elements of Workshop Technology", Media Promoters & Publishers Pvt. Ltd., Vol. I, II, 2017.
- 2. Jain, R. K. and Gupta, S. C., "Production Technology", Khanna Publishers, New Delhi, 2014.
- 3. Sharma, P. C., "A Textbook of Production Technology", S. Chand Publications, 2014.

Serope Kalpakjian, Steven R. Schmid, "Manufacturing Engineering and Technology", Pearson Education, 4th ed., 2014.

				M	lapping	g of CC	Os with	POs /	PSO s					
						РС	Ds						PS	Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I														
2	3			3									3	
3		2									3		3	
4		2		3							3			
5		2	3											
CO (W.A)	3	2	3	3			2		2		3		3	

	22AGC06 - THERMODYNAMICS FOR AGRICULTURAL (Use of Steam Tables and Psychrometric Chart permi		EERS		
		L	Т	Ρ	С
005		2	Ι	0	3
	REQUISITE : NIL • To study the fundamentals of thermodynamics • Objectives: • Objective:	re substan	ces and	•	
	e Outcomes Cognitive Ident will be able to Level	in	eighta; End S Exami	Semes	ter
СОІ	Apply the basic concepts of thermodynamics involving heat and work interactions to determine Ap thermodynamic condition		2	.0%	
CO2	Analyze and quantify the energy interaction in An thermodynamics cycle by energy conservation principle		2	.0%	
CO3	derive the performance of thermal systems undergoing a Ap thermodynamic process or cycle		2	.0%	
CO4	Infer the thermodynamics cycle and processes using second law and entropy constraints and apply the An knowledge of thermodynamics process.		2	.0%	
CO5	Engage in independent study to learn applications based Ap on different types of boilers		2	.0%	

UNIT I – BASIC CONCEPTS AND FIRST LAW OF THERMODYNAMICS

Thermodynamic, Thermodynamic Systems and Surroundings, Different Approaches in The Study of Thermodynamics-Property, Thermodynamic Equilibrium, State, Process, Cyclic Process, Quasi-Static Process and Non Quasi-Static Process- Working Fluid, Gas, Vapour and Gas Laws-Temperature, Equality of Temperature, The Zeroth Law of Thermodynamics and Temperature Scale-Work & Heat - First law of thermodynamics - Applied to closed and open systems-isolated systems. Internal energy. Specific heat at constant volume (Cv) and Specific heat at constant pressure (Cp). Enthalpy-Limitations of Laws of thermodynamics.

UNIT II -SECOND LAW OF THERMODYNAMICS

Second law of thermodynamics - Kelvin Planck and Clausius statements. Reversibility and Irreversibility. Clausius inequality. Entropy concept-a point function or a property of a system efficiency, Principle of increase of entropy - Change of entropy during thermodynamic processes. Carnot theorem- absolute entropy- availability. CARNOT CYCLE Coefficient of Performance of heat pumps and refrigerator.

UNIT III - PROPERTIES OF PURE SUBSTANCES

Thermodynamic properties of pure substances in solid, liquid and vapour phases, Pressure-Volume (P-V), Pressure - Temperature (P-T), Temperature - Volume (T-V), Temperature - Entropy (T-S), Enthalpy - Entropy (H-S), Pressure-Volume-Temperature (P-V-T) diagrams, Triple Point And Critical Point. Thermodynamic properties of steam - Calculations of work done and heat transfer in non-flow and flow process

(6+3)

(6+3)

(6+3)

UNIT IV - AIR STANDARD CYCLES AND PSYCHROMETRY

Air standard cycles - Otto, Diesel and Dual, Calculation of mean effective pressure and Air standard efficiency. Rankine cycle concept of ideal- Psychrometric chart

UNIT V - STEAM BOILERS

Steam Boilers/Generators, Classification of Boilers - Lancashire Boiler - Cochran Boiler, Locomotive Boiler and Babcock-Wilcox Boiler - Boiler Mountings - Boiler Accessories. (Theory only)

TOTAL (L:30 +T:15): 45 PERIODS

TEXT BOOKS:

- 1. Rajput, R. K., "A Text Book of Engineering Thermodynamics", Laxmi publication Pvt. Ltd., New Delhi, 2015.
- 2. Cengel Y. and Boles, "Thermodynamics An Engineering Approach", Tata McGraw Hill Publishing Company Pvt. Ltd., New Delhi, 2019.

REFERENCES:

- I. Ballaney, P. L., "Thermal Engineering (Engineering Thermodynamics & Energy Conversion Techniques)".
- 2. Arora, C. P., "Thermodynamics", Tata McGraw Hill Publishing Company Pvt. Ltd., New Delhi, 2010.
- 3. Rayner Joel, "Basic Engineering Thermodynamics", Pearson Publications, 2019
- 4. Khurmi, S., "Text book of thermodynamics and Heat transfer", S. Chand Publications, New Delhi, 2017.
- 5. Merle C. Potter, Craig W. Somerton, "Thermodynamics for Engineers", Schaum Outline Series, Tata McGraw Hill Publishing Company Private Limited, New Delhi, 2020.
- 6. Khurmi, R. S., "Steam table with Psychometric chart", S. Chand Publications, New Delhi, 2008.

				Μ	lapping	g of CC) s with	POs /	PSOs					
						РС	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3			2										
2		3												
3	3		3										2	
4		3	3											
5	3								2			Ι	I	
CO (W.A)	3	3	3						2			I	1.67	

(6+3)

			22AGC07 - FARM TRACTOR	SYSTEMS				
					L	Т	Ρ	С
					3	0	0	3
PRE -	REQUISITE :	NIL						
Course	e Objective:	•	To enable the students for acquir transmission system, steering and draw-bar, stability testing of trac- trades.	d brake system, p	ower	outlets	ike F	P.T.O.&
	e Outcomes Ident will be able	e to		Cognitive Level	in	End S	ge of (Semes inatio	ter
COI	Illustrate the w systems	vorking	of valves, cleaners and electrical	Ap		2	.0%	
CO2	Inspect the w systems	orking/	of transmission and hydraulic	An		2	.0%	
CO3	Break down 1 systems	the co	mponents of brake and safety	An		2	.0%	
CO4	Examine the tr standards	ractor	performance based on the safety	An		2	.0%	
CO5	Organize the a principle and op		ions of IC engines based on the n	An		2	.0%	

UNIT I – TRACTORS

Classification of tractors – Tractor engines – Principles of operation of IC engines – construction of engine blocks, cylinder head and crankcase – features of cylinder, piston, connecting rod and crankshaft – firing order – combustion chambers.

UNIT II – ENGINE SYSTEMS

Valves – inlet and outlet valves – valve timing diagram. Air cleaner – exhaust – silencer – Cooling systems – lubricating systems – fuel system – properties of fuels – governor – electrical system – engine trouble shooting

UNIT III – TRANSMISSION SYSTEMS

Transmission – clutch – gear box – sliding mesh – constant mesh – synchro mesh – Differential, final drive and wheels – Steering geometry – steering systems – front axle and wheel alignment – wheel ballasting – Brake – types – system.

UNIT IV – HYDRAULIC SYSTEMS

Hydraulic system – working principles, three point linkage – draft control – weight transfer, theory of traction – tractive efficiency – tractor chassis mechanics – stability – longitudinal and lateral – Controls – visibility – operators seat – tractor safety.

(9)

(9)

(9)

UNIT V – POWER TILLER AND TRACTOR TESTING

(9)

Power tiller – special features – clutch – gear box – steering and brake – Makes of tractors and power tillers – Need – Advancements from BS IV to VI - Types of tests – test procedure – need for testing & evaluation of farm tractor –Test code for performance testing of tractors and power tillers

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Jain, S. C. and Rai, C. R., "Farm tractor maintenance and repair" Standard publishers and distributors, 3rd Edition, New Delhi, 2016.
- 2. <u>Jagdishwar Sahay</u>, "Elements of Agricultural Engineering", Standard Publishers and Distributors Pvt Ltd, 2020

- 1. Barger, E. L., Liljedahl, J. B. and McKibben, E. C., "Tractors and their Power Units" Wiley Eastern Pvt. Ltd., New Delhi, 1997.
- 2. Indian Standard Codes for Agril. Implements. Published by ISI, New Delhi.
- 3. http://ecoursesonline.iasri.res.in/course/view.php?id=39

				Maj	oping	of COs	s with	POs /	PSOs							
						Р	Os						PS	Os		
COs	I	2	3	4	5	6	7	8	9	10	П	12	I	2		
I	2															
2				3												
3		3														
4		3											2			
5	2															
CO (W.A)	2	3		3	2			2				2	2			

e Metsan Qr

	22	GP02 - WORKSHOP TECHNOLO	GY LABORAT	ORY			
				L	Т	Ρ	С
				0	0	4	2
PRE -	REQUISITE :	AIL .					
Course	e Objective:	 To develop hands-on skills in usir equipments. To apply safety practices and pro environment. To gain proficiency in handling difference of the techniques. 	cedures while wo fferent types of m edge in executing	orking in aterials works	n a wo hop pr	ojects	
	e Outcomes dent will be able	0		Co	gnitiv	e Lev	el
соі	Ability to safely	and effectively operate workshop tools ar	nd equipment.		A	Ψ	
CO2	Execution of b	sic and advanced manufacturing processes			А	'n	
CO3	Proficiency in u	ing hand tools and machinery			А	νP	
CO4	Ability to analy tasks.	e and solve technical problems encounter	red in workshop		A	'n	
CO5	Development	f innovative solutions for manufacturing ch	nallenges.		(2	

LIST OF EXPERIMENTS :

- I. Fabrication of a structure using welded joints (based on AWS Standards)
- 2. Preparation of metal joints using gas welding
- 3. Experiment in facing, plain turning
- 4. Experiment in Taper Turning, Thread Cutting, Knurling
- 5. Experiment in Eccentric Turning and Groove cutting
- 6. Experiment in Drilling, Reaming and Tapping
- 7. Abrasive machining of cylindrical shaft using cylindrical Grinding machine
- 8. Finishing of flat metal surface using Surface Grinding machine
- 9. Preparation of sand Mould using solid and split pattern
- 10. Experiment in bending and forming of sheet metal

TOTAL (P:60) = 60 PERIODS

				M	lapping	g of CC)s wit h	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	I												I	
2	I				1							I	I	
3	I													
4		2		2										
5			3			I								
CO (W.A)	I	2	3	2	I	I						I	I	

	22AGI	P03 - D	DR	RA	WI	IN	١G	5 0	OF F	FAR	R۲	1 S	STR	U	СТ	ΓL	JRE	ES I	_A	B	OF	RA	тоі	RY	,				
																						T	L	1	т		Ρ		С
																							0		0		4		2
PRE -	REQUISITE :	NIL																											
Course	e Objective:	• • • •	- - - - -	To To hou To	o acc o uno ouse o stu	:qui nde e udy	uire Iers Iy tl	e ki star the	knov and t e diff	w or wled the iffere the i	dge im ent	e o npc t sil	on dia ortar lo ar	ary nce nd	v ai e o sto	nd of or:	l pc vei age	oultr ntila stro	y I tio uct	hc on tu	sys sys	ter	n fo	r d	airy		nd p	oul	try
	e Outcomes Ident will be able	to																					C	og	nitiv	/e	Lev	el	
COI	Design a farm livestock mana																								A	٩Þ			
CO2	Design a layou and operationa				l far	rm,	n, c	con	onside	derin	ng f	fac	tors	; lik	<e< th=""><th>te</th><th>erra</th><th>in, c</th><th>lin</th><th>na</th><th>te,</th><td></td><td></td><td></td><th>A</th><th>٩Þ</th><th></th><td></td><td></td></e<>	te	erra	in, c	lin	na	te,				A	٩Þ			
CO3	Analyze the ef	fectiven	nes	ess o	of fa	farn	m s	str	truct	ture	es i	in c	differ	ren	nt d	co	nte	xts							A	۸n			
CO4	Generate in technologies o	novative or sustai							ructu es	ure		de	signs	S	in	nte	egra	ting		n	ew					С			
CO5	Design a layou and operation					ırm,	n, c	con	onsid	derin	ng	fac	tors	s lil	ke	te	erra	in, o	clir	na	ite,				A	٩Þ			

LIST OF EXPERIMENTS :

- I. Planning and Layout of farmstead
- 2. Design of stall bam
- 3. Design of loose housing and milk parlors
- 4. Design of poultry house
- 5. Design of a sheep / goat house
- 6. Design of ventilation system for dairy and poultry house
- 7. Design of silos over ground and underground and hay storages
- 8. Design of farm fencing system
- 9. Design of machinery and equipment shed and workshops
- 10.Design of septic tank and sanitary structures

TOTAL (P:60) = 60 PERIODS

	Mapping of COs with POs / PSOs													
	POs												PS	Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I						I	I							
2												2		
3					3									
4			3									2		
5				3									3	
CO (W.A)			3	3	3	I	I					2	3	

Bre metson og ch

	22AGP04 - FARM TRACTOR AND ENGINES LABORATORY										
			L	Т	Ρ	С					
			0	0	4	2					
PRE -	REQUISITE :										
 To experiment the working of valves, engine system component brake, clutch systems and drive. To enhance practical knowledge by visiting Institute offering state-of-art technology. 											
	e Outcomes Ident will be able	Cognitive Level									
COI	Illustrate the w	orking of valves and components of farm engines	Ap								
CO2	Inspect the wo system	rking of cooling, lubrication, air cleaner, gear and clutch	An								
CO3	Break down the	e components of petrol and diesel engine	An								
CO4	CO4 Examine the components of differential and final drive, braking and steering system, tyres, rims and ballasting										
CO5	Investigate the through partici	An									

List of Experiments

- I. Identification and study of different components of Farm engine
- 2. Study of valve timing diagram and reconditioning the actuation of valve timing.
- 3. Identification and study of different components of tractor engine Cooling system, lubrication and air cleaner system.
- 4. Dismantling and assembly of diesel engine
- 5. Dismantling and assembly of petrol engine
- 6. Mantling and dismantling of tractor engine gear box.
- 7. Study of clutch system methods and its working.
- 8. Study of differential and final drive- components and method of working.
- 9. Study of braking system and steering system components and method of working.
- 10. Study of tyres, rims and ballasting methods of a tractor
- II. Visit to department of Agricultural Engineering, Chennai

TOTAL (L:0, P:60) = 60 PERIODS

Mapping of COs with POs / PSOs														
COs		POs												SOs
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2				3	3									
3		3												
4				3	3									
5		3				2		2				2	3	
CO (W.A)	3	3		3	3	2		2				2	3	

By a methon og ch

		22		OFT/ANALYTICA mon to All Branc										
			•			LTP								
						Ι	0	2	0					
PRER	EQUISITE : N	lil												
Course	e Objective:	•	•	omprehensive Englis gical reasoning skills		em-so	lving a	bilities						
	e Outcomes Ident will be able	Cognitive Level	Weightage of COs in Continuous Assessment Test											
COI		e, articu	ilate ideas in sp	texts, understand beech, and produce			4	0%						
CO2	Analyze quan solutions.	titative	aptitude pro	oblems and find	Ap	0%								
CO3	Demonstrate logical reasonin		lity to solve	problems through	An	30%								

UNIT I – VERBAL ABILITY

Grammar - One Word Substitutions - Phrasal Verbs - **Listening** - IELTS Listening (Intermediate) - **Speaking** - Group Discussion - **Reading** - Reading Newspaper / Articles -**Writing** - Proverb Expansion.

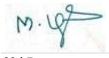
UNIT II – APTITUDE

Ratio and Proportion - Allegation and Mixture - Partnership - Average - Problems on Ages - Percentage -Profit and Loss - Height and Distance.

UNIT III - REASONING

Blood Relationship - Direction Sense - Paper Cutting and Folding - Logical Arrangements and Ranking - Venn Diagram.

TOTAL(L:45) = 45 PERIODS


(5+10)

(5+10)

(5+10)

REFERENC	ES:
١.	Rizvi, M.Ashraf. Effective Technical Communication. Tata McGraw-Hill Education, 2017.
2.	Aggarwal R S. Quantitative Aptitude for Competitive Examinations. S.Chand Publishing
	Company Ltd(s)., 2022.
3.	Sharma, Arun. How to Prepare for Quantitative Aptitude for the CAT. Tata McGraw – Hill
	Publishing, 2022.
4.	Praveen R V. Quantitative Aptitude and Reasoning. PHI Learning Pvt. Ltd., 2016.

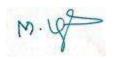
	Mapping of COs with POs / PSOs															
	POs													PSOs		
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2		
I									2	3						
2		2		2												
3		2		2												
CO (W.A)		2		2					2	3						

		22MAN09 - INDIAN CONST (Common to All Branc						
			,	L	Т	Ρ	С	
				Ι	0	0	0	
PRE -	REQUISITE :	NIL						
		• To educate students to learn abo	ut the Constitution	al Lav	of Inc	lia.		
		To motivate students to understa	and the role of Unic	on Go	vernm	ent.		
Cours	e Objective:	 To make students to unders 	stand about State G	lovern	ment.			
Course	e Objective.	• To understand about District A	dministration, Mur	nicipal	Corpo	oration	and	
		Zila Panchayat.						
		To encourage students to Unders	stand about the ele	ction (commi	ssion.		
Cours	e Outcomes		Cognitive		-	ge of (
	ident will be able	to	Level	in End Semester				
				I	Exami	inatio	n	
COI	Gain Knowledg	e about the Constitutional Law of India.	U					
CO2		n Government and role of President	R					
	and Prime Minis			_				
CO3	Gain knowledge Governor, Chie	e about State Government and role of of Minister	U	Int	ernal A	Assessr	nent	
	-	District Administration, Municipal		-				
CO4		d Zila Panchayat.	U					
		role and function of election						
CO5	commission.		U					

UNIT I - THE CONSTITUTION INTRODUCTION	(3)
The History of the Making of the Indian Constitution - Preamble and the Basic Structure, interpretation - Fundamental Rights and Duties and their interpretation - State Policy Principles.	and its
UNIT II - UNION GOVERNMENT	(3)
Structure of the Indian Union - President - Role and Power - Prime Minister and Council of Ministe Sabha and Rajya Sabha	rs - Lok
UNIT III - STATE GOVERNMENT	(3)
Governor - Role and Power - Chief Minister and Council of Ministers - State Secretariat	
UNIT IV - LOCAL ADMINISTRATION	(3)
District Administration - Municipal Corporation - Zila Panchayat	
UNIT V - ELECTION COMMISSION	(3)
Role and Functioning - Chief Election Commissioner - State Election Commission	1
TOTAL (L:15) : 15 PE	RIODS

TEXT BOOKS:

- I. Rajeev Bhargava, "Ethics and Politics of the Indian Constitution", Oxford University Press, New Delhi, 2008.
- 2. B.L. Fadia, "The Constitution of India", Sahitya Bhawan; New edition (2017).
- 3. DD Basu, "Introduction to the Constitution of India", Lexis Nexis; Twenty-Third 2018 edition.


REFERENCES:

- I. Steve Blank and Bob Dorf, "The Startup Owner's Manual: The Step-by-Step Guide for Building a Great Company", K & S Ranch ISBN – 978-0984999392
- 2. Eric Ries, "The Lean Startup: How Today's Entrepreneurs Use Continuous Innovation to Create Radically Successful Businesses", Penguin UK ISBN 978-0670921607
- 3. Adrian J. Slywotzky with Karl Weber, "Demand: Creating What People Love Before They Know They Want It", Headline Book Publishing ISBN - 978-0755388974
- 4. Clayton M. Christensen, "The Innovator's Dilemma: The Revolutionary Book That Will Change the Way You Do Business", Harvard business ISBN: 978-142219602.

REFERENCES: Web link

- I. https://www.fundable.com/learn/resources/guides/startup
- 2. https://corporatefinanceinstitute.com/resources/knowledge/finance/corporate- structure/
- 3. https://www.finder.com/small-business-finance-tips
- 4. https://www.profitbooks.net/funding-options-to-raise-startup-capital-for-your-business/

	Mapping of COs with POs / PSOs													
	POs													Os
COs	9 ⁵ I 2 3 4 5 6 7 8 9 10 II										12	I	2	
I						3		3		2		3		
2						3		3		2		3		
3						3		3		2		3		
4						3		3		2		3		
5						3		3		2		3		
CO (W.A)						3		3		2		3		

22AGC08 - FLUID MECHANICS AND HYDRAULICS												
				L	Т	Ρ	С					
				2	0	2	3					
PRE -	REQUISITE :	NIL										
Course	e Objective:	 To understand fundamental concerning fluid statics, and dynamics and the Capability to analyze different type turbulent flow, flow through pipes To understand the principles of hy on model and dimensional analysis 	ir influence on fluic es of fluid flow, incl s, channels, and arc ydraulic machines a	l moti luding ound ir	on Iamina nmers	r and ed bod	lies.					
	e Outcomes Ident will be able	to	Cognitive Level Examination									
соі		itions of motion and energy equations flow characteristics and to estimate the	Ap 20%									
CO2	Analyse the los network.	ses in pipes and discharge through pipe	An	20%								
CO3		chanics principles to solve engineering ed to fluid flow in pipes, open channels, nes										
CO4	Calculate the e Non-dimension	ngineering problems using analytical and al techniques	An 20%									
CO5	Demonstrate tl applications.	ne Fluid Mechanics principles in practical	Ар	Ар 20%								

UNIT I : BASIC CONCEPTS AND PROPERTIES

Properties of fluids- mass density, specific weight, specific volume, specific gravity, viscosity, compressibility, vapour pressure, surface tension and capillarity - Fluid statics: concept of fluid static pressure, absolute and gauge pressures -Pascal's law -hydrostatic law - pressure measurements using simple manometers and mechanical gauges

UNIT II - FLOW MEASUREMENTS

Euler's equation of motion - Bernoulli's equation - applications - Venturimeter - orifice meter, Pitot tube-Flow through pipes - laminar and turbulent flow in pipes - Major losses ,Darcy Weisbach equation for friction head loss -minor losses in pipes

UNIT III - OPEN CHANNEL FLOW

Types of flow in channel - Most economical section of channel - rectangular -trapezoidal. Flow measurement in channels – weirs and notches - rectangular, triangular

UNIT IV DIMENSIONAL AND MODEL ANALYSIS

Dimensions -derived quantities - dimensional homogeneity - methods of dimensional analyses - Rayleigh's and Buckingham's method - similitude - dimensionless numbers.

(6)

(6)

(6)

(6)

UNIT	V - PUMPS	(6)
	of pumps - Centrifugal pumps - components- working - specific speed - charactersible pumps - Jet pump- reciprocating pump	eristics curves.
List of	Experiments:	
١.	Verification of Bernoulli's theorem	
2.	Determination of Co-efficient of discharge of Venturimeter/ orifice meter	
3.	Determination of co-efficient of velocity of given Flow through Pitot tube	
4.	Determination of Co-efficient of discharge of V-notch/ Rectangular Notch	
5.	To determine the major and minor head loss coefficient for different pipe fittings.	
6.	Conduct a test on Centrifugal pump/reciprocating pump	
7.	Conduct a test and on Submersible pump	

TOTAL (L:30 +P:30): 60 PERIODS

TEXT BOOKS:

- Bansal, R. K., "A text book of Fluid Mechanics and Hydraulic Machinery", Laxmi publications (P) Ltd., New Delhi, 2002.
- 2. Yunus A. Cengel, John M. Cimbala, "Fluid Mechanics-Fundamentals and Applications", Tata McGraw Hill Publishing Co., New Delhi, 2006.

- 1. Modi, P. N. and Seth, S. M., "Hydraulics and Fluid mechanics", Standard Publishers & Distributors, New Delhi.
- 2. Grade, R. J., "Fluid mechanics through problems", Wiley eastern Ltd., Chennai, 2002.
- 3. Jagadish Lal, "Hydraulic machines", Metropolitan book house, New Delhi, 2000.

	Mapping of COs with POs / PSOs													
	POs													Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3													
2		3												
3	3												2	
4		3											2	
5				3								2		I
CO (W.A)	3	3		3								2	2	I

	22AGC09 - H	IEAT AND MASS TRANSFER FOR A (Use of heat and mass transfer data b		LENG	GINEE	RS	
				L	Т	Р	С
				2	I	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 To impart the knowledge on hea and their applications in various I To introduce non-dimensional ne various modes of mass transfer To analyze heat exchangers and 	heat transfer equip umbers and their e	ment ffects	in gove	erning	
	e Outcomes dent will be able	to	Cognitive Level	in	ightag End S Exami	emest	er
COI		es of heat transfer to thermal systems	Ap		2	0%	
CO2	Analyze cond transient proc	uction heat transfer phenomenon for esses	An		2	0%	
CO3	Determine co forced convec	onvective heat transfer for free and tion	Ap		2	0%	
CO4		heat transfer process in heat exchangers d counter flow arrangement.	An		2	0%	
CO5	process betw	parameters of radiative heat exchange ween surfaces and non-dimensional their effects in governing various modes er	An		2	0%	

UNIT I CONDUCTION

Basic concepts - Mechanism of Heat transfer. Conduction - Fourier's Law, General differential equation in Cartesian and cylindrical coordinates, one dimensional steady state heat conduction, conduction through plane wall, cylinders and spherical systems.

UNIT II - CONVECTION

Basic Concepts - Heat transfer coefficients, boundary layer concept. Types of convection – Natural and Forced convection, dimensional analysis, non-dimensional numbers, external flow, flow over plates, cylinders and spheres, internal flow, laminar and turbulent flow, combined laminar and turbulent.

UNIT III - RADIATION

Radiation heat transfer - concept of black and grey body-Laws of Radiation - Stefan-Boltzmann Law, Kirchhoff's Law Black body radiation - Grey body radiation - Shape factor algebra - Radiation shields

UNIT IV HEAT EXCHANGERS

Heat exchangers - Types, heat exchanger analysis, fouling factor, LMTD (Logarithmic mean temperature difference) and Effectiveness-NTU (number of transfer units) Method - Overall Heat Transfer Coefficient.

(6+3)

(6+3)

(6+3)

(6+3)

UNIT V - MASS TRANSFER

(6+3)

Mass transfer- introduction - Fick law for molecular diffusion - molecular diffusion in gases - equimolar counters diffusion in gases- diffusion through a varying cross-sectional area-diffusion coefficients for gases - molecular diffusion in liquids

TOTAL (L:30 + T: 15): 45 PERIODS

TEXT BOOKS:

- 1. Rajput, R. K., "Heat and Mass Tranfer", S Chand and company Ltd., New Delhi, 2019
- 2. Sachdeva, R. C., "Fundamentals of Engineering Heat and Mass Transfer", New Age International private limited, New Delhi, 2020.

- 1. Yunus A. Cengel, "Heat and Mass Transfer: a Practical Approach", Tata McGraw Hill publishing Company private limited, New Delhi, 2019.
- 2. Kothandaraman, C. P. and Subramanyan, S., "Fundamentals of Heat and Mass Transfer", New Age International private limited, New Delhi, 2014.
- 3. Frank P. Incropera, "Fundamentals of Heat and Mass Transfer", John Wiley, New Delhi, 2020.
- 4. Holman, J. P., "Heat Transfer", Tata McGraw Hill publishing Company private limited, New Delhi, 2018.
- 5. NPTEL Heat Transfer course for Mechanical Engineering, http://nptel.ac.in/courses/112101097/
- 6. Heat And Mass Transfer Data Book 10th multi colour edition (New Age International publishers, c p kothandaraman, s subramanyan)

Mapping of COs with POs / PSOs															
	POs													Os	
COs	Ι	2 3 4 5 6 7 8 9 10 11 12													
I	3												2		
2		3													
3	3												2		
4				3											
5			3										2		
CO (W.A)	3	3	3	3									2		

e Metsans og

		22AGC10 - CROP PROCESS EN	IGINEERING				
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 To provide students with a comengineering principles and practice To equip students with the knoperate, and maintain various processing systems. 	es for cereals, pulse nowledge and skill	es, and s nec	oilsee essary	ds. to de	esign,
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of C emest natior	er
COI	various agricul	operate effective drying systems for ltural products, using principles from nd drying techniques.	E		2	0%	
CO2	measure and	irect and indirect methods to accurately control moisture content in agricultural uring optimal storage conditions.	An		2	0%	
CO3		edge of post-harvest engineering to optimize methods for reducing losses in , and oilseeds.	Ар		2	0%	
CO4	threshers, air	and optimize the use of mechanical screen cleaners, and other separation o enhance the quality and value of oducts.	An		2	0%	
CO5	minimize sp temperature	manage scientific storage structures to oilage and damage, incorporating and humidity control measures to uality of stored products.	AN		2	0%	

UNIT I- INTRODUCTION (9) Post-harvest engineering - introduction - objectives - post harvest losses of cereals, pulses and oilseeds importance - optimum stage of harvest. Engineering properties of agricultural materials- optimum stage of harvest and its importance – importance of loss reduction- post harvest handling operations- moisture content - measurement - direct and indirect methods- equilibrium moisture content- RH measurement, airgrain measurement. UNIT II PSYCHROMETRY AND DRYING (9) Psychrometry - importance - Psychrometric charts and its uses - Drying - principles and theory of drying - thin layer and deep bed drying – Hot air drying – methods of producing hot air – Types of grain dryers – selection – construction, operation and maintenance of dryers – Design of dryers UNIT III THRESHING, CLEANING, GRADING AND MATERIAL HANDLING (9) Threshing – traditional methods mechanical threshers – types – principles and operation - principles – air screen cleaners – types – adjustments – cylinder separator – spiral separator – magnetic separator – colour sorter - inclined belt separator - length separators - effectiveness of separation and performance index. Different types of graders. Materials handling – belt conveyor – screw conveyor – bucket elevators pneumatic conveying. **UNIT IV- PRINCIPLES AND PRACTICES OF STORAGE** (9) and

perishablesDamages direct damages-indirect damages- causes of spoilage in storage (moisture, temperature, humidity, respiration loss, heat of respiration, Sprouting)- destructive agents (rodents, birds, insects, etc.,)- sources of infestation and control. Storage structures- traditional storage structures- modern storage structures - conditions for storage - control of temperature and relative humidity inside storage.

UNIT V - CROP PROCESSING

(9)

Paddy processing – parboiling of paddy – methods – merits and demerits – dehusking of paddy – methods – merits and demerits – rice polishers – types – constructional details – polishing – layout of modern rice mill– performance evaluation of modern mills. Wheat milling. Pulse milling methods – Wet, Dry, CFTRI, CIAE, Punjab. Oil seed processing. Principles and operation – maize sheller, husker sheller for maize – groundnut decorticator – castor sheller.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- Chakraverty, A., "Post Harvest Technology of cereals, pulses and oilseeds", Oxford & IBH publishing & Co. Pvt. Ltd., Third Edition, New Delhi, 2017
- 2. Sahay, K. M. and Singh, K. K., "Unit operations in Agricultural Processing", Vikas Publishing House Pvt. Ltd., Second revised and enlarged edition, New Delhi, 2004.
- 3. Ojha, T. P. and Michael, A. M., "Principles of Agricultural Engineering". Jain Brothers, Tenth edition, Vol.- 1, New Delhi, 2018.

- 1. Henderson, S. M. and Perry, R. L., "Agricultural process engineering", John Willey and Sons, New York, 1995.
- 2. Pandey, P. H., 1994, "Principles of agricultural processing", Kalyani Publishers, Ludhiana.
- 3. Mohsenin, N. N., "Physical Properties of Plant and Animal Materials", Gordon and Breach publishers, New York, 1986.
- 4. McCabe, W. L. and Smith, J. C., "Unit Operations of Chemical Engineering", McGraw Hill Education (India) Pvt. Ltd, Seventh Edition, Tokyo, 2015.

	Mapping of COs with POs / PSOs													
						Po	os						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3											2		
2	3													
3	3	2	2						2				2	
4	3	2												3
5	3	2	2	2	2				2		2	2	2	3
CO (W.A)												2	3	

	22	AGCII - IRRIGATION AND DRAIN	AGE ENGINEE	RING			
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 To equip students with a compromanagement and irrigation systems design, and implement irrigation optimize crop production, ensuring and water quality issues in agricular systems. 	tems, enabling th n practices and re sustainable wat	em to draina	o effec ge sol	tively utions	plan, that
	e Outcomes udent will be able	to	Cognitive Level	in	eighta End S Exam	Semes	ter
COI	resources to c given agricultu	edge of surface and groundwater levelop an efficient irrigation plan for a ural area, considering regional water crop requirements.	Ар		2	20%	
CO2	assess the impa	ater tension and retention properties to act of soil type on crop water stress and water with appropriate irrigation tools.	An		2	20%	
CO3	systems, surfa	ent irrigation methods (e.g., pressurized ce irrigation) and their suitability for pes and crop needs to optimize water ency.	An		2	20%	
CO4	incorporates p plant relationsl	rrigation and drainage system that rinciples of hydraulic design, soil-water- hips, and land grading to enhance crop quality management.	Ар		4	Ю%	
CO5	advanced tech	report as a team member on the niques and constraints, observed in the nage and water quality management.	An	Int	ternal /	Assess	ment

UNIT I – WATER SOURCES AND IRRIGATION REQUIREMENTS

Surface and ground water resources – River basins- Irrigation- development and Utilization in India and TamilNadu -Moisture use of crop- Evapotranspiration-methods. Crop water Requirement – duty and delta-Effective rainfall – crop water Requirement –measurement of irrigation water: weirs, notches and flume - Irrigation Scheduling - Irrigation Frequency, Irrigation Efficiencies.

UNIT II – SOIL WATER TENSION AND MEASUREMENT OF SOIL WATER

Rooting characteristics – soil water tension and soil water stress - crop adaptation to moisture stress. Soil water potential concept – soil-water-plant relationships – soil water retention – hydraulic conductivity – determination. Measurement of soil water-gravimetric, volumetric – tensiometric, electrical resistance, pressure plate and pressure membrane apparatus methods – neutron scattering, immersion, dielectric, thermal conductivity, penetrometric and air permeability methods.

UNIT III – METHODS AND QUALITY IRRIGATION

Soil, plant and meteorological factors determining water needs of crops, depth and Methods of Irrigation – Pressurized Irrigation, Hydraulics and design- alluvial channels Kennedy's and Lacey's theories, Materials for lining water courses and field channel, Water control and diversion structure - Underground pipeline irrigation system - Land grading - Land leveling methods. Quality of irrigation water and management of saline water for irrigation; water management in problem soils.

(9)

(9)

Command area - Concept, Components of CADA - CADA programmes in Tamil Nadu - On Farm Development works, Execution - maintenance and economics of OFD works, Farmer's committee and its

Development works, Execution - maintenance and economics of OFD works, Farmer's committee and its role for water distribution and system operation, Strategic outlet command – stream size for efficient warabandhi and rotational irrigation system

UNIT V - AGRICULTURAL DRAINAGE AND SYSTEM

UNIT IV – COMMAND AREA DEVELOPMENT

Agricultural drainage - Drainage coefficient; principles of flow through soils, Darcy law -infiltration theory, Surface drainage systems - Subsurface drainage - Design of subsurface drainage- Pipe materials - mole drains, drainage wells, Leaching requirements -irrigation and drainage water quality - recycling of drainage water for irrigation.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. Michael, A.M., "Irrigation Theory and Practice", Vikas publishing house, Second edition, New Delhi, 2015.
- 2. Murthy, V. V. N., "Land and water management", Kalyani publishing, Sixth edition, New Delhi, 2016.
- 3. Suresh, R., "Land and water management principles", standard publishers, Second edition, New Delhi, 2017.

REFERENCES:

- 1. Dilip Kumar Majumdar, "Irrigation water Management Principles and Practice", Prentice Hall of India Pvt. Ltd., New Delhi, 2006.
- 2. Luthin, J. N., "Drainage Engineering", John Wiley and Sons, New York, 1966.

				М	apping	g of CC) s with	POs /	PSOs					
						РС	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2		3			2									
3		3											3	
4			3										3	
5					2				3	3				
CO (W.A)	3	3	3		2				3	3			3	

le metran og

(9)

	22AGCI	12 - HYI	DROLOGY AND WATER RESO	URCES ENGI	NEEF	RING						
					L	Т	Ρ	С				
					3	0	0	3				
PRE -	REQUISITE :	NIL										
 Design and implement various hydrological measurement and analysi techniques to understand and manage precipitation, runoff, hydrological extremes, reservoirs, and groundwater systems effectively. Students will evaluate and optimize water resource management practices focusing on flood estimation and management, drought assessment, reservoir design, and groundwater recharge methods, considering both rural and urbatic contexts. 												
	e Outcomes udent will be able	e to		Cognitive Level	in	ightag End S Exami	emes	ter				
соі		on losses	pt of hydrologic cycle and measure including evaporation, transpiration, on indices			2	0%					
CO2	,		f estimation of runoff and construct on different methods	An		2	0%					
CO3	Analyze the fre the area	equency	of disaster and provide solution to	An		2	0%					
CO4	Classify and es reservoirs	estimate	the sedimentation and storage of	An		2	0%					
Cos Calculate the ground water flow and estimate the aquifer parameters by following various methods based on the groundwater movement and geological formation.												

UNIT I – PRECIPITATION AND ABSTRACTIONS

Hydrological cycle - Meteorological measurements – Types and forms of precipitation – Rain gauges -Spatial analysis of rainfall data using Thiessen polygon and Iso-hyetal methods - Interception – Evaporation: Measurement, Evaporation suppression methods – Infiltration: Horton's equation - Double ring infiltrometer - Infiltration indices

UNIT II – RUNOFF

(9)

(9)

Catchment: Definition, Morphological characteristics - Factors affecting runoff - Run off estimation using Strange's table and empirical methods - SCS-CN method – Stage discharge relationship - Flow measurements - Hydrograph – Unit Hydrograph – IUH.

UNIT III – HYDROLOGICAL EXTREMES

(9)

Natural Disasters - Frequency analysis - Flood estimation - Flood management - Definitions of drought: Meteorological, Hydrological, Agricultural and Integrated - IMD method - NDVI analysis - Drought Prone Area Programme (DPAP).

UNIT IV – RESERVOIRS	(9)
Classification of reservoirs - Site selection - General principles of design - Spillways -E Capacity curve - Storage estimation - Sedimentation - Life of reservoirs – Rule curve.	levation- Area-
UNIT V – GROUNDWATER AND MANAGEMENT	(9)
Origin - Classification and types - Properties of aquifers - Governing equations – Steady and Artificial recharge - RWH in rural and urban areas – Government schemes for Groundwate	'

TEXT BOOKS:

- I. Raghunath, H. M., "Groundwater", New Age International (p) Ltd., New Delhi, 2011.
- 2. Subramanya, K., "Engineering Hydrology", Tata McGraw Hill pub. Co., New Delhi, 2013. **REFERENCES:**
 - I. Mutreja, K. N., 1990, "Applied Hydrology", Tata McGraw Hill pub. Co. New Delhi.
 - 2. Ven te chow, David R. Maidment, Larry W. Mays, "Applied Hydrology", McGraw Hill pub. Co. New Delhi.
 - 3. http://ecoursesonline.iasri.res.in/course/view.php?id=39

Mapping of CO	s with	n POs	/ PSC	Ds										
60.						P	os						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3				2								3	
2	3						2					2		
3		2					2		2	2				
4	3	2	2										3	
5					2									
CO (W.A)	3	2	2		2		2		2	2		2	3	

Metsan 03

	22AGC13 - SU	JRVEYING AND LEVELLING FOR A	AGRICULTURA	L EN	GINE	ERS	
				L	т	Р	С
				2	0	2	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 To understand the principle, cont To understand area and volume of To practice compass traversing a To learn leveling and contouring To gain knowledge in total station 	computation nd plane table surv		rveyin	5	
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of (emestination	ter
соі		struments required for conducting the level and sloping ground.	Ар		2	0%	
CO2		of the land by chain surveying and also necessary chain corrections.	An		2	0%	
CO3		area and volume of earth work by merical methods.	Ар		2	0%	
CO4	level, prepare	ced level for all points by using dumpy the contour map and also identify the tical angle using Theodolite.	Ар		2	0%	
CO5		proficiency in planning and executing sing a total station.	Ар		2	0%	

UNIT I - PRINCIPLES OF SURVEYING

Introduction - Principles and basic concepts and uses of surveying - classification and basic methods of surveying- Types of chains, Ranging rod, Ranging - Direct and Indirect methods -Method of Chaining on level and sloping ground - Obstacles in chaining.

UNIT II - COMPUTATION OF AREA AND VOLUME

Introduction - Formulae for calculation of cross sectional area - calculation of volume - Area computation, Mid-Ordinate rule, Average ordinate rule, Trapezoidal rules, Simpson rule and Coordinate method of finding area-Computation of volume. Computation of Area from field notes and plot plan

UNIT III - COMPASS TRAVERSING

Basic terminologies of Compass traversing - Prismatic and Surveyors Compass - Checking the accuracy of traverse - Errors and mistakes in Compass survey - Plane tabling - instruments and accessories - Radiation, Traversing, Orientation - Intersection and Resection.

UNIT IV - LEVELLING AND CONTOURING

Levelling - definition - Benchmarks - different types of levels - Basic principles of leveling - Theory of simple, compound, cross sectional and reciprocal levelling -Contouring - definition - contour characteristics - direct and indirect methods -gradient contour - uses - Minor instruments, Hand level -Clinometer - Abney level- Theodolite types - adjustments - setting up - reading angles - measurements -Area and elevation determination. (6)

UNIT V - TOTAL STATION

(6)

(6)

(6)

(6)

Introduction- Accuracy of a Total Station- Accessories for Total Station- Functions Performed by Total Stations- Applications of Total Station- Remote Elevation Measurement (REM)- Missing Line Measurement (MLM)- Area Calculation- Setting out

LIST OF EXPERIMENTS:

- I. Open and closed compass traversing, Plotting and correction of closing error
- 2. Differential levelling problems Cross-sectioning plotting
- 3. Contouring Grid method Plotting of contour preparation of map
- 4. Theodolite surveying elevation determination by measuring horizontal and vertical angles
- 5. Remote elevation measurement Using Total Station
- 6. Missing Line Measurement Using Total Station
- 7. Area measurement using Total Station

TOTAL (L+P: 30+30) = 60 PERIODS

TEXT BOOKS:

- 1. Basak, V. N., "Surveying and Levelling", Tata McGraw hill publications, New Delhi. 1994.
- 2. Gopi, S., "Advanced surveying: total station, GIS and remote sensing", Pearson Education, Second Edition, India. 2018

- 1. Duggal, S. K., "Surveying", McGraw hill education (India) Pvt. Ltd., 4th edition, New Delhi, 2013.
- 2. Kanetkar, T. P., and Kulkarni, S. V., "Surveying and levelling Part II", Pune Vidyarthi Griha Prakashan.
- 3. Bharikatti, S. S., "Surveying Theory and Practice", I.K. International publishing house Pvt. Ltd., New Delhi, 2013.
- Narinder Singh, "Surveying", Tata McGraw hill publishing company Ltd., New Delhi, 1992. Michael, A. M. and Ojha, T. P., "Principles of Agricultural Engineering", Jain Brothers, Vol. II, New Delhi, 2009.

	Mapping of COs with POs / PSOs													
	POs													
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												-	
2													3	
3				3										2
4		3			3								2	
5			3									2		
CO (W.A)	3	3	3	3	3							2	2.5	2

	22 A	AGP05 - C		ROCES	SS EN	NGIN	EERI	NG L	АВО	RAT	ORY			
											L	Т	Ρ	С
											0	0	4	2
PRE -	REQUISITE :	22CHC0	09											
Course	 To provide students with practical skills and theoretical knowledge requir to evaluate and improve the efficiency of various post-harvest processing operations for grains. To enable students to apply advanced techniques and methodologies for the determination of physical and mechanical properties of grains and thei implications on post-harvest handling and processing. 													g or
	e Outcomes dent will be able	e to									Co	gnitiv	ve Lev	el
соі	Develop the a content of grai	,		,								A	νP	
CO2	Critically evalu of grains to op							•	of repo	ose		A	n	
CO3	Formulate me cleaning and g grain processir	grading ma							•			A	n	
CO4	Analyze the efficiency and i grain logistics a	identifying	areas for	• •					•			A	\n	
CO5	Synthesize knowledge from site visits to modern rice mills and pulsemilling industries to propose enhancements in processing technologiesand practices, improving overall industry standards.													

LIST OF EXPERIMENTS :

- I. Determination of moisture content of grains by oven method and moisture meter.
- 2. Determination of porosity of grains.
- 3. Determination of coefficient of friction and angle of repose of grains.
- 4. Evaluation of efficiency of grain cleaning cum grading machine
- 5. Evaluation of cleaning efficiency of spiral separator and inclined belt separator
- 6. Evaluation of shelling efficiency of rubber roll sheller
- 7. Determining the efficiency of bucket elevator
- 8. Determining the efficiency of screw conveyor
- 9. Evaluation of thin layer drier
- 10. Visit to modern rice mill and pulse milling industry

TOTAL (P:60) = 60 PERIODS

	Mapping of COs with POs / PSOs													
	Pos													
Cos	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3				2	2			I					
2		2											2	
3			3			2							2	
4					2	2			I				2	3
5			3			3								3
CO (W.A)	3	2	3		2	2			I				2	3

for metran and

	22AGP06 -	IRRIGATION AND DRAINAGE EN	GINEERING LA	BOR	ΑΤΟ	RY		
				L	Т	Ρ	С	
				0	0	4	2	
PRE -	REQUISITE: I	NIL						
Course	e Objective:	 To develop students' ability to irrigation and meteorological sys hands-on methods to meas evapotranspiration, and flow pro- skills and understanding of efficier 	tems by applying a ure soil moistu perties, ultimately e	nalytio re, enhano	cal tec infiltra cing th	hnique tion eir pra	s and rates,	
	e Outcomes Ident will be able	to	Cognitive Level	Weightage of COs in End Semester Examination			ter	
соі	content and ar	methods to determine soil moisture malyze the effectiveness and accuracy of varying soil conditions.	Ар	20%				
CO2	compare resu	ation rates, their understanding to Its and assess the implications for ncy and soil management.	An	20%				
CO3		otranspiration rates, duty and delta to to various crops irrigation scenarios.	An	20%				
CO4	Design both drip and sprinkler irrigation systems, applying principles of uniformity and efficiency, and will analyze their designs using catch can methods to determine uniformity coefficients.							
CO5	Analyze flow properties in open irrigated channels using tools like flumes and notches, applying their findings to evaluate channel performance and design improvements for effective water distribution.							

List of Experiments:

- I. To study various instruments in the Meteorological Laboratory
- 2. Determination of soil moisture by different methods gravimetric and tensiometer
- 3. Determination of infiltration rate using double ring and digital infiltrometer
- 4. Estimation of Evapotranspiration
- 5. Problems on Duty and Delta relationship of water
- 6. Measurement of flow properties in open irrigated channels (flumes, notches)
- 7. Design of Drip irrigation system
- 8. Determination of uniformity coefficient for drip irrigation system (catch can method)
- 9. Design of sprinkler irrigation system
- 10. Determination of uniformity coefficient for sprinkler irrigation system (catch can method)

TOTAL (P: 60) = 60 PERIODS

	Mapping of COs with POs / PSOs													
	POs										PSOs			
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3											3	
3				3										
4			3										3	
5			3		3								3	
CO (W.A)	3	3	3	3	3								3	

A le metran act

22MAN07R - SOFT/ANALYTICAL SKILLS - III (Common to All Branches) Ρ L т С 2 0 L 0 **PREREQUISITE : Nil** To improve language proficiency for personal or professional reasons ٠ To enhance students' mathematical problem-solving and critical thinking **Course Objective:** • skills Weightage of COs Cognitive **Course Outcomes** in Continuous The Student will be able to Level Assessment Test Demonstrate effective communication skills by listening COI actively, speaking clearly, reading critically, and writing U 40% coherently in contexts. Develop proficiency in applying mathematical concepts of time, speed, distance, and financial calculations CO2 30% Ap involving simple and compound interest. Analyse logical reasoning skills through various forms of CO3 30% An statements.

UNIT I – VERBAL ABILITY

Grammar - Concord - Relative Clause - **Listening** - IELTS Listening (Advanced) and Gap Filling -**Speaking** - Introducing Others - Formal Conversations - **Reading** - Reading Comprehension - **Writing** -Hints Development.

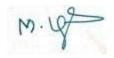
UNIT II – APTITUDE

Simple and Compound Interest - Time, Speed and Distance - Problems on Trains - Boats and Streams - Chain Rule - Time and Work - Pipe and Cisterns.

UNIT III - REASONING

Seating Arrangements - Syllogism - Statement and Conclusion - Statement and Assumption - Statement and Course of Action.

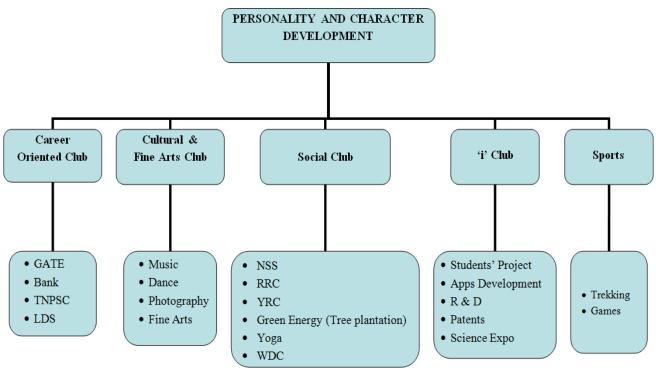
TOTAL(L:45) = 45 PERIODS


(5+10)

(5+10)

(5+10)

REFERENCES:						
١.	Rizvi, M.Ashraf. Effective Technical Communication. Tata McGraw-Hill Education, 2017.					
2.	Aggarwal R S. <i>Quantitative</i> Aptitude for Competitive Examinations. S.Chand Publishing Company Ltd(s)., 2022.					
3.	Sharma, Arun. How to Prepare for Quantitative Aptitude for the CAT. Tata McGraw – Hill Publishing, 2022.					
4.	Praveen R V. Quantitative Aptitude and Reasoning. PHI Learning Pvt. Ltd., 2016.					


	Mapping of COs with POs / PSOs													
	POs												PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I									2	3				
2		2		2										
3		2		2										
CO (W.A)		2		2					2	3				

22GED01 - PERSONALITY AND CHARACTER DEVELOPMENT

L	Т	Ρ	С
0	0	-	0

PRE REQUISITE : NIL

*LDS - Leadership Development Skills

OBJECTIVES :			1	
Career Oriented Club	Cultural & Fine Arts Club	Social Club	ʻi' club	Sports
 To provide support for identifying specific career field of interests and career path To provide support for preparing for competitive exams 	 To bring out the hidden talent of students in music, dance and other fine arts. To promote photography skill among the students To develop and enhance the performance of students by participating in various events. 	 To create social awareness and develop a sense of social and civic responsibility To inculcate socially and environmentally sound practices and be aware of the benefits To encourage the students to work along with the people in rural 	 To inculcate the basic concepts of innovation To foster the networking between students, build teams, exchange ideas, do projects and discuss entrepreneurial opportunities. To enrich the academic experience, build competencies and discuss and discuss entrepreneurial opportunities. 	 To provide opportunities to excel at sports To promote an understanding of physical and mental well-being through an appreciation of stress, rest and relaxation. To develop an ability to observe, analyze and judge the performance of self and peers in sporting activities.

• To inculcate managerial capabilities such as event management and stage organization.	areas, thereby developing their character, social consciousness, commitment, discipline and being helpful towards the community.	relationships beyond the classroom	 To develop leadership skills and nurture the team building qualities. <u>Trekking:</u> To provide opportunities to explore nature and educating about the purityof nature To improve physical and mental health.
---	--	--	--

• Find a better career of	•Take part in various	Develop socially	 Apply the acquired 	 Demonstrate positive
their interest.	events.	responsive qualities by	knowledge in creating	leadership skills
•Make use of their	• Develop team spirit,	applying acquired	better solutions that	that contribute to the
knowledge during	leadership and	knowledge.	meet new	organizational
competitive exams	managerial qualities.	 Build character, 	requirements and	effectiveness
and		social consciousness,	market needs.	 Take part an active role
interviews.		commitment and	• Develop skills on	in their persona
		discipline.	transforming new	wellness (emotional
			knowledge or new	physical, and spiritual
			technology into viable	that supports a healthy
			products and services	lifestyle
			on commercial	Create inclination
			markets as a team.	towards outdoor
				activity like nature stud
				and Adventure.

TOTAL [2 x (P: 15)]: 30 PERIODS (Cumulatively for Two Semesters)

	22AGC	CI4 - SOIL AND WATER CONSERV	ATION ENGIN	EERI	١G			
				L	т	Ρ	С	
				3	0	0	3	
PRE -	REQUISITE :M	Nil						
Course	e Objective:	 To have an awareness on the so principles along with the water sh to conserve water and soil 			•			
	e Outcomes dent will be able	to	Cognitive Level	in	ightag End S Exami	emes	ter	
	Simplify the water co	ater harvesting structures for insitu and inservation	Ар		20	0%		
CO2	Design the gu landslides	lly control structures for controlling the	Ар	20%				
CO3	Apply univers erosion	al soil loss equation to estimatethe soil	An		4	0%		
CO4		runoff in a structure todetermine the energyhappenings due to jumps.	Ap	20%				
CO5		a mini project/Case Study for watershed and implement the same as a prototype	Ap	Internal & Extern Assessment				

UNIT I – INTRODUCTION TO SOIL AND WATER EROSION

Principles of soil erosion –Types- Factors Affecting Soil Erosion- Geological and Accelerated erosion, Factors affecting water erosion, Types of water erosion - Splash, sheet and rill, Gully, stream bank, road erosion and ravines, Universal Soil Loss Equation (USLE) - Rainfall Erosion Index, Soil erodibility Index, Slope length and topographical factors, Measurement of runoff and soil loss.

UNIT II – WATER EROSION AND CONTROL

Introduction; classification of structures, functional requirements of soil erosion control structures; flow in open channels-types of flow, state of flow, regimes of flow, specific energy and specific force - Hydraulic jump and its application - Types –Spillways – Energy Dissipation.

UNIT III – SEDIMENTATION

Sediment yield and sedimentation- Methods of estimation of wind erosion –Erosivity and Erodibility-Desertification, deforestation and shifting cultivation - Gully control and control of landslides, Temporary gully control measures, Permanent Gully Control Structures - Wind breaks and shelter belts.

UNIT IV – WATERSHED MANAGEMENT

Watershed – concept – planning, Principles – Levelling and grading of Land - Land use capability classification Grassed Waterways - Components of watershed development – Modeling of Watershed Process – Case studies for Soil and Water Conservation.

114 | Page

(9)

(9)

(9)

UNIT V – WATER QUALITYAND HARVESTING

Introduction to water harvesting – Water Quality – Water pollution - techniques, Farm Pond, Dry farming techniques for improving crop production – Topographic Survey and Contour Maps.

TOTAL(L:45) = 45 PERIODS

TEXT BOOKS:

- I. Suresh, R., "Soil and Water Conservation Engineering", Standard Publishers &Distributors, New Delhi, 2012.
 - 2. Michael, A. M. and Ojha, T. P., "Principles of Agricultural Engineering", Vol II Jain Brothers, New Delhi, 2012.

REFERENCES:

- I. Gurmel Singh et al. "Manual of Soil and Water Conservation Practices'. Oxford & IBH publishing Co. New Delhi, 1996.
- 2. Murthy, V.V.N. and Madan K. Jha., "Land and water management", Kalyani publishing, New Delhi, 2013.
- 3. Gustafson, A.F., "Conservation of the soil", Biotech Books, New Delhi-35, 2011.

	Mapping of COs with POs / PSOs													
COs	POs													Os
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3	3												
2	3													
3			3										3	
4		3											3	3
5		3					2		3	2	2	2	3	3
CO (W.A)	3	3	3				2		3	2	2	2	3	3

D. Out

	22AGCI5 - UNIT OPERATIONS IN AGRICULTURAL PROCESSING													
					L	С								
					3	0	0	3						
PRE -	REQUISITE :	NIL												
Course	e Objective:	 Apply principles of mass and en unit consistency to analyze an processing, such as evaporati crystallization, and membrane se 	d optir on, me	nize various u echanical sepa	init o	peratic	ons in	food						
	e Outcomes udent will be able	to		Cognitive Level	in	End S	ge of G emes natio	ter						
COI	Calculate the ef mechanisms.	ficiency of various types of size reduction	on	Ар	20%									
CO2	Analyze the fac	ors influencing the operation of evapor	ators	An	An 20%									
CO3	Assess the prinoperations	iple of separation involved in various u	nit	An		2	0%							
CO4	Analyze the adv through membr	anced separation methods applied for f anes	oods	An		2	0%							
CO5	Review crystalli processing equi	zation and distillation processes and ide oment	entify	An	20%									

UNIT I - EVAPORATION AND CONCENTRATION PROCESS	(9)
Unit operations in food processing –conservation of mass and energy – overall view of an engin	neering
process-dimensions and units – dimensional and unit consistency – dimensionless ratios-evapora	
definition - liquid characteristics - single and multiple effect evaporation - types of evapora	
performance of evaporators and boiling point elevation – capacity – economy and heat bala	ance –
evaporation of heat sensitive materials.	
UNIT II – MECHANICAL SEPARATION	(9)
Filtration – definition –filter media – types and requirements-constant rate filtration – constant pr	ressure
filtration – filter cake resistance-filtration equipment – rotary vacuum filter – filter press-sedimenta	ation –
gravitational sedimentation of particles in a fluid – Stoke's law, sedimentation of particles in gas-cycl	
settling under sedimentation and gravitational sedimentation-centrifugal separations – rate of separa	tions –
liquid-liquid separation – centrifuge equipment.	
UNIT III – SIZE REDUCTION	(9)
Size reduction - grinding and cutting - principles of comminuting - characteristics of comm	ninuted
products – particle size distribution in comminuted products-energy and power requireme	ents in
comminuting – crushing efficiency – Rittinger's, Bond's and Kick's laws for crushing-size rec	
equipments – crushers – jaw crusher, gyratory crusher-crushing rolls – grinders – hammer mills –	rolling
compression mills – attrition, rod, ball and tube mills – construction and operation.	
UNIT IV – CRYSTALLIZATION AND DISTILLATION	(9)
Crystallization – equilibrium – rate of crystal growth – equilibrium crystallization-crystallization equ	-

- classification – construction and operation-tank, agitated batch, Swenson-Walker vacuum crystallizers.
 Distillation – binary mixtures – flash and differential distillation-steam distillation – theory – consumption
 - continuous distillation with rectification – vacuum distillation - batch distillation – operation and process – advantages and limitations -distillation equipments – construction and operation – factors influencing the operation

UNIT V - MEMBRANE SEPARATION

Membrane separation-terminologies-membrane classification and configuration-types of filtration-osmosis-Reverse osmosis-rate of flow through membranes- Thevan't Hoff equation-membrane equipment.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Geankoplis C.J. 2017. Fourth edition. Transport Processes and Separation Process Principles. Pearson India Education Services Pvt. UP.
- 2. K. M. Sahay and K.K.Singh, Unit operations of Agricultural Processing, Vikas Publishing House Pvt. Ltd., New Delhi, 2004. (Second revised and enlarged edition).

REFERENCES:

- 1. J.M. Coulson and J.F. Richardson, Chemical Engineering, Volume I to V. The Pergamon Press, New York, 1999.
- 2. W.L. McCabe, J.C.Smith and P.Harriot, Unit Operations of Chemical Engineering, McGraw- Hill. Inc. Kosaido Printing Ltd. Tokyo, Japan, 2001.

	Mapping of COs with POs / PSOs													
						Po	os						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3													3
2		3												
3														3
4				3	3			2						
5		3		3										
CO (W.A)	3	3		3	3			2						3

117 | Page

	22AGC	16 - FARM IMPLEMENTS AND EQ	UIPMENT (Theo	ry + I	Lab)		
				L	Т	Р	С
				3	0	2	4
PRE - R	REQUISITE : N	NIL					
Course	e Objective:	 Design and implement various fa agricultural productivity, focusin application equipment. Evaluate and optimize the perfo understanding their constructio efficiency and reduce operational 	ng on the use of tilla rmance of different n, operation, and fie	ge, so farm	wing, a equipn	ind fer nent,	tilizer
	e Outcomes udent will be able	e to	Cognitive Level		End S		-
соі	farm tools,	objectives and working principle of implements, sowing equipment and zer applicators.	Ap	20%			
CO2	techniques, in	on of various fertilizer application icluding the use of seed cum fertilizer uid fertilizer applicators, to improve gement	Ар		2	0%	
CO3	'	performance and applications of ary tillage implements.	An		2	0%	
CO4		construction and use of secondary ents for effective field preparation and ment.	E		2	0%	
CO5		oncepts of farm mechanization and ous tillage methods to improve farm	Ар		2	0%	

UNIT I- FARM MECHANIZATION

Farm mechanization – objectives. Tillage - objectives - methods – primary tillage implements - secondary tillage implements - animal drawn ploughs - construction. Types of farm implements – trailed, mounted and semi mounted implements - Field capacity.

UNIT II PRIMARY TILLAGE IMPLEMENTS

Mould board plough- attachments – mould board shapes and types. Disc plough – force representation on disc – Types of disc ploughs – Subsoiler plough - Rotary plough. – Spading machine – coir pith applicators.

UNIT III SECONDARY TILLAGE IMPLEMENTS

Cultivators - types - construction. Disc harrows - Bund former - ridger – leveller. Basin lister-Wetland preparation implements. – puddler – cage wheel – leveller

UNIT IV- SOWING EQUIPMENT

Crop planting – methods – row crop planting systems. Seeding machines – Devices for metering seeds – furrow openers – furrow closers – types – Types of seed drills and planters– paddy transplanters – nursery tray machines.

UNIT V - FERTILIZER APPLICATION

Drill calibration – sprayer- introduction-types-spray pattern- application of fertilizers-– metering devices – seed cum fertilizer drill – application of liquid fertilizers.

(9)

(9)

(9)

(9)

Practical

- 1. Operation of tractor drawn mould board plough adjustments and determination of field capacity
- 2. Operation of tractor drawn disc plough adjustments and determination of field capacity
- 3. Operation of tractor drawn cultivator adjustments and determination of field capacity
- 4. Operation of subsoiler adjustments and determination of field capacity
- 5. Operation of paddy drum seeder in the field and determination of field capacity
- 6. Field testing of rocker arm sprayer, power sprayer and knapsack power sprayer and duster and their maintenance
- 7. Determination of operational cost of farm implement

TOTAL (L: 30+P:30) = 60 PERIODS

TEXT BOOKS:

- 1. Jagdishwar Sahay. 2006. Elements of Agricultural Engineering. Standard Publishers Distributors, Delhi 6
- 2. Ojha T.P. and A.M. Michael. 2018. Tenth edition. Principles of Agricultural Engineering, Vol Jain Brothers, New Delhi.

REFERENCES:

- 1. Donnell Hunt. 2013. Farm power and machinery management. Scientific International Pvt. Ltd. New Delhi.
- 2. Kepner, R.A., R.Bainer, E.L. Barger. 2005. Third Edition. Principles of farm machinery. CBS Publishers and Distributers, Delhi.

				٢	1appin	g of C	Os wit	h PO s	/ PSO:	5				
	Pos													Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3				3									
2	3				3		I							
3		3											3	
4				3									3	
5	3												3	
CO (W.A)	3	3		3	3		I						3	

	22	AGP07 - CAD FOR AGRICULTURAL ENGINEER	ING			
			L	Т	P	С
			0	0	4	2
PRE - F	REQUISITE :					
		• To impart training to draw orthographic views of CAD Modeling Software	machin	e com	ponen	ts usi
Cours	e Objective:	 To develop the skill to create three dimensional m views using CAD Modelling Software 	nodels	from c	orthogr	aphio
		 To create three dimensional assembly models and standard CAD packages 	their a	inimati	ion usii	ng
Cours	e Outcomes		Cogn	itive L	evel	
The Stu	udent will be able	e to				
COI		edge in using specific CAD software packages (Solid ate 2D and 3D models, assemblies, and drawings.		ŀ	Чp	
CO2	component and	roduce detailed technical drawings of agricultural engineering documentation from CAD models, including ojections, section views		ļ	An	
CO3	Focus on three components wi	dimensional assembly models consisting of Engine th tolerances.		ŀ	An	
CO4	Sketch three di conversion/pow		ŀ	Чp		
CO5	Plan and draw t software.	he assembled views of machine parts using modeling		Å	An	

LIST OF EXPERIMENTS:

- 1. Introduction to modeling software: Practicing sketching, Dimensioning and Modelling Tools and Creating simple 3D models by using any CAD Modelling Software
- 2. Create a orthographic views of machine components from isometric component drawing
- 3. Create a two-dimensional sketch diagrams of simple machine components
- 4. Create a three-dimensional model of spur gear
- 5. Create a three-dimensional model of helical gear
- 6. Create a three-dimensional model of bearing from detailed orthographic drawings
- 7. Create a three-dimensional assembly model of bolt and nut from detailed orthographic drawings
- 8. Create a three-dimensional assembly model of simple mechanism
- 9. Create a three-dimensional assembly model of simple energy conversion/power transmission system

TOTAL (P:60) = 60 PERIODS

				۲	1appin	g of CO	Os wit	h POs	/ PSOs	5				
COs						PC	Os						PS	Os
COS	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	2				3							2	3	
2					3							2	3	
3	2		3		3							2		3
4			3		3							2	3	
5	2				3							2		
CO (W.A)	2		3		3							2	3	3

D. du

22	AGP08 - UNI	FOPERATIONS IN AGRICULTURAL PROCESSIN	G LAE	BORA	TOR	ſ
			L	Т	Ρ	С
			0	0	4	2
PRE -	REQUISITE :	NIL				
Course	e Objective:	 To break down raw agricultural materials into smaprocessing and improved extraction of desired cor To separate different components of raw material or other physical properties. To separate solid particles from liquids or gases. To improve efficiency, reduce waste, and maximize product integrity. To maintain hygienic conditions throughout process contamination and ensure product safety. 	mponer Is based e yield v	its. I on siz while r	ze, den naintai	sity,
	e Outcomes Ident will be able	to	Co	gnitiv	e Lev	el
COI	Apply the know efficiency of the	ledge of physical properties of foods to estimate the system		A	Ρ	
CO2	Calculate the e processing oper	fficiency of various separators involved in agricultural rations		A	Ρ	
CO3		l identify the suitable size reduction mechanism based on of agricultural products		А	n	
CO4	Analyze the ene	ergy requirements of different size reduction methods		A	n	
CO5	Participate and	investigate the industrial scale unit operation equipments		А	n	

LIST OF EXPERIMENTS :

- I. Determination of thermal efficiency of open pan evaporator for concentration of juice/Milk
- 2. Performance evaluation of a sieve and determination of particle size of granular foods by sieve analysis
- 3. Determination of effectiveness of screen
- 4. Determination of separation efficiency of centrifugal separator
- 5. Determination of collection efficiency in cyclone separator
- 6. Determination of energy requirement in size reduction using the burr mill
- 7. Determination of energy requirement in size reduction using the ball mill
- 8. Determination of energy requirement in size reduction using the hammer mill
- 9. Determination of energy requirement in size reduction using the pin mill
- 10. Visit to sugar industry

TOTAL (P:60) = 60 PERIODS

	Mapping of COs with POs / PSOs														
						РС	Ds						PS	Os	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3														
2					3										
3				3										3	
4		3													
5					3			2	2			2		3	
CO (W.A)	3	3		3	3			2	2			2		3	

D. Ale

	22MANI	OR - COMMUNICATION AND QUA	NTITATIVE RE	ASO	NING		
	Ар	plicable for 2022 – 2026 Batch only		L	Т	Ρ	С
				Ι	0	2	0
PRE -	REQUISITE :	Nil					
Course	e Objective:	 To enhance the proficiency of the communication To acquire skills required to solve 					
	e Outcomes Ident will be able	to	Cognitive Level	ir	ightag 1 Cont sessm	tinuou	IS
соі	Converse and various context	draft ideas clearly and persuasively in s.	U		4	0%	
CO2	Solve quantitati	ve aptitude problems with confidence.	Ар		3(0%	
CO3	Draw valid co problems.	onclusions, identify patterns, and solve	An		3(0%	

UNIT I - LANGUAGE BOOSTERS

JAM - General Topic Presentation - Group Discussion - Mock Interview - E Mail Writing - Essay writing

UNIT II – APTITUDE

Mensuration - Area, Shapes, Perimeter - Races and Games - Data Interpretation on Multiple Charts.

UNIT III - REASONING

Venn diagram - Syllogism - Data Sufficiency - Cubes & Embedded Images.

TOTAL (L:45) = 45 PERIODS

(5+10)

(5+10)

(5+10)

REFERENCES:

- I. Rizvi, M.Ashraf. Effective Technical Communication. Tata McGraw-Hill Education, 2017.
- 2. Aggarwal R S. Quantitative Aptitude for Competitive Examinations. S.Chand Publishing Company Ltd(s)., 2022.
- 3. Arun Sharma. How to Prepare for Quantitative Aptitude for the CAT. Tata McGraw Hill Publishing, 2022.
- 4. Praveen R V. Quantitative Aptitude and Reasoning. PHI Learning Pvt. Ltd., 2016.

				Μ	apping	of CC	Os with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I 2 3 4 5 6 7 8 9 10 11 12													2
I									2	3				
2		2		2										
3		2		2										
CO (W.A)		I		I					I	I				

		22AGC17 - RENEWABLE ENERG	Y RESOURCES				
				L	т	Р	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 To introduce students with r potential and suitability as a subs in future energy demand. 	•.				•
	e Outcomes udent will be able	to	Cognitive Level	in	ightas End S Exami	emes	ter
COI		cept of solar technologies to extract on from solar thermal and photovoltaic	Ар		2	0%	
CO2	Analyze the s different source	source of natural energy available in es	An		2	0%	
CO3		nergy conversion technologies to find the wer generation through wind mills	An		2	0%	
CO4	Examine the fa biomass	ctors affecting biochemical conversion of	An		2	0%	
CO5		npact of energy production through e and renewable sources	An		2	0%	

UNIT I NON - RENEWABLE AND RENEWABLE ENERGY SOURCES

Coal, Oil, Natural gas, Nuclear power and Hydro energy - Sector-wise energy consumption – Energy scenario in India – Environmental consequences of fossil fuel use, Importance of renewable sources of energy, Types and limitations of renewable energy sources

UNIT II SOLAR ENERGY

Solar Radiation, Radiation Measurement, Flat plate and Concentrating collectors – Air and water heaters – Cookers - Solar Thermal Power generation – Applications - Solar Photovoltaic systems : Basic Principle of SPV conversion - Types of Solar Cells, Solar PV Power generation, Applications

UNIT III WIND ENERGY

Nature of the wind – power in the wind - Betz limit - suitable sites - types of wind mills – wind mill components – applications – Safety and environmental aspects

UNIT IV BIOMASS ENERGY

Bio mass resources – Energy from Bio mass: conversion processes - Thermo chemical conversion – combustion, gasification, pyrolysis - biochemical conversion – anaerobic digestion - applications – bioethanol and bio diesel production - Cogeneration - Environmental Benefits.

UNIT V OTHER ENERGY SOURCES

Geothermal Energy - Tidal Energy - Wave Energy - Ocean Thermal Energy Conversion (OTEC) - Fuel cell: Principle of working- types and applications.

TOTAL (L: 45) = 45 PERIODS

(9)

(9)

(9)

(9)

TEXT BOOKS:

- Khan, B. H. Non-conventional Energy Resources. 3rd Edition. India, McGraw-Hill Education (India) Pvt Limited, 2017.
- 2. Rai.G.D., Non-Conventional Energy Sources, 6th Edition. Khanna Publishers, New Delhi, 2017.

REFERENCES:

- 1. Twidell, J.W. & Weir A., Renewable Energy Resources, EFNSpon Ltd., UK, 2015.
- 2. Bent Sorensen, Renewable Energy, Elsevier, Academic Press, 2011
- 3. Sengio C. Capareda. Introduction to biomass energy conservations. CRC Press. 2014

COURSE				PRO	GRAM	IME O	υтс	OME	S				PS	Os
OUTCOM ES	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3											3	
3		3												
4				3										
5				3		2		2				2	3	
CO(W.A)	3	3		3		2		2				2	3	

		22AGC18 - FOOD AND DAIRY E	NGINEERING				
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
		• To impart knowledge about di	fferent processing	meth	nods ir	n food	and
Course	e Objective:	rying, pasteurizatic	on, ho	moger	nization	n and	
	e Outcomes Ident will be able	to	Cognitive Level	in	eighta; End S Exami	emes	ter
COI		use of food spoilage and suggest suitable ires to overcome the same	An		2	0%	
CO2	Assess the rig liquid food	ht method of processing the solid and	An		2	0%	
CO3		properties of milk and find the best way under various temperatures.	С		2	0%	
CO4		suitable equipment for preserving and diary products for a longer time.	An		2	0%	
CO5		physical and chemical properties for est method of preserving food and dairy gh case study.	An		2	0%	

UNIT I – PROPERTIES AND CONCENTRATION OF FOOD MATERIALS

(9)

(9)

(9)

(9)

Constituents of food and their energy values – Engineering properties of food materials – Physical, mechanical, thermal, rheological, electrical and physico-chemical properties of food materials – texture of food materials – definition – Terminologies – viscometry – basic concepts – Concentrations of foods – freeze concentration – membrane concentration

UNIT II – THERMAL PROCESSING OF FOODS

Newtonian and non-Newtonian liquid foods - Thermal processing of foods – product-time-temperature relationships – cooking, blanching, Canning – sterilization of solid and liquid foods – batch and continuous sterilization equipment. Preservation by irradiation – retort processing – principles and applications – microwave and radio frequency heating in food processing.

UNIT III – DRYING AND DEHYDRATION

Food spoilage – causes for spoilage – Moisture content – free moisture – bound and unbound moisture – equilibrium moisture content – Water activity – sorption behavior of foods – dehydration – methods of dehydration – osmotic dehydration – microwave drying – foam mat drying of materials – freeze drying – types of dryers -advantages and disadvantages.

UNIT IV -MILK PROCESSING

Physical, chemical, thermal and rheological properties of milk. Receiving handling and testing of milk – storage. Pasteurization – principles and methods – equipment – Low Temperature Long Time – High Temperature Short Time – Ultra High Temperature pasteurization.

UNIT V - DAIRY EQUIPMENT AND PRODUCTS

Homogenization- theory and working of homogenizers- high pressure homogenization of milk and other food suspensions Clarifiers- butter churns- ghee, whey, milk powder manufacture- equipment - icecream freezers - drying equipment - drum drier and spray drier - milk products-milk plant sanitation requirements -Cleaning in-place and its functions.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. R.Paul Singh and R.Dennis Heldman, Introduction to Food Engineering. 5th Edition, Academic Press, London, 2013.
- 2. Toledo, Romeo T., et al. Fundamentals of Food Process Engineering. 4th Edition, India, Springer International Publishing, 2019.

REFERENCES:

- I. Sivasankar, B. Food Processing & Preservation, Prentice Hall of India, 2002
- 2. K. M. Sahay and K. K. Singh, Unit Operations of Agricultural Processing, 2nd Edition Vikas Publishing House Pvt. Ltd., New Delhi, 2002.

COURSE				PRO	GRAM	IME O	итсс	ME	5				PS	SOs
OUTCOME S	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I		3												
2		3												
3	3													3
4				3										
5				3	3			2				2		3
CO(W.A)	3	3	3	3	3			2				2		3

D. Ou

22AGP09 - FOOD AND DAIRY ENGINEERING LABORATORY

														L	Т		Ρ	(С
														0	0		4		2
PRE -	REQUISITE :	NIL																	
Course	e Objective:	•		get ha od mate		on ex	cperie	ence	in te	esting	g of _l	orope	ertie	s and	ther	ma	l proc	cessing	g of
Course	e Outcomes														Cogr	niti	ive Lo	evel	
The Stu	dent will be able	e to													0 08				
COI	Experiment and	d detect	t the	type of	conta	amina	atior	n in f	foods	5							Ap		
CO2	Analyze the pre	eservatio	ion of	f food u	ısing f	freezi	ing a	and d	lrying	g of fo	oods						An		
CO3	Test dehydratio	on and r	rehyd	lration (of foc	ods											Ap		
CO4	CO4 Assess the milk properties and separation efficiency An																		
CO5	Investigate the processes in dairy industry through participative learning An																		

LIST OF EXPERIMENTS:

- I. Estimation of microbial load in food materials
- 2. Analysis of engineering properties and adulteration in foods
- 3. Refrigeration and freezing of foods
- 4. Determination of drying rate of tray dryer
- 5. Determination of drying rate of foam mat dryer
- 6. Experiment on microwave heating of food
- 7. Experiment on osmotic dehydration of foods
- 8. Determination of rehydration ratio of dehydrated foods
- 9. Determination of properties of milk/ Sensory evaluation of milk powders
- 10. Determination of separation efficiency of cream separator
- II. Visit to a dairy industry

TOTAL (P: 60) = 60 PERIODS

COURSE				PRC	GRAI	MME (DUT	СОМ	ES				PS	Os
OUTCOMES	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3												
3	3													
4				3	3									3
5				3		2			2			2		3
CO(W.A)	3	3		3	3	2			2			2		3

	22AGP10) - RURAL AGRO INDUSTRY WORK EXPERIMENT	Г (RA	WE)		
			L	Т	Ρ	С
			0	0	2	
PRE - I	REQUISITE :	NIL				
Course	e Objectives:	 To understand various scenario of village reddepartment, constraints of agriculture and its allied To gain knowledge on government schemes, development programmes and its extension activiti 	sector techn	rs.	•	
	e Outcomes udent will be abl	e to	Co	gnitiv	e Lev	el
COI		prevailing scenario of resources available in agricultural and developmental activities of village.		Δ	Ψ	
CO2		nowledge gained to avail benefits from agricultural and other banking sectors to empower farmers.		A	νP	
CO3	Analyze the c to market.	constraints involved in disseminating agriculture products		A	'n	
CO4	-	ri products and marketing strategies to meet the agro ial standards with the recent advanced technologies.		A	'n	
CO5	problems and	analyzing the real scene with a presentation of the constraints observed on agriculture and allied sectors as per of the team.		۵	'n	

UNIT I – VILLAGE ATTACHMENT TRAINING PROGRAMME (2)

Describe the Natural Resources (village & farm) - agricultural scenario –demographic details –Assess the Village Infrastructure –Analyze the Problems/Constraints related to farming, marketing, processing, transport, communication, access to extension and other services, etc.

UNIT II – STUDYING DEVELOPMENT DEPARTMENTS

Visit to office of Assistant Director of Agriculture, Agricultural Engineering and KVK - study the organizational structure, functions, duties and responsibilities of extension personnel, ATMA, schemes implemented, extension activities conducted etc.

UNIT III - STUDYING ACTIVTIES OF AN NON- PROFIT ORGANIZATIONS

Study of NGO, Primary Agricultural Cooperative Bank (PACB), Regulated Market Committee (RMC), FPO, NABARD and Lead Banks – Roles and objectives – organizational pattern – sources of funding – extension activities – Contacting target groups.

UNIT IV – STUDYING ACTIVITIES OF AGRI- BUSINESS FIRM

Visit to an Agri-business firm (SHG / Custom Hiring Centers / District Industrial Center (DIC) and Agri Clinic Agri Business Center) - study the business activities, projects, managerial functions viz., planning, supervision, delegation, communication, budgeting and related aspects and documentation of success stories of the farmers.

(3)

(3)

(4)

UNIT V – AGRO INDUSTRIAL ATTACHMENT

(3)

Visit to Agro-and Cottage industries and Commodities Boards: Industries include Seed/Sampling production, Post harvest processing, Food processing, Value addition, Hi- Tech farms, etc.

TOTAL (L: 0, P:2) = 15 PERIODS

				Μ	apping	g of CC) s with	POs /	PSOs						
	POs														
COs	I	2 3 4 5 6 7 8 9 10 11 12													
I		3		2		2	2			I					
2	3														
3				3									2		
4					3									3	
5									3	2					
CO (W.A)	3	3 2.5 3 2 2 3 1.5 2												3	

D. du ~

		22GEA01 UNIVERSAL HUMA (For Common To All Bra					
		X	,	L	Т	Ρ	С
				2	0	0	2
PRE -	REQUISITE : N	NIL					
Course	e Objective:	 To help the students appreciate 'VALUES' and 'SKILLS' to ensure so To facilitate the development of towards life and profession. To highlight plausible implication ethical human conduct. To understand the nature and ex To understand human contact an 	sustained happines of a holistic persp ns of holistic unc kistence.	s and j bective lerstar	prospe amoi	rity. ng stud	dents
	e Outcomes Ident will be able t	to	Cognitive Level	in	End S	ge of C emest inatio	ter
COI	education and s profession.	gnificance of value inputs in formal start applying them in their life and	E				
CO2	accumulation of Body, Intention a	veen values and skills, happiness and physical facilities, the Self and the and Competence of an individual.	Ар	Int	ownol 4	Assessn	
CO3		e of harmonious relationship based on t in their life and profession.	An		ernal A	Assessn	nent
CO4	Examine the role in society and na	e of a human being in ensuring harmony ture.	Ар				
CO5	Apply the unc	derstanding of ethical conduct to rategy for ethical life and profession.	Ар	1			

UNIT I: INTRODUCTION-BASIC HUMAN ASPIRATION, ITS FULFILLMENT THROUGH ALL- ENCOMPASSING RESOLUTION

(6)

The basic human aspirations and their fulfillment through Right understanding and Resolution, Right understanding and Resolution as the activities of the Self, Self being central to Human Existence; Allencompassing Resolution for a Human Being, its details and solution of problems in the light of Resolution

UNIT II: RIGHT UNDERSTANDING (KNOWING)- KNOWER, KNOWN & THE PROCESS

(6)

The domain of right understanding starting from understanding the human being (the knower, the experiencer and the doer) and extending up to understanding nature/existence – its interconnectedness and co-existence; and finally understanding the role of human being in existence (human conduct).

UNIT III: UNDERSTANDING HUMAN BEING

(6)

Understanding the human being comprehensively as the first step and the core theme of this course; human being as co-existence of the self and the body; the activities and potentialities of the self; Basis for harmony/contradiction in the self

UNIT IV: UNDERSTANDING NATURE AND EXISTENCE

A comprehensive understanding (knowledge) about the existence, Nature being included; the need and process of inner evolution (through self-exploration, self- awareness and self-evaluation), particularly awakening to activities of the Self: Realization, Understanding and Contemplation in the Self (Realization of Co-Existence, Understanding of Harmony in Nature and Contemplation of Participation of Human in this harmony/ order leading to comprehensive knowledge about the existence).

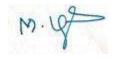
UNIT V: UNDERSTANDING HUMAN CONDUCT, ALL-ENCOMPASSING RESOLUTION AND HOLISTIC WAY OF LIVING

Understanding Human Conduct, different aspects of All-encompassing Resolution (understanding, wisdom, science etc.), Holistic way of living for Human Being with All- encompassing Resolution covering all four dimensions of human endeavor viz., realization, thought, behavior and work (participation in the larger order) leading to harmony at all levels from Self to Nature and entire Existence

TOTAL (L:30) : 30 PERIODS

TEXT BOOKS:

I. R R Gaur, R Asthana, G P Bagaria, 2019 (2nd Revised Edition), A Foundation Course inHuman Values and Professional Ethics. ISBN 978-93-87034-47-1, Excel Books, New Delhi


REFERENCES:

- 1. Ivan Illich, 1974, Energy & Equity, The Trinity Press, Worcester, and Harper Collins, USA
- 2. E.F. Schumacher, 1973, Small is Beautiful: a study of economics as if people mattered, Blond & Briggs, Britain.
- 3. Sussan George, 1976, How the Other Half Dies, Penguin Press. Reprinted 1986, 1991
- 4. Donella H. Meadows, Dennis L. Meadows, Jorgen Randers, William W. Behrens III, 1972, Limits to Growth Club of Rome's report, Universe Books.
- 5. A Nagraj, 1998, Jeevan Vidya EkParichay, Divya Path Sansthan, Amarkantak.
- 6. P L Dhar, RR Gaur, 1990, Science and Humanism, Commonwealth Publishers.
- 7. A N Tripathy, 2003, Human Values, New Age International Publishers
- 8. E G Seebauer& Robert L. Berry, 2000, Fundamentals of Ethics for Scientists&Engineers, Oxford University Press
- 9. M Govindrajran, S Natrajan& V.S. Senthil Kumar, Engineering Ethics (including Human Values), Eastern Economy Edition, Prentice Hall of India Ltd.
- 10. Subhas Palekar, 2000, How to practice Natural Farming, Pracheen (Vaidik) Krishi Tantra Shodh, Amravati
- 11. B P Banerjee, 2005, Foundations of Ethics and Management, Excel Books
- 12. B L Bajpai, 2004, Indian Ethos and Modern Management, New Royal Book Co., Lucknow. Reprinted 2008.

(6)

(6)

				Марј	ping o	f COs	with F	POs / F	PSO s					
						PC	Ds						PS	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I						2	2	3	2	2		3		
2						2	2	3	2	2		3		
3						2	2	3	2	2		3		
4						2	2	3	2	2		3		
5						2	2	3	2	2		3		
CO (W.A)						2	2	3	2	2		3		

	22G	ED02 – INTERNSHIP / INDUSTRIAL TRAINING	G			
			L	Т	Ρ	С
			0	0	4	2
PRE -	REQUISITE : NIL					
Cours	e Objective:	 To obtain a broad understanding of the emerging ter To gain knowledge about I/O models. 	chnolo	gies in	Indust	ry
	Outcomes dent will be able to		Co	gnitiv	e Leve	əl
COI	Engage in Industria	l activity which is a community service.		ι	J	
CO2	Prepare the project work.	t report, three minute video and the poster of the		A	P	
CO3	Identify and specif comfortable.	y an engineering product that can make their life		A	n	
CO4		s plan for a commercial venture of the proposed with complying to relevant norms.		A	P	
CO5	Identify the commu	unity that shall benefit from the product.		E		

During semester breaks, students are encouraged to engage in industrial training or undergo internship in an industry related to the field of study. The duration of the activity shall be of 4 to 6 weeks. The work carried out in the semester break is assessed through an oral seminar accompanied by a written report. It is expected that this association will motivate the student to develop simple Electronic (or other) products to make their life comfortable and convert new ideas into projects.

Every student is required to complete 12 to 16 weeks of internship (with about 40 hours per week), during the Summer/Winter semester breaks. The Internships are evaluated through Internship Reports and Seminars during the VI and VIII semesters. The internships can be taken up in an industry, a government organization, a research organization or an academic institution, either in the country or outside the country, that include activities like:

- Successful completion of Internships/ Value Added Programs/Training
- Programs/ workshops organized by academic Institutions and Industries
- Soft skill training by the Placement Cell of the college
- Active association with incubation/ innovation /entrepreneurship cell of the institute;
- Participation in Inter-Institute innovation related competitions like Hackathons
- Working for consultancy/ research project within the institutes
- Participation in activities of Institute's Innovation Council, IPR cell, Leadership Talks, Idea/ Design/ Innovation contests
- Internship with industry/ NGO's/ Government organizations/ Micro/ Small/ Medium enterprises
- Development of a new product/ business plan/ registration of a start-up

				M	apping	g of CC	Os with	POs /	PSO s					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι						2								
2										3				
3		Ι												
4							2	3			2			
5						2								
CO (W.A)		I				2	2	3		3	2			

D. du

22AGD01- PROJECT WORK

ТРС

L

0

PRE - REQUISITE : NIL

	e Outcomes dent will be able to	Cognitive Level	Weightage of COs in End Semester Examination
COI	Engage in independent study to research literature in the identified area and consolidate the literature search to identify and formulate the engineering problem.		20 % - First Review (Internal)
CO2	Prepare the Gantt Chart for scheduling the project, engage in budget analysis, and designate responsibility for every member in the team and identify the community that shall benefit through the solution to the identified research work and also demonstrate concern for environment	Ap, E	20 % - Second Review (Internal)
CO3	Identify, apply the mathematical concepts, science concepts, and engineering concepts necessary to implement the identified engineering problem, select the engineering tools /components required to reproduce the identified project, design, implement, analyze and interpret results of the implemented project	Ap, An, C	20 % - Third Review (External)
CO4	Engage in effective written communication through the project report, the one-page poster presentation, and preparation of the video about the project and the four page IEEE format of the work and effective oral communication through presentation of the project work and demonstration of the project.	E	20 % - Final Review (External)
CO5	Perform in the team, contribute to the team and mentor/lead the team, demonstrate compliance to the prescribed standards/ safety norms and abide by the norms of professional ethics and clearly specify the outcome of the project work (leading to start-up/ product/ research paper/ patent)	Ap, An	20 % - Final Review (External)

DESCRIPTION

Project work may be allotted to a single student or to a group of students not exceeding 3 per group. The title of project work is approved by head of the department under the guidance of a faculty member and student(s) shall prepare a comprehensive project report after completing the work to the satisfaction of the guide. The Head of the department shall constitute a review committee for project work. There shall be three reviews during the semester by the committee to review the progress. Student(s) shall make presentation on the progress made by him / her / them before the committee and evaluation is done as per Rules and Regulations

TOTAL (P: 300) = 300 PERIODS

				Μ	apping	g of CC) s with	POs /	PSO s					
						PC	Ds						PS	Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I		3										3	3	3
2						3	3				3		3	3
3	3	3	3	3	3								3	3
4								3		3			3	3
5									3		3	3	3	3
CO (W.A)	3	3	3	3	3	3	3	3	3	3	3	3	3	3

D. du

	22AGX0	I - TESTING AND MANAGEMENT C	OF FARM MAG	CHIN	ERY		
				L	Т	Р	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 Analyze the performance and power machinery systems to optimize their Evaluate the effectiveness and safety tractors, power tillers, and harvestir and testing codes. 	r field performan of agricultural m	ce and nachin	l opera ery inc	ational Iuding	
	e Outcomes Ident will be able	to	Cognitive Level	in	End S	ge of (Semes inatio	ter
COI	performance of	proficiency in testing and evaluating the agricultural tractors in accordance with national standards.			2	.0%	
CO2		working and efficiency of power tillers and nplements, ensuring they meet the required			2	.0%	
CO3		ge of farm machinery management to ciency and safety of field operations.	Ар		2	.0%	
CO4	harvesting mach harvesters, and	performance of plant protection and ninery, such as sprayers, dusters, combine threshers, ensuring they operate within rmance guidelines.	E		2	.0%	
CO5		ctionality and effectiveness of tillage and ent, including seed cum fertilizer drills, ce transplanters.			2	.0%	

UNIT I – MANAGEMENT OF MACHINERY

Field machinery system – Importance of farm machinery management- field Performance and Power requirements. Cost of operation - Machinery for operator comfort and safety.

UNIT II – TRACTOR

Testing and evaluation systems in India – General Guidelines on the use of test codes. Testing and Evaluation of agricultural tractors – Indian standards. Performance of agricultural tractors – analysis of results – Nebraska tractor test and test reports.

UNIT III - POWER TILLER AND IMPLEMENTS

Testing and evaluation of power tiller. Testing and evaluation of tillage implements- Mould board – rotovator.

UNIT IV - TILLAGE AND SOWING EQUIPMENT

Testing and evaluation of Tillage machinery - seed cum fertilizer drill - weeders - Rice transplanter.

UNIT V -PLANT PROTECTION AND HARVESTING MACHINERY

Testing and evaluation of manually operated sprayer and duster - Combine harvester - thresher.

TOTAL (L:45) = 45 PERIODS

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. Metha M.L., SR.Verma, K Mishra and V.K. Sharma. 1995. Testing and Evaluation of Agricultural Machinery, National Agricultural Technology Information Centre, Ludhiana- 141001.
- 2. RNAM test codes and procedure for farm machinery, 1983
- 3. Donnell Hunt. 2013. Farm power and machinery management. Scientific International Pvt. Ltd. New Delhi.
- 4. Indian standard test codes related to tractors, power tillers and agricultural implements.

REFERENCES:

- 3. Liljedahl, J.B., P.K. Turnquist, D.W.Smith and M.Hoki. 2004. Fourth Edition. Tractors and their power units. CBS Publishers and Distributers, Delhi.
- 4. Kepner, R.A., R.Bainer, E.L. Barger. 2005. Third Edition. Principles of farm machinery. CBS Publishers and Distributers, Delhi.
- 5. Claude Culpin (198) Profitable farm mechanization Crosby Lockwood & Sons Ltd., 26, Old Brompton Road, SW.7
- 6. Donnell R. Hunt 1986. Engineering models for Agricultural production. The AVI publishing co.INC, Connecticut-06881.

					Mappir	ng of C	Os wit	h POs	/ PSOs	5				
						Р	Os						PS	Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3			2				2		3			3	
2			3		2				2			2	3	3
3		3												3
4														
5					3			2				2	3	
CO (W.A)	3	3	3	2	3			2	2	3		2	3	3

D. Aler

	22AGX0	2 - PLANT PROTECTION AND HA	RVESTING MA	CHIN	ERY		
				L	т	Р	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 Analyze the functionality and effect dusting equipment in agricultural a Evaluate the design, construction, threshing, and other specialized ag 	applications. and operational pr	inciple	•	, .	
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of C emest natior	er
соі	determination	nciples of atomization and droplet size to optimize the use of sprayers in ultural settings.	Ар		2	0%	
CO2	equipment, ii	dge of Operate various types of weeding ncluding manual and power-operated nhance crop management.	An		2	0%	
CO3	different type	construction and working principles of es of harvesters and mowers, and st practices for their maintenance and	Ap		2	0%	
CO4	harvesting r agricultural e	weldge of multi-crop threshers, fruit machinery, and other specialized quipment to improve efficiency and agricultural operations.	An		2	0%	
CO5	Analyze the requirements devices.	e effectiveness and maintenance of dusters and other plant protection	An		2	0%	

UNIT I - WEEDING EQUIPMENT

Weeding equipment – hand hoe – long handled weeding tools – dryland star weeder – wetland cono weeder and rotary weeder – Power Operated Weeder : Engine/Tractor/Battery

UNIT II – SPRAYERS

Sprayers –types-classification – methods of atomization, spray application rate, droplet size determination– Number Median Diameter (NMD) and Volume Median Diameter (VMD)-Sprayer operation – boom sprayer - precaution - coverage - factors affecting drift. Rotating disc sprayers – Controlled Droplet Application (CDA) - Electrostatic sprayers.

UNIT III – DUSTERS

Dusters - types - mist blower cum duster - other plant protection devices, care and maintenance.

(9)

(9)

UNIT IV – HARVESTERS

Principles and types of cutting mechanisms. Harvesters - types - mower mechanism – construction and adjustments - registration and alignment. Mowers, windrowers, reapers, reaper binders and forage harvesters. Combine harvester – types - parts - construction and working. Diggers for potato, groundnut and other tubers. Sugarcane harvesters - cotton pickers - corn harvesters.

UNIT V - THRESHERS AND OTHER MACHINERIES

(9)

(9)

Thresher – construction and working of multi crop thresher. Fruit pluckers - tree shakers - fruit harvesting machinery. Forest machinery - shrub cutters - tree cutting machines – post hole diggers – Chaff cutter.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Donnell Hunt. 2013. Farm power and machinery management. Scientific International Pvt. Ltd. New Delhi.
- 2. Jagdishwar Sahay. 2006. Elements of Agricultural Engineering. Standard Publishers Distributors, Delhi 6

REFERENCES:

- 7. Sanjay Kumar. 2013. Fundamentals of Agricultural Engineering. Kalyani publishers, Ludhiana- 141 008.
- 8. Surendar singh, 2011. Farm Machinery Principles and Applications. Indian Council of Agricultural Research, New Delhi-12.

				٢	1appin;	g of CO	Os witł	n POs	/ PSOs						
						Po	os						PS	Os	
COs	Ι	2	12	I	2										
I	3			2									3		
2		3													
3			3										3	3	
4				3									3		
5					2		2							3	
CO (W.A)	3	3 3 3 2 2												3	

D. Au

22AGX03 - HUMAN ENGINEERING AND SAFETY IN FARM MACHINERY OPERATIONS									
				L	Т	Ρ	С		
DDC		NIII		3	0	0	3		
PRE - REQUISITE : Course Objective:		 NIL To Apply ergonomic principles to evaluate and improve agricultural practices, focusing on human metabolism, energy expenditure, and physica function to optimize work efficiency and reduce fatigue. To Design ergonomic solutions and safety measures tailored to agricultura tools and equipment, ensuring better alignment with human physical capabilities and enhancing overall safety and productivity. 							
	e Outcomes dent will be able	Cognitive Level	Weightage of COs in End Semester Examination						
COI	agricultural to	nthropometric data to design and modify ols and equipment, ensuring they fit the nsions of users and improve comfort and	An	20%					
CO2	Develop and gadgets for ag accordance w	Implement safety protocols and safety gricultural machinery and operations, in <i>v</i> ith regulations and best practices, to and enhance worker safety.	Ap	20%					
CO3	Evaluate the including mus	impact of physiological functions, scle structure and function, on work ergonomics, taking into account age and	E	20%					
CO4	human workl	mic concepts to analyze and improve oad management in agricultural tasks, actors such as energy expenditure and stress.	An	20%					
CO5	agricultural op to optimize	ergonomic interventions for specific perations, such as spraying and weeding, body movements, strength, and nile ensuring speed and accuracy.	Ap	20%					

UNIT I- ERGONOMICS

Ergonomics- introduction- Role of ergonomics in Agriculture - Human metabolism- energy liberation in human body- Types of human metabolism- energy requirements at work - acceptable work load.

UNIT II - PHYSIOLOGICAL FUNCTION

Human Skeletal system - muscle - structure and function - Physiological stress - Efficiency of work - Physical functions - Age and individual differences in physical functions- Physiological and operational criteria of physical activity.

UNIT III - ENERGY EXPENDITURE

Energy expenditure of activities-keeping energy expenditure within bounds- Energy expenditure of Spraying Weeding operations - Movements of body members- Strength and endurance of movements - Movement of body members related to Agricultural activities - Speed and accuracy of movements - Time and distance of movements - Reaction time.

(9)

(9)

UNIT IV - ANTHROPOMETRY

Anthropometry - introduction - Types of data - Principles of applied anthrophometry - concept of percentile - Normal distribution - Estimating the range - Minimum and Maximum dimensions- Cost benefit analysis - applications of anthropometric data- Anthropometric consideration in tool - equipment design.

UNIT V – HUMAN SAFETY

Dangerous machine (Regulation) act, Rehabilitation and compensation to accident victims, Safety gadgets for spraying, threshing, Chaff cutting and tractor & trailer operation.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Sanders, M.S. and McComack, EJ. Human factors in Engineering and Des ign. Tata McGraw Hill, New York. 1992
- 2. Obome, David.J. Engieering Work. John Wiley and Sons Ltd., 1982

REFERENCES:

- 1. Astand, P.P. and Rodaid, K. Text book of Work Physiology, McGraw Hill Book Company, New York, 1970
- 2. Grandjean, E. Fitting the Track of the Man, Taylor and France Ltd., U.K., 1981

Mapping of COs with POs / PSOs														
	Pos											PS	'SO s	
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	2							2					3	
2			3					2						
3				3									3	
4		3					2							3
5			2		3									3
CO (W.A)	2	3	3	3	3		2	2					3	3

D. du

(9)

22AGX04 - DESIGN OF AGRICULTURAL MACHINERY (Use of the PSG Design Data Book is permitted in the examination)									
	L T P								
				3	0	0	3		
PRE -	REQUISITE :	NIL							
 To learn design considerations and their applications in agricultural To understand the standards and procedures for design of agricultural machinery components. To analyze factor affecting of gears and bearing To Recognize the standards and procedures for design of power transmission system To understand the standards and procedures for design of agricultural procedures for design of agricultural and procedures for design of agricultural agricultural and procedures for design of agricultural agricu									
	e Outcomes Ident will be able	Cognitive Level	Weightage of COs in End Semester Examination			ter			
соі	Design and drav	wing of basic machine components.	Ар	20%					
CO2	Examine the machinery com	design considerations of Agricultural ponents.	Ар	20%					
CO3	Analyze the fac gears and beari	tors affecting design and construction of ngs.	An	20%					
CO4	Illustrate vari drawings.	ous machine components through	An	20%					
CO5	00	pendent study to select components for chinery applications	An	20%					

UNIT I STRESSES IN MACHINE MEMBERS

Introduction to design process- factor influencing the machine design, selection of material based on mechanical properties- Direct, bending and torsional stress equations- calculation of Principal stresses for combined loading. Design thinking.

UNIT II DESIGN OF POWER TRANSMISSION SYSTEMS

Selection of V-Belts and pulleys- selection of flat belts and pulleys- selection of transmission chains and sprockets. Design of pulleys and sprockets.

UNIT III DESIGN OF SHAFTS AND COUPLINGS

Design of solid and hollow shafts based on strength and rigidity- Design of keys, keyways - Design of rigid and flexible couplings. -Design of knuckle joints.

UNIT IV DESIGN OF GEARS

Gears - spur gear and helical gear - terminology - strength of gear teeth - Lewis equation - Buckingham equation. - Failure of gear teeth.- Applications of different types of Gears

UNIT V DESIGN OF BEARINGS

Bearing -Types of bearings – sliding contact and rolling contact types. – Bearing selection based on application - Lubrication in journal bearings – calculation of bearing dimensions.

TOTAL (L:30 T :15) = 45 PERIODS

(6+3)

(6+3)

(6+3)

(6+3)

(6+3)

I. Khurmi R.S and Gupta J.K, A Textbook of Machine Design, Euarsia publication house,2020.

2. Bhandari V.B, "Design of Machine Elements", Tata McGraw-Hill Book Co, 2017.

REFERENCES:

- 1. Norton R.L, Machine Design An Integrated Approach, Pearson Publications, 6 th Edition, 2021.
- 2. Srivastava A.K., Goering.C.E. and Rohrbach R.P. Engineering Principles of Agricultural Machines. Revised Printing by American Society of Agricultural Engineers. 1993.
- 3. Gary Krutz, Lester Thompson and Paul Clear., "Design of Agricultural Machinery", John Wiley and Sons, New York, 1984.
- 4. Handbook of Design Thinking: Tips & Tools for How to Design Thinking by Christian Mueller-Roterberg, 2018.

				M	lapping	g of CC	Ds with	n POs /	PSO s					
						PC	Ds						PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2			3											
3		3											3	
4				3										
5									2					3
CO (W.A)	3	3	3	3					2				3	3

D. Au

		22AGX05 - HYDRAULIC DRIVES A	AND CONTROL	s			
				L	Т	Ρ	С
				3	0	0	3
PRE RE	QUISITE : NI	L					
Course	e Objective:	 To assess the application of hyde To design drives and controls age implements To know about the safety in des To analyze given pumps, valves, to reach appropriate conclusion To assess the safety standards for 	ricultural machiner ign and operation c and hydraulic circui s	y, equ of hyd ts sys	iipmen raulic d	t, and Irives	order
	e Outcomes dent will be able	e to	Cognitive Level		ightag End So Exam	emest	-
COI		hydraulic fundamentals in design of em and controls	Ap		2	0%	
CO2		os for hydraulic systems applied in achinery techniques	An		2	0%	
CO3	Develop acc systems	umulators, and circuits for hydraulic	Ap		2	0%	
CO4	Select the val troubleshooti	ves and create valve circuit diagrams for ng	An		2	0%	
CO5	Apply the safe	ety standards for hydraulic systems	Ap		2	0%	

UNIT I- HYDRAULIC PRINCIPLE AND COMPONENTS

Hydraulic Basics- Pascal's Law, Flow, Energy, Work, and Power. Hydraulic Systems, Color Coding, Reservoirs, Strainers and Filters, Filtering Material and Elements.

UNIT II - PUMPS

Pump Classifications, operation, performance, Displacement, Design of Gear Pumps, Vane Pumps, Piston Pumps.

UNIT III - ACCUMULATORS, AND CIRCUITS

Accumulators, Pressure Gauges and Volume Meters, Hydraulic Circuit, Fittings and Connectors. Hydraulic Actuators, Cylinders, Construction and Applications, Maintenance, Hydraulic Motors.

UNIT IV - VALVES

Valves, Pressure-Control Valves, Directional- Control Valves, Flow-Control Valves, Valve. Installation, Valve Failures and Remedies, Valve Assembly, Troubleshooting of Valves- Hydraulic Circuit Diagrams and Troubleshooting

UNIT V – SAFETY AND CONTROLS

United States of American Standards Institute (USASI) Graphical Symbols Tractor hydraulics, nudging system, ADDC. Pneumatics: Air services, logic units, Fail safe and safety systems Robotics: Application of Hydraulics and Pneumatics drives in agricultural systems, Programmable Logic Controls (PLCs)

TOTAL (L: 45): 45 PERIODS

(9)

(9)

(9)

(9)

- 1. Anthony Esposito, "Fluid Power with Applications", New International Edition 7th Edition, 2013.
- 2. Srinivasan R., "Hydraulics and Pneumatic Controls", Vijay Nicole Imprints 3rd edition, 2019.:

REFERENCES:

- Manring, N. D. "Hydraulic Control Systems: Design and Analysis of Their Dynamics" CRC Press.2014.
- 2. Watanabe, K. "Hydraulic Proportional and Servo Control Systems" CRC Press. 2003
- 3. Sivaraman, I. "Introduction to Hydraulics and Pneumatics" CRC Press. 2015

				l	PROGE	RAM	1E OU	тсо	MES				PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2			3										3	
3				3									3	
4					2									3
5	3					2	2							3
CO(W.A)	3	2	3	2	2	2	2						3	3

D. du

		22AGX06 - PRECISION FARMING E	QUIPMENT				
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 Analyze the integration of electronics use of GIS and GPS systems, to en efficiency. Evaluate the application and perform actuators in precision farming to optin 	hance farm ma	s, mic	ry and	equip rollers	ment , and
	e Outcomes Ident will be able	to	Cognitive Level	in	End S	ge of (Semes inatio	ter
COI	sensors, micr	the functionality and application of various ocontrollers like Arduino and Raspberry Pi, in agricultural practices.	Ap		2	.0%	
CO2	required for	nciples of precision agriculture and the tools its implementation, including GIS and GPS prove farm operations.	Ар		2	.0%	
CO3	weed, and ag	ecific management techniques for nutrient, ro-chemical management, incorporating data ecision-making processes.	E		2	.0%	
CO4	and IoT applie	use of unmanned vehicles, including drones cations, in agriculture for tasks such as crop on, pest identification, pesticide spraying, and monitoring.	E		2	.0%	
CO5	and real-time	ecision farming concepts, including map-based systems, and their application in site-specific and precision tillage, planting, and harvesting.	An		2	.0%	

UNIT I- ROLE OF ELECTRONICS IN AGRICULTURAL ENGINEERING

(9)

(9)

Electronics in precision agriculture- Basics of precision agriculture - tools for implementation of precision agriculture. Introduction of GIS/GPS positioning system for precision farming. Use of GIS and GPS in farm machinery and equipment.

UNIT II - SENSORS, MICROCONTROLLER AND ACTUATOR FOR PRECISION AGRICULTURE

Types of sensor- principle and concept of different sensor like ultrasonic, proximity, PIR, IR, radar, pressure, gas, temperature, moisture, strain /weight, colour sensor etc. used in agriculture. Microcontroller: Arduino, Raspberry Pi and PLC Actuator: DC Motor, Pump, linear Actuator etc. - Basic input circuits and signal conditioning systems - amplifiers and filters.

UNIT III - PRECISIONFARMING CONCEPTS AND PRECISION FARMING MACHINERY

(9)

Precision farming concepts-Map based system- Real time system - Combination Map and real time system - components of PF - Site specific management- Constraints of PF-Precision tillage, planting, intercultural, plant protection and harvesting equipment, laser guided leveller, power sprayer, straw chopper cum spreader, straw bailer, combine harvester.

		T.A. Pred		•					•					
		nn, J.H. F sults. Spr				•	e Specif	ic Cond	cepts an	id Sensi	ng Metł	nods: Ap	oplicatio	ons
				м					DCO-					
r				M	apping	orce	s with	PUS /	F3US					
COs						PC)s						PS	Os
COS	I	2	3	4	5	6	7	8	9	10	11	12	Ι	2
I	3													
2		2		3										3
3		2	2										3	
4	2												3	
5				3	2							2		3
CO (W.A)	3	2	2	3	2							2	3	3

- I. Krishna, K. R. Push Button Agriculture Robotics, Drones, Satellite-Guided Soil and Crop Management. Apple Academic Press. 2016
- 2. Kepner, R.A., Bainer, R. and Berger, E.L. Principles of Farm Machinery.AVI Publ. 1978.

REFERENCES:

151 | Page

D. Atel

UNIT IV - SITE-SPECIFIC MANAGEMENTSYSTEM

Site-specific nutrient management- weeds management- Agro-chemicals and fertilizer management, data sources and decision making for site-specific management. Grain quality and yield. Yield monitoring and mapping, soil sampling and analysis.

UNIT V – UNMANNED VEHICLES AND IOT IN AGRICULTURE UAV

Drones- Types - applications - rules and regulations - Autonomous ground vehicles - Robotic platforms and unmanned agricultural vehicles- IoT - crop yield estimates-threat identification- crop insurancepesticides spraying, environmental monitoring- protected cultivation- food quality monitoring.

TOTAL (L:45) = 45 PERIODS

(9)

		22AGX07 - THEORY OF MA	ACHINES				
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 To study the basic components of with respect to the displacement, link of a mechanism and design ca To study the basic concepts of to and Analyzing the effects of friction To Analyzing the force-motion researcement forces and analyzing of statement forces and analyzing of statement forces and analyzing the effect motions in mechanism and the effect motions in mechanism and the effect of the statement forces and the effect of the statement of the stat	, velocity, and accelo am mechanisms bothed gearing and l on in machine eleme elationship in compo tandard mechanism cts of unbalances re	eratior kinema ents onents s. sulting	n at any ntics of subjec	y point gear to ted to prescri	in a rains bed
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of (emest natior	ter
COI	dynamics of mechanical sys	ar understanding of the kinematics and different types of machinery and stems. Also explain of various types of and their applications in mechanical	Ар		2	0%	
CO2	mechanisms t	nematic linkages, gears, cams, and other o determine positions, velocities, and of different components.	An		2	0%	
CO3		s, torques, energy transformations and brations on machine performance in tems	Ар		2	0%	
CO4	systems, such	design mechanical components and as linkages, cams, and gears, that meet nal requirements.	An		2	0%	
CO5	machinery de	ical knowledge to practical problems in sign and analysis and recognize and al and professional responsibilities in actice.	Ар		2	0%	

UNIT I - KINEMATICS OF MECHANISMS

Definitions - Kinematic links - Pairs -Joints- degrees of freedom- Kinematic Chain - Machines and mechanism - Types and uses – Grashofs law-Inversions of mechanism-D Alemberts principle, Kinematic inversion of four bar chain and slider crank mechanism. Velocity and acceleration in simple four bar mechanisms - Ratchets and escapements

UNIT II - FRICTION IN MACHINE ELEMENTS

Sliding and rolling friction – Bearing - Friction clutches - working principles of single and multiple plate – Brakes – band and shoe brakes - belt drives, types - power transmitted - velocity ratio - effect of centrifugal tension - creep and slip on power transmission

(9)

UNIT III - GEARS AND GEAR TRAINS	(9)
Law of toothed gearing - Gears - classification - spur gear terminology - tooth profile - interference between rack and pinion. Gear trains - Introduction of gear trains - Speed ratio, simple and compound reverted and epicyclic gear trains.	e
UNIT IV - CAM AND FOLLOWER	(9)
Introduction of Cam and follower – types – Applications - knife edge, roller and flat faced followers displacement diagram – cam profiles for uniform velocity - Uniform acceleration - simple harmonic a cycloidal motion –flywheel - fluctuation of speed and energy – Applications of flywheel	
UNIT V – BALANCING AND VIBRATION	(9)
Introduction - Static and Dynamic balancing - Balancing of rotating masses and reciprocating masses Introduction to vibration - Types of vibration, Longitudinal, Transverse and torsional-free, forced and damped vibrations - Governor	
damped vibrations - Governor TOTAL (L:45) = 45 PEI	RIOE

I. Rattan, S.S, Theory of Machines, 3rd Edition, Tata McGraw-Hill, 2009.

2. Khurmi, R.S. and Gupta, J.K, Theory of machines, Eurasia Publication House, 1994.

3. Ramamurthi. V, "Mechanics of Machines", Narosa Publishing House, 3rd edition 2019

REFERENCES:

I. Thomas Beven, Theory of Machines, CBS Publishers and Distributors, New Delhi, 1984.

2. Uicker, J.J., Pennock G.R and Shigley, J.E., "Theory of Machines and Mechanisms", Oxford University Press, 2017.

3. Ballaney, P.L, Theory of machines, Khanna Publishers, New Delhi, 1994

				M	lapping	g of CC) s with	POs /	PSO s					
	POs													
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	3
2	2	3												
3														
4	2		3										3	3
5		2	2					3					3	3
CO (W.A)	2.3	2.5	2.5					3					3	3

	2	22AGX08 - TRACTOR AND AUTOM	IOTIVE ENGINE	S				
				L	т	Ρ	С	
				3	0	0	3	
PRE -	REQUISITE :	NIL						
Course	e Objective:	 Understand the basic principles between two-stroke and four-strok Understand the working and purp Transmission system in tractor er Able to know the implements use tractors 	oke engines pose of cooling syst ngines.	em an earn sl	d lubri kill on s	cation structu	system re of	
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of C emest nation	ter	
соі		lge on IC engines, cooling and lubrication earn about different types of fuel systems	Ap	20%				
CO2	components,	explain the functions of various engine such as pistons, cylinders, crankshafts, res, fuel systems, and lubrication systems.	An	0%				
CO3	power, torque Understand fa	ne performance parameters, including e, efficiency, and fuel consumption and actors affecting engine performance and ahance efficiency	Ар		2	0%		
CO4		on control technologies and regulations pollutants from engines for environment	Ар	20%				
CO5	common enging protocols and	bleshooting skills to identify and resolve ne problems also Understand the safety practices required when working with lated machinery.	Ap		2	0%		

UNIT I- SOURCES OF FARM POWER AND ENGINE SYSTEM

Sources of farm power - conventional and non - conventional energy sources; principles of IC engine - CI and SI; engine - functional components and their construction, comparison, measurement of indicated horse power - theoretical and numerical method; valve mechanism valve timing diagram and valve clearance adjustment, air cleaning system; turbocharger; supercharger; emission characteristics of IC engine, biofuels in IC engine, modern trends in engine design.

UNIT II - COOLING, LUBIRCATION, FUEL SUPPLY AND ELECTRICAL SYSTEM

(9)

(9)

Engine cooling system - pressurized cooling; anti - freeze solutions; lubrication system - types of lubricants and systems, fluid film theory and boundary layer theory, working principle; fuel supply system - fuels, properties of fuels, calculation of air - fuel ratio and calorific value; fuel test for SI and CI engines, detonation and knocking; carburetion system; fuel injection system; fuel injector nozzles; engine; ignition system of SI engines; electrical system

UNIT III - TRANSMISSION SYSTEM	(9)
Clutch - construction and principle of operation; gear box - gearing theory, functional re-	
calculation for speed ratio; planetary gear system, torque converter; differential system;	final drive and
wheels; brake system; steering system, front axle and wheel alignment, ackerman steeringged	ometry.
UNIT IV - HYDRAULIC SYSTEMS AND TRACTOR MECHANICS	(9)
Hydraulic system - automatic draft and position control; tractor power outlets - PTO, I	PTO standards;
wheels and tyres - construction and tyre specifications; tractor mechanics - forces acting o	n the tractor in
static and dynamic mode; determination of CG of a tractor and moment of inertia of a	tractor; tractor
static equilibrium, tractor stability especially at turns.	
UNIT V – POWER TILLER AND TRACTOR TESTING	(9)
Power tiller - types, application, functional components and attachments; types of tests - te	
need for testing and evaluation of farm tractor and power tiller; test code for perform	ance testing of
tractors and power tillers - RNAM, BIS, etc	
TOTAL (L:45) =	45 PERIODS

I. Barger, E.L., J.B. Liljedahl and E.C. McKibben, Tractors and their Power Units. Wiley Eastern Pvt. Ltd., New Delhi, 1997.

2.Domkundwar A.V. A course in internal combustion engines. Dhanpat Rai & Co. (P) Ltd., Educational and Technical Publishers, Delhi, 1999.

REFERENCES:

I. Jain SC and CR Rai. Farm Tractor Maintenance and Repair, standard publishers, 1999.

2.Liljedahl J B and Others. Tractors and Their Power Units., CBS Publisher, New Delhi, 1997.

3. Michal AM and Ojha TP. Vol I. Principles of Agricultural Engineering. Jain Brothers, New Delhi, 1996.

4. Jagadeeshwar Sahay, Elements of Agricultural Engineering, Standard Publishers Co., New Delhi, 2010.

				M	lapping	g of CC) s with	POs /	PSO s					
		POs												
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3											2	3	
2	2											2	3	
3		3												3
4						3	2							
5	2													3
CO (W.A)	2.3	3				3	2					2	3	3

22	AGXII – BIOC	CHEMICAL AND THERMO - CHEMI	CAL CONVERS		OF BI	OMAS	SS
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	• To learn types of biomass, prope thermo chemical conversion and	-				and
	e Outcomes Ident will be able	to	Cognitive Level	in	ightag End S Exami	emest	ter
COI	Calculate stoich of combustion	niometric air requirement and products	Ар		2	0%	
CO2	Analyze the pro pyrolysis proce	oduct distribution of gasification and sses	An		2	0%	
CO3	Design biogas p	lant based on the raw material availability	С		2	0%	
CO4		bon emission reduction potential of stration systems	An		2	0%	
CO5	Test the prope applications in e	rties of biomass to interpret the energy sector	An		2	0%	

UNIT I - BIOMASS CHARACTERIZATION AND CONVERSION

(9)

Biomass – types – fuels from biomass. Biomass fuel characterization – physical, chemical and thermal – energy release. Supply chain – harvesting / collection – transportation and processing. Biomass conversion technologies - Methods of densification - Briquetting – types.

UNIT II - BIOCHEMICAL CONVERSION

(9)

Biochemical degradation – factors affecting biogas production - types of biogas plants – construction details – operation and maintenance – utilization of biogas - slurry handling, enrichment – high rate biomethanation process – bioethanol, biodiesel – feedstock – process – utilization - composting - methods – applications.

UNIT III - THERMO CHEMICAL CONVERSION BY COMBUSTION

(9)

Combustion process – chemistry of combustion - combustion zones – emissions – Stoichiometric air requirement – Problems – Volumetric and gravimetric conversion. Co firing of biomass. Incinerators. Wood burning stoves – types – operation.

UNIT IV - THERMOCHEMICAL CONVERSION BY GASIFICATION AND (9)

Biomass gasification – chemistry of gasification – types of gasifiers – Gas cleaning & conditioning - utilization of producer gas - emissions – commercial gasifier plants. Pyrolysis– types and reactors – product recovery – biochar – bio oil – application.

UNIT V - COGENERATION AND WASTE HEAT RECOVERY

(9)

Carbon cycle - Carbon sequestration – methods - Carbon emission reduction calculation. Cogeneration technology – cycles – topping – bottoming – applications – waste heat recovery – WHR devices.

TOTAL (L: 45) = 45 PERIODS

- 1. Rajput, R. K. Non-Conventional Energy Sources and Utilisation: For Students of B.E./B. Tech, Also Useful for Competitive Examinations. India, S. Chand Pvt. Limited, 2012.
- 2. Basu, Prabir. Biomass Gasification and Pyrolysis: Practical Design and Theory. Netherlands, Elsevier Science, 2010.
- 3. Nijaguna, B.T. Biogas Technology. New age international publishers. 2006.

REFERENCES:

- 1. Kothari, D.P., K.C.Singal and Rakesh Ranjan. 2008. Renewable energy sources and emerging technologies. Prentice Hall of India Pvt. Ltd., New Delhi 01.
- 2. Sengio C. Capareda. 2014. Introduction to biomass energy conservations. CRC Press.

				F	ROGF	RAMMI	ΕΟυτ	СОМ	ES				PS	Os
COs	I	2	3	4	5	6	7	8	9	10	п	12	I	2
I	3												3	
2		3												
3			3										3	
4				3										
5				3	2	2		2	2			2	3	
CO (W.A)	3	3	3	3	2	2		2	2			2	3	

D. Au

				L	Т	Ρ	C		
				3	0	0	3		
PRE -	REQUISITE :	NIL		•	•				
		 Analyze the different types and ma generated in food production and 	•	by-pro	ducts a	and wa	ste		
Cours	e Objective:	 Evaluate various waste management and thermo-chemical and bio-cher waste utilization. 	•	•					
	e Outcomes udent will be able	to	Cognitive Level	Weightage of CO in End Semester Examination					
COI	effective waste strategies.	y to characterize waste and implement management and effluent treatment	Ap	20%					
CO2	understand the	ge of food by-products and waste to r types, magnitudes, and implications in a and processing.	Ap		20%				
CO3	such as biomas	nermo-chemical conversion techniques, s gasification, including the mechanism, reactors, and utilization of producer gas.	E		2	20%			
CO4	•	bio-chemical conversion processes, ection and utilization of biogas plants for , and engine operations.	processes,						
CO5	including condu	ocess of direct combustion of biomass, acting proximate and ultimate analyses ling the operating conditions affecting	An	20%					

UNIT I –Introduction	(9)
By-products/waste, types of food by-product and waste, magnitude of by-products and waste production, magnitude of by-products and wastes in food processing.	in food
UNIT II –Waste management concepts	(9)
Waste characteristics, waste management and effluent treatment.	1
UNIT III –Direct combustion of solid waste	(9)
Proximate and ultimate analysis of biomass, theory of combustion, direct combustion of biomass as furnaces, operating conditions affecting design of furnace.	s fuel in
UNIT IV –Thermo-chemical conversion of solid waste	(9)
Biomass gasification, gasification process mechanism, types of gasifier reactors, utilization of produce	er gas.
UNIT V – Bio-chemical conversion	(9)
Selection of proper size of biogas plant, utilization of biogas for cooking purpose. Utilization of bio lighting purposes and engine operation.	ogas for
TOTAL (L:45) = 45 PEI	RIODS

- 1. Michael, A.M. and Ojha, T.P., "Principles of Agricultural Engineering Vol II", Jain Brothers, New Delhi, 2002.
- 2. Suresh, R., "Land and Water Management Principles", Standard Publishers & Distributors, New Delhi. Press India Pvt. Ltd, 2007.
- 3. Jagadish Prasad., "Principles and Practices of Dairy Farm Management", Kalyani Publishers, New Delhi, 1996.

REFERENCES:

- 1. Jan C. van Dam., "Impacts of "Climate Change and Climate Variability on Hydrological Regimes", Cambridge University Press, 2003.
- 2. Jeffery Star and John Estes, "Geographical Information System An Introduction," Prentice Hall India Pvt. Ltd., New Delhi, 1998.

Website Reference:

1. https://www.icar.org.in/content/agricultural_engineering_division

2. https://www.agroengineering.org/index.php/jae

	Mapping of COs with POs / PSOs													
						РС)s						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3			2		2	3					2		3
2		3							2		2			3
3			3			3								
4	3												3	
5		2		2	2						2	3		
CO (W.A)	3	2	3	2	2	3	3		2		2	3	3	3

D. Au

		22AGX13 - SOLAR ENERGY EN	IGINEERING					
				L	Т	Ρ	С	
				3	0	0	3	
PRE -	REQUISITE :	NIL						
Course	e Objective:	• To impart the basics of solar photovoltaic systems	energy harnessing	thro	ugh th	iermal	and	
	e Outcomes dent will be able	to	Cognitive Level	in	ightag End S Exami	emes	ter	
соі	Calculate solar	angles and time	Ap		20	0%		
CO2	Test the efficie collectors	ency of solar focusing and non-focusing	An	20%				
CO3	Analyze the technologies	solar thermal energy conversion	An		20	0%		
CO4	Review differe	nt PV technologies available in the market	An	20%				
CO5	Design solar ph	otovoltaic systems	C 20%					
						(9)		

Thermal Radiation Fundamentals - Black-Body Radiation - Intensity of Radiation and Shape Factor - S Earth Geometric Relationship - Solar Time and Angles - Extraterrestrial Solar Radiation - Instruments Measuring Solar Radiation and Sunshine UNIT II -SOLAR THERMAL SYSTEMS AND NON - FOCUSSING COLLECTORS Radiative Properties and Characteristics of Materials - Selective Surfaces - Reflecting Surfaces - Transpa Materials - Solar Water and air Heating Systems - Flat-Plate Collectors - Liquid-Type Collectors - Air-T Collectors - Evacuated-Tube Collectors - Solar space heating and Cooling UNIT III -FOCUSSING COLLECTORS (9) Concentrating Solar Collectors - Thermodynamic Limits to Concentration - Concentrator Types - F Concentrators - Parabolic Trough Concentrator - Paraboloidal Concentrators - Spherical Concentrator Compound Parabolic Concentrator - Central Receiver Collector UNIT IV -FUNDAMENTALS OF SOLAR PV (9) Solar Cell and its function - Solar PV technologies - Solar Cell Parameters - Efficiency of Solar Cell - S PV Module - Connection of PV Module in Series and Parallel - Estimation and Measurement of PV Mo Power - Types of solar cells (9) Types of Solar PV System, Design methodology for SPV system, Design of Grid connected PV system	(9)
Measuring Solar Radiation and Sunshine (9) Radiative Properties and Characteristics of Materials - Selective Surfaces - Reflecting Surfaces - Transpa (9) Radiative Properties and Characteristics of Materials - Selective Surfaces - Reflecting Surfaces - Transpa Materials - Solar Water and air Heating Systems - Flat-Plate Collectors - Liquid-Type Collectors - Air-T Collectors - Evacuated-Tube Collectors - Solar space heating and Cooling (9) UNIT III -FOCUSSING COLLECTORS (9) Concentrating Solar Collectors - Thermodynamic Limits to Concentration - Concentrator Types - F (9) Concentrators - Parabolic Trough Concentrator - Paraboloidal Concentrators - Spherical Concentrator (9) Solar Cell and its function - Solar PV technologies - Solar Cell Parameters - Efficiency of Solar Cell - S (9) Solar Cell and its function - Solar PV technologies - Solar Cell Parameters - Efficiency of Solar Cell - S (9) PV Module - Connection of PV Module in Series and Parallel - Estimation and Measurement of PV Mo Power - Types of solar cells UNIT V -SOLAR PV POWER GENERATION AND DESIGN (9) Types of Solar PV System, Design methodology for SPV system, Design of Grid connected PV system (9)	of Radiation and Shape Factor - Sun-
UNIT II-SOLAR THERMAL SYSTEMS AND NON - FOCUSSING COLLECTORS(9)Radiative Properties and Characteristics of Materials - Selective Surfaces - Reflecting Surfaces - Transpa Materials - Solar Water and air Heating Systems - Flat-Plate Collectors - Liquid-Type Collectors - Air-T Collectors - Evacuated-Tube Collectors - Solar space heating and Cooling(9)UNIT III -FOCUSSING COLLECTORS(9)Concentrating Solar Collectors - Thermodynamic Limits to Concentration - Concentrator Types - F Concentrators - Parabolic Trough Concentrator - Paraboloidal Concentrators - Spherical Concentrator Compound Parabolic Concentrator - Central Receiver Collector(9)Solar Cell and its function - Solar PV technologies - Solar Cell Parameters - Efficiency of Solar Cell - S PV Module - Connection of PV Module in Series and Parallel - Estimation and Measurement of PV Mo Power - Types of solar cells(9)UNIT V -SOLAR PV POWER GENERATION AND DESIGN(9)Types of Solar PV System, Design methodology for SPV system, Design of Grid connected PV system	strial Solar Radiation - Instruments for
COLLECTORS(9)Radiative Properties and Characteristics of Materials - Selective Surfaces - Reflecting Surfaces - TranspaMaterials - Solar Water and air Heating Systems - Flat-Plate Collectors - Liquid-Type Collectors - Air-T Collectors - Evacuated-Tube Collectors - Solar space heating and CoolingUNIT III -FOCUSSING COLLECTORS(9)Concentrating Solar Collectors - Thermodynamic Limits to Concentration - Concentrator Types - F Concentrators - Parabolic Trough Concentrator - Paraboloidal Concentrators - Spherical Concentrator Compound Parabolic Concentrator - Central Receiver CollectorUNIT IV -FUNDAMENTALS OF SOLAR PV(9)Solar Cell and its function - Solar PV technologies - Solar Cell Parameters - Efficiency of Solar Cell - S PV Module - Connection of PV Module in Series and Parallel - Estimation and Measurement of PV Mo Power - Types of solar cells(9)UNIT V -SOLAR PV POWER GENERATION AND DESIGN(9)Types of Solar PV System, Design methodology for SPV system, Design of Grid connected PV system	
Collectors Radiative Properties and Characteristics of Materials - Selective Surfaces - Reflecting Surfaces - Transpa Materials - Solar Water and air Heating Systems - Flat-Plate Collectors - Liquid-Type Collectors - Air-T Collectors - Evacuated-Tube Collectors - Solar space heating and Cooling UNIT III -FOCUSSING COLLECTORS (9) Concentrating Solar Collectors - Thermodynamic Limits to Concentration - Concentrator Types - F Concentrators - Parabolic Trough Concentrator - Paraboloidal Concentrators - Spherical Concentrator Compound Parabolic Concentrator - Central Receiver Collector (9) Solar Cell and its function - Solar PV technologies - Solar Cell Parameters - Efficiency of Solar Cell - S PV Module - Connection of PV Module in Series and Parallel - Estimation and Measurement of PV Mo Power - Types of solar cells (9) Types of Solar PV System, Design methodology for SPV system, Design of Grid connected PV system	I – FOCUSSING
Materials - Solar Water and air Heating Systems - Flat-Plate Collectors - Liquid-Type Collectors - Air-T Collectors - Evacuated-Tube Collectors - Solar space heating and Cooling UNIT III -FOCUSSING COLLECTORS (9) Concentrating Solar Collectors - Thermodynamic Limits to Concentration - Concentrator Types - F Concentrators - Parabolic Trough Concentrator - Paraboloidal Concentrators - Spherical Concentrator Compound Parabolic Concentrator - Central Receiver Collector (9) Solar Cell and its function - Solar PV technologies - Solar Cell Parameters - Efficiency of Solar Cell - S (9) Solar Cell and its function - Solar PV technologies - Solar Cell Parameters - Efficiency of Solar Cell - S (9) PV Module - Connection of PV Module in Series and Parallel - Estimation and Measurement of PV Mo (9) Power - Types of solar cells (9) Types of Solar PV System, Design methodology for SPV system, Design of Grid connected PV system (9)	()
Collectors - Evacuated-Tube Collectors - Solar space heating and Cooling(9)UNIT III -FOCUSSING COLLECTORS(9)Concentrating Solar Collectors - Thermodynamic Limits to Concentration - Concentrator Types - FConcentrators - Parabolic Trough Concentrator - Paraboloidal Concentrators - Spherical ConcentratorCompound Parabolic Concentrator - Central Receiver CollectorUNIT IV -FUNDAMENTALS OF SOLAR PV(9)Solar Cell and its function - Solar PV technologies - Solar Cell Parameters - Efficiency of Solar Cell - SPV Module - Connection of PV Module in Series and Parallel - Estimation and Measurement of PV MoPower - Types of solar cellsUNIT V -SOLAR PV POWER GENERATION AND DESIGN(9)Types of Solar PV System, Design methodology for SPV system, Design of Grid connected PV system	aces - Reflecting Surfaces - Transparent
UNIT III -FOCUSSING COLLECTORS(9)Concentrating Solar Collectors - Thermodynamic Limits to Concentration - Concentrator Types - F Concentrators - Parabolic Trough Concentrator - Paraboloidal Concentrators - Spherical Concentrator Compound Parabolic Concentrator - Central Receiver Collector(9)UNIT IV -FUNDAMENTALS OF SOLAR PV(9)Solar Cell and its function - Solar PV technologies - Solar Cell Parameters - Efficiency of Solar Cell - S PV Module - Connection of PV Module in Series and Parallel - Estimation and Measurement of PV Mo Power - Types of solar cells(9)UNIT V -SOLAR PV POWER GENERATION AND DESIGN(9)Types of Solar PV System, Design methodology for SPV system, Design of Grid connected PV system	ors - Liquid-Type Collectors - Air-Type
Concentrating Solar Collectors - Thermodynamic Limits to Concentration - Concentrator Types - F Concentrators - Parabolic Trough Concentrator - Paraboloidal Concentrators - Spherical Concentrator Compound Parabolic Concentrator - Central Receiver Collector(9)WITT IV -FUNDAMENTALS OF SOLAR PV(9)Solar Cell and its function - Solar PV technologies - Solar Cell Parameters - Efficiency of Solar Cell - SPV Module - Connection of PV Module in Series and Parallel - Estimation and Measurement of PV MoPower - Types of solar cellsUNIT V -SOLAR PV POWER GENERATION AND DESIGN(9)Types of Solar PV System, Design methodology for SPV system, Design of Grid connected PV system	oling
Concentrators - Parabolic Trough Concentrator - Paraboloidal Concentrators - Spherical Concentrator Compound Parabolic Concentrator - Central Receiver Collector UNIT IV -FUNDAMENTALS OF SOLAR PV (9) Solar Cell and its function - Solar PV technologies - Solar Cell Parameters - Efficiency of Solar Cell - S PV Module - Connection of PV Module in Series and Parallel - Estimation and Measurement of PV Mo Power - Types of solar cells UNIT V -SOLAR PV POWER GENERATION AND DESIGN (9) Types of Solar PV System, Design methodology for SPV system, Design of Grid connected PV system	(9)
Compound Parabolic Concentrator - Central Receiver Collector (9) UNIT IV -FUNDAMENTALS OF SOLAR PV (9) Solar Cell and its function - Solar PV technologies - Solar Cell Parameters - Efficiency of Solar Cell - S PV Module - Connection of PV Module in Series and Parallel - Estimation and Measurement of PV Mo Power - Types of solar cells UNIT V -SOLAR PV POWER GENERATION AND DESIGN (9) Types of Solar PV System, Design methodology for SPV system, Design of Grid connected PV system (9)	ntration - Concentrator Types - Fixed
UNIT IV -FUNDAMENTALS OF SOLAR PV(9)Solar Cell and its function - Solar PV technologies - Solar Cell Parameters - Efficiency of Solar Cell - SPV Module - Connection of PV Module in Series and Parallel - Estimation and Measurement of PV MoPower - Types of solar cellsUNIT V -SOLAR PV POWER GENERATION AND DESIGN(9)Types of Solar PV System, Design methodology for SPV system, Design of Grid connected PV system	centrators - Spherical Concentrators -
Solar Cell and its function - Solar PV technologies - Solar Cell Parameters - Efficiency of Solar Cell - S PV Module - Connection of PV Module in Series and Parallel - Estimation and Measurement of PV Mo Power - Types of solar cells UNIT V -SOLAR PV POWER GENERATION AND DESIGN (9) Types of Solar PV System, Design methodology for SPV system, Design of Grid connected PV system	
PV Module - Connection of PV Module in Series and Parallel - Estimation and Measurement of PV Mo Power - Types of solar cells UNIT V -SOLAR PV POWER GENERATION AND DESIGN (9) Types of Solar PV System, Design methodology for SPV system, Design of Grid connected PV system	(9)
Power – Types of solar cells (9) UNIT V –SOLAR PV POWER GENERATION AND DESIGN (9) Types of Solar PV System, Design methodology for SPV system, Design of Grid connected PV system	meters - Efficiency of Solar Cell - Solar
UNIT V -SOLAR PV POWER GENERATION AND DESIGN (9) Types of Solar PV System, Design methodology for SPV system, Design of Grid connected PV system Very system	nation and Measurement of PV Module
Types of Solar PV System, Design methodology for SPV system, Design of Grid connected PV system	
	N (9)
	Design of Child commonstead DV supreme
Case studies of SPV and Off grid Solar PV Systems	Jesign of Grid connected PV systems,
TOTAL (L:45) = 45 PERIC	Design of Gria connected PV systems,

I. Goswami, D. Yogi. Principles of solar engineering. CRC press, 2022.

2. S P Sukhatme and J K Nayak, Solar Energy: Principles of Thermal Collection and Storage, Tata McGraw Hill, 2006.

3. C S Solanki, Solar Photovoltaics: Fundamentals, Technologies and Applications, Prentice Hall India, 2nd Edition, 2011.

REFERENCES:

- I. G N Tiwari, Solar Energy, Fundamentals, Design, Modeling and Applications, Narosa, 2002.
- 2. K.R.Gopalakrishna., "Computer Aided Engineering Drawing" (Vol I and II combined) Subhas Stores, Bangalore, 2017.

		-	_		PROG	GRAMI	ME OL	тсо	MES		-	-	PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	Т	2
I	3													
2			3											
3		3											3	
4				3										
5			3									2	3	
CO (W.A)	3	3	3	3								2	3	

D. du

		22AGX14 - WIND ENERGY EN	GINEERING					
				L	Т	Ρ	С	
				3	0	0	3	
PRE -	REQUISITE :	NIL						
Course	e Objective:	 To explain the basic theory and turbine siting, installation and env To describe the types of wind turbine basic the types of wind turbine basic the types of wind turbine basic the types. 	vironmental aspect Irbine and estimati	s				
	e Outcomes udent will be able	and the electrical aspects of winc	Cognitive Level	Weightage of COs in End Semester Examination				
COI	Calculate the p	ower available in wind	Ар	20%				
CO2	Illustrate the w	orking principle of wind turbine blades	An	20%				
CO3	Assess the wind sites	d power generation potential of different	An	20%				
CO4	Design wind po	wer systems	С	20%				
CO5	Analyze the e installation	nvironmental aspects of wind turbine	An	20%				

UNIT I- BASICS OF WIND ENERGY	(9)
Need, importance and scope of Wind Energy resources - History of Wind Energy - Sources	and potentials -
Wind Characteristics - Wind Data Analysis - Wind Prediction and Forecasting - Wind Me	easurement and
Instrumentation.	
UNIT II - TYPES OF WIND TURBINE SYSTEMS AND POWER ESTIMATION	(9)
Wind turbine types and their construction - Drag and lift - principle of rotation of the wind	turbine rotor -
horizontal and vertical axis windmills - Wind Turbine Energy Production – Betz Coefficient	
UNIT III – AERODYNAMICS OF WIND TURBINES	(9)
Aerodynamics of Wind Turbines - Aerodynamics of Airfoils - Blade Design - Blade Element	Theory - Wind
Turbine Loads	
UNIT IV – ELECTRICAL ASPECTS AND STANDARDS	(9)
Electrical Aspects of Wind Turbines - Basic Concepts of Electrical Power - Electrical Machi	nes Methods of
Generating Synchronous Power - Induction Machine - Asynchronous Electrical generato	rs - Permanent
magnet generators - AC generators - self-excitation- Wind Turbine Standards, Technical Spe	cifications
UNIT V – INSTALLATION AND ENVIRONMENTAL ASPECTS	(9)
Wind Turbine Siting - Installation and Operation Issues - Wind Farms - Wind Energy Applic	ations - Hybrid
Power Systems - Environmental Aspects and Impacts - Wind Turbine Noise	-
TOTAL (L:45) =	45 PERIODS

1. J. F. Manwell, J.G. McGowan, A.L. Rogers, Wind Energy Explained, Theory, Design and Application, Wiley, 2012.

2. Gary Johnson, L., 2006. Wind Energy Systems, John Wisley& Sons Ltd, USA.

REFERENCES:

1. Tony Burt, Nick Jenkins, David Sharpe and Ervin Bossanyi, Wind Energy Handbook, John Wiley & Sons Ltd, 2011. Second Edn.

2. Sathyajith Mathew. 2006. Wind energy: fundamental, resources analysis and economics. Springer Berlin Heidelberg, The Netherlands. ISBN: 139783540309055.

COURSE OUTCOMES		•	•		PROC	GRAM	1E OU	тсо	MES				PS	Os
	I	2	3	4	5	6	7	8	9	10	11	12	Т	2
I	3													
2		3												
3				2										
4			3										3	
5		3					2							
CO(W.A)	3	3	3	2			2						3	

D. Au

		22AGX15 - ALTERNATE ENERG	GY SOURCES					
				L	Т	Ρ	С	
				3	0	0	3	
PRE -	REQUISITE :	NIL						
Course	e Objective:	 To understand the basic theory generation, types of wind turbi geothermal, OTEC power generation 	ne and estimation	n of p	oower	from		
	e Outcomes Ident will be able	to	Cognitive Level	Weightage of COs in End Semester Examination				
COI	Calculate solar	angles and time	Ap	20%				
CO2	Estimate the po	wer available in wind	Ар	20%				
CO3	Assess the wo MHD and fuel o	orking principle of geothermal, OTEC, cell systems	An	20%				
CO4	Analyze the g challenge of its	rowth of renewable energy and the integration	An	20%				
CO5		lenges of transportation storage and use mpared to other fuels	An	20%				

(9) **UNIT I- ENERGY SOURCES** Major sources of energy - Renewable and Non-renewable - Primary and Secondary energy sources - Energy scenario - Need of alternate energy sources. (9)

UNIT II – SOLAR ENERGY

Solar radiations at earth's surface - solar radiation geometry - declination - hour angle - altitude angle incident angle - zenith angle - solar azimuth angle - principle of conversion of solar energy into heat and electricity - applications

UNIT III – WIND ENERGY

Wind power - wind power formulation - power coefficient - maximum power - principle of wind energy conversion - considerations in selecting a site for wind mills - advantages - limitations - classification working - comparison - applications

UNIT IV – GEOTHERMAL AND OTEC ENERGY

Geothermal energy - dry rock - wet rock - geo thermal power plant - function - principal parts - types of geothermal power systems – limitations – OTEC – Tidal and wave energy

UNIT V -MAGNETO HYDRO DYNAMIC SYSTEMS AND FUEL CELLS

magneto hydro dynamic -principle - common gases - MHD power plant - components - limitations applications - Fuel cells - types - Advantages - limitations - applications - Hydrogen production - types applications

TOTAL (L:45) = 45 PERIODS

(9)

(9)

(9)

TEXT BOOKS:

I. Non conventional Energy sources - G.D.Rai. 2014

2. S P Sukhatme and | K Nayak, Solar Energy: Principles of Thermal Collection and Storage, Tata McGraw Hill, 2006.

REFERENCES:

	PROGRAMME OUTCOMES												PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3													
3				2										
4		3											3	
5		3												
CO(W.A)	3	3		2									3	

1. Non conventional Energy sources – B. H. Khan. 2014

		22AGX16 - ENERGY STORAG	E 3131 EM3				
				L	Т	Ρ	С
				3	0	0	3
PRE - I	REQUISITE :	NIL					
Course	Objective:	 To understand the basics of energy E – Vehicles and the material ava To explain the principle and type and electrochemical energy stora To know the design aspects and storage system 	ilability and efficien pes of thermal, ch age systems.	icy for emical	energ , elect	y stora romagi	ige netic
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of C emest natior	ter
	Assess differen application	t energy storage systems based on the	An		2	0%	
CO2	Select appropri	ate devices for energy storage	Ар	20%			
0.05	Analyze the ava storage	uilable phase change materials for energy	An	20%			
(()4)	Design an er application	ergy storage system based on the	С		2	0%	
	Analyze fundam energy storages	ental heat and mass balances of different	An		2	0%	
	I- ENERGY S	FORAGE SYSTEMS OVERVIEW				(9)	
Scope disciplin	of energy stor les. Energy stor	age, needs and opportunities in energy age in the power and transportation sect rrent electric vehicle market.	-			ew and	d key
		L STORAGE SYSTEM				(9)	
		storage tank, solar thermal collector, app	olication of phase c	hange	mater		
		rganic materials					
UNIT	III – CHEMIC	AL STORAGE SYSTEM				(9)	

Concept of chemical storage, application of chemical energy storage system, advantages and limitations of chemical energy storage, challenges, and future prospects of chemical storage systems

UNIT IV – ELECTROMAGNETIC STORAGE SYSTEMS

Concepts, advantages and limitations of electromagnetic energy storage systems, and future prospects of electrochemical storage systems. (9)

UNIT V – ELECTROCHEMICAL STORAGE SYSTEM

Working principle of battery, primary and secondary (flow) batteries, Working principle of supercapacitor, types of supercapacitors, Operational principle of a fuel cell, types of fuel cells

TOTAL (L:45) = 45 PERIODS

- 1. Frank S. Barnes and Jonah G. Levine. 2011. Large Energy Storage Systems Handbook (Mechanical and Aerospace Engineering Series), CRC press
- 2. Ralph Zito. 2010. Energy storage: A new approach, Wiley

REFERENCES:

- 1. Pistoia, Gianfranco, and BoryannLiaw. 2018. Behaviour of Lithium-Ion Batteries in Electric Vehicles: Battery Health, Performance, Safety, and Cost. Springer International Publishing AG,
- 2. Robert A. Huggins. 2010. Energy storage, Springer Science & Business Media

			_		PROG	RAM	1E OU	тсо	MES	-	-	-	PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	Т	2
I		3												
2	3													
3		3												
4			3										3	
5				3		2						2	3	
CO (W.A)	3	3	3	3		2						2	3	

D. Aler

	2	2AGX17 - ENERGY AUDITING ANI		1T					
				L	т	Ρ	С		
				3	0	0	3		
PRE -	REQUISITE :	NIL							
Course	e Objective:	 To understand the energy manage of energy auditing, energy flow discopportunities. 							
	e Outcomes udent will be able	to	Cognitive Level	in	ightaş End S Exami	emest	er		
COI		gy conservation techniques, ensure safety rs of energy use	Ар		2	0%			
CO2	Calculate the si of a project	mple payback period, ROI, NPV and IRR	An	20%					
CO3	Evaluate the bo	iler losses	E		2	0%			
CO4	Improve the po	wer factor by load management	An		2	0%			
CO5	Perform energy	efficiency study for lighting systems	An		2	0%			

UNIT I- ENERGY AUDITING	(9)
Energy statistics in India and World - importance of energy conservation - EC Act-2001 and	nd its features -
Energy audit - definition - energy management approach - types of energy audit - energy	/ costs - bench
marking - fuel and energy substitution - energy auditing instruments	
UNIT II – FINANCIAL ANALYSIS	(9)
Financial analysis techniques - simple payback period - ROI - NPV - IRR - financing options	s -case studies -
role of ESCOs - scope of project - steps in project management - financing - contracting,	implementation
and performance monitoring -CPM and PERT	
UNIT III – PERFORMANCE ANALYSIS OF BOILERS	(9)
Boilers - performance evaluation - direct and indirect method - analysis of losses - feed wa blow down - energy conservation opportunities - Mechanism of fluidized bed combustion - system to conventional boilers - saving potential	
UNIT IV – ELECTRIC POWER SUPPLY SYSTEMS	(9)
Electric Power Supply Systems - electricity billing - load management and maximum de benefits power factor improvement - performance assessment of PF capacitors - o transformer losses	
UNIT V – LIGHTING SYSTEMS AND AUDIT REPORT PREPARATION	(9)
Lighting system - basic terms - choice of lighting - luminance requirements - methodology of	f lighting system
energy efficiency study - energy saving potential calculations - good practices in lighting	- energy audit
reporting format - case study on industrial energy audit	
TOTAL (L:45) =	45 PERIODS

I. Guide book for National Certification Examination for Energy Managers and Energy Auditors. Book 4. Energy Performance Assessment for Equipment and Utility Systems, Bureau of Energy Efficiency, DOE, New Delhi.

2. Choudhary, S. 2005. Project Planning, Analysis Selection. Implementation & Review. Tata Mcgraw Hill, New Delhi

3. PCRA, 2006. Fuel economy in furnaces and Waste heat recovery, Petroleum Conservation Research Association, New Delhi.

REFERENCES:

I. Energy Management Handbook, John Wiley and Sons -Wayne C. Turner.

2. Energy Auditing made Simple by P. Balasubramanian -Bala Consultancy Services Publishers.

		PROGRAMME OUTCOMES												
COs	I	2	3	4	5	6	7	8	9	10	11	12	Т	2
I	3													
2		3										2	3	
3			3											
4				3								2	3	
5				3	2	2								
CO (W.A)	3	3	3	3	2	2						2	3	

D. Otel

	22AGX18 - CARBON CAPTURE AN	ND STORAGE					
			L	Т	Ρ	С	
			3	0	0	3	
PRE -	REQUISITE : NIL						
Course	 To understand the basic concerns. To know the environmental and terms 	•				U	
	e Outcomes udent will be able to	Cognitive Level	in	End S	ge of (emest natior	ter	
соі	Illustrate the processes used for carbon capture in power generation systems and industries.	n Ap 20%					
CO2	Analyze the carbon sequestration potential of different storage systems.	An		2	0%		
CO3	Evaluate the critical role of subsurface to achieve a carbon neutral society	An		2	0%		
CO4	Assess the environmental and technological challenges of CO_2 Storage	An	0%				
CO5	Present a seminar about the real time case studies on CCS in Indian context either as an individual or a team.	С		2	0%		

UNIT I – BASICSOF CARBON CAPTURE AND STORAGE (CCS)	(9)
Carbon Capture and Storage (CCS): Fundamentals, The Carbon Cycle, CCS options, types of Sequestration technologies: Importance, associated problems.	f CO ₂
UNIT II – CARBON CAPTURE FROM POWER GENERATION	(9)
Introduction, Pre-combustion Capture, Post-combustion Capture, Oxy- fuel Combustion Cap Chemical Looping Capture Systems. Approaches to Zero-Emission Power Generation.	oture,
UNIT III – CARBON CAPTURE FROM INDUSTRIAL PROCESSES	(9)
Cement Production, Steel Production, Oil Refining, Natural Gas Processing.	
UNIT IV – GEOLOGICAL AND OCEAN STORAGE	(9)
Introduction, Geological and engineering fundamentals, Enhanced oil recovery, Saline aquifer s geological storage options, Ocean sequestration - Direct CO2 injection	storage, Other
UNIT V-STORAGE IN TERRESTRIAL ECOSYSTEMS AND ADVANCED SYSTEMS	(9)
Biological and chemical fundamentals, Terrestrial carbon storage options, Full GHG accountir terrestrial storage, Algal biofuel production	ng for
TOTAL (L:45) =	45 PERIODS

I. Stephen A. Rackley. 2010. Carbon Capture and Storage. Elsevier

2. Smit, B., Reimer, J.A., Oldenburg, C.M., Bourg, I.C. 2014. Introduction to Carbon Capture and Sequestration. Imperial College Press.

3. T. Ahmed, 2010. Reservoir Engineering Handbook, Gulf Professional Publishing. Elsevier.

REFERENCES:

I. Wilcox, J., (2012) Carbon Capture. Springer.

COURSE		PROGRAMME OUTCOMES												
OUTCOMES	I	2	3	4	5	6	7	8	9	10	11	12	Ι	2
I	2													
2		3												
3		3												
4				3										
5			3		2				3			3	3	
CO(W.A)	2	3	3	3	2				3			3	3	

D. du

	2	2AGX21 - DESIGN OF MICRO IRRI	GATION SYSTE	M			
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 To understand the basic concepe fficiently and effectively on both To Gain knowledge on traditiadvantages To Acquire knowledge on maintenance of sprinkler irrigation To learn about the role of itenvironmental factors that influe irrigation 	a field and garden onal and micro in components, de on system irrigation water in	scale rrigati esign, n agri	efficier on mo oper cultur	ncy ethods ration e, and	and and the
	e Outcomes udent will be able	e to	Cognitive Level	in	End S	ge of (emes inatio	ter
соі	characteristics v	orking principle of pump as well as its with efficiencies and design the pump er design, casing and other parts of	Ар		2	0%	
CO2	•	different types of pumps based on the onents, and working efficiency.	An		2	0%	
CO3	Apply the know agricultural field	rledge of modern irrigation concepts in I.	Ap		2	0%	
CO4	•	y the drip and sprinkler irrigation system line, sub main and laterals designs by capacity.	Ар		2	0%	
CO5		portance of sprinkler irrigation system in cultural and water resource management.	An		2	0%	

UNIT I - WATER LIFTS AND PUMPS

Indigenous water lifts, types and their working. Types of pumps: Positive displacement and variable displacement pumps. Reciprocating pump, principle, components, single acting and double acting, work done, coefficient of discharge, slip.

UNIT II - CENTRIFUGAL, SUBMERSIBLEAND TURBINE PUMPS

Centrifugal pump: classification, principle and working, fundamental equations of centrifugal pumps, ideal, virtual and manometric heads of centrifugal pumps, net positive suction head, work done by centrifugal pump. Efficiencies, priming and cavitation in centrifugal pumps, multistage centrifugal pumps. Design of impellers and casing, selection of centrifugal pumps. Submersible, Turbine pumps, Mixed flow, Axial flow, jet and Airlift pumps.

UNIT III - MICRO IRRIGATION CONCEPT AND APPLICATIONS

(9)

(9)

(9)

Classification of irrigation methods - Micro irrigation- Importance- Comparison between Traditional and Micro irrigation methods, Types of micro irrigation system- Scope and potential problem of micro irrigation - Low-cost Micro irrigation Technologies- Gravity fed micro irrigation -Care and maintenance of micro-irrigation System- Economics of micro irrigation system - automation in micro-irrigation.

UNIT IV - DRIP IRRIGATION DESIGN

Drip irrigation - Components- Dripper- types- suitable crops for drip irrigation-planning and layout- design of drip irrigation -Wetting pattern- Merits and demerits - Chemigation application- - Operation and maintenance of Drip irrigation system - Design of surface and sub-surface drip irrigation.

UNIT V - SPRINKLER IRRIGATION DESIGN

Sprinkler irrigation- Components and accessories – types - Sprinkler performance- Sprinkler discharge-Merits and demerits of sprinkler irrigation system - Factor affecting sprinkler performance.- Water distribution pattern- design and layout of sprinkler system- Sprinkler selection and spacing -Droplet size, filtering unit, fertigation - maintenance of the sprinkler irrigation system.

TOTAL (L:45): 45 PERIODS

TEXT BOOKS:

- 1. Suresh, R., "Principles of Micro-Irrigation Engineering", Standard Publishers Distributors, New Delhi, 2015.
- 2. Michael, A.M. 2015. Second Edition. Irrigation: Theory and Practices, Vikas Publishing House Pvt., Limited.

REFERENCES:

- 1. Modi, P.N., and Seth, S.M., "Hydraulics and Fluid Mechanics", Standard Book House, New Delhi, 1991.
- 2. Jack Keller and Rond Belisher., "Sprinkler and Trickle Irrigation", Vannistr and Reinhold, New York, 1990.
- 3. Sivanappan R.K., "Sprinkler Irrigation", Oxford and IBH Publishing Co., New Delhi, 1987.
- 4. Keller J and D. Karmeli, "Trickle Irrigation Design", Rainbird Sprinkler Irrigation Manufacturing Corporation, Glendora, California, USA.

					PROG	GRAM	1E OU	TCON	1ES				PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I		3												3
2	3													
3			3		I									
4	3				I								3	
5		3					2						3	
CO (W.A)	3	3	3		I		2						3	3

(9)

		22AGX22 - RESERVOIR AND FARM	I POND DESIGN	١			
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 To acquire knowledge about wat To understand the design aspects To infer the design, operation ponds. To learn about construction of e To study the economic analysis of 	s of reservoirs and and maintenance arthen dam.	farm j of res	oonds. ervoir		
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of C emest nation	ter
соі	Assess the hy reservoirs and	vdrological and watershed concepts of farm ponds.	Ap		2	0%	
CO2	Design of excavation por		An		2	0%	
CO3		eepage discharge and its impact on ts of the dams.	Ар		2	0%	
CO4		tructional, operational and maintenance ervoirs and farm ponds.	Ар		2	0%	
CO5		Organize the economic indicators for fit analysis of water harvesting projects.	Ар		2	0%	

UNIT I –FUNDAMENTALS OF RESERVOIR AND FARM PONDS

Water harvesting - hydrological aspects - watershed aspects - topographical aspects for location - General considerations - drainage area - pond capacity - landscape evaluation - dam reservoir - classification - selection criteria - farm ponds - classification - design criteria.

UNIT II –DESIGN ASPECTS OF RESERVOIR AND FARM POND

Earthen embankments - functions - advantages and disadvantages -classification - hydraulic fill and rolled fill dams - basic design concepts - site selection - foundation requirements - grouting -harvesting principles components - catchment and reservoir yield.

UNIT III – SEEPAGE AND STABILITY ANALYSIS

Estimation of seepage discharge - location of seepage line - graphical and analytical methods -flow net and its properties - seepage pressure - seepage line in composite earth embankments - drainage filters - piping and its causes - drainage system for seepage control - stability of slopes

UNIT IV -CONSTRUCTION OF EARTHEN DAM

Earthen dam - staking for construction - construction methods and specifications - considerations in implementation - checking with compliance standards - sealing methods -considerations in maintenance monitoring evaluation and protection - extension and training - miscellaneous aspects.

(9)

(9)

(9)

UNIT V – ECONOMIC ANALYSIS OF FARM POND AND RESERVOIR

Estimation of earthwork - cost analysis - initial investment - variable cost - annual returns - present worth analysis - economic indicators - net present value - benefit cost ratio - internal rate of return - Payback period.

TOTAL (L:45): 45 PERIODS

TEXT BOOKS:

Murthy, V.V.N. and Jha. M. K. (2011). Land and Water Management Engineering. Kalyani Publication.
 Garg, S. K. (2011). Irrigation Engineering and Hydraulic Structures. Khanna Publishers.

REFERENCES:

- 1. Suresh R, Soil and Water Conservation Engineering, Standard Publisher Distributors, New Delhi, 2014
- 2. Agriculture in the Dry Areas, CRC Press, Taylor and Francis Group, London, 2012.
- 3. Gustafson, A.F., 2011. Conservation of the soil. Biotech Books, New Delhi-35 .

	Mapping of COs with POs / PSOs														
		POs													
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3	3													
2	2												2		
3			3										3		
4				2									3		
5												I	3		
CO (W.A)	2.5	3	3	2								I	3.0		

D. Aler

			L	Т	Р	С		
			3	0	0	3		
PRE - REQUISITE :	NIL							
Course Objective:	 To equip students with a comprehe principles, including the physical an- impact of pollutants, and the me improving water quality for various u control, recycling, and reuse, er management. 	d chemical pr ethods for as ises, particular	ropert sessing ly in it	ies of g, mai rrigatic	water naging, on, poll	, the and utior		
Course Outcomes The Student will be able	e to	Cognitive Level	in	End S	ge of (Semes inatio	ter		
conduct comp	iate sampling and data collection methods to prehensive water quality investigations and s and software packages for accurate analysis	Ap		20%				
CO2 determine its	hysical and chemical properties of water to suitability for various applications, including tion, and industrial uses.	An		2	.0%			
CO3 water resour control and wa	npact of organic and inorganic pollutants on ces and develop strategies for pollution ater treatment using advanced technologies.	An		2	.0%			
CO4 in agricultural cost treatmen promote susta	olement water recycling and reuse techniques and industrial contexts, incorporating low- nt technologies and modern methods to inable water management practices.	Ap		40%				
	eport with a presentation as a team member quality parameters by field sample analysis of	An	Internal Assessme					

Water quality investigation – Sampling design - Samplers and automatic samplers - Data collection platforms – Field kits – Water quality data storage, analysis and inference – Software packages

UNIT II - IRRIGATION WATER QUALITY

Water quality for irrigation – Salinity and permeability problem – Root zone salinity - Irrigation practices for poor quality water – Saline water irrigation – Future strategies

UNIT III - WATER POLLUTION

Sources and Types of pollution – Organic and inorganic pollutants - BOD – DO relationships – impacts on water resources – NPS pollution and its control – Eutrophication control - Water treatment technologies - Constructed wetland.

UNIT IV - RECYCLING AND REUSE OF WATER

Multiple uses of water – Reuse of water in agriculture – Low cost waste water treatment technologies -Economic and social dimensions - Packaged treatment units – Reverse osmosis and desalination in water reclamation

(9)

(9)

UNIT V - WATER QUALITY MANAGEMENT

Principles of water quality – Water quality classification – Water quality standards - Water quality indices – TMDL Concepts – Water quality models.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. Vladimir Novonty, Water Quality: Diffuse pollution and watershed Management, 2nd edition, John Wiley & Sons, , 2003
- 2. Mackenzie L Davis, David A Cornwell, Introduction to Environmental Engineering, McGraw-Hill 2006.

REFERENCES:

- 1. George Tchobanoglous, Franklin Louis Burton, Metcalf & Eddy, H. David Stense, Wastewater Engineering: Treatment and Reuse, McGraw-Hill, 2002.
- 2. Stum, M and Morgan, A., Aquatic Chemistry, Plenum Publishing company, USA, 1985.
- 3. Lloyd, J.W. and Heathcote, J.A., Natural inorganic chemistry in relation to groundwater resources, Oxford University Press, Oxford, 1988.

	Mapping of COs with POs / PSOs													
	POs											PS	Os	
COs	I	2	3	4	5	6	7	8	9	10		12	I	2
I					3									3
2		3											3	
3	3		3											3
4					3									3
5									3	3				
CO (W.A)	3	3	3		3				3	3			3	3

(9)

	22A	GX24 - WATERSHED PLANNING A		1ENT				
				L	Т	Ρ	С	
				3	0	0	3	
PRE -	REQUISITE :	NIL						
		• To enhance the awareness about	watershed plannir	ng and	manag	ement	:	
		• To acquire knowledge about wat	ershed managemer	nt.				
Course	e Objective:	• To practice the water budgeting	and dry farming te	chniqu	es.			
		To learn about integrated waters	hed management.					
		To study the watershed develop	ment programmes.					
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of C emest natior	er	
соі		watershed characteristics for their nd prioritization.	Ap		2	0%		
CO2	Execute the w inventory and	ratershed planning activities based on the scope.	An		2	0%		
CO3		eeds, methods and implementation vatershed management projects	An		2	0%		
CO4	Assess the suitable contro	watershed responses for suggesting ol measures	Ap		2	0%		
CO5	Organize th watershed man	e selection of hydrologic models for nagement	Ар	20%				

UNIT I -INTRODUCTION

Watershed - introduction and characteristics. Watershed development - problems and prospects, investigation, topographical survey, soil characteristics, vegetative cover, present land use practices and socio-economic factors.

UNIT II – WATERSHED MANAGEMENT

Watershed management - concept, objectives, factors affecting, watershed planning based on land capability classes, hydrologic data for watershed planning, watershed codification, delineation and prioritization of watersheds – sediment yield index.

UNIT III – WATER BUDGETING

Water budgeting in a watershed. Management measures - rainwater conservation technologies - in-situ and ex-situ storage, water harvesting and recycling. Dry farming techniques- inter-terrace and inter-bund land management.

UNIT IV - INTEGRATED WATERSHED MANAGEMENT

Integrated watershed management - concept, components, arable lands - agricultureand horticulture, nonarable lands - forestry, fishery and animal husbandry. Effect of cropping systems, land management and cultural practices on watershed hydrology.

(9)

(9)

(9)

9)

UNIT V – WATERSHED DEVELOPMENT PROGRAMMES

(9

Watershed programme - execution, follow-up practices, maintenance, monitoring, and evaluation. Participatory watershed management - the role of watershed associations, user groups, and self-help groups. Planning and formulation of a project proposal for watershed management programme including a costbenefit analysis.

TOTAL (L:45): 45 PERIODS

TEXT BOOKS:

I. Ghanshyam Das. 2008. Hydrology and Soil Conservation Engineering: Including Watershed

- Management. 2nd Edition, Prentice-Hall of India Learning Pvt. Ltd., New Delhi. .
- 2. Katyal, J.C., R.P. Singh, Shriniwas Sharma, S.K. Das, M.V. Padmanabhan and P.K.Mishra. 1995. Field Manual on Watershed Management. CRIDA, Hyderabad.

REFERENCES:

I. Singh, G.D., and T.C. Poonia. 2003. Fundamentals of Watershed ManagementTechnology. Yash Publishing House, Bikaner. .

2. Tideman, E.M. 1999. Watershed Management: Guidelines for Indian Conditions. Omega Scientific Publishers, New Delhi.

	Mapping of COs with POs / PSOs													
COs	POs											PS	Os	
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3	3												
2	2												2	
3			3										3	
4				2				I				I	3	
5													3	
CO (W.A)	2.5	3	3	2				I				I	3	

D. Au

		22AGX25 - GROUNDWATER WEL	LS AND PUMP	S				
				L	Т	Ρ	С	
				3	0	0	3	
PRE -	REQUISITE :	NIL						
Course	e Objective:	 To provide students with a groundwater and its behavior. To introduce the methods a exploration, development, and m To familiarize students with the pumping systems. To learn about groundwater qua To study the sustainable groundwater 	and technologies hanagement. he design and in: lity.	used stallati	in gi	roundv	vater	
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of (emestination	ter	
соі	Assess the logroundwater i	lentify the sources and availability of n a given area.	Ap		2	0%		
CO2	Design and co	nstruct wells for accessing groundwater.	An 20%					
CO3	Evaluate Asse groundwater e	ss the Select and operate pumps for extraction.	Ap		2	0%		
CO4	Find the water	quality of groundwater resources.	Ap		2	0%		
CO5	Find sustair groundwater r	0 1	Ap		2	0%		

UNIT I -INTRODUCTION TO GROUNDWATER RESOURCES

(9)

Sources and availability of groundwater, groundwater exploration methods, hydrologic cycle and water budget, water quality parameters and their significance, water scarcity issues and solutions.

UNIT II –WELLS

(9)

(9)

Types of wells, design principles and construction methods, logging and interpretation, well development, well rehabilitation, wellhead protection, well maintenance and troubleshooting.

UNIT III – PUMPS

Types of pumps and their selection criteria, operating characteristics and performance evaluation, pump installation and operation, energy efficiency of pumps, pump maintenance and troubleshooting.

UNIT IV - GROUNDWATER QUALITY

Parameters affecting water quality, water quality standards and guidelines, water quality testing methods, interpretation of water quality data, water treatment options, safe use and disposal of water.

UNIT V – SUSTAINABLE GROUNDWATER MANAGEMENT

Groundwater management principles, groundwater monitoring and modeling, groundwater recharge techniques, conjunctive use of surface and groundwater resources, integrated water resources management, policies and regulations for sustainable groundwater management.

TOTAL (L:45): 45 PERIODS

TEXT BOOKS:

- I. David Keith Todd. "Groundwater Hydrology", John Wiley & Sons, Inc. 2007 . .
- 2. Bhagu R. Chahar, Groundwater Hydrology, McGraw Hill Education (India) Pvt Ltd, New Delhi, 2017

REFERENCES:

- I. Subramanya K, Fluid Mechanics and Hydraulic Machines: Problems and Solutions, McGraw Hill Education (India) Pvt. Ltd., New Delhi, 2018. .
- 2. Jain A. K. Fluid Mechanics including Hydraulic Machines, Khanna Publishers, New Delhi, 2014 .

	Mapping of COs with POs / PSOs													
	POs											PS	Os	
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3	3												
2	2													
3			3											
4				3								Ι	3	
5													3	
CO (W.A)	2.5	3	3	3								Ι	3	

D. due

(9)

		22AGX26 - WATER HARV	ESTING				
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 To enhance the awareness at conservation. To acquire knowledge about implementation. To practice the design aspect solutions for communities. To learn about construction of fl To study the design aspects of w 	water harvesting tts of sustainable ood water and gro	tech rain	niques water	and harve	their esting
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of (emestination	ter
соі		sic concepts of water conservation and ng based on watershed.	Ар	20%			
CO2		e methods of water harvesting and their based on the hydrogeology.	Ар 20%				
CO3	Analyze vari harvesting tec	ous flood water and groundwater hniques	An 20%				
CO4		ble soil erosion control structures with iteria based on the flow hydraulics.	Ар		2	0%	
CO5	Assess various design criteria	s water storage structures with detailed	Ар		2	0%	

UNIT I –WATER RESOURCES AND CONSERVATION CHALLENGES

(9)

(9)

(9)

Global water distribution – primary and secondary sources of water – technical social and cultural aspects; Global challenges in water and climate – water scarcity – water pollution – Indian scenario; Watershed – water resources management – public participation – integrated approach; Water governance – water sharing plans – policy, schemes and concerns.

UNIT II -WATER HARVESTING CONCEPTS

Earthen embankments - functions - advantages and disadvantages -classification - hydraulic fill and rolled fill dams - basic design concepts - site selection - foundation requirements - grouting -harvesting principles components - catchment and reservoir yield.

UNIT III – WATER HARVESTING TECHNIQUES

Water harvesting principles for rural and urban – classification based on source, storage and use; Short-term and micro-level harvesting techniques for runoff – terracing and bunding – rock and ground catchments; Long-term and macro-level harvesting techniques for runoff – farm ponds.

UNIT IV -FLOOD WATER AND GROUNDWATER HARVESTING

Floods – causes of urban floods and droughts – characteristics of water spread – impacts; Flood water harvesting – permeable rock dams – water spreading bunds – flood control reservoir; Groundwater harvesting – aquifer characteristics – subsurface techniques – infiltration wells – recharge wells – groundwater dams.

UNIT V – DESIGN ASPECTS OF WATER HARVESTING SYSTEMS

Estimation of water quantity – selection of runoff coefficients – computation of rainwater runoff volume – hydrograph analysis; Design of drainage system – types – design criteria – filter design – causes of failures; Design of storage structures - storage capacity.

TOTAL (L:45): 45 PERIODS

TEXT BOOKS:

I. Theib YO, Dieter P, Ahmed YH, Rainwater Harvesting for Agriculture in the Dry Areas, CRC Press, Taylor and Francis Group, London, 2012 . .

2. Lancaster, Brad. Rainwater Harvesting for Drylands and Beyond, Volume 1, 3 rd edition, Rain source Press. 2019

REFERENCES:

I. Das M, Open Channel Flow, Prentice Hall of India Pvt. Ltd., New Delhi, 2008.

2. Agriculture in the Dry Areas, CRC Press, Taylor and Francis Group, London, 2012.

3. Michael AM, Ojha TP, Principles of Agricultural Engineering, Volume II, 4th Edition, Jain Brothers, New Delhi, 2003 .

				٢	1appin	g of C	Os witl	h POs	/ PSOs						
						PC	Ds						PS	PSO s	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3	3													
2															
3			3												
4				3				I				I			
5													3		
CO (W.A)	3	3	3	3				I				I	3		

D. du

(9)

				L	Т	Р	С
				3	0	0	3
PRE R	REQUISITE : NI	L			1	1	
Cour	se Objective:	 To impart on farm water manag To acquire the knowledge on de To gain the knowledge on comm To understand the concept of warea To impart knowledge on economic on farm water management pro- 	esign of irrigation cl nand area developr vater balance and w mic indicators for t	hannel nent p vater p he cos	s rograr oricing st-bene	nme in com efit ana	lysis o
	se Outcomes tudent will be able	e to	Cognitive Level	End			Os in
COI	Design water d	istributing system in command area	Ар		2	.0%	
CO2		edy's and Lacey's theories and Markov n rainfall analysis	Ар		2	.0%	
CO3	Analyze the cor management	ncepts related to on farm water	An		2	.0%	
CO4	pricing in comn	r use efficiency in field level and water nand area and make an oral presentation on and developments in water balance	Ар		2	.0%	
CO5	•	conomic indicators for the cost-benefit arm water management projects	An		2	.0%	
		F IRRIGATION CHANNELS			(9		
Lining		Non-Erodible, Alluvial channels- Kennedy d field channel - Water control and Diver					
					(9)	

Command area - Concept – CADA Programmes in Tamil Nadu - Duty of water - expression - relationship between duty and delta - Warabandhi - water distribution and Rotational Irrigation System – case studies.

UNIT III - CONJUNCTIVE USE OF SURFACE AND GROUNDWATER (9)

Availability of water - Rainfall, canal supply and groundwater – Irrigation demand - water requirement and utilization - Prediction of over and underutilization of water – Dependable rainfall – Rainfall analysis by Markov chain method – Probability matrix.

UNIT IV - WATER BALANCE

Groundwater balance model – Weekly water balance - Performance indicators – Adequacy, Dependability, Equity and efficiency – conjunctive use plan by optimization – Agricultural productivity indicators – Water use efficiency.

UNIT V - SPECIAL TOPICS

National water policy - Institutional aspects - Socio-economic perspective- Reclamation of salt affected soils- Seepage loss in command area- Irrigation conflicts- Water productivity – Water pricing.

TOTAL (L: 45) = 45 PERIODS

(9)

TEXT BOOKS

- I. Michael, A.M. Irrigation Theory and practice, Vikas publishing house, New Delhi, 2006
- 2. Keller, J. and Bliesner D.Ron, 2001 Sprinkler and Trickle irrigation, An ari book, Published by Van No strand Rein hold New York.

- I. Israelson, 2002, Irrigation principles and practices, John Wiley & sons, New York.
- 2. Modi, P.N., 2002. Irrigation and water resources and water power engineering, Standard Book House, New Delhi.
- 3. Michael, A.M. and Ojha, T.P. 2002. Principles of Agricultural Engineering Vol II Jain Brothers, New Delhi.
- 4. Suresh, R. 2008. Land and water management principles, Standard Publishers & Distributors, New Delhi.

					PROG	RAM	ME OU	тсо	MES	-	-		PSOs	
COs	I	2	3	4	5	6	7	8	9	10	п	12	I	2
I			3										3	
2	3												3	
3		3												
4				2										
5						I		I			2			
CO (W.A)	3	3	3	2		I		I			2		3	

D. Au

	22AGX	28 - BUILDING MATERIALS, ESTIM	IATION AND C	οςτι	NG		
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 To understand the fundamental k To impart knowledge on design of construction. To select materials, design and su To impart knowledge on design of construction. To learn to prepare detailed estimation. 	of different aspects upervision of suitab of different aspects	of bui le typ of bui	lding e of fo Iding	undatio	
	e Outcomes dent will be able		Cognitive Level	We in	ighta; End S	ge of C emest natior	er
COI		dge of brick manufacturing to identify for specific construction needs.	Ар		2	0%	
CO2		e water cement ratio based on the erties and its classifications	An		2	0%	
CO3	Apply knowled design scenario	dge of masonry types to simple building os.	Ар		2	0%	
CO4	,	results and quality control measures crete cube strength.	An		2	0%	
CO5		e expenditure of item wise building for construction of a building.	Ар		2	0%	

UNIT I - CONSTRUCTION MATERIALS

Classification of rocks - Characteristics of Stones -Testing of Stones-Manufacture of Bricks - Moulding – Drying and Burning of bricks-Properties of good Brick -Classification of bricks -Clay Products- Ceramics -Tiles -Earthenware and Stoneware and uses.

UNIT II -LIME AND CEMENT

Lime-Natural Sources -Types of lime - Calcination-Cement -Raw materials - Water Cement Ratio. Manufacture of Portland Cement Wet and Dry process-Standard Specifications- Storage of cement-Timber - Definition -Defects in timber-Qualities of good timber.

UNIT III -STONE MASONRY AND FOUNDATION

Concept of Foundation -Factors affecting Selection of Foundations -Types of soils-Subsurface Investigations - Bearing Capacity of soil -Testing & Improving Bearing Capacity of soil- Types of Foundations-Piles - Foundation in Black Cotton soil-Site Selection - General principles - classification of brick masonry-precautions in brick masonry -Stone Masonry -Comparison between Brick and Stone Masonry - Classification -General Principles and precautions in stone masonry.

(9)

(9)

UNIT IV -BUILDING CONSTRUCTION

Walls -Classification of walls - Dampness -Causes of Dampness -Methods of Preventing Dampness - Damp Proofing materials - Methods of providing Damp Proofing Materials-Mortars -Functions and Types of mortars - Concrete -Characteristics -Types and uses - Cube Strength of Concrete -Roofs - Classification -Floors -Types of Floor-Types of Plastering and Pointing -Painting and Distempering.

UNIT V - ESTIMATING AND COSTING

PWD schedule of rates - data sheet - detailed estimate - abstract estimate - preparation of estimate market rate estimation-Contract and Types of Contracts-Tender-Tender form.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

I. B.N. Datta, Estimation and costing. Published by the Author, Tagore Palli, Motilal Bose road, Lucknow, 2014

2. S.C Rangwala, Estimating and costing, Charotar book stall, Station road, Anand, 2011.

REFERENCES:

I. National Building Code(NBC) of India

2. PWD Schedule Rates 2024.

3. B.L. Handoo and V.M. Mahajan, Civil engineering materials. Sathyaprakasam, 16/7698, New market, New Rohtak road, New Delhi-5, 2015

4. S.C. Rangwala, Building construction, Charotar publishing house, Anand, 2000

5. S.V Deodhar and Singhal, Civil engineering materials. Khanna publishers, 2B, Nath market,

Naisark, Delhi - 2001

				۲	1appin;	g of CO	Os witł	n POs /	PSO s					
						PC	Ds						PSOs	
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3	3												
2	3												3	
3			3										3	
4				3				2				2	3	
5														
CO (W.A)	3	3	3	3				2				2	3	

D. Clar

187 | Page

(9)

	22 A 0	GX31 - EMERGING TECHNOLOGI	ES IN FOOD P	ROCESS	SING		
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 To gain a deep insight on processing pressure, high intensity, cold plasma 			textu	re und	er high
	e Outcomes Ident will be able	to	Cognitive Level		-	ester	s in
COI		nciple of cold plasma technology and ling in food to infer the changes	Ap	20%			
CO2		uitable method of heating techniques s for its conditional changes.	An		20%	6	
CO3		s of high intensive heating of foods to temperature changes under varying ons	E	20%			
CO4		n thermal processing technique applied ious food applications.	Ap 20%				
CO5		difference in radio frequency and ting of food preparation	Ар		20%	6	

UNIT I- NON - THERMAL PROCESSING TECHNIQUES:

Introduction- Need for, non- thermal processing techniques, scope, non- thermal techniques membrane technology, High Pressure Processing, Pulse electric field, Ultra sound, Super critical fluid extraction techniques- Concept, property of near critical fluids NCF and extraction methods. Application of SCFE in food processing.

UNIT II -MICROWAVE AND RADIO FREQUENCY:

Microwave and radio frequency, IR drying: Definition, Advantages, mechanism of heat generation, inductive heating in food processing and preservation. Application in food processing: microwave blanching, sterilization and finish drying.

UNIT III- HIGH PRESSURE PROCESSING OF FOODS:

High Pressure processing: Principle, Mechanism and Effect of HPP on -fruit juices, meat products, jam. Types of equipment, mechanism of microbial inactivation.

UNIT IV- HIGH INTENSITY LIGHT AND OHMIC HEATING:

High intensity light generation system, Application of high intensity light in food processing, Pulse electric field-mechanism of inactivation, PEF generation system, PEF treatment chambers, Mechanism of ohmic heating and its application in liquid food processing.

Unit V- COLD PLASMA TECHNOLOGY AND CRYOGENIC GRINDING

Principle of cold plasma technology and its generation systems and its application, Cryogenic grinding-Properties of cryogens, systems, and their different application.

TOTAL (L: 45) = 45 PERIODS

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. Barbosa-Canovas Novel Food Processing Technologies. CRC Press 2002 .
- 2. Dutta AK & Anantheswaran RC Handbook of Microwave Technology for food Applications CRC Press 1999.
- 3. Tönu, P Principles of Food Toxicology CRC Press 2007.

- 1. Han Jung H., "Packaging for Non-thermal Processing of Food", 1st Edition, Wiley-Blackwell, Oxford, 2007.
- 2. Mujumdar A.S., "Handbook of Industrial drying", 4th Edition, CRC Press, UK, 2014.

COURSE				Ρ	ROG	RAMN	1E OL	тсо	MES				P	SOs
OUTCOMES	I	2	3	4	5	6	7	8	9	10	11	12	Ι	2
I	3													
2	3												3	
3	3		3										3	
4	3			2									3	3
5		3											3	3
CO(W.A)	3	3	3	2									3	3

D. Au

	224	AGX32 - STORAGE AND PACKAGI	NG TECHNOLO	DGY			
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 To gain knowledge on different st losses and types of spoilage. To discuss the functions, types materials 	0				Ū
	e Outcomes Ident will be able	to	Cognitive Level	in	ightag End S Exami	emes	ter
соі	Assess the impo	ortance of various storage systems	An		2	0%	
CO2	Analyze food lo	sses occurred during the storage	An		2	0%	
CO3	Apply differen spoilage	t control measures to prevent food	Ap		2	0%	
CO4	Analyze novel t in food packagir	food packaging technique and innovation	An		2	0%	
CO5		ble packaging methodology depending on t of the consumer	С		2	0%	

UNIT I - SPOILAGE AND STORAGE LOSSES

Factors affecting shelf of food material during storage, spoilage mechanism during storage – intrinsic and extrinsic factors causing spoilage, infestation – Control measures

UNIT II - STORAGE METHODS

Traditional, Improved and modern storage structures for food materials -temperature and moisture changes in storage structures

UNIT III -BASICS OF PACKAGING MATERIALS

Definition, requirement, importance and scope of packaging of foods, types and classification of packaging system, advantage of modern packaging system

UNIT IV -FORMS OF PACKAGING MATERIALS

Different forms of packaging, metal container, glass container, plastic container, flexible films, shrink packaging, vacuum & gas packaging, advanced packaging systems

UNIT V - SELECTION OF PACKAGING TECHNIQUES

Packaging requirement & their selection for the raw & processed foods – Meat, Fish and seafoods, fruits and vegetables, milk

TOTAL (L: 45) = 45 PERIODS

(9)

(9)

(9)

(9)

TEXT BOOKS:

- 1. <u>http://ecoursesonline.iasri.res.in/course/view.php?id=28</u>
- 2. D.W.Hall 1990. Handling and Storage of Food grains in tropical and sub tro[pical areas. Oxford and IBH Publishing Co. Pvt. Ltd., New Delhi.
- 3. Richard Coles, Derek Mcdowell and Mark J. Kirwan. 2003. Food Packaging Technology, CRC press, London. 2nd Edn
- 4. GordenL.Roberttson. 2006. Food Packaging-Principles and Practices. CRC

- 1. Himangshu Barman. 2008, Post Harvest Food grain storage. Agrobios (India), Jodhpur.
- 2. Food Packaging Technology, Hand book, 2004. NIIR Board, New Delhi
- 3. Chakaraverty, A. 2000. Third edition. Post harvest technology of cereals, pulses and oil seeds. Oxford & IBH publishing & Co. Pvt. Ltd. New Delhi.

					PROG	RAM	1E OU	тсо	MES				PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I				2										
2				2										
3	3													
4		3										2		3
5			3									2		3
CO (W.A)	3	3	3	2								2		3

D. Au

	22AGX3	3 - REFRIGERATION AND COLD	CHAIN MANAG	EME	NT \$		
				L	Т	Р	С
				3	0	0	3
PRE -	REQUISITE : N	NIL					
Cour	se Objective:	 To maintain quality, safety, and should be in place to detect and To minimize energy consumptio To strict hygiene standards, rehandling procedures. To proper documentation, label To reduce product losses due to or equipment failures. 	address any deviat n and reduce envir egular equipment ing, and adherence	tions p onme mainte to ine	oromp ntal im enance dustry	tly. pact. , and standa	proper ards.
	se Outcomes tudent will be able	e to	Cognitive Level	End		ster	Os in
соі		nciples of refrigeration to analyze the f vapour compression systems using T-S ns.			2	.0%	
CO2	such as comp	he working of refrigeration components ressors, condensers, evaporators, and through system-level analysis.			2	.0%	
CO3	properties and	priate refrigerants based on their environmental impact, and compare the of vapour absorption and compression	Δъ		4	0%	
CO4	operation of	s of air conditioning to evaluate the comfort and industrial systems across ons and different configurations.			2	.0%	
CO5	Collaborative a real-world case	application of refrigeration concepts in studies.	Ар	Int	ernal /	Assessi	ment

UNIT I - REFRIGERATION -VAPOUR COMPRESSION SYSTEM:

(9)

(9)

(9)

(9)

Refrigeration – principles - refrigeration effect – coefficient of performance – units of refrigeration - simple vapour compression cycle – T-S diagram – p-h chart- vapour compression system-different types-solving problems

UNIT II - REFRIGERATION COMPONENTS:

Refrigeration components – compressor – classification - principle and working – condensers -types construction, principle and working. Evaporators – types-principle and working. – cooling towers.

UNIT III - REFRIGERANTS AND VAPOUR ABSORPTION CYCLE:

Refrigerants – properties – classification – – selection of refrigerants - effect on environmental pollution alternate refrigerants - vapour absorption cycle – simple and practical vapour absorption system- advantagesideal vapour absorption system- Electrolux refrigerator - construction and principles.

UNIT IV - AIR CONDITIONING SYSTEM:

192 | Page

Air conditioning systems-equipments used-classification-comfort and Industrial air conditioning system-Winter, summer and year- round air conditioning system- unitary and central air conditioning systemapplication of refrigeration and air conditioning.

UNIT V - COLD CHAIN MANAGEMENT IN STORAGE AND FARMING:

Role and importance of refrigerator vehicle. Design of cold storage. Applications: ice – plant – food storage plants – milk chilling plants. Refrigeration during sorting, processing, packaging. Cold chain concept to minimize post harvest losses

TOTAL (L:45) = 45 PERIODS

(9)

TEXT BOOKS:

- 1. Sadhu Singh. 2017. Refrigeration and Air Conditioning. Khanna Book Publishing Co. (P). Ltd.
- 2. Kurmi.R.S and J.K.Gupta. 2002. A Text book of Refrigeration and Air conditioning. Eurasia Publishing House (P) Ltd, Ram Nagar, New Delhi.

REFERENCES:

- 1. Bellaney, P.L. 2001. Thermal Engineering. Khanna Publishers, New Delhi.
- 2. William, H.S., R.F. Julian, 1986. Air conditioning and Refrigeration. John Wiley & Sons, Inc. London.
- 3. Arora, C. P. 1981. Refrigeration and Air conditioning. Tata-McGraw-Hill Publishing Co., New Delhi.

				Μ	lapping	g of CC) s with	POs /	PSOs					
						Po	os						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3											3	
3			3											3
4	3													
5							3		3			I		
CO (W.A)	3	3	3				3		3			I	3	3

\$ Ratified by Thirteen Academic Council

D. Otel 931Pac

	22AGX34 - FOOD PROCESS EQUIPMENT	T AND DE	SIGN			
			L	Т	Ρ	С
			3	0	0	3
PRE -	REQUISITE : NIL					
Course	 Apply principles of design to various food Evaluate design considerations and martypes of equipment used in food procession 	iterials of co				ifferent
		Cognitive Level	in	End S	ge of (emest natio	ter
соі	Apply principles of design and selection to food processing equipment.	Ар		2	0%	
CO2	Evaluate design aspects and materials of construction for pressure vessels, storage tanks, and pulpers.	E		2	0%	
CO3	Analyze design considerations and materials of construction for various types of dryers and extruders	An		2	0%	
CO4	Evaluate design principles and materials of construction for heat exchangers and evaporators.	E		2	0%	
CO5	Analyze design considerations for size reduction and material conveying equipment.	An		2	0%	

UNIT I- DESIGN OF PRESSURE VESSELS, STORAGE TANKS AND PULPER(9)Introduction to design - principles and selection of food processing equipment - design of pressure vessels -
design aspects of storage tanks, design of sterilizers and process vats - design of pulper - design
considerations - materials of construction - installation and operation.

UNIT II - DESIGN OF HEAT EXCHANGERS AND EVAPORATORS	(9)
Design of heat exchangers - plate heat exchanger, shell and tube heat exchangers	
construction - installation and operation - design of single effect evaporators - applications	-multiple effect
evaporators entrainment separators-installation and maintenance.	
LINIT III - DESIGN OF DRYFRS AND FYTRI DERS	(9)

Design of dryers - cabinet dryer, fluidized bed dryer, heat pump dryer, foam mat dryer - freeze dryer - Spray dryer - design considerations, installation, operation and maintenance - design considerations of food extruders - single and twin screw extruders - installation, operation and maintenance of food extruders.

UNIT IV - DESIGN OF COLD STORAGE AND FREEZERS

(9)

(9)

Design of cold storage - estimation of cooling load - construction, operation and maintenance of cold storage -design consideration for controlled atmospheric storage and modified atmospheric storage of perishables - design of freezers - types of freezers - design considerations - construction and operation-design of frozen storage.

UNIT V – DESIGN OF SIZE REDUCTION AND CONVEYING EQUIPMENTS

Design consideration of size reduction equipment- installation and maintenance-design consideration of material conveying equipment- belt conveyor- screw conveyor - bucket elevator- pneumatic conveyor.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. P.S. Phirke, "Processing and conveying equipment design", Jain Brothers, New Delhi, 2004
- 2. M.V. Joshi and V.V. Mahajani, "Process Equipment Design" (3rd edition), New India Publishing Agency, New Delhi, 2004.

- 1. Jasim Ahmed and Mohammad Shafiur Rahman (Editors), "Handbook of Food Process Design", John Wiley and Sons, Ltd., U.K., 2012
- 2. Zacharias B. Maroulis and George D. Saravacos, "Food Process Design, Marcel Dekker", Inc. U.S.A, 2003

COURSE		PROGRAMME OUTCOMES										F	PSOs		
OUTCOMES	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
1	3		2		3								3		
2		3		3		2							3		
3		3	2	3											
4	2		3		2										
5		3		3						3					
CO(W.A)	2.5	3	2.3	3	2.5	2				3			3		

D. due

	22	AGX35 - PROCESSING OF FRUITS	AND VEGETA	BLES			
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE: N	Vil					
Cour	se Objectives:	 To equip students with compre- post-harvest technology, focusir processing and optimal storage maintain quality and extend shell 	og on the classificate of horticulture of	tion, r crops,	utritic its st	onal pr	ofile,
	rse Outcomes tudent will be abl	e to	Cognitive Level	in	End S	ge of (emestination	ter
COI		ous preservation techniques, effective ticultural products and produce value-	An		2	0%	
CO2	during fruit rip	obysiological and biochemical changes bening and storage, and evaluate how impact the quality and nutritional value crops.	An		2	0%	
CO3	their impact o	drying and dehydration methods, assess on the quality of dried products, and common issues related to the storage ance of dehydrated horticultural	An		2	0%	
CO4	to enhance the and vegetables grading, and pro		Ар		2	0%	
CO5	member on	report with a presentation as a team the recent advancement in food or with a case study.	An		2	0%	

UNIT I- POST- HARVEST, COMPOSITION AND RIPENING	(9)
Fruits and vegetables: classification, nutritional profile - Importance of post-harvest horticultural crops – composition and nutritive value of horticultural crops – fruit ripening physiological and biochemical changes in fruits and vegetables; maturity indices and standar fruits and vegetables.	– Post-harvest
UNIT II – CLEANING, GRADING AND ON-FARM PROCESSING	(9)
Harvesting and washing of fruits, vegetables – cleaning and grading - peeling - equipments and working – pre-cooling – importance, methods. Commodity pretreatments -chemical pre-packaging.	
UNIT III – PRESERVATION OF HORTICULTURAL CROPS	(9)
Thermal and non-thermal techniques for preservation of fruits and vegetables- minimal pro freezing – canning – processing and concentration of juice - membrane separation process a hurdle technology. Preparation of processed products – Jam, jelly, squash, sauce, preserve a	nd application -
UNIT IV – DRYING AND DEHYDRATION	(9)
Drying and Dehydration of horticultural crops- types of dryers, principles, construction methods – solar, cabinet, fluidized bed dryer, spouted bed dryer, foam mat drying and osmo – Problems related to storage of dried and dehydrated products.	

UNIT V – STORAGE

(9)

Storage of horticultural commodities – storage under ambient conditions, low temperature storage - chilling, frozen storage- chilling injury - freeze burn, evaporative cooling – cold storage of horticultural commodities – estimation of cooling load - controlled atmosphere storage-modified atmosphere storage - concepts and methods – gas composition - Changes during storage.

TEXT BOOKS

TOTAL (L: 45) = 45 PERIODS

- I. Srivastava R.P. and Kumar, S., "Fruit and Vegetable Preservation: Principles and Practices", Third Edition, CBS Publishers & Distributors, New Delhi, 2002.
- 2. Norman W. Desrosier, and James N. Desrosier. The Technology of Food Preservation 4th Edition, CBS Publisher & Distributions, New Delhi, 2004.
- 3. Sudheer K. P. and Indra, V., "Post-harvest Technology of Horticultural Crops", New India Publishing Company, New Delhi, 2007.

- 1. Heid, J. L. and Joslyn, M. A., "Food processing operations". Vol. II. AVI Publishing Co. Inc. Westport, Connecticut, 1983.
- 2. Potter, N.N., "Food science". AVI Publishing Co. Inc.Westport, Connecticut, 2ndedition, 1976.
- 3. Lal G., Siddapa G. S. and Tandon G. L., "Preservation of Fruits and Vegetables", ICAR, 1986.
- 4. Thompson A.K., "Post-Harvest Technology of Fruits and Vegetables", Blackwell Sci., 1995.

COURSE				PRC	OGRA	MM	EOU	тсо	MES				P	SOs
OUTCOM ES	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι	3													3
2		3												3
3			3											3
4	3				3									3
5									3	3				
CO(W.A)	3	3	3		3				3	3				3

D. Au

	22	AGX36 - FOOD PLANT DESIGN AND	MANAGEME	NT			
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 Apply process charts and machin efficiency, minimize product handling and safety standards. Implementing of sustainable practice design and management and efficient water, waste reduction strategie regulations. 	, and ensure co es and safety n utilization of re	omplia neasu sourc	nce w res in es like	rith hys food energy	giene plant v and
	e Outcomes Ident will be able	to	Cognitive Level	in	End S	ge of (emest nation	ter
соі	fittings, accesso	rical and water supply layouts considering pries and ensuring efficient operation and r food processing plant environments.			2	0%	
CO2	sectors such	yout options for different food processing as fruit and vegetable processing, meat bakery products.			2	0%	
CO3	,	ative methods for equipment maintenance otimize operational efficiency	An		2	0%	
CO4		lge of concrete characteristics to select es for food plant construction.	Ap		2	0%	
CO5		on planning and control techniques in both intermittent production environments with ng methods.			2	0%	

UNIT I - PLANT LOCATION AND LAYOUTS

Introduction to food plant design - special features of food and agricultural process industry - plant location - location factors, site selection, location theory and models - layout - objectives, classical and practical layout – preparation of process chart and machinery layout – product layout and process layout - plant layout fruit, vegetables and meat processing, size reduction machinery, bakery products, milk and milk products, solid – liquid and liquid – liquid separation plant-, evaporation plant, drying plant, bake ovens and frying plant, heat exchanger plant, refrigeration and air conditioning plant, boiler, packaging plant.

UNIT II – PLANT CONSTRUCTION AND MATERIALS

Construction materials – sand, brick, cement, steel and wood – manufacture of bricks and types of kilns - refractory bricks - cement – properties, types and uses - testing and storage of cement - foundations – bearing capacity of soils, testing the bearing capacity - brick masonry - types of bonds - stone masonry – mortars - functions, types and their uses, functions of sand and surkhi in mortars and preparation of mortars - concretes – characteristics, types, uses and reinforced cement concrete - roofs – classification of roofs – steel and wooden sloping roofs – lean to roof - types of flat roofs and types of floorings.

(9)

UNIT III – ELECTRICAL AND WATER SUPPLY

Estimation of services - peak and critical load – preparation of electrical layout – selection of fittings and accessories for electrical and water supply – provision of water supply – design of water storage system - selection of pipe, valves and safety devices - drainage – systems, pipeline, traps, safety devices - illumination and ventilation – materials, mounting, operation and maintenance - layout for effluent treatment plant – safe disposal of effluent.

UNIT IV – PRODUCTION PLANNING AND CONTROL

Production planning and control – continuous and intermittent production – scheduling - routing and dispatching - activity chart and Gantt chart - net work planning methods – PERT and CPM -applications - method study – work study – methods – man-machine chart - time study – standard time of a job - inventory control – economic ordering quantity – inventory models.

UNIT V - REPAIR AND MAINTENANCE OF EQUIPMENT

Repair and maintenance of equipment – preventive maintenance and breakdown maintenance – replacement of equipment – alternative methods and analysis – method of annual equivalence, present worth method and internal rate of returns.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. O.P.Kanna.2003. Industrial Engineering and Management. DhanpatRai Publication (P) Ltd. New Delhi.
- 2. S.P.Arora and S.P.Bindra. 2014. A Text Book of Building Construction.5th edition. Dhanpat Rai Publications (p) Ltd. New Delhi.

REFERENCES:

- Zacharias B. Maroulisand George D. Saravacos.2003. Food Process Design. Marcel Dekker, Inc. U.S.A
- 2. Antonio López-Gómez and Gustavo V. Barbosa-Cánovas. 2005. Food Plant Design. CRC.London.
- 3. C.S.Rao. 1999. Environmental Pollution Control Engineering. New age International (P) Ltd, New Delhi.

	Mapping of COs with POs / PSOs													
		Pos									PS	Os		
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3		3		2									3
2	3		3											3
3	3		2											
4	3													
5	3		2											
CO (W.A)	3		3											3

(9)

(9)

		22AGX37 - FOOD QUALITY A	ND SAFETY				
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 Apply quality assessment technique including fruits, vegetables, cereals eggs, and processed foods, ensuri standards. Implement quality control and safi international food laws, regulation the production and distribution or the production and distribution and the production and the producti	s, legumes, dairy pr ng that quality attri ety standards by un ns, and best practice	oducts butes ndersta es, the	s, meat meet in anding reby c	, poult ndustry nationa ontribu	al and
	e Outcomes Ident will be able	to	Cognitive Level	in	End S	ge of (emes natioi	ter
соі	control in	functions and importance of quality the food industry, including the n of standards and specifications.	An		2	0%	
CO2	quality of fru	assessment techniques to evaluate the its, vegetables, cereals, legumes, dairy t, poultry, eggs, and processed foods.	Ар		2	0%	
CO3	processing, an	ty control measures for food storage, d marketing to ensure compliance with tandards and quarantine requirements.	Ар		2	0%	
CO4	contamination	ety measures to prevent food spoilage, , and adulteration, including the of food additives and toxicants.	AP		2	0%	
CO5	international f	implications of various national and ood laws, standards, and certifications, I, FDA, ISO, HACCP, and others.	E		2	0%	

UNIT I- FOOD QUALITY AND QUALITY EVALUATION OF FOODS(9)Food Quality - its need and its role in Food Industry, Food Quality and Quality Attributes-Classification of
Quality Attributes and their role in food Quality, Quality Assessment of Food materials -Fruits, vegetables,
cereals, legumes, dairy products, meat, poultry, egg and processed food, Sensory Evaluation of Food
Quality, Requirements for conducting Sensory Evaluation, Methods of Sensory Evaluation and Evaluation
cards, Different methods of Quantitative descriptive analysis.

UNIT II - QUALITY CONTROL

Objectives, Importance and Functions of Quality Control, Quality control specifications, training of food technologists for quality control, implementation of standards and specifications, Quality control, principles of quality control - raw material control, process control, finished product inspection, process control, quality problems and quality improvement techniques- mechanization, future of quality control, Total quality management, Objective/Instrumental analysis of Quality Control.

UNIT III - NATIONAL AND INTERNATIONAL FOOD LAWS AND STANDARDS (9) Standards for food packaging and labelling - FSSAI, Bureau of Indian Standards (BIS), Agricultural Grading and Marketing (AGMARK), The Agricultural and Processed Food Product Export Development Authority (APEDA), MPEDA. Food and Drug Administration Act (FDA), International Organization for Standards

(ISO) and its implication, generally recognized as safe (GRAS), European Council (EU), Codex Alimentarius Commission (CAC), Total Quality Management (TQM), Good Manufacturing Practices (GMP), Good Agricultural Practices (GAP), and Good Hygienic Practices (GHP), GMP, Hazard Analysis Critical Control Point (HACCP), FSMA, Legal Metrology Rules, Food Safety Standards for Organic foods, GFSi, HALAL and KOSHER.

UNIT IV - QUALITY CONTROL MEASURES IN INDUSTRIAL AND MARKETING CENTRES

(9)

Quality control system in storage, Quality control aspects in food industries, Importance of quality control in marketing of Food products - domestic and export markets. International standards for export and quarantine requirements for export of Agricultural and Horticultural produce.

UNIT V – FOOD SAFETY

(9)

Food safety - General principles of food safety. Characterization of food Hazards - physical, chemical and biological, Food spoilage and food borne infection hazards-sources of food spoilage and microorganismsmicrobial problems in food safety-food toxicants and food poisoning – prevention, Cross contamination, Limits for pesticide and metal contamination of food. Adulteration, Food additives- types- usage, permissible limits, concept of safe food.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- 1. Manoranjan Kalia, "Food analysis and Quality control", Kalyani Publishers, Ludhiana, 2002.
- 2. Mehta, Rajesh and J. George, "Food Safety Regulation Concerns and Trade: The Developing Country Perspective", Macmillan, 2005.

- 1. P.A. Luning, F. Devlieghere and R. Verhe, "Safety in the agri food chain", Wageningen Academic Publishers, Netherland, 2006.
- 2. Leo and M.L. Nollet, "Handbook of food analysis" Methods and Instruments in applied food analysis, Marcel Dekker Inc., 2004

				Ma	apping	of CO	s with	POs /	PSO s					
		Pos								PSC	Os			
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	2	I												3
2		3	2										3	
3			I		3									
4							2	2						3
5				3		3							3	
CO (W.A)	2	2	2	3	3	3	2	2					3	3

				L	Т	Р	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 Develop practical skills in microbic grading, and quality control measure quality of milk and dairy products. Understanding of milk composition constituents and the physio-chemical 	s essential for , including the	ensuri facto	ng the	safety uencin	' and
	e Outcomes udent will be able	to	Cognitive Level	in	ightag End S Exami	emest	ter
COI	products, evalu	porganisms associated with milk and dairy uate their impact on product quality and pply appropriate microbiological control	Ар		20	0%	
CO2	butter, ghee, c	of Preparation, judging, grading, and f defects in dairy products such as cream, neese, and fermented products, adhering to dards and quality specifications.	Ар		20	0%	
CO3	proteins, lipids,	terpret the constituents of milk, including carbohydrates, enzymes, and minerals, and /ledge to assess the quality and composition products.	An		20	0%	
CO4	milk collection quality control	mitigating sources of contamination during , transportation, and processing, applying measures and ensuring compliance with rds in dairy product processing.	Ар		20	0%	
CO5	and utilization and buttermilk	ge of the collection, processing, preservation, of dairy by-products such as skim milk, whey, , emphasizing their composition, nutritive cations in food processing.	Ap		20	0%	

UNIT I- MILK COMPOSITION	(9)
Introduction – Constituents of milk – factors affecting composition of milk – physico – chemi	cal properties
of milk constituents – milk protein – milk lipids – milk carbohydrates – milk enzymes – mine	rals in milk –
milk and utensils – preservatives, neutralizers and adulterants in milk.	
UNIT II – MICROBIOLOGY OF MILK AND MILK PRODUCTS	(9)
Introduction – Micro – Organisms associated with milk and milk products – Microbiology of	cream, butter,
dried milk condensed and evaporated milk – frozen desserts – indigenous milk products, mid	crobiology of
starter cultures and fermented milk products – milk borne pathogens.	
UNIT III – PREPARATION AND GRADING OF DAIRY PRODUCTS	(9)
Introduction – preparation, judging, grading and defects of cream, butter and ghee – AGMAR	K standards -
Frozen dairy products - concentrated and dried milk products - Cheese and other fermente	d products –
indigenous milk products.	

Collection, processing and preservation of dairy by products - composition and nutritive value	
whey and buttermilk – Utilization of dairy by products.	ie of skim milk,
UNIT V – CLEAN MILK PRODUCTION	(9)
Clean milk production – sources of contamination during collection – transportation and pro – quality control of milk and milk products – hygienic aspects of processing of dairy products standards.	•
TOTAL (L:45) =	45 PERIODS

TEXT BOOKS:

I. C. P. Anantha Krishnan, "Technology of Milk Processing", Sri Lakshmi Publication, 42, Harley road, Kilpauk, Chennai, 1991.

2. Sukumar, De., "Outlines of Dairy Technology", Oxford University Press, 1980.

- I. Shivashraya Singh, "Dairy Technology Dairy Products and Quality Assurance", Zaccheus Entertainment Publication, Vol. 2, 2014.
- 2. Eckles, "Milk and Milk Products" Arobacterial Publishers, Bikaner, New Delhi, 1990.

	PROGRAMME OUTCOMES													PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3		2												
2	3		2		2									3	
3	3														
4	2				2		I							3	
5	2														
CO (W.A)	3		2		2		I							3	

22AGX41 - AGRICULTURAL BUSINESS MANAGEMENT

L	Т	Ρ	С
3	0	0	3

PRE - REQUISITE : NIL

	• To understand the functions and planning of a business related to agricultural
Course Objective:	products in order to meet the global demands of agricultural marketing by
	effective utilization of the resources available.

	e Outcomes dent will be able to	Cognitive Level	Weightage of COs in End Semester Examination
соі	Plan and exhibit agri business project to the marketing field	Ар	20%
CO2	Estimate the constraints involved in marketing agricultural products to reach the Indian Market	An	20%
CO3	Assess the management techniques involved for improving the business strategy in agricultural marketing	Ap	20%
CO4	Apply the principles of effective marketing strategy to achieve monetary benefit in agri business	An	20%
CO5	Analyse the concepts of business management for a wise decision process	An	20%

UNIT I - MANAGEMENT CONCEPTS & PRINCIPLE:

(9)

(9)

(9)

(9)

Basic Concepts of Management, Management and Manager, Managerial Environment, Decision Making Process, Management Functions- Planning, Organizing, Staffing, Leading and Leadership, Controlling.

UNIT II - MARKETING MANAGEMENT:

Concepts of Marketing, Marketing Environment, Product Development and Product Lifecycle, Product Pricing and Pricing Strategies, Distribution Decisions, Promotional Decisions.

UNIT III - CONCEPTS AND APPLICATION OF MANAGEMENT PRINCIPLES TO AGRIBUSINESS:

Nature and Characteristics of Agribusiness, Agro-based Industries in India, Agricultural Supply Chain Management, Strategic Management in Agribusiness, Risk Management in Agribusiness, Contract Farming, ICT in Agribusiness.

UNIT IV - PRODUCTION, CONSUMPTION, PROCESSING AND MARKETING OF AGRICULTURAL PRODUCTS:

Agricultural Produce, Agricultural Marketing Functions, Classification of Markets, Agricultural Market Functionaries, Regulated Agricultural Markets , Cooperative Agricultural Marketing, Producer Surplus of Agricultural Commodities, Market Integration and Marketing Efficiency, Marketing cost-margins-price spreads, Food Processing Sector in India .

UNIT V -MARKET PROMOTION AND HUMAN RESOURCES

(9)

Agricultural products – marketing promotion activities – product pricing methods. District Industries Centre – Consumer survey – Agricultural inputs retailing – Market potential assessment – types of distribution channels - Return on Investment – Personnel management. Recruitment, selection and training – Technology in Agribusiness.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. <u>Himanshu</u>, "Agri Business Management Problems and prospects", Ritu Publications, Jaipur, 2005.
- 2. Smita Diwase, "Indian Agriculture and Agribusiness Management", Krishi resource Management Network, Pune 2004.
- 3. A.C Broadway, A. A Broadway ,"Agri-Business Management",Kalyani Publishers, Ludhiana/New Delhi
- 4. S. S Acharya, N. L Agarwal "Agricultural Marketing in India" Oxford & IBH Publishing Co., New Delhi.,

- 1. Chandra Prasanna, "Projects: Preparation, Appraisal, Budgeting and Implementation", Tata McGraw Hill Publications, New Delhi, 2001.
- 2. Kotler, P., "Marketing Management. Analysis, Planning and Control", Prentice Hall Inc., New York, 2001.
- 3. Rao, V.S.P., and Narayana, P.S., "Principles and Practices of Management", Konark Publishing Private Limited, New Delhi, 2001.
- 4. Tripathy, P.C., and Reddy, P.N., "Principles of Management", Tata McGraw Hill Publications, New Delhi, 2000.

COURSE	PROGRAMME OUTCOMES												PSOs	
OUTCOMES	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I		3											3	
2	3										3	3		
3	3										2		3	3
4		3									2		3	3
5		3				3			3		2		3	3
CO(W.A)	3	3				3			3		2.25		3	3

D. du

22AGX42 - ENTREPRENEURSHIP DEVELOPMENT

				L	т	Р	С		
				3	0	0	3		
PRE -	REQUISITE :	NIL							
Course	e Objective:		n economy, international trade constrair hallenges encountered in the tenur						
	e Outcomes udent will be able	to	Cognitive Level	in	ge of C emest inatio	ter			
COI	-	iness environment in the Indian economy, s influencing entrepreneurship.	Ap	20%					
CO2		he principles of international trade regulating trade in agricultural and food			2	0%			
CO3		em-solving skills essential for identifying, resolving challenges encountered in the journey.			2	0%			
CO4	Analyze entrep growth perspec	reneurial opportunities from an economic tive	An	20%					
CO5	•	nment schemes and incentives aimed at epreneurship, including financial support	An		2	0%			

UNIT I- ENTREPRENEURIAL ENVIRONMENT IN INDIAN CONTEXT

Entrepreneur Development(ED): Concept of entrepreneur and entrepreneurship assessing overall business environment in Indian economy- Entrepreneurial and managerial characteristics-Entrepreneurship development programmers (EDP)-Generation incubation and commercialization of ideas and innovations- Motivation and entrepreneurship development- Globalization and the emerging business entrepreneurial environment.

UNIT II - AGRIPRNEURSHIP IN GLOBAL ARENA

Legal perspective importance of agribusiness in Indian economy – International trade-WTO agreements-Provisions related to agreements in agricultural and food commodities – Agreements on Agriculture (AOA) -Domestic supply, market access, export subsidies agreements on Sanitary and Phyto - Sanitary (SPS) measures, Trade Related Intellectual Property Rights (TRIPS).

UNIT III - ENTREPRENEURSHIP DEVELOPMENT

Programme Entrepreneurship Development Programme (EDPs) objectives, phases, Government policies and programmes and schemes EDP Process-Stages, Developing organizational skills (controlling, supervision, monitoring and evaluation) Achievement Motivation, Problem solving skills

UNIT IV -ENTREPRENEURIAL OPPORTUNITIES

Economic Growth Perspective Managing an enterprise: Importance of planning, budgeting, monitoring evaluation and follow-up managing competition. Role of ED in economic development of a country- Overview of Indian social, political system and their implications for decision making by individual entrepreneurs-Economic system and its implication for decision making by individual entrepreneurs.

(9)

(9)

(9)

UNIT V - ENTREPRENEURIAL PROMOTION MEASURES AND GOVERNMENT (9) **SUPPORT**

Social responsibility of business. Morals and ethics in enterprise management- SWOT analysisGovernment schemes and incentives for promotions of entrepreneurship. Government policy on small and medium enterprises (SMEs)/SSIs/MSME sectors- Venture capital (VC), contract framing (CF) and Joint Venture (JV), public-private partnerships (PPP) - overview of agricultural engineering industry, characteristics of Indian farm machinery industry.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS

- I. S.S. Khanka, 2019, Entrepreneurship Development and Management, S.Chand& Company Ltd., India.
- 2. Robert D. Hisrich and Michael P. Peters, 2019 (2nd Edition), McGraw-Hill Education, USA.
- 3. Donald F. Kuratko and Richard M. Hodgetts, 2019 (9th Edition), Cengage Learning, India.

- 1. Mar J Dollinger, 1999, Entrepreneurship strategies and resources, Prentice -Hall, Upper Saddal Rover, New lersey.
- 2. Thomas W Zimmer and Norman M Scarborough, 1996, Entrepreneurship, Prentice Hall, New Jersey.

	Mapping of COs with POs / PSOs														
60	POs												PSOs		
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	2											3			
2		3													
3							3					3		3	
4		3						3				3	3	3	
5		3						3				3	3	3	
CO (W.A)	3	3					3	3				3	3	3	

D. dui

22AGX43 - AGRICULTURAL MARKETING, TRADE AND PRICES

L	Т	Р	С	
3	0	0	3	

PRE - REQUISITE : NIL

Course Objective:	•	•	•	•		agricultural essfully and	•	
		world r	narket					
						14/-		(

	Outcomes dent will be able to	Cognitive Level	Weightage of COs in End Semester Examination
соі	Ensure the policy, pricing and promotion strategies are done ethically and economically for competiting in the market.	Ap	20%
CO2	Contrast the traditional and modern marketing system in order to determine the slack and surplus quantity of agricultural products.	An	20%
CO3	Analyse the risk involved in marketing agri products and lead a path towards future trading process.	Ap	40%
CO4	Analyse the reasons for increased amount of marketing strategy/advertising done for commercializing the products of agriculture.	An	20%
CO5	Demonstrate the trade policies as a part of team followed for agro products and to reduce the barriers	An	Internal Assessment

UNIT I- AGRICULTURAL MARKETING – NATURE AND SCOPE

(9)

(9)

Agricultural Marketing: Concepts and definitions of market, marketing, agricultural marketing, classification and characteristics of agricultural markets. - Producer's surplus – meaning and its types, marketable and marketed surplus, factors affecting marketable surplus of agri-commodities. Modern marketing systems versus traditional agricultural marketing systems.

UNIT II - MARKETING FUNCTIONS AND MARKETING EFFICIENCY

Marketing process and functions: Marketing process - concentration, dispersion and equalization; exchange functions – buying and selling; physical functions – storage, transport and processing; facilitating functions – packaging, branding, grading, quality control and labeling (AGMARK).Definition and types of Marketing efficiency; marketing costs, margins and price spread; factors affecting cost of marketing, reasons for higher marketing costs of farm commodities.

UNIT III – PRICING AND PROMOTION STRATEGIES

Product Life Cycle (PLC) and competitive strategies: Meaning and stages in PLC; Pricing and promotion strategies: pricing considerations and approaches – cost based and competitionbased pricing; market promotion – advertising, personal selling, sales promotion.

UNIT IV -TRADE IN AGRICULTURAL PRODUCTS

International Trade: Concept of International Trade and its need - Free trade, Autarky and its needs - Theories of Trade: Absolute and comparative advantage; Present status and prospects of Agricultural exports / imports from India and their share - Barriers to Trade: Tariff and nontariff barriers - Trade policy instruments – Terms of Trade-Free Trade Agreements.

(9)

UNIT V – AGRICULTURAL PRICES AND RISK ANALYSIS

Agricultural Prices and Policy: Meaning and functions of price; administered prices; need for agricultural price policy; Objectives of Price Policy and Price Stabilization. Risk in marketing: Meaning and Importance - Types of risk in marketing: Speculation and Hedging - Forward and Futures trading; an overview of futures trading.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- I. G.S. Bhalla and G.K. Kshirsagar, 2018, Agricultural Marketing in India, Oxford University Press India, New Delhi.
- 2. VenkateshPanchapagesan ,2018, Agricultural Marketing and Supply Chain Management in India, PHI Learning Pvt. Ltd.,India.
- 3. PradumanKumar ,2016 , Agricultural Marketing and Price Policies in India, Springer, USA.

REFERENCES:

I.Acharya.S.S.and Agarwal,N.L.,2011,Agricultural Marketing in India, Oxford and IBH Publishing Co .Pvt. Ltd., New Delhi.

2 .Jhingan , M.L., 2011. International Economics, Vrinda Publications (P) Ltd. New Delhi.

	Mapping of COs with POs / PSOs													
Con	POs											PSOs		
Cos	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I						3		3				2		
2		3										2		
3	2	3										2		3
4	2	3										2		3
5	2								3			2	3	3
CO (W.A)	2	3				3		3	3			2	3	3

D. du

	22AGX44 -	EXTENSION METHODS AND TRAN	SFER OF TEC	HNC	DLOG	Y	
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 Analyze new trends in agricult technological advancements. Evaluate diffusion and adoption agricultural innovation 			-	-	
	e Outcomes udent will be able	e to	Cognitive Level	in	End S	ge of C emest natior	er
соі	Apply commun extension.	ication models and principles in agricultural	Ар		2	0%	
CO2	Analyze extens	ion teaching methods and their purposes.	An		2	0%	
CO3	Apply capacity and farmers.	building strategies for extension personnel	Ар		2	0%	
CO4	Evaluate diffusi innovation.	on and adoption theories in agricultural	E		2	0%	
CO5	Analyze new tr	ends in agricultural extension.	An		2	0%	

UNIT I - COMMUNICATION AND PROGRAMME PLANNING

(9)

(9)

(9)

(9)

Communication - meaning - definition - models - elements and their characteristics - types and barriers in communication. Programme planning - meaning, definition, principles, steps in programme development process, monitoring and evaluation of extension programmes.

UNIT II - EXTENSION TEACHING METHODS

Extension teaching methods - Audio-Visual aids - definition - classification - purpose, planning and selection, combination and use - individual, group and mass contact methods - merits and demerits.

UNIT III - NEW TRENDS IN AGRICULTURAL EXTENSION

New trends in agricultural extension -Privatization of extension, Cyber extension/ E- extension, internet, video and teleconferencing, Interactive Multimedia Compact Disk (IMCD), village kiosks, Kissan Call Centre (KCC), mobile phone, Village Knowledge Centre (VKC)

UNIT IV - DIFFUSION AND ADOPTION

Diffusion - meaning and elements. Adoption - meaning -adopter categories and factors influencing adoption, stages of adoption, Innovation decision process and attributes of innovation consequences of adoption. (9)

UNIT V - CAPACITY BUILDING

Capacity building of extension personnel and farmers - meaning - definition, types of training, training to farmers, farm women and rural youth, FTC & KVK.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. Ray, G.L., 1999. Extension Communication and Management, Naya Prokash, 206, Bidhan Sarani, Calcutta.
- 2. Rogers, E.M. 1995. Diffusion of Innovations, The Free Press, Newyork

- 1. Indian Journal of Social Sciences, Serials Publications, New Delhi
- 2. Agricultural Extension Review, Department of Agriculture and Co-operation, Ministry of Agriculture, New Delhi
- 3. MANAGE, NAARM, Hyderabad Yojana, Ministry of Rural Development, New Delhi
- 4. Sandhu, A.S. 1996. Extension Programme Planning, Oxford & IBH Publishing Co. pvt. Ltd, New Delhi

COURSE OUTCOMES				PSOs										
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I						3				3			3	
2		3		3										
3									3					
4		2			2									
5											3	3	3	
CO (W.A)		2.5		3	2	3			3	3	3	3	3	

D. du

	22AGX45 - COMMERCIAL AGRICULT	TURE					
			L	т	Ρ	С	
			3	0	0	3	
PRE -	REQUISITE : NIL						
Course	• To equip students with comprehensive practices and animal husbandry techn economic viability and environmental stev	iques, em			0		
	•	nitive evel	Weightage of COs in End Semester Examination				
COI	Apply practical skills and techniques learned in the fields of crop cultivation, animal husbandry, pest management and sustainable agricultural practices.	Ap		20%			
CO2	Analyze various constraints, pest and disease management practices to enhance production technologies on commercial sectors of agriculture.	An		2	0%		
CO3	Articulate effectively on species, rearing techniques, collection, production, processing, value addition and post harvest technologies.	Ар	40%				
CO4	livestock management techniques.	An		2	0%		
CO5	Summarize a report as a team member on the techniques and constraints, observed in the commercial agriculture practices by visiting various agriculture sectors.	An	Int	ernal A	Assessr	nent	

UNIT I – SERICULTURE

Sericulture – importance - Mulberry cultivation – Rearing – Reeling – Twisting - Species of Silkworms -Rearing Equipment – marketing of cocoons - Economics of rearing - Pest and diseases of silkworm and their management

UNIT II – APICULTURE

Importance and history of apiculture - Different species of honey bees - Morphology, anatomy, colony organization and lifecycle – Bee keeping equipment - Social behavior - Queen rearing - Collection and preservation of bee pasture - Seasonal management - Economics of beekeeping.

UNIT III – MUSHROOM CULTIVATION

Mushroom cultivation - Scope and Importance - Types of mushroom - Life cycle of mushroom - Mother Spawn Production - mushroom bed preparation - Spawning, spawn running, harvesting - diseases, pests and nematodes, and their management - Postharvest technology and value addition of mushroom

UNIT IV – LIVESTOCK PRODUCTION & MANAGEMENT

(9)

(9)

(9)

(9)

Importance of livestock - Important exotic and Indian breeds of cattle and buffalo - reproductive system and behaviour of cattle - Feeding and management - Cost of milk production, economical unit of cattle and buffalo.

UNIT V - VERMICOMPOSTING

Waste material- Classification, segregation - processing- Bed preparation - earthworm collection and applications-Inspection of beds and watering - separation, air drying, sieving - storing

TOTAL (L : 45) = 45 **PERIODS**

TEXT BOOKS:

- 1. Sanjay Sarkar. 2022. A Text Book on Sericulture, Techno World, West Bengal.
- 2. Gautam, V. N. and Shraddha Shrivastava. 2017. A Text Book on Livestock Production and Management, Aavishkar Pulishers, Jaipur.

REFERENCES:

- I. Sunita, N.D, Guled, M.B, Mulla, S.R and Jagginavar, 2003, Beekeeping, UAS Dharwad
- 2. Ganga, G. and Sulochana Chetty, J. 1997. An Introduction to Sericulture (2nd Edn.). Oxford & IBH publishing Co. Pvt. Ltd., New Delhi.
- 3. B.C. Suman and V.P.Sharma.2007. Mushroom cultivation in india. Daya Publishing House, New Delhi. 179p
- 4. G. C. Banergee. 1999, Text Book of Animal Husbandry , 9th ed Oxford and IBH Publishers, New Delhi.
- 5. Singh, D. and Singh, D.P. 2006. A Hand Book of Beekeeping, Agrobios (India)
- 6. V.N. Pathak, N. Yadav and M. Gaur. 2010. Mushroom production and processing technology. Published by Agrobios, Jodhpur
- 7. Khushbu, Rachna Gulati, Sushma and Komal Arya, 2022, Fundamentals of Vermicomposting, AkiNik Publications 978-93-5570-365-1

	Mapping of COs with POs / PSOs													
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2		3											3	
3					3								3	3
4				3										
5									3	3				
CO (W.A)	3	3		3	3				3	3			3	3

D. Alel

	22AGX46 - /	AGRICULTURAL FINANCE, BANK	ING AND CO-C	OPER	ΑΤΙΟ	N		
				L	Т	P	С	
				3	0	0	3	
PRE -	REQUISITE : N	NIL						
Course	e Objective:	 To provide knowledge on the agricultural sector to improve all c 		thods	of fir	nancing	the	
	e Outcomes Ident will be able t	:0	Cognitive Level	in	End S	ge of (iemestination	ter	
COI	Analyze the va	arious banking sources available for or.	Ар	20%				
CO2	Apply the princip periods for differ	ble of cooperative banking in various plan rent spans.	An	n 20%				
CO3		ld of crops grown through by means of op insurance schemes.	Ар		4	0%		
CO4	Frame a networ for financing agri	k inculcating various institutions meant cultural needs.	An	An 20%				
CO5	institutional and	communicate the role played by non institutional agencies as a part of cowards the history of crop culture in	Δn	Int	ernal /	Assessn	nent	

UNIT I- AGRICULTURAL FINANCE – NATURE AND SCOPE

Agricultural Finance: Definition, Importance, Nature and Scope – Agricultural Credit: Meaning, Definition, Need and Classification – Sources of credit – Role of institutional and non – Institutional agencies: Advantages and Disadvantages – Rural indebtedness: consequences of rural indebtedness – History and Development of rural credit in India.

UNIT II - FINANCIAL INSTITUTIONS

Institutional Lending Agencies – Commercial banks: Nationalization, Agricultural Development Branches – Area Approach – Priority Sector Lending – Regional Rural Banks, Lead bank, Scale of finance – Higher financial institutions: RBI, NABARD, AFC, ADB, World Bank and Deposit Insurance and Credit Guarantee Corporation of India.

UNIT III - CO-OPERATION

Agricultural Cooperation in India–Meaning, brief history of cooperative development inIndia - Pre and Post -Independence periods and Co-operation in different plan periods, objectives, principles of cooperation, significance of cooperatives in Indian agriculture. Cooperative credit structure: short term and long term.

UNIT IV -BANKING METHODS

Negotiable Instruments: Meaning, Importance and Types – Central Bank: RBI – functions – credit control – objectives and methods: CRR, SLR and Repo rate – Credit rationing – Dear money and cheap money – Financial inclusion and Exclusion: Credit widening and credit deepening monetary policies. Credit gap: Factors influencing credit gap – Non – Banking Financial Institutions (NBFI) -Assessment of crop losses, Determination of compensation.

(9)

(9)

(9)

UNIT V -FARM INSURANCE

(9)

Crop insurance: Schemes, Coverage, Advantages and Limitations in implementation – Estimation of crop yields – Livestock, insurance schemes – Agricultural Insurance Company of India Ltd (AIC): Objectives and functions.

TOTAL (L : 45) = 45 PERIODS

TEXT BOOKS

- I. Warren F. Lee and Michael D. Boehlje,2017,Agricultural Finance,Routledge, USA.
- 2. P. M. Vyas, 2016, Agricultural Banking and Finance, Oxford University Press, UK
- 3. N.S. Gopalakrishnan, 2017, Rural Banking and Agricultural Finance in India, PHI Learning Pvt. Ltd., New Delhi.

- I. Muniraj, R., 1987, Farm Finance for Development, Oxford and IBH, New Delhi
- 2. Subba Reddy. S and P.Raghu Ram 2011, Agricultural Finance and Management, Oxford and IBH, New Delhi.

	Mapping of COs with POs / PSOs													
COs		POs												SOs
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I		3											3	
2	3										3	3		
3		2									2		3	3
4		3									3		3	3
5						2			3		2		3	3
CO (W.A)	3	2.6				2			3		2.5	3	3	3

D. Alel

	22A0	GX47 - ORNAMENTAL AND LANDSC	APE GARDE	NIN	G				
				L	Т	Р	С		
				3	0	0	3		
PRE -	REQUISITE :	NIL							
Course	e Objective:	nsive understar Jues, construc Jre, enabling tl 25.	ting	and b	udgetir	ng in			
Course Outcomes Cognitive The Student will be able to I evel						ge of (Semes inatio	ter		
COI		es of landscape design to create detailed hat incorporate both softscape, hardscape nents.	Ар		20%				
CO2	evaluating their	nt types of gardens and landscaping features, historical context, functional benefits, and various environmental conditions and client	An	20%					
CO3	assessing the elements, and effectiveness of	proposed landscape projects.	An		20%				
CO4	maintain, and species of gras	f management techniques to establish, rejuvenate turf areas, using appropriate sses and management practices to address o growth, pests, and soil conditions.	Ар	40%					
CO5	on the consti	eport with a presentation as a team member raints observed during establishment and ornamental garden.	An	Int	ernal A	Assessr	nent		

UNIT I - GARDEN HISTORY, TYPES AND ELEMENTS

Ornamental and Landscape Horticulture – Definition – Scope – Importance – History of Gardening – Types of Gardens – Softscape elements – Plants for special purposes – Hardscape elements – other ornamental structures – Planting and Designing Position.

UNIT II – SPECIAL FEATURES IN LANDSCAPING

Water gardens – Floating plants – Oxygenating plant – Bog gardens – Vertical Garden - Roof Garden – Xeriscaping – Bonsai – Plants, Culture, Pruning and Bending Techniques – Terrarium – Gardening Equipments.

UNIT III – TURFING AND TURF MANAGEMENT

Turfing – Uses – Importance and scope of turf industry – Species of grasses – Growth and Development of turf grasses – Factor affecting growth – Site selection – Land preparation – Methods of establishment – Turf quality – weed, pest, disease and nutrient managements – Repair and rejuvenation of old turf – Care and maintenance of equipments.

(9)

(9)

UNIT IV – DESIGNING ELEMENTS, PRINCIPLES AND SITE ANALYSIS

Elements of Beauty – Form, Colour, Texture and Line – Fundamental Principles of landscape designing – Different Concepts of laying of special types of gardens – Site analysis – Cliental preferences -Selection of components.

UNIT V – LANDSCAPE DRAWINGS, CONSTRUCTION AND BUDGETING

(9)

(9)

Landscape drawing – manual and computer softwares –Fundamentals of drawing – scale, symbols, layout, plan view, elevation and perspective diagrams – Basics of establishment – leveling, gradient, filling, plastering, water proofing filters and aeration – Project report preparation – cost estimates – contract agreement and legal issues – terms and conditions for execution and payment.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

I. Priyanka Kakkar, Surendar Lal, "Landscape and Ornamental Horticulture", Stella International Publication, Haryana, 2024.

2.Hemla Naik, B., Chandrasekhar, S. Y. and Jawaharlal, M., "Principles of Landscape Gardening", agrimoon.com, 2023.

3. Chadha, K. L. "Ornamental Horticulture in India", ICAR Krishi Bhavan, New Delhi, 1986.

4. Bose, T. K. and Mukerjee, D. "Gardening in India", Oxford and IBH Publication, 1977.

REFERENCES:

1. Roychowdhury, N. and Misra, H. P., "Text Book on Floriculture and Landscaping", Shyamal Ghosh Publication, Kolkata, 2001.

2. Nambisan, K. M. P., "Design elements of landscape gardening", Oxford and IBH Publication Co., (P) Ltd., New Delhi, 1992.

				M	lapping	g of CC	Ds with	POs /	PSOs					
			PSOs											
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3												
3			3										2	
4				3									2	
5														
CO (W.A)	3	3	3	3									2	

		22AGX48 - SEED TECHNOLOGY	APPLICATION	S				
				L	Т	Р	С	
				3	0	0	3	
PRE -	REQUISITE :	NIL			•	•		
Course	e Objective:	To equip students with comprehensiv science and technology, enabling them production, processing, testing, and ma quality seeds and support successful cro	to analyze and a rketing to ensure	apply	princip	oles of	seed	
	e Outcomes udent will be able	Cognitive Level	in	End S	ge of (Semes inatio	ter		
COI	differentiate s	ne fundamental characteristics that eeds from grains and evaluate the od quality seeds crucial for successful n.	An	20%				
CO2	selection, hybr	etic improvement techniques such as idization, mutation, and polyploidy to uality seed varieties.	Ар	Ар 20%				
CO3	techniques, inc	us seed production and processing luding hybrid seed production, and apply ethods for different crops to ensure high y.	An	20%				
CO4	Apply the steps of seed processing and ensures the							
CO5	member on th in quality seed	report with a presentation as a team e techniques and constraints, observed production and marketing strategies by ing various case studies.	An	In	ternal /	Assessr	ment	

UNIT I - SEED CHARACTERS

Definition and characteristics of seed and how it differs from grain; Features of good quality seed; Importance of seed in successful crop production; Floral biology: self and cross pollination; Methods of genetic improvement of crop plants such as selection, hybridization, mutation and polyploidy.

UNIT II - SEED PRODUCTION AND CERTIFICATION

Hybrid seed production techniques (multiplication models, multiplication ratio, field selection, planting ratio, isolation needs and rouging; Harvest and extraction of seed) - classes of seed; Genetic deterioration during crop production cycles; Seed certification process, detailed description of the specific steps of the certification process (with particular emphasis on field inspection).

UNIT III - SEED PROCESSING AND TESTING

Components of seed processing; Steps in seed processing: preliminary cleaning, basic cleaning and grading, and equipment used in each of the steps; Seed treatment; Seed drying; Seed sampling; Seed testing: details of specific tests conducted for different purposes, seed testing laboratories – roles and establishment; Standards prescribed for different crops, Seed packaging.

(9)

(9)

UNIT IV - SEED PROGRAMMES AND MARKETING

Seed legislations promulgated in India from 1966 to date and the purpose of each of these legislations, Seed law enforcement, Types of organizations involved in seed production, their objectives and features; Organizational set up of a seed company; Steps involved in planning and developing a seed programme; Seed marketing activities, and analysis of seed demand and supply; Costing and pricing strategies; Economics of production of different crop seed; Role of WTO in seed marketing; Export procedures and formalities; Seed/plant quarantine methods.

UNIT V - SEED PRODUCTION IN SPECIFIC CROPS

Principles and special techniques used for seed production in important horticultural crops by selecting representatives of vegetable / flower / fruit / spice / condiment / plantation crops.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- I. Singh, S.P., Commercial Vegetable Seed Production, Kalyani Publishers, Chennai, 2001.
- 2. Agarwal, R.L., Seed Technology, Oxford IBH Publishing Co., New Delhi, 1995.
- 3. Joshi A.K. and Singh B.D., Seed Technology, Kalyani Publishers, New Delhi, 2005.
- 4. Rajeev Kumar, Sushil Kumar Swarnkar, Sunil Kumar Singh and Sumati Narayan, A Text Book of Seed Technology, Kalyani Publishers, New Delhi, 2015.

REFERENCES:

- I. Subir Sen and Ghosh, N., Seed Science, Kalyani Publishers, Chennai, 1999.
- 2. Dahiya, B.S., and Rai, K.N., Seed Technology, Kalyani Publishers, Chennai, 1997.
- 3. Hand Book of Seedling Evaluation, ISTA, 1979.

E-REFERENCES:

- I. <u>www.seednet.gov.in</u>
- 2. https://agritech.tnau.ac.in/seed_certification/seedtech_index.html

				Ma	apping	of CO	s with	POs /	PSOs					
						РС	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I		2												
2					3								3	
3				3									3	
4	3													3
5									3	3				
CO (W.A)	3	3 2 3 3 3 3 3											3	3

(9)

		22AGX51 - PROTECTED CUL	TIVATION				
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Cours	e Objective:	 To impart knowledge on protect and flower crops. To develop skills in precision farr value crops. 				U	
	e Outcomes udent will be able	to	Cognitive Level	in	ighta; End S Exami	emes	ter
СОІ	effective prod	ge on precision farming techniques for uction of vegetable and flower crops protected structures.	Ap		2	0%	
CO2	management p	us crop, canopy, pest and disease practices to enhance horticulture crop prough hi-tech protected cultivation	An		2	0%	
CO3		growth factors and gather information sed data management software's and	An		2	0%	
CO4	irrigation, ferti	ced techniques to solve problems on lizer application, post harvest handling of horticulture produce.	Ap		4	0%	
CO5	advanced tech	report as a team member on the niques and constraints, observed in the ed farm of horticulture crops.	An	Int	ernal A	Assessr	nent

UNIT I - PROTECTED CULTIVATION AND ITS TYPES

Importance and methods of protected culture in horticultural crops. Importance and scope of protected cultivation, different growing structures of protected culture viz., green house, poly house, net house, poly tunnels, screen house, protected nursery house. Study of environmental factors influencing green house production, cladding / glazing / covering material, ventilation systems, cultivation systems including nutrient film technique / hydroponics / aeroponic culture, growing media and nutrients, canopy management, micro irrigation and fertigation systems.

UNIT II – PROTECTED CULTIVATION OF VEGETABLE CROPS

Protected cultivation technology for vegetable crops: Hi-tech protected cultivation techniques for tomato, capsicum nursery, cucumber, gherkins, strawberry and melons, integrated pest and disease management, post harvest handling.

UNIT III – PROTECTED CULTIVATION OF FLOWER CROPS

Protected cultivation technology for flower crops: Hi-tech protected cultivation of cut roses, cut chrysanthemum, carnation, gerbera, Asiatic lilies, anthurium, orchids, cut foliages and fillers, integrated pest and disease management, postharvest handling.

(9)

(9)

UNIT IV – PRECISION FARMING TECHNIQUES

Concept and introduction of precision horticulture: importance, definition, principles and concepts. Role of GIS and GPS. Mobile mapping system and its application in precision farming. Design, layout and installation of drip and fertigation in horticultural crops, role of computers in developing comprehensive systems needed in site specific management (SSM), Sensors for information gathering, geostatistics, remote sensing, information and data management and crop growth models, GIS based modeling.

UNIT V – PRECISION FARMING OF HORTICULTURAL CROPS

Precision farming techniques for horticultural crops: Precision farming techniques for tomato, chilli, bhendi, bitter gourd, bottle gourd, cauliflower, cabbage, grapes, banana, rose, jasmine, chrysanthemum, marigold, tuberose, china aster, turmeric, coriander, coleus and gloriosa - precision technologies in packaging and storage of crops - robotics and drones in precision farming.

TOTAL (L : 45) = 45 PERIODS

TEXT BOOKS:

- 1. Ashok Kumar, B., Eggadi Ramesh and Sindhu, V. A Textbook of Protected Cultivation and Precision Farming for Horticulture Crops, Jain Brothers, New Delhi, 2022.
- 2. Gurjar Nikhil Parikar, P. K. S., Precise and Protected Cultivation of Horticulture Crops, Blue Rose Publishers, New Delhi, 2022.

REFERENCES:

- 1. Mahesh Chand Singh, Sharma, K. K., Protected Cultivation Structural Design, Crop Management, Modeling and Automation, Apple Academic Press, USA, 2023.
- 2. Precision Farming Development Centre, Protected Cultivation of Horticulture Crops, Technical Bulletin, ICAR, New Delhi, 2015.
- 3. Singh, D. K., and Peter, K. V., Protected Cultivation of Horticultural Crops, New India Publishing Agency, New Delhi, 2014.

e-REFERNCES:

1. TNAU, Protected Cultivation and Post Harvest Technology, Agrimoon.com, 2017.

				М	apping	of CC	s with	POs /	PSO s					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	3
2		3											3	
3					3									3
4				3									2	
5									3	3				
CO (W.A)	3	3		3	3				3	3			2.7	3

(9)

	22AGX52 - CLIMATE CHANGE AND ADAPTA	τιοι	N			
			L	т	Ρ	С
			3	0	0	3
PRE -	REQUISITE : NIL					
Course	• Objective: • To understand the concept of earth's climate change and mitigation measures.	e syst	tem, i	mpact	s of c	limate
	e Outcomes Cognitive Level	•	in	End S	ge of (emes natio	ter
COI	Illustrate the earth's climate system Ap			2	0%	
CO2	Inspect the characteristics and profile of the An atmosphere			2	0%	
CO3	Assess the present and projected impacts of climate An change on different sectors			2	0%	
CO4	Examine the initiates taken in India to address climate An Change			2	0%	
CO5	Organize different climate change mitigation strategies An			2	0%	

UNIT I – EARTH'S CLIMATE SYSTEM

Definitions- Climate, Climate system, climate change- Role of ozone in environment - ozone depleting gases - Green House Effect, Radiative effects of Greenhouse Gases - Green House Gases and Global Warming – Carbon Cycle- Hydrological Cycle- El Nino, La Nina – ENSO Teleconnections.

UNIT II – ATMOSPHERE AND ITS COMPONENTS

Importance of Atmosphere - Physical, Chemical Characteristics of Atmosphere - Vertical structure of the atmosphere-Composition of the atmosphere-Atmospheric stability - Temperature profile of the atmosphere-Lapse rates-Temperature inversion-effects of inversion on pollution dispersion.

UNIT III – IMPACTS OF CLIMATE CHANGE

Causes and impacts of Climate change : Change of Temperature in the environment - Melting of ice Pole-sea level rise-Impacts of Climate Change on various sectors – Agriculture, Forestry and Ecosystem – Water Resources – Human Health – Industry, Settlement and Society – Methods and Scenarios – Projected Impacts for Different Regions – Uncertainties in the Projected Impacts of Climate Change – Risk of Irreversible Changes.

UNIT IV -CLIMATE CHANGE INITIATIVES

Evidences of Changes in Climate and Environment – on a Global Scale and in India - Initiatives in India-Kyoto Protocol, Climate Sensitivity and Feedbacks – The Montreal Protocol – UNFCCC– IPCC.

UNIT V - MITIGATION MEASURES

Clean Development Mechanism – Carbon credits, Carbon Trading- examples of future Clean Technology – Biodiesel – Natural Compost – Eco- Friendly Plastic – Alternate Energy – Hydrogen – Bio-fuels – Solar Energy – Wind – Hydroelectric Power – Mitigation Efforts in India and Adaptation funding Key Mitigation Technologies and Practices – Energy Supply – Transport – Buildings – Industry – Agriculture – Forestry -Carbon sequestration – Carbon capture and storage (CCS)

TOTAL (L: 45) = 45 PERIODS

(9)

(9)

(9)

TEXT BOOKS:

- 1. Islam, Md Nazrul, and André van Amstel, eds. India: Climate Change Impacts, Mitigation and Adaptation in Developing Countries. Springer Nature, 2021.
- 2. Nilsson, Lennart. Cleaner production: technologies and tools for resource efficient production. Vol. 2. Baltic University Press, 2007.

REFERENCES:

- 1. Romm, Joseph J. Climate change: What everyone needs to know. Oxford University Press, 2022.
- 2. Adaptation and mitigation of climate change-Scientific Technical Analysis. Cambridge University Press, Cambridge, 2006.
- 3. Dash Sushil Kumar, "Climate Change An Indian Perspective", Cambridge University Press

				Map	oping	of CO	s with	POs /	PSOs					
						P	Os						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	2													
2		2												
3				3									3	
4				3									3	
5		2												
CO (W.A)	2	2		3									3	

D. Au

22AGX53 - REMOTE SENSING AND GEOGRAPHICAL INFORMATION SYSTEMS FOR AGRICULTURAL ENGINEERS

		L	Т	Ρ	С
		3	0	0	3
PRE -	REQUISITE : NIL				
Course	 To understand the concepts of remote sensing. To introduce the students to the principles of var remote sensing and data components. To introduce the spatial data models and map element and the various image enhancement and To study the applications of Remote Sensing and water resources. 	nents. classifio	cation 1	technic	•
	e Outcomes Cognitive dent will be able to Level	in	ightag End S Exami	emes	ter
соі	Correlate various electromagnetic radiations and assess their applications in remote sensing systems and Ap satellite data processing.		2	0%	
CO2	Apply the concepts of GIS and coordinate system. Ap		2	0%	
CO3	Analyze the Geographic Information System (GIS) images and categorize according to its application.		2	0%	
CO4	Evolve RS & GIS tools to create a strategy on natural resource management.		2	0%	
CO5	Recognize the problems related to agricultural engineering in crop production and found a Ap solutionusing GIS.		2	0%	

UNIT I -CONCEPTS OF REMOTE SENSING (9) Definition of remote sensing and its components -Electromagnetic spectrum - wavelength regions important to remote sensing - Wave theory, Particle theory, Stefan-Boltzman and Wein Displacement Law -Atmospheric scattering, absorption - Atmospheric windows - spectral signature concepts. UNIT II – REMOTE SENSING SATELLITES AND SENSORS DATA PRODUCTS (9) Types of platforms - orbit types, Sun synchronous and Geosynchronous - Passive and Active sensors. Indian Space Programme, Sensor characteristics LANDSAT, SPOT, ERS, IKONOS, IRS and others. Types of Data Products - types of image interpretation - basic elements of image interpretation -visual interpretation keys. (9) **UNIT III - GEOGRAPHICAL INFORMATION SYSTEM** Definition- Concept of GIS - Maps and their influences- Characteristics of Maps- Elements - Projection-Coordinate system- sources of spatial data- History and development of GIS. **UNIT IV – DATA INPUT AND ANALYSIS** (9) Data- spatial, Non spatial- Hirerachial Network- Data types- Raster and vector -files and their organization. Methods of Data input – Data Editing, Data structure- Database Management – digitizer – reclassification – spatial analysis – buffering – map –overlay – interpolation – Digital Elevation Model-

Output data - devices for output.

UNIT V – RS AND GIS APPLICATIONS IN AGRICULTURAL ENGINEERING

(9)

Crop Acreage estimation - Estimation of Crop Water Requirement Crop condition - Soil mapping – classification of soil with digital numbers - soil erosion mapping- reservoir sedimentation using image processing – Water quality modeling - Drought monitoring - Cropping pattern change analysis. Application of Remote Sensing and GIS in Precision Agriculture - Monitor Crop Health.

Practical

- I. Aerial Photo interpretation visual
- 2. Satellite images interpretation Visual
- 3. Database Management systems
- 4. Spatial data input and editing Digitizing
- 5. Raster analysis problem Database query
- 6.GIS application in watershed analysis
- 7. GIS application in rainfall runoff modeling
- 8. GIS application in Soil erosion modelling

TOTAL (L: 30, P:30) = 60 PERIODS

TEXT BOOKS:

 Basudeb Bhatta, Remote Sensing and GIS, II Edition, Oxford University Press, New Delhi, 2011
 Floyd F.Sabins, Remote Sensing: Principles and Interpretation, III edition, Freeman and Company, NewYork, 2007.

REFERENCES:

1. Lillesand, T. M., and Kiefer, R.W., Remote Sensing and Image Interpretation, John Wiley and Sons, New York, 2014.

2. P.A. Burrough, Principle of GIS for land resources assessment, Oxford Publications, 2015.

	Mapping of COs with POs / PSOs														
		POs													
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2	
I	3	3													
2	2														
3			3	2									3		
4					2							I	3		
5													3		
CO (W.A)	2.5	2.5 3 3 2 2 I I													

		22AGX54 - AUTOMATIO	ON IN AGRICUL	TUR	E		
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 To expose the students to the co To optimize the use of resources better crop yields. To monitor crops and soil con application of inputs. To introduce the concepts of Aut To create smart farming systems conditions. 	s like seeds, water, nditions, ensuring tomatic Systems an	and fe precis d loT a	ertilize e and applica	consi tions.	stent
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of (emes natio	ter
соі	Optimize crop	production, leading to higher yields.	Ap		2	0%	
CO2		me needed for planting, harvesting, and owing farmers to manage larger areas y.	An		2	0%	
CO3		with greater delicacy, reducing damage ing and processing.	Ap		4	0%	
CO4		yields, disease outbreaks, and other allowing for proactive management.	An		2	0%	
CO5	energy, and	efficient use of resources like water, fertilizers, which can reduce the impact of farming.	An	Int	ernal A	Assessr	nent

UNIT I - INTRODUCTION TO AUTOMATION

Automatic Irrigation - Traditional methods of irrigation - Need for Automation – Comparison between Traditional and Automated Irrigation - Advantages - Disadvantages - Economic impacts of Automation on Agricultural Firms - Future of Automation.

UNIT II - SYSTEMS OF AUTOMATION

Automated Irrigation - Pneumatic System - Portable timer system - Timer/Sensor Hybrid/SCADA - Methods of automating Irrigation layout - Machine Learning in Tank Monitoring System.

UNIT III - IoT IN IRRIGATION

IoT based Automated Irrigation System - IoT based Smart Irrigation - Sensor based Automation - ypes - operation - Solar based Automatic Irrigation System - components - operation - Automation by sensing soil moisture - Automation using ANN based controller - operation.

(9)

(9)

UNIT IV - SURFACE AND MIGRO-IRRIGATION AUTOMATION

automation and control in surface Irrigation systems - equipments - benefits - barriers - automation design in bay, basin and furrow Irrigation - automation in micro Irrigation – systems of automation and its components - design - cost - operation and maintenance.

UNIT V - ASSESSMENT OF PARAMETERS IN IRRIGATION

Crop water estimate using Satellite data - Automation of Lysimeter for PET Measurements and Energy based Remote Sensing model - Remote Monitoring design of Automatic Irrigation system- Cost and Benefits of Automation.

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. R.Haise, E.G.Kruse. et al., 1981. "Automation of Surface Irrigation: 15 years of USDA Research and Development at Fort Collins, Colorado"
- 2. Brian Wahlin and Darell Zimbelman, CanalAutomation for Irrigation Systems, American Society of Civil Engineers, 2014.

REFERENCES:

- I. Darell D.Zimbelman, Planning, Operation, Rehabilitation and Automation of Irrigation water
- 2. delivery system, American Society of Aqricultural Engineers, 1987

	Mapping of COs with POs / PSOs													
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3					2					2		3
3	3										2		3	3
4				3			2			2			3	3
5		3												
CO (W.A)	3	3 3 3 2 2 2												3

(9)

		22AGX55 - IT IN AGRICU	LTURE				
				L	Т	Р	С
				3	0	0	3
PRE -	REQUISITE :	NIL					
Course	e Objective:	 To equip students with the kin advanced technologies and mana environmental control, and e- agricultural practices, enhance p agricultural development. 	agement systems governance, enab	in pre ling t	cision hem t	agricu o opt	lture, imize
	e Outcomes Ident will be able	to	Cognitive Level	in	End S	ge of Semes inatio	ter
COI	optimize crop	n farming technologies, to analyze and production, environmental control and gement in various agricultural scenarios.	Ap		2	20%	
CO2	systems throug	effectiveness of environmental control gh models to determine their impact on nd greenhouse efficiency.	An		2	20%	
CO3	to analyze and crop growth, a with weather fo	5	An		2	20%	
CO4	climate foreca agricultural pla expert system information sec	,	Ap		2	10%	
CO5	member on th in quality mill	report with a presentation as a team e techniques and constraints, observed < production, processing, grading and airy products with a case study.	An	Int	ernal /	Assessi	nent

UNIT I- PRECISION FARMING

(9)

(9)

(9)

Precision agriculture and agricultural management – Ground based sensors, Remote sensing, GPS, GIS and mapping software, Yield mapping systems, Crop production modeling.

UNIT II – ENVIRONMENT CONTROL SYSTEMS

Artificial light systems, management of crop growth in greenhouses, simulation of CO2 consumption in greenhouses, on-line measurement of plant growth in the greenhouse, models of plant production and expert systems in horticulture.

UNIT III – AGRICULTURAL SYSTEMS MANAGEMENT

Agricultural systems - managerial overview, Reliability of agricultural systems, Simulation of crop growth and field operations, Optimizing the use of resources, Linear programming, Project scheduling, Artificial intelligence and decision support systems.

UNIT IV – WEATHER PREDICTION MODELS

Importance of climate variability and seasonal forecasting, Understanding and predicting world s climate system, Global climatic models and their potential for seasonal climate forecasting, General systems approach to applying seasonal climate forecasts.

UNIT V – E-GOVERNANCE IN AGRICULTURAL SYSTEMS

Expert systems, decision support systems, Agricultural and biological databases, e-commerce, e- business systems & applications, Technology enhanced learning systems and solutions, e-learning, Rural development and information society.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS:

- 1. National Research Council, "Precision Agriculture in the 21st Century", National Academies Press, Canada, 1997.
- 2. Krug, H., Liebig, H.P. "International Symposium on Models for Plant Growth, Environmental Control
- and Farm Management in Protected Cultivation", 1989.

REFERENCES:

- 1. Peart, R.M., and Shoup, W. D., "Agricultural Systems Management", Marcel Dekker, New York, 2004.
- 2. Hammer, G.L., Nicholls, N., and Mitchell, C., "Applications of Seasonal Climate", Springer, Germany, 2000.

				М	apping	g of CC)s wit h	POs /	PSO s					
						РС	Ds						PS	Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2		3												3
3				3									3	
4					3									3
5									3	3				
CO (W.A)	3	3		3	3				3	3			3	3

D. Atu

(9)

	22AGX	56 - INSTRUMENTATION AND CO	ONTROL ENGIN	IEER	ING		
				L	Т	Р	С
				3	0	0	3
PRE - F	REQUISITE : N	41L					
Cours	e Objective:	 To increases production speed, intervention. To optimize process performant To ensure that instrumentation compliant with industry standard To integrate advanced technological interview and ensure that instrumentation and ensure that instrumentation and ensure the integrate advanced technological interview. 	ce, ensuring stability and control system ds. gies such as Al, IoT	y and s are	efficie safe, r	ncy. eliable	, and
		into instrumentation and controTo design systems that optimize		strial	proces	sses.	
	e Outcomes udent will be able	e to	Cognitive Level	E	End S	e of C emest inatio	
COI		, and implement various instrumentation ding sensors, transducers, and signal s.			2	.0%	
CO2	Diagnose and fi systems.	x issues in instrumentation and control	An		2	.0%	
CO3		nd manage projects related to a and control, ensuring they meet ad deadlines.	Ар		2	.0%	
CO4	Implement safe of control syste	ty standards in the design and operation ms.	Ap		2	.0%	
CO5		tive solutions and improvements in and control technologies.	An		2	.0%	

UNIT I - INTRODUCTION

Basic concepts of measurement system configuration. Concept of accuracy, precision error, resolution repeatability bias, calibration, range; Performance characteristics of Instruments- Zero, first and second order instrument systems and their response to different input signals (step, ramp etc) Specification and testing of dynamic response

UNIT II - INSTRUMENTFOR VARIOUS USES

Different types of measuring instruments, their working principles, construction features, measurement of level, flow, temperature, pressure, vacuum, force, torque, power, displacement, vibration, acceleration, pH, colour, viscosity, surface tension and composition. Indicating and recording type instruments, digital displays, transmitting and telemetering devices

UNIT III - INTRODUCTIONTO CONTROL SYSTEM

Control system characteristics, purpose disturbances and stability Feed back and feed forward control strategies. Modelling the Dynamic and Static Behaviour of Process-Mathematical modelling for physical process control, state variables and state equations, modelling difficulties and considerations. Input-output models block diagram, degree of freedom, process controllers action, P, PI, PID controllers, final control system

(9)

(9)

UNIT IV - ANALYSIS OF DYNAMIC BEHAVIOUR:

Linearization of systems, Deviation variables, Application of Laplace transform in mathematical modelling of process control. Transfer function; Transfer function matrix. for processes having multiple outputs, Poles and zeros of transfer function

UNIT V - QUALITATIVE ANALYSIS OF RESPONSEOF SYSTEM:

Design of Feed Back System Block diagram, stability analysis, frequency response root locus analysis, Routh"s criteria, Nyquist plots and Bode diagrams. Control Systems for Various Uses Electronic pneumatic, hydraulic control system and their application in Farm machinery, food processing industry aquaculture, milk processing

TOTAL (L:45) = 45 PERIODS

TEXT BOOKS:

- I. Coughanowr, D.R. "Process Systems Analysis and Control", McGraw Hill, 1991
- 2. Patranabis. D. "Principles of Industrial Instrumentation", Tata McGraw Hill, 1995

REFERENCES:

- I. Doeblin, D.O. "Measurement Systems; Application and Design". McGraw Hill, 1984
- 2. Considine T..M. "Process/Industrial Instruments and ControlsÃ, · Handbook", McGraw Hill 1993

				Μ	apping	g of CC	Ds with	n POs /	PSO s					
						PC	Os						PS	Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	2													
2		3					I					I	3	
3	2									2	I			
4	2						I			I				
5				2										
CO (W.A)	2	3		2			I			1.5	I	I	3	

D. Au

(9)

		22AGX57 - IoT IN AGRICULTU	RAL SYSTEMS				
				L	Т	Р	С
				3	0	0	3
PRE - F	REQUISITE : I	NIL					
Course	e Objective:	 To know the operation of various To get adequate knowledge a processes To learn optimization techniques 	bout various sens	ors	used i	n agri	culture
	e Outcomes udent will be able		Cognitive Level	Wei		e of C emest	COs in er
COI		king operations of electronic devices and gricultural system	Ар		2	.0%	
CO2		necessity of sensor requirements to parameters required for the field	An	20%			
CO3		s on-line measurement of plant growth nt of crop growth in green houses using	Ар		2	.0%	
CO4		ept of Information Technology in gricultural systems.	Ар		2	.0%	
CO5		sic statistical tools and optimization can be used to analyze the data collected culture business	An		2	.0%	

UNIT I – BASIC ELECTRONICS CIRCUITS

Passive devices -semi conductor devices -transistors - diode circuits - amplifier circuits- oscillator circuits thyristor circuits-Integrated circuits and operational amplifier - logic gates - flip flop - counters digital to analog - analog to digital converters microprocessor introduction

UNIT II -PRECISION FARMING

Precision agriculture and agricultural management-Ground based sensors, Remote sensing, GPS, GIS and mapping software, Yield mapping systems, Crop production modeling.

UNIT III - ENVIRONMENTCONTROL SYSTEM

Artificial light systems, management of crop growth in greenhouses, simulation of CO₂ consumption in greenhouses, on-line measurement of plant growth in the greenhouse, models of plant production and expert systems in horticulture. Understanding and predicting world's climate system

UNIT IV - AGRICULTURAL SYSTEMSMANAGEMENT

Agricultural systems - managerial overview, Reliability of agricultural systems, Simulation of crop growth and field operations, Optimizing the use of resources, Linear programming, Project scheduling, Artificial intelligence and decision support systems.

(9)

(9)

(9)

UNIT V – E - G OVERNANCE IN AGRICULTURAL SYSTEMS

(9)

Concept of Information Technology (IT) and its application potential. Role of IT in natural resources management. Expert systems, decision support systems, Agricultural and biological databases, e- commerce, e-business systems & applications, Technology enhanced learning systems and solutions, e- learning, Rural development and information society. Internet application tools and web technology.

TOTAL (L:45): 45 PERIODS

TEXT BOOKS:

- 1. Hammer, G.L., Nicholls, N., and Mitchell, C., Applications of Seasonal Climate, Springer, Germany, 2019.
- 2. Peart, R.M., and Shoup, W. D., Agricultural Systems Management, Marcel Dekker, New York, 2015.

REFERENCES:

- 1. National Research Council, Precision Agriculture in the 21st Century, National AcademiesPress, Canada, 2020.
- 2. H. Krug, Liebig, H.P. International Symposium on Models for Plant Growth, Environmental Control and Farm Management in Protected Cultivation, 2014.

				Ma	apping	of CO	s with	POs /	PSOs					
COs						PC	Ds						PSOs	
COS	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3												3	
2		3												3
3	3													
4		3			I							2		3
5		3			2							2	3	
CO (W.A)	3	3			1.5							2	3	3

D. Au

				L	Т	Ρ	С
				3	0	0	3
PRE R	EQUISITE : NI	L					
		• To impart artificial intelligence p	rinciples, technique	s and	its his	tory	
		• To introduce basic concepts and	techniques of Mac	hine L	earnin	g	
Cours	se Objective:	• To select the unsupervised and s	supervised learning				
		• To apply concept of AI and ML c	oncepts in agricult	ural sy	/stem		
		• To analyze the applicability of Al	and ML in Agricult	ure			
Cour	se Outcomes					e of C	Os in
	tudent will be able	e to	Cognitive Level		Seme ninati		
	Apply the basic	principles of AI in solutions that require		Exar	ninati	on	
COI		ng, inference, perception, knowledge			2	0%	
	representation		•				
	Apply the may	thine learning algorithms to agricultural					
CO2	datasets for pro		Ap		2	0%	
	•	5					
CO3	Select appropri	ate unsupervised and supervised learning	An		c	0%	
203	models to addr	ess specific challenges in agriculture			2	0/6	
CO 4	Develop the	AI and ML concepts in Agricultural	•		2	00/	
CO4	application		Ар		2	0%	
		management strategies, integrating Al-					
CO5		hes for pest detection, monitoring, and	An		2	0%	
	control and use	e of ML for agricultural applications					
		CTION TO AI - INTELLIGENT AGE			(9)	
	NFORMED SEA					-	
		ions of AI – History of AI – The state of t					
		ture of Environment – Structure of Agent					
		d Search – Breadth First Search – Dijkstra epth Limited Search	s algorithm or uni	form-	cost se	arch –	-
		JCTION TO MACHINE LEARNING			(9)	
<u></u>					(• /	

Need for Machine Learning, Machine Learning Explained, and Machine Learning with respect to agriculture, Types of Machine Learning. Challenges of Machine Learning, Machine Learning process, Machine Learning applications.

UNIT III - UNSUPERVISED LEARNING

Unsupervised Learning – Principle Component Analysis – Neural Network: Fixed Weight Competitive Nets – Kohonen Self-Organizing Feature Maps – Clustering: Definition – Types of Clustering – Hierarchical clustering algorithms – k-means algorithm.

UNIT IV - SUPERVISED LEARNING

Neural Network: Introduction, Perceptron Networks – Adaline – Back propagation networks -Decision Tree:Entropy – Information gain – Gini Impurity – classification algorithm – Rule based Classification – Naive Bayesian classification – Support Vector Machines (SVM)

(9)

UNIT V - APPLICATION OF AI AND ML FOR AGRICULTURE

(9)

Application of AI and ML for agriculture - Disease Classification - Pest detection and monitoring -Integrated pest management using AI - Early warning systems for pest outbreaks and Detection in Plants -Species Recognition in Flowers - Precision Farming - Use of ML For Portable Proximal Soil and Crop Sensors - Soil And Crop Image Processing - Digital Soil Mapping - General Overview - Digital Soil Mapping With Continuous Variables and Categorical Variables.

TOTAL (L: 45) = 45 PERIODS

TEXT BOOKS

- 1. Peter Flach, "Machine Learning: The Art and Science of Algorithms that Make Sense of Data", First Edition, Cambridge University Press, 2012
- 2. Dheepak Khemani, "A first course in Artificial Intelligence, McGraw Hill Education Pvt Ltd.," New Delhi, 2013.

REFERENCES:

- 1. Jason Bell, "Machine learning Hands on for Developers and Technical Professionals", First Edition, Wiley, 2014.
- 2. Ethem Alpaydin, "Introduction to Machine Learning 3e" (Adaptive Computation and Machine Learning series) Third Edition, MIT Press, 2014
- 3. Ric, E., Knight, K and Shankar, B. "Artificial Intelligence," 3rd edition, Tata McGraw, 2009

			-		PROG	RAM	ME OU	тсо	MES	-	-		PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3													3
3		2			3								3	
4			3											
5			3		I							I		
CO (W.A)	3	2	3		2							I	3	3

D. du

		22GEA02 - PRINCIPLES OF MANA	GEMENT				
				L	Т	Ρ	С
005		•		3	0	0	3
PRE-	REQUISITE: NI						
Cours	se Objective:	 To provide with a foundational under practices. To equip students with the knowled lead organizations effectively, under and practical applications in managem To learn about various planning tool for organizational success. To gain insights into human resource To study effective communication and improved productivity and organization 	dge and skills rstanding both nent. Is and decision e management trategies and t d how effecti	neces theo -maki functi the in ve co	sary to pretica ing pro ons. pact o	o ma I frai ocesse of infe	nage and meworks es crucia ormation
	se Outcomes audent will be able f	to	Cognitive Level			s in E nest	End ær
COI		ement theories and practices to real-world os, demonstrating the ability to implement ctions.	Ар			20%	
CO2	how recruitmer	resource management practices, evaluating nt, training, performance appraisal, and ns contribute to organizational success.	An			30%	
CO3	organizational communication technology in communication v	vithin organizations.	E			30%	
CO4		nensive strategic plans and organizational ign control systemsto ensure continuous in productivity and organizational	С			20%	
CO5	develop higher-o effective mana	endent study as a member of a team and order thinking skills that are crucial for gement and leadership in complex ttings with assignments or case studies.	Ap	I	nterna	l Asse	essment

UNIT I -INTRODUCTION TO MANAGEMENT AND ORGANIZATIONS

(9)

Definition of Management - Science or Art - Manager Vs Entrepreneur - types of managers -managerial roles and skills - Evolution of Management - Scientific, human relations, system and contingency approaches - Types of Business organization-Organization culture and Environment - Current trends and issues in Management. (9)

UNIT II -PLANNING

Nature and purpose of planning - planning process - types of planning - objectives - setting objectives policies - Planning premises - Strategic Management - Planning Tools and Techniques - Decision making steps and process.

UNIT III -ORGANISING

Nature and purpose - Formal and informal organization - organization chart - organization structure types - Line and staff authority - departmentalization -delegation of authority - centralization and decentralization - Job Design - Human Resource Management - HR Planning, Recruitment, selection, Training and Development, Performance Management, Career planning and management

UNIT IV - DIRECTING

Foundations of individual and group behaviour - motivation -motivation theories - motivational techniques - job satisfaction - job enrichment - leadership - types and theories of leadership -communication - process of communication - barrier in communication - effective communication - communication and IT.

UNIT V - CONTROLLING

System and process of controlling - budgetary and non-budgetary control techniques - use of computers and IT in Management control - Productivity problems and management - control and performance -direct and preventive control -reporting.

TOTAL (L:45) : 45 PERIODS

TEXT BOOKS:

- 1. Harold Koontz, Heinz Weihrichand Mark V. Cannice"Essentials of Management: An International, Innovation, and Leadership Perspective", 11th Edition, Tata McGraw-Hill Education, 2021.
- 2. J.A.F. Stoner, R.E. Freeman, and Daniel R. Gilbert "Management", 6th Edition, Pearson Education, 2018.

REFERENCES:

- 1. JAF Stoner, Freeman R.E and Daniel R Gilbert "Management", 6th Edition, Pearson Education, 2004.
- 2. Robert Kreitner&MamataMohapatra, "Management", Biztantra, 2008.
- 3. Stephen A. Robbins & David A. Decenzo& Mary Coulter, "Fundamentals of Management", 7th Edition, Pearson Education, 2011.
- 4. Tripathy PC & Reddy PN, "Principles of Management", Tata Mcgraw Hill, 1999.

		-	-		PROG	RAM	1E OU	тсо	MES	-	-	-	PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	Т	2
I	3										3			
2		3									3			
3										3				
4			3							3				
5											3	3		
CO (W.A)	3	3	3							3	3	3		

237 | Page

(9)

(9)

		22GEA03 - TOTAL QUALITY M	ANAGEMENT				
				L	Т	Р	С
				3	0	0	3
PRE -	REQUISITE :	NIL		•			
Course	e Objective:	 To Recognize the importance of q TQM. To Explore the elements and histor To Foster employee involvement teamwork, and recognition. To Implement continuous process PDSA Cycle, 5S, and Kaizen. To Conduct quality audits and uno standards like ISO 14000, IATF 16 20000, ISO 22000, and ISO 21001 	prical development through motivation improvement me derstand the introc 949, TL 9000, IEC	t of TQ n, emp thods ductior	2M. owerr like Ju	nent, ran's T :her IS(rilogy, D
	e Outcomes dent will be able	to	Cognitive Level	in	End S	ge of C emest natior	er
	Describe the el Management (T	ements and principles of Total Quality QM).	Ар		3	0%	
		us process improvement methodologies Trilogy, PDSA Cycle, 5S, and Kaizen.	Ар		2	0%	
~~~		quality tools and techniques in both and service industry.	Ар		2	0%	
		g supplier partnerships and understand on,rating, and relationship development.	An		2	0%	
		riate quality standards and implement pective industry App.	E		I	0%	

 UNIT - I QUALITY CONCEPTS AND PRINCIPLES
 (9)

 Definition of Quality - Dimensions of Quality - Quality Planning - Quality Assurance and Control - Quality

 Costs with Case Studies - Elements / Principles of TQM - Historical Review – Leadership – Qualities / Habits

 - Quality Council - Quality Statements, Strategic Planning – Importance - Case Studies - Deming Philosophy 

 Barriers to TQM Implementation – Cases with TQM Success and Failures.

## UNIT – II TQM-PRINCIPLES AND STRATEGIES

Customer Satisfaction - Customer Perception of Quality - Customer Complaints - Customer Retention, Employee Involvement – Motivation - Empowerment - Teams - Recognition and Reward - Performance Appraisal, Continuous Process Improvement - Juran's Trilogy - PDSA Cycle - 5S - Kaizen, Supplier Partnership - Partnering - Sourcing - Supplier Selection - Supplier Rating - Relationship Development, Performance Measures – Purpose – Methods - Cases.

#### UNIT – III CONTROL CHARTS FOR PROCESS CONTROL

Basic Seven Tools of Quality and its Role in Quality Control, Statistical Fundamentals - Measures of Central Tendency and Dispersion, Population and Sample - Normal Curve - Control Charts for Variables and Attributes - Process Capability - Case Study- Introduction to Six Sigma.

## UNIT – IV TQM-MODERN TOOLS

New Seven Tools of Quality, Benchmarking - Need - Types and Process, Quality Function Deployment -House of Quality (HOQ) Construction - Case Studies, Introduction to Taguchi's Robust Design - Quality Loss Function - Design of Experiments (DOE), Total Productive Maintenance (TPM) - Uptime Enhancement, Failure Mode and Effect Analysis (FMEA) - Risk Priority Number (RPN) – Process - Case Studies.

(9)

(9)

## UNIT – V QUALITY SYSTEMS

Need for ISO 9000 and Other Quality Systems - ISO 9000: 2015 Quality System – Elements -Implementation of Quality System - Documentation - Quality Auditing, Introduction to ISO 14000 - IATF 16949 - TL 9000-IEC 17025 - ISO 18000 - ISO20000 - ISO 22000 - ISO21001. Process of Implementing ISO -Barriers in ISO Implementation.

### TOTAL (L:45) = 45 PERIODS

## **TEXT BOOK:**

 Besterfield Dale H., Besterfield Carol, Besterfield Glen H., Besterfield Mary, UrdhwaresheHemant, UrdhwaresheRashmi "Total Quality Management", 5th Edition, Pearson Education, Noida, 2018.

## **REFERENCES:**

- I. SubburajRamasamy, "Total Quality Management", McGraw Hill Education, New Delhi, 2017.
- James R. Evans and William M. Lindsay, "The Management and Control of Quality", 8th Edition, Cengage Learning, 2012.
- David Goetsch& Stanley Davis, "Quality Management for Organizational Excellence: Introduction to Total Quality", 8thEdition,Pearson, 2017.

					PROG	RAM	1E OU	тсо	MES		-		PSOs	
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2	3													
3	3													
4		3												
5	3				2									
CO (W.A)	3	3			2									

D. due

			L	Т	Ρ	C
			3	0	0	3
PRE - REQUISITE	: NIL					
Course Objective:	<ul> <li>To develop students' ability to id in engineering contexts, fostering responsibility, integrity, and ethic</li> <li>To provide engineering students ethical principles and practices in</li> <li>To Familiarize students with key that guide ethical decision-makin</li> <li>To Foster the ability to commun effectively with diverse stakehold public.</li> <li>To Encourage students to uphold their professional activities, foster</li> </ul>	g a commitment to cal decision-making. with a comprehens the engineering pr ethical theories, pr g in professional pr icate ethical concer lers, including colle d integrity, honesty	profes sive un ofessic inciple actice. ms and agues, , and a	sional derstar on. s, and f collab clients, ccount:	nding o Tramew orate and th ability i	of vork ne
Course Outcomes		Cognitive		eightag		COs
The Student will be at	le to	Level		End So Exami		-
COI Apply ethical issues.	reasoning to evaluate and resolve these	Ар		30	)%	
CO2 Apply ethical	principles and reasoning to analyze real- udies in engineering.	Ар		30	)%	
world case st	nportance of ethics in professional	An		20	)%	
world case st		/				
CO3 Analyze the in practice. CO4 Develop the decisions in e	bility to make informed and ethical ngineering practice. e importance of continuous learning and	An		1(	)%	

in Engineering.

Professional Responsibility and Accountability, Codes of Conduct in Engineering (e.g., IEEE, NSPE), Conflicts of Interest and Whistleblowing, Case Studies.

## UNIT III: ETHICAL DECISION-MAKING AND PROBLEM-SOLVING

Ethical Decision-Making Models, Tools and Frameworks for Ethical Analysis, Resolving Ethical Dilemmas, Case Studies

#### UNIT IV: LEGAL AND REGULATORY ASPECTS

Legal Frameworks Governing Engineering Practice, Intellectual Property Rights, Health, Safety, and Environmental Regulations, Case Studies.

#### UNIT V: SOCIAL AND ENVIRONMENTAL RESPONSIBILITY

Social Responsibility of Engineers, Sustainable Engineering Practices, Impact of Engineering on Society and Environment, Case Studies.

#### TOTAL (L:45) = 45 PERIODS

(9)

(9)

(9)

## **TEXT BOOKS**:

- 1. Charles E. Harris Jr., Michael S. Pritchard, and Michael J. Rabins,"Engineering Ethics: Concepts and Cases" 6th edition, 2018.
- 2. Mike W. Martin and Roland Schinzinger, "Ethics in Engineering" 5thEdition 2010.
- 3. by M. Govindarajan, S. Natarajan, and V. S. SenthilKumar,"Professional Ethics and Human Values", Ist Edition 2006.

## **REFERENCES**:

- I. Stephen H. Unger, "Engineering Ethics: Real-World Case Studies"
- 2. Online Ethics Center for Engineering and Science www.onlineethics.org
- 3. National Society of Professional Engineers (NSPE) <u>www.nspe.org</u>

		_	_		PROG	GRAM	1E OU	тсо	MES	-	-	-	PSOs	
COs	I	2	3	4	5	6	7	8	9	10	п	12	I	2
I	3													
2	3													
3		3												
4		3												
5								3						
CO (W.A)	3	3						3						

D. du

	22AGZ01 - F	UNDAMENTALS OF FARM MACH	INERY AND MA	NAG	EME	NT	
				L	т	Ρ	С
				3	0	0	3
PRE -	<b>REQUISITE</b> :	NIL					
Course	e Objective:	<ul> <li>To acquire the knowledge on the operations of tractors and tiller</li> <li>To enhance the overall productive production.</li> </ul>		•			
	e <b>Outcomes</b> Ident will be able	e to	Cognitive Level	in	End S	ge of <b>C</b> emest inatior	ter
соі		orking mechanisms of tractors, plows, seeders, and other essential farm	Ар		2	0%	
CO2	calibration or practices to	l skills in the operation, adjustment, and f farm machinery.Learn maintenance ensure the longevity and efficient farm equipment.	Ap		2	0%	
CO3		environmental impact of farm machinery ctices to minimize negative effects	An		2	0%	
CO4	machinery De machinery flee	of using different types of farm evelop skills in planning and managing ts for optimal farm productivity.	An		2	0%	
CO5	and how mach updated with	nciples of sustainable farming practices ninery can be used to support them. Stay the latest innovations in farm machinery cations in modern agriculture.	Ap		2	0%	

## UNIT I – FARM MACHINERY

Selection of farm machinery, size selection, timeliness of operation, selection of proper power level and problem related to it- Cost and Reliability of agricultural machinery - Replacement of farm machinery and inventory control of spare parts.

#### UNIT II – TRACTOR AND POWER TILLER

Testing and Evaluation of agricultural tractors – Performance of agricultural tractors - Testing and evaluation of tractor implements- Power tiller - types, application, - need for testing and evaluation of power tiller- maintenance and repair of tractors and power tillers tractor tests and performance.

#### UNIT III - TILLAGE AND SOWING

Tillage- forces acting on a tillage tool- Testing and evaluation of Tillage machinery - hitch systems and hitching of tillage implements- - construction and operation of manual, animal and power operated equipment for tillage - sowing equipment.

9

9

9

## **UNIT IV - PLANT PROTECTION AND HARVESTING MACHINERY**

Planting - Plant protection equipment - sprayer - types - duster - types – Testing and evaluation of manually operated sprayer and duster - weeders - fertilizer application- mowing - chaff cutting - Rice transplanter - Combine harvester - thresher - harvesting and threshing calculation of performance

#### **UNIT V - FARM MACHINERY MANAGEMENT**

Farm Management - performance of power – operator and cost of operations - economic performance of machinery - field capacity, field efficiency and factors affecting field efficiency- operator comfort and safety- human engineering and safety considerations in agricultural implements.

## TOTAL (L:45) = 45 PERIODS

## **TEXT BOOKS:**

1. Donnell Hunt. "Farm power and machinery management", Scientific International Pvt. Ltd., New Delhi, 2013.

2. Metha, M. L., Verma, S. R., Mishra, K. and Sharma, V. K. "Testing and Evaluation of Agricultural Machinery", National Agricultural Technology Information Centre, Ludhiana-141001, 1995.

### **REFERENCES:**

I. Kepner R. A., Roy Barger and Barger, E. L. "Principles of Farm Machinery", CBS Publisher Delhi.

 Michal, A. M. and Ojha, T. P., "Principles of Agricultural Engineering", Jain Brothers, Vol I., New Delhi.
 Liljedahl, J. B., Turnquist, P. K., Smith, D. W. and Hoki, M. "Tractors and their power units", CBS Publishers and Distributers, Fourth Edition, Delhi, 2004.

				Μ	apping	of CC	<b>)</b> s with	POs /	<b>PSO</b> s					
						РС	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3											2	2	2
2	2											2		
3		2				2	2							
4		2											2	
5							2							2
CO (W.A)	3	2				2	2					2	2	2



9

9

		22AGZ02 - PLANT PROTECTION	EQUIPMENTS	5			
				L	Т	Р	С
				3	0	0	3
PRE -	<b>REQUISITE</b> :	NIL					
Course	e Objective:	<ul> <li>To provide comprehensive know farm operations to improve agricution</li> <li>To develop the ability to select an implements for different agricultur</li> </ul>	ultural productivity nd utilize appropria	y and e	fficien	cy.	
	e <b>Outcomes</b> Ident will be able	e to	Cognitive Level	in	End S	ge of <b>(</b> emest inatio	ter
COI		dge of sowing and fertilizing equipment calibrate appropriate devices for specific nting methods	Ap		2	0%	
CO2	effectively, co crops like	ent types of harvesting machinery nsidering the specific requirements for paddy, sugarcane, maize, and root isuring proper care and maintenance of t.	Ар		2	0%	
CO3	mechanization	objectives and benefits of farm and differentiate between primary and age implements.	An		2	0%	
CO4	of various pri	construction, operation, and application mary and secondary tillage implements, uld board ploughs, disc ploughs, and ghs.	E		2	0%	
CO5		ous weeding and plant protection nderstanding their types, classification, al maintenance.	E		2	0%	

## UNIT I -FARM MECHANIZATION

Farm mechanisation – objectives. Tillage - objectives - methods – primary tillage implements - secondary tillage implements - animal drawn ploughs - construction. Types of farm implements – trailed, mounted and semi mounted implements - Field capacity.

## UNIT II -PRIMARY AND SECONDARY TILLAGE IMPLEMENTS

Mould board plough- attachments – mould board shapes and types. Disc plough – force representation on disc – Types of disc ploughs – Subsoiler plough - Rotary plough. Cultivators - types - construction. Disc harrows - Bund former - ridger – leveller. Basin lister-Wetland preparation implements-Cage wheel.

## UNIT III -SOWING AND FERTILIZING EQUIPMENT

 $Crop \ planting \ - \ methods \ - \ row \ crop \ planting \ systems \ - \ Devices \ for \ metering \ seeds \ - \ furrow \ openers \ - \ furrow \ closers- \ types \ - \ Types \ of \ seed \ drills \ and \ planters \ - \ calibration-fertilizer \ metering \ devices \ - \ seed \ cum \ fertilizer \ drills \ - \ paddy \ transplanters \ .$ 

(9)

(9)

## UNIT IV -WEEDING AND PLANT PROTECTION EQUIPMENT

Weeding equipment – hand hoe – long handled weeding tools – dryland star weeder – wetland conoweeder and rotary weeder - Sprayers –types-classification – methods of atomization, spray application rate, droplet size determination – volume median diameter, numerical median diameter – drift control- Dusters - types - care and maintenance.

#### **UNIT V – HARVESTING MACHINERY**

Harvesting - types of harvesting machinery, - Combine harvester - paddy, sugarcane, maize - grains harvester - thresher - multi crop thresher - digger - tapioca, potato, onion - cotton picker, groundnut harvester - fruit harvesting equipment, balers, threshers.

#### TOTAL (L:45) = 45 PERIODS

#### **TEXT BOOKS**:

- 1. JagdishwarSahay. Elements of Agricultural Engineering. Standard Publishers Distributors, Delhi 6.,2010.
- Michael and Ohja. Principles of Agricultural Engineering. Jain brothers, New Delhi., 2005 3. Ojha T.P. and A.M. Michael. 2018. Tenth edition. Principles of Agricultural Engineering, Vol – 1. Jain Brothers, New Delhi.

#### **REFERENCES:**

- 1. Donnell Hunt. 2013. Farm power and machinery management. Scientific International Pvt. Ltd. New Delhi.
- 2. Harris Pearson Smith et al. 1996. Farm machinery and equipments. Tata McGraw-Hill pub., New Delhi.

				M	apping	g of CC	<b>)s wit</b> h	POs /	<b>PSO</b> s					
						Р	os						PS	Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3			2									3	
2	I				3								I	
3		3												3
4				3										
5			3											I
CO (W.A)	2	3	3	3	3								2	2

D. du

(9)

	22 <b>AG</b> 7	203 - WASTE WATER MANAGEME	ENT AND RECY	CLIN	IG		
				L	Т	Р	С
				3	0	0	3
PRE -	<b>REQUISITE</b> :	NIL					
Course	e Objective:	<ul> <li>To examine the sources, conswaste water and treatment meth</li> <li>To appraise various physical and</li> <li>To understand various biological</li> <li>To explore various advanced Discharge systems.</li> <li>To know the problems and recy</li> </ul>	nods chemical treatmer treatment process treatment proc	it proe ses. ess a	cesses.		
	e <b>Outcomes</b> dent will be able	to	Cognitive Level	in	ightag End S Exami	emest	ter
соі		onstituents and environmental concerns r and treatment methods.	An		2	0%	
CO2	Comprehend processes.	various physical and chemical treatment	Ap		2	0%	
CO3	Analyze variou	is biological treatment processes.	An		2	0%	
CO4		rious advanced treatment process and ischarge systems	Ар		2	0%	
CO5	Find the recyc global	ling and reuse of water technologies in	An		2	0%	

## UNIT I – INTRODUCTION TO WASTE WATER TREATMENT

Wastewater Sources and types, physical and chemical properties - Constituents in waste water – Impact of wastewater -Health and Environment Concerns in waste water and environmental regulations, thermal treatment processes, Wastewater Reclamation and reuse

## UNIT II – PHYSICAL AND CHEMICAL TREATMENT PROCESSES

Physical and chemical properties of wastewater, Physical Unit Operations –Screening, Equalization, Flocculation, sedimentation, Clarification, Filtration, Flotation and Aeration Systems. Chemical Unit Process – Chemical Coagulation, Precipitation, Oxidation and Neutralization

## UNIT III – BIOLOGICAL TREATMENT PROCESS

Microbial metabolism – Bacterial growth– Aerobic and Anaerobic biological oxidation – Activated Sludge process – Trickling filters – Rotating biological contactors – Combined treatment processes – Chemical reactors and filters.

(9)

(9)

### UNIT IV – ADVANCED TREATMENT PROCESS

Need for Advanced Wastewater Treatment - Technologies used in advanced treatment – Depth Filtration – Surface Filtration – Membrane Separation Process- Absorption – Ion Exchange – Advanced oxidation process – ZLD Concept

## UNIT V – RECYCLING AND REUSE OF WATER

Multiple uses of water – Reuse of water in agriculture – Low cost waste water treatment technologies -Economic and social dimensions - Packaged treatment units – Reverse osmosis and desalination in water reclamation

### TOTAL (L:45) = 45 PERIODS

## **TEXT BOOKS:**

- 1. "Industrial Waste Water Management, Treatment and Disposal-MOP FD-3", Water Environment Federation, 3rd Edition, Tata McGraw Hill Professional Publishing Company, New York, 2019.
- 2. Metcalf, Eddy and Tchobanoglous G., "Waste Water Engineering Treatment and Reuse", Tata McGraw Hill Company, 2nd Edition, NewYork, 2017.

George Tchobanoglous, Franklin Louis Burton, Metcalf and Eddy, H. David Stense, "Waste water Engineering: Treatment and Reuse", McGraw-Hill, 2012.

#### **REFERENCES:**

- I. Arceivala S. J., "Wastewater Treatment for Pollution Control", 3rd Edition, McGraw-Hill, 2009.
- 2. Eckenfelder W. W., "Industrial Water Pollution Control", 2nd Edition, McGraw-Hill, 2015.

				M	lapping	g of CC	Os with	POs /	PSOs					
						PC	Ds						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3	3												
2	3													2
3			3					I						
4												I		
5				3								I	3	
CO (W.A)	3	3	3	3				I				Ι	3	2

247 | Page

(9)

	22AGZ04 - BAKING AND CONFECTION	ERY TECHNO	LOG	Y		
			L	Т	Ρ	С
PRE -	REQUISITE : NIL		3	0	0	3
Course	• To learn about the equipments to	o operate in the b	aking i	ndustr	у	
	e Outcomes Ident will be able to	Cognitive Level	in	End S	ge of ( emes natio	ter
COI	Analyze the fundamental raw materials vital in bakery units	An		2	0%	
CO2	Detect the basic functions used in bakery and confectionery technology	Ap		2	0%	
CO3	Assess the equipments used for baking	An		2	0%	
CO4	Analyze processing of different confectionary products and its packaging requirements	An		2	0%	
CO5	Evaluate the promotions of entrepreneurship development	An		2	0%	

#### **UNIT I- INTRODUCTION TO BAKING**

Classification of bakery products. Bakery ingredients and their functions-Essential ingredients Flour, yeast and sour dough, water, salt- Other ingredients Sugar, color, flavor, fat, milk, milk powder and bread improvers. Leaveners and yeast foods. Shortenings, emulsifiers and antioxidants.

#### UNIT II – EQUIPMENTS

Introduction to utensils and equipments used in bakery industry with their purpose. Bulk handling of ingredients- Dough mixing and mixers, Dividing, rounding, sheeting, and laminating-Fermentation enclosures and brew equipment - Ovens and Slicers.

#### UNIT III - BREAD MAKING PROCESS

The Chemistry of dough Development. Bread making methods- Straight dough/bulk fermentation Sponge and dough- Activated dough development- Chorley wood bread process- Dough retarding and freezing-emergency No time process.

#### UNIT IV -BAKERY PRODUCTS

Production of cakes and cookies/biscuits. Types of biscuit dough's - Developed dough, short dough's, semisweet, enzyme modified dough's and batters. Cake making Ingredients and their function Structure builders. Production process for Wafers.

(9)

(9)

(9)

## **UNIT V – CONFECTIONERY PRODUCTS**

Social responsibility of business. Morals and ethics in enterprise management- SWOT analysisGovernment schemes and incentives for promotions of entrepreneurship. Government policy on small and medium enterprises (SMEs)/SSIs/MSME sectors.

## TOTAL (L:45) = 45 PERIODS

#### TEXT BOOKS:

- 1. Matz, Samuel, A., "Bakery Technology and Engineering", 3rd Edition, Chapman and Hall, London, 1992.
- 2. Cauvain, Stanley, P., and Young, Linda S., "Technology of Bread Making, Springer, 2007.

#### **REFERENCES:**

- I. Edwards W.P., "Science of bakery products", RSC, UK, 2007.
- 2. Samuel A. Matz., "Equipment for Bakers", Pan Tech International Publication., 1988.
- 3. Jackson, E. B., "Sugar Confectionery manufacture (Ed)", 2nd Edition, Blackie Academic and Professional, Glasgow, 1995.

				M	appin	g of C	Os wit	h POs	: / PSC	)s				
<b>60</b> -							Pos						PS	Os
COs	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι		2				3								2
2	3													2
3		2				3								
4				2										
5				2			3							2
CO (W.A)	3	2		2		3	3							2

D. Au

	22AG	M01 - PRODUCTION TECHNOLO	GY OF FIELD C	ROP	S		
				L	т	Ρ	С
				3	0	0	3
PRE -	<b>REQUISITE</b> :	NIL					
Course	e Objective:	<ul> <li>To apply knowledge for identi major field crops.</li> <li>To develop skills in crop man</li> </ul>					
		ecological value of crops.					
	e Outcomes udent will be able	to	Cognitive Level	in	End S	ge of ( emestinatio	ter
соі		ge to differentiate major cereal crops and vation practices and nursery raising cereals.	Ap		2	0%	
CO2		tion criteria to distinguish types of millets appropriate cultivation practices for each	Ap		2	0%	
CO3		ltivation practices of major pulse crops neir economic importance in agricultural	An		2	0%	
CO4		able cultivation techniques for oilseed s and assess their contribution to farm	An		2	0%	
CO5	green manure o	ge to identify and cultivate fodder and rops and evaluate their role in improving livestock nutrition.	Ар		2	0%	

## **UNIT I – PRODUCTION TECHNOLOGY OF CEREALS**

Rice, wheat, Maize – Origin, geographical distribution, economic importance, soil and climatic requirements, varieties, cultural practices (from land preparation to harvest) and Yield.

## UNIT II – PRODUCTION TECHNOLOGY OF MILLETS

Major millets- Sorghum, Pearl millet (Cumbu) and Finger millet (Ragi) Minor millets- Fox tail millet (Tenai), Little millet (Samai), Kodo millet (Varagu), Barn yard millet (Kudiraivali) and Proso millet (Pani varagu) -Origin, geographical distribution, economic importance, soil and climatic requirements, varieties, cultural practices (from land preparation to harvest) and Yield.

## **UNIT III - PRODUCTION TECHNOLOGY OF PULSES**

Pigeon pea (Red gram), Black gram (Urd bean), Green gram (Mung bean) and Cowpea : Origin, geographical distribution, economic importance , soil and climatic requirements, varieties, cultural practices(from land preparation to harvest) and Yield.

## UNIT IV - PRODUCTION TECHNOLOGY OF OIL SEEDS AND FIBRE CROPS

(9)

(9)

(9)

Oil Seeds - Groundnut, Sesame, and Castor- Fibre crops - Cotton and Jute - Origin, geographical distribution, economic importance, soil and climatic requirements, varieties, cultural practices(from land preparation to harvest) and Yield

### UNIT V - PRODUCTION TECHNOLOGY OF FODDER CROPS AND GREEN MANURES

(9)

Fodder crops - Fodder sorghum , Fodder cumbu, Cumbu Napier grass, guinea grass - Fodder cowpea -Green manures - Sunnhemp, Kolinji - Origin, geographical distribution, economic importance, soil and climatic requirements, varieties, cultural practices and Yield

## TOTAL (L:45) = 45 PERIODS

#### **TEXT BOOKS:**

- I. Rajendra Prasad, "Text book on Field Crop production", Indian Council of Agricultural Research, New Delhi, 2004.
- 2. "Hand Book of Agriculture", Indian Council of Agricultural Research ICAR, New Delhi, 2006.

#### **REFERENCES:**

- 1. "Crop production Guide", Directorate of Agriculture, Chennai and TNAU, 2005.
- 2. Ahlawat, I.P.S., Om Prakash and Saini, G.S., "Scientific Crop production in India", Rama publishing House, Meerut, 1998.
- 3. Chidda Singh, "Modern Techniques of raising Field crops", Oxford and IBH publishing Co. Pvt. Ltd., New Delhi, 1997.

				M	appin	g of C	Os wit	h POs	/ PSC	s				
<b>60</b>							Pos						PS	Os
COs	I	2	3	4	5	6	7	8	9	10	11	12	I	2
Ι		2				3								
2	3													
3		2				3								
4				2										
5							3							
CO (W.A)	3	2		2		3	3							

D. du

		22AGM02 - BASIC HORTIC	ULTURE				
				L	Т	Р	С
				3	0	0	3
PRE -	<b>REQUISITE</b> :	NIL					
Course	e Objective:	<ul> <li>To impart knowledge on fu horticulture including classification</li> <li>To develop practical skills in p and use of growth regulators in h</li> </ul>	on, climate, and so ropagation, trainir	il requ ng, pri	ireme	nts.	
	e Outcomes udent will be able	to	Cognitive Level	in	End S	ge of ( Semes inatio	ter
COI		ge to classify horticultural crops based on d botanical criteria, and evaluate suitable conditions.	Ар		2	20%	
CO2	-	propagation techniques such as cutting, rafting, and apply principles of orchard	An		2	20%	
CO3	and analyze productivity.	ropriate training and pruning methods their effects on plant growth and	An		2	.0%	
CO4	pollinizers and fertilization and	nation processes, identify effective pollinators, and explain concepts like parthenocarpy.	An		2	.0%	
CO5	use of plant gro	cal experiments and assignments on the owth regulators and record observations ticultural practices.	Ap	Int	ernal /	Assessr	nent

## **UNIT I – BASIC CONCEPTS OF HORTICULTURE**

Horticulture - Its definition and branches, importance and scope. Horticultural and botanical classification. Climate and soil for horticultural crops.

## **UNIT II – PROPAGATION METHODS AND STRUCTURES**

Plant propagation-methods like cutting, layering, grafting and propagating structures. Seed dormancy, Seed germination, principles of orchard establishment.

## **UNIT III - TRAINING AND PRUNING**

Principles and methods of training and pruning, juvenility and flower bud differentiation, unfruitfulness.

#### UNIT IV - POLLINATION

Pollination, Pollinizers and Pollinators. Fertilization and Parthenocarpy. Medicinal and Aromatic plants.

(9)

(9)

(9)

## UNIT V - GROWTH REGULATORS

(9)

Growth regulators - Importance of plant bio-regulators in horticulture – Auxin – Gibberellins – Cytokinin – Ethylene – role of Growth regulators in horticultural crops.

### TOTAL (L: 45) = 45 PERIODS

#### TEXT BOOKS:

- I. Jitendra Singh, "Basic Horticulture", Kalyani Publishers, New Delhi, 2011.
- 2. Peter, K.V., "Basics Horticulture", New India Publishing Agency, 2009.

#### **REFERENCES:**

- I. Kausal Kumar Misra and Rajesh Kumar, "Fundamentals of Horticulture", Biotech Books, 2014.
- 2. Chadha, K. L., "Hand book of Horticulture ", ICAR, NewDelhi, 2002.
- 3. Christopher, E. P., "Introductory Horticulture", Biotech Books, New Delhi, 2001.
- 4. Adams C. R., Bradford K. H., and Early M. P., "Principles of Horticulture", CBS Publishers and Distributors, New Delhi, 1996.

COs	Pos											<b>PSO</b> s	
COS	Ι	2	3	4	5	6	7	8	9	10	12	Ι	2
	3												
2		3											
3				3									
4	3												
5					2	2					2		
CO (W.A)	3	3		3	2	2					2		

D. Atel

		22AGM03 - FARM MECHAN	IZATION				
				L	Т	Ρ	С
				3	0	0	3
PRE -	REQUISITE : NIL						
Course	e Objective:	<ul> <li>To provide fundamental know practices, and machinery used in</li> <li>To develop skills in the appl agricultural machinery with for feasibility.</li> </ul>	various agricultur ication, maintenar	al ope nce, a	ration: nd ev	s. aluatio	n of
	e <b>Outcomes</b> Ident will be able to		Cognitive Level	in	End S	ge of ( emes inatio	ter
COI		o explain the scope, evolution, and mechanization and identify various sed in agriculture.			2	.0%	
CO2	, ,,	tillage operations and assess the emerging technologies in farm			2	.0%	
CO3	,	trate the use of various primary and plements and seeding equipment.	Ap		2	.0%	
CO4	-	e the functions of harvesting, plant t-harvest handling equipment used in			2	.0%	
CO5	safety, routine m	tical understanding of machinery aintenance, and cost-effectiveness isks and documentation.		Int	ernal /	Assessr	nent

## **UNIT I – FARM MECHANIZATION**

Farm mechanization – Definition and scope of farm mechanization - Importance and benefits of mechanization in agriculture - history of farm mechanization in India - Different Sources of Power in agriculture – tractors - History of Development of farm tractors in India – current trends of farm mechanization

## UNIT II – TILLAGE AND CHALLENGES IN FARM EQUIPMENT USAGE

Introduction to Tillage and Farm Mechanization - Importance of tillage in agriculture - Types of Tillage -Applications - Benefits and Challenges of Farm Mechanization - Issues in Farm Mechanization - Emerging technologies in farm mechanization

## UNIT III - IMPLEMENTS USED IN FARMING OPERATIONS

Introduction to Agricultural Implements - Types of implements based on usage – primary and secondary implements – types - Mould board plough- Disc plough- animal drawn ploughs. Planting and seeding machinery – types and their functions

## UNIT IV - HARVESTING AND POST-HARVEST HANDLING EQUIPMENTS

(9)

(9)

Different kinds of crop harvesting machinery – combine harvesters - functions and applications - plant protection machinery - Basics of knapsack sprayers, - power sprayers, and dusters - Handling and processing equipment - threshers - Storage facilities and techniques for maintaining crop quality

# UNIT V - ECONOMICS AND SAFETY MAINTENANCE OF FARM MECHANIZATION

(9)

Safety precautions for operating farm machinery - Maintenance and servicing for agricultural equipment -Economic considerations in machinery selection and utilization

#### TOTAL = 45 PERIODS

#### **TEXTBOOKS**:

- 1. Jagdishwar Sahay, "Elements of Agricultural Engineering", Standard Publishers Distributors, Delhi-6, 2010.
- 2. Michael and Ohja, "Principles of Agricultural Engineering", Jain brothers, New Delhi, 2005.
- 3. Farm Machinery and Equipment" by Harry L. Field and William D. Clay, New delhi

- I. Kepner, R.A., et al, "Principles of farm machinery", CBS Publishers and Distributers, Delhi -99, 1997.
- 2. Harris Pearson Smith et al, "Farm machinery and equipment", Tata McGraw-Hill pub., New Delhi, 1996.

Mapping	g of (	COs	with	POs /	<b>PSO</b> s									
Cos	Po												<b>PSO</b> s	
Cos	Ι	2	3	4	5	6	7	8	9	10	11	12	1	2
	3													
2		3												
3			3											
4	3													
5					2	2						3		
CO (W.A)	3	3	3		2	2						3		



2	22AGM04 SOII	L CONSERVATION AND WATER	HARVESTING ⁻	TEC⊦	INOL	OGY	
				L	Т	Ρ	С
				3	0	0	3
PRE -	<b>REQUISITE</b> :	NIL					
		• To understand the principles of effects, and control measures.					
Cours	e Objective:	• To develop the ability to plan	•				
		structures, water harvesting techniques	systems, and w	/atersr	nea m	ianagei	ment
	e Outcomes udent will be able	to	Cognitive Level	in	End S	ge of ( emes natio	ter
соі		ge to identify types, causes, and factors of erosion and evaluate their impacts using .E.			2	0%	
CO2		sign and function of soil erosion control g open channel hydraulics and energy ciples.			2	0%	
CO3	harvesting st	evaluate short- and long-term water cructures based on site-specific and sustainability			2	0%	
CO4	-	rshed management plans integrating ngineering approaches for soil and water			2	0%	
CO5	runoff, and eva	practical skills in estimating soil loss, aluating conservation methods through nd analytical tasks.		Int	ernal A	Assessr	nent

#### **UNIT I -CONCEPTS OF WATER EROSION**

Problems of soil erosion - Geological and Accelerated erosion, Factors affecting water erosion, Types of water erosion - Splash, sheet and rill, Gully, stream bank and road erosion and ravines, Universal Soil Loss Equation (USLE) & soil loss tolerance, Rainfall Erosion Index, Soil erodibility Index, Slope, slope length and topographical factors, Crop management for soil erosion 'C' factor, Conservation practice factor 'P', Measurement of runoff and soil loss - Multislot divisor unit - Coshocton rotating wheel sampler - Rainfall simulation and simulator - Sediment yield and sedimentation, Wind erosion mechanics - Methods of estimation of wind erosion - Desertification, deforestation and shifting cultivation.

## **UNIT II – EROSION CONTROL STRUCTURES**

Introduction; classification of structures, functional requirements of soil erosion control structures; flow in open channels-types of flow, state of flow, regimes of flow, energy and momentum principles, specific energy and specific force; hydraulic jump and its application, type of hydraulic jump, energy dissipation due to jump, jump efficiency, relative loss of energy; runoff measuring structures-parshall flume, H - flume and weirs

(9)

## UNIT III – WATER HARVESTING TECHNIQUES

Water harvesting principles for rural and urban – classification based on source, storage and use; Short-term and micro-level harvesting techniques for runoff – terracing and bunding – rock and ground catchments; Long-term and macro-level harvesting techniques for runoff – farm ponds – percolation ponds and nala bunds; Design considerations – site selection – selection of system and components – optimization for sustainable operation – cost estimation.

(9)

(9)

(9)

#### UNIT IV - WATERSHED MANAGEMENT

Watershed – concept – planning, Principles – Components of watershed development – Watershed management plan - Biological. Watershed management plan – Engineering.

## UNIT V - WATER HARVESTING

Land use capability classification; grassed water ways and their design; introduction to water harvesting techniques, Farm pond, Dry farming techniques for improving crop production.

## TOTAL = 45 PERIODS

#### **TEXT BOOKS**:

- 1. Suresh, R., "Soil and Water Conservation Engineering", Standard Publishers & Distributors, New Delhi., 2012.
- 2. Bhagu, R., Chahar, "Groundwater Hydrology", McGraw Hill Education (India) Pvt Ltd, New Delhi, 2017.

- I. Das, M., "Open Channel Flow", Prentice Hall of India Pvt. Ltd., New Delhi, 2008 .
- 2. "Agriculture in the Dry Areas", CRC Press, Taylor and Francis Group, London, 2012.
- 3. Michael, A.M., Ojha T.P., "Principles of Agricultural Engineering-Volume II, 4th Edition", Jain Brothers, New Delhi, 2003.

COs	PC	)s											PSOs	
CUS	Ι	2	3	4	5	6	7	8	9	10	11	12	I	2
	3													
2		3												
3			3											
4	3													
5	1				2	2						3		
CO (W.A)	3	3	3		2	2						3		

D. due

		22AGM05 RENEWABLE POWE	R SOURCES				
				L	Т	Р	С
				3	0	0	3
PRE -	<b>REQUISITE</b> :	NIL					
Course	e Objective:	• To provide foundational know their role in sustainable developm	ment.				
	<b>,</b>	<ul> <li>To develop analytical and prac systems including biomass, solar,</li> </ul>					nergy
	e Outcomes udent will be able	e to	Cognitive Level	in	End S	ge of ( emes inatio	ter
COI		s of renewable energy and evaluate the social implications of renewable energy and globally.			2	.0%	
CO2		s, biogas, and biofuel systems in terms of n, construction, working principles, and			2	.0%	
CO3		radiation and demonstrate the operation energy systems and devices.	Ap		2	.0%	
CO4	Evaluate the energy convers	components and classification of wind ion systems	An		2	.0%	
CO5	thermal energy	the ability to assess hydro and ocean systems through practical understanding lesign, and challenges.	Ap	Int	ernal A	Assessr	nent

## UNIT I - INTRODUCTION OF RENEWABLE POWER SOURCES

(9)

(9)

(9)

(9)

Principles of renewable energy; energy and sustainable development, fundamentals and social implications worldwide renewable energy availability- renewable energy availability in India - brief descriptions on renewable power sources- Introduction to Internet of energy (IOE).

## **UNIT II – BIOMASS , BIOGAS AND BIOFUEL**

Characterization of biomass; types, construction, working principle, Biomass Combustion Technology, Biomass Gasification - Biogas technology, Biogas plants types- Bio-Fuels and characteristics - Importance of Biofuels

## UNIT III - SOLAR ENERGY

Fundamentals - Solar Radiation; Estimation of solar radiation on horizontal and inclined surfaces - Solar radiation Measurements- Pyrometer - Sunshine Recorder - Solar Thermal systems - Flat plate collector - Solar distillation -Solar pond electric power plant.

#### **UNIT IV - WIND ENERGY**

Properties of wind - availability of wind energy in India - major problems associated with wind power - Basic components of wind energy conversion system (WECS) - Classification of WECS- Horizontal axis- single, double and muliblade system.

#### UNIT V - HYDRO AND OCEAN THERMAL ENERGY CONVERSION

(9)

Tides and waves as energy suppliers and their mechanics- fundamental characteristics of tidal power - harnessing tidal energy - advantages and limitations - Principle of working - OTEC power stations in the world - problems associated with OTEC.

#### TOTAL = 45 PERIODS

#### TEXT BOOKS:

- I. Widell, J.T and Weir, T, "Renewable Energy Resources" .
- 2. Paul Matthews, "Introducing Renewable Energy: A simple, practical guide to small scale solar, wind and hydro-electric micro power".

- I. Garg, H. P., "Treatise on Solar Energy, Vol.: Fundamentals of solar energy", John Wiley & sons Ltd.
- 2. John, A., Duffie and William A. Beckman, "Solar Engineering of Thermal Processes", 4th Edition, John Wiley and Sons Ltd, 2013. (ISBN: 978-0-470-87366-3)
- 3. Hall, D. D. and Grover, R. P., "Biomass Regenerable Energy" .
- 4. Garg, H. P., "Advances in Solar Energy Technology Volume 2, Industrial Applications of Solar Energy", Springer Publications. 1987. (ISBN: 978-94-010-8188-7 (Print)).

Mappin	ig of	COs	with	POs /	<b>PSO</b> s								
COs	Po	S										<b>PSO</b> s	
CUS	Ι	2	3	4	5	6	7	8	9	10	12	I	2
		3											
2	3												
3			3										
4				3									
5							2				3		
CO (W.A)	3	3	3	3			2				3		

	22A	22AGM06 ENVIRONMENTAL POLLUT	ION MANAGEM	1ENT	-		
				L	Т	Р	С
PRE -	REQUISITE :	NIL		3	0	0	3
	e Objective:	<ul> <li>To understand sources, types, across air, water, soil, and noise</li> <li>To develop knowledge and assessment, and control technological statement.</li> </ul>	domains skills in pollutio			-	
	e <b>Outcomes</b> udent will be able	e to	Cognitive Level	in	End S	ge of ( emes inatio	ter
соі		tion methods to identify types, sources, environmental pollutants.	Ap		2	0%	
CO2		echniques for air pollutants and interpret based on standards.	Ap		2	0%	
CO3		ocesses in wastewater treatment and ality using standard parameters.	Ар		2	0%	
CO4		neasurement techniques and propose es based on guidelines.	Ap		2	0%	
CO5		oil pollution analysis and suggest suitable egies through field-based evaluation.	Ap	Int	ernal A	Assessr	nent

## UNIT I – BASIC CONCEPTS IN ENVIRONMENTAL POLLUTION

Introduction, Objectives-Definition and types of environmental pollution-Types of pollutants-Source classification-Concept of standards, guidelines.

## UNIT II – AIR POLLUTION AND QUALITY AND ITS CONTROL

Introduction, Objectives-Control Measures for Particulate Pollutants-Control measures for Volatile Organic Compounds- Control measures for Gaseous emissions. Monitoring of Air Quality-Air quality standards-Air Quality Index-Indoor air pollution.

## UNIT III - WATER POLLUTION AND QUALITY AND ITS CONTROL

Introduction, Objectives-Physical Unit Processes-Chemical Unit Processes-Biological Unit Processes-Sludge Management-Design of a waste water treatment plant-Advanced water treatment processes. Water Quality And Its Impact-Concept of water quality-Water quality parameters-Water quality standards and guidelines.

## UNIT IV – NOISE POLLUTION AND ITS CONTROL

(9)

(9)

Introduction, Objectives-The Concept of Noise-Measurement of Noise-Sources of Noise Pollution-Guidelines and Standards of Noise Pollution-Impacts of Noise Pollution-Control of Noise Pollution.

## UNIT V - SOIL QUALITY AND ITS POLLUTION

(9)

Introduction, Objectives- Characteristics of Soil- Different kinds of Soil- Soil pollution- Soil Pollution and Agriculture- Mining and Soil Pollution- Effects of Soil Pollution.

# TOTAL = 45 PERIODS

#### **TEXT BOOKS:**

- 1. "Industrial wastewater management, treatment & disposal, Water Environment" Federation Alexandria Virginia, Third Edition, 2008.
- 2. Soli. J. Arceivala, Shyam, R. Asolekar and Tata Mcgraw Hill, "Waste water Treatment for pollution control and reuse", 2007.

- I. "MEV-015 ENVIRONMENTAL POLLUTION, CONTROL AND MANAGEMENT"
- 2. Noel de Nevers, "Air Pollution Control Engg", McGraw Hill, New York, 2016.
- 3. Wayne T.Davis, "Air Pollution Engineering Manual", John Wiley & Sons, Inc., 2000.
- 4. Lawrence K. Wang, Norman C. Parelra, Yung Tse Hung, "Air Pollution Control Engineering", Tokyo, 2004.

Mapping	of COs	s with	POs /	PSO	5									
	PO's												PSO	S
CO's	I	2	3	4	5	6	7	8	9	10	11	12	I	2
1		3												
2	3													_
3			3											
4				2										
5						2	2					3		
CO (W.A)	) 3	3	3	2		2	2				1	3		

	22AGM	7 PRINCIPLES OF FOOD SCIENC	E AND PRESER	νατι	ON		
				L	Т	Ρ	С
				3	0	0	3
PRE -	<b>REQUISITE</b> :	NIL					
Cours	e Objective:	<ul> <li>To impart knowledge on vario significance in reducing post-harv</li> <li>To enable learners to apply and preservation techniques and ana life.</li> </ul>	vest losses d evaluate thermal	and i	non-th	ermal	food
	e Outcomes udent will be able		Cognitive Level	in	End S	ge of ( emest inatio	ter
COI		al and modern preservation techniques hability of food products.	Ap		2	0%	
CO2		iate methods for handling and low- orage of plant and animal products.	Ap		2	0%	
CO3		al processing methods and evaluate their fferent food types.	Ар		2	0%	
CO4	Evaluate dryi psychrometric	ng and freezing methods using properties and design parameters	Ap		2	0%	
CO5		hermal preservation technologies for and applicability in various food systems.	Ap	Int	ernal A	Assessn	nent

## **UNIT I – FOOD PRESERVATION AND ITS IMPORTANCE**

Introduction to food preservation, Wastage of processed foods; shelf life of food products; types of food based on its perishability, Traditional methods of preservation

#### UNIT II – METHODS OF FOOD HANDLING AND STORAGE

Nature of harvested crop, plant and animal; storage of raw materials and products using low temperature, refrigerated gas storage of foods, gas packed refrigerated foods, sub atmospheric storage, Gas atmospheric storage of meat, grains, seeds and flour, roots and tubers; freezing of raw and processed foods.retort pouch packing, Aseptic packaging.

## UNIT III – THERMAL METHODS

Newer methods of thermal processing; batch and continuous; In container sterilization- canning; application of infra-red microwaves; ohmic heating; control of water activity; preservation by concentration and dehydration; osmotic methods.

## **UNIT IV – DRYING PROCESS FOR TYPICAL FOODS**

(9)

(9)

Rate of frying for food products; design parameters of different type of dryers; properties of air-water mixture, Psychrometric chart, freezing and cold storage, freeze concentration, dehydro-freezing,freeze drying, IQF; calculation of refrigeration load, design of freezers and cold storages

(9)

## UNIT V – NON-THERMAL METHODS

Super Critical Technology for Preservation – Chemical preservatives, preservation by ionizing radiations, ultrasonics, high pressure, fermentation, curing, pickling, smoking, membrane technology. Hurdle technology,

## TOTAL = 45 PERIODS

#### **TEXT BOOKS:**

- I. Karnal, Marcus and Lund, D.B., "Physical Principles of Food Preservation", Rutledge, 2003.
- 2. VanGarde, S.J. and Woodburn. M., "Food Preservation and Safety Principles and Practice", Surbhi Publications, 2001.
- 3. Sivasankar, B., "Food Processing and Preservation", Prentice Hall of India, 2002.

- I. Rahman, M. Shafiur, "Handbook of Food Preservation", Marcel and Dekker, 2006.
- 2. Zeuthen, Peter and Bogh-Sarensen, Leif., "Food Preservation Techniques", CRC / Wood Head Publishing, 2003.
- 3. Ranganna, S., "Handbook of Canning and Aseptic Packaging", Tata McGraw-Hill, 2000.

Mapping	of COs	with PC	Ds / PS	SOs										
	PO's												PSOs	
CO's	I	2	3	4	5	6	7	8	9	10	11	12	I	2
l	3													
2		3												
3			3											
4	3													
5						2	2					2		
CO (W.A	3	3	3			2	2					2		

D. due

		22AGM08 BIOMASS WASTE T	O ENERGY				
				L	т	Ρ	С
				3	0	0	3
PRE -	<b>REQUISITE</b> :	NIL					
		To provide knowledge on chara	acterization of was	stes ar	nd the	ir pote	ential
_	<b></b>	as energy sources.					
Course	e Objective:	<ul> <li>To enable students to apply and energy technologies and assess t</li> </ul>	•				
	e Outcomes udent will be able		Cognitive Level	We in	ighta; End S	ge of ( emes	COs ter
COI		s to characterize and classify various energy potential.	Ap			0%	
CO2	Apply incinera converting was	ation and gasification techniques for te to energy	Ap		2	0%	
CO3	Analyze pyrolys systems.	sis processes and assess syngas utilization	An		2	0%	
CO4		waste densification and strategies for gy recovery efficiency.	An		2	0%	
CO5	plastic-to-energ	erformance and environmental impact of gy systems and gas cleanup methods udies, field visits, or technical reviews		Int	ernal A	Assessr	nent

## Unit I - Waste Characterization and Classification

Introduction to waste-to-energy-Classification and types of solid and liquid wastes-Physical and chemical characterization of wastes-Assessment of energy potential

#### **UNIT II – Incineration and Gasification for Energy Production**

Principles of incineration, Combustion process and energy recovery, Introduction to gasification, Reactor types and energy output comparison

#### UNIT III – Pyrolysis and Syngas Utilization

Pyrolysis principles and reactor types, Products of pyrolysis and their energy potential, Syngas composition, cleaning, and utilization, Integration with gas engines and turbines

#### **UNIT IV – Densification and Power Plant Efficiency**

Densification methods for solid waste (briquetting, pelletizing), Impacts on combustion efficiency, Efficiency improvement strategies in power plants, Waste plastic energy recovery techniques

#### UNIT V – Waste Plastics and Gas Cleanup

(9)

(9)

(9)

(9)

Conversion of waste plastics into fuel, Thermal depolymerization, catalytic cracking, Gas cleanup techniques and emission control. Environmental and economic considerations

## TOTAL = 45 PERIODS

## **TEXT BOOKS**:

- I. Rogoff, M.J. and Screve, F., "Waste-to-Energy: Technologies and Project Implementation", Elsevier Store.
- 2. Young G.C., "Municipal Solid Waste to Energy Conversion processes", John Wiley and Sons.

- 3. Harker, J.H. and Backhusrt, J.R., "Fuel and Energy", Academic Press Inc.
- 4. Paul T. Williams wrote Waste Treatment and Disposal, published by John Wiley & Sons in 2005 (2nd Edition).
- 5. EL-Halwagi, M.M., "Biogas Technology- Transfer and Diffusion", Elsevier Applied Science.
- 6. Hall, D.O. and Overeed, R.P.," Biomass Renewable Energy", John Willy and Sons.
- 7. Mondal, P. and Dalai, A.K. eds., 2017. Sustainable Utilization of Natural Resources. CRC Press.

CO's	PO's								_				PSOs	
	I	2	3	4	5	6	7	8	9	10	11	12	I	2
I	3													
2		3												
3	1		3											
4	3													
5	1					2	2					2		
CO (W.A	3	3	3			2	2					2		

